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Guhr, Marius Harnisch, Dr. Tim Heitbreder, Dr. Raphael Holtermann, PD Dr. Tobias
Kaiser, Dr. Patrick Kurzeja, Henning Lammen, Dr. Kai Langenfeld, Dr. Marzena Mucha,
Alexander Niehüser, Prof. Richard Ostwald, Felix Rörentrop, Dr. Lars Rose, Markus
Schewe, Dr. Christian Sievers, Lennart Sobisch, Leon Sprave, Tillmann Wiegold, Hen-
drik Wilbuer and Carina Witt. Thank you all for the wonderful moments shared both
during work and beyond. I will always remember the collegial spirit, open discussions
and mutual support.

Last but not least, my heartfelt thanks go to my friends and especially my family –
my parents, my husband and my kids – for their unwavering love, encouragement, and
understanding throughout this rewarding journey. Their belief in me and their support
have been my greatest motivation and source of strength.

Dortmund, February 2024 Isabelle Noll

i





Zusammenfassung

Die vorliegende Arbeit behandelt einen neuartigen mikromechanisch motivierten Rah-
men zur Modellierung und Simulation von Laser-Pulver-Bett-Fusion (LPBF) Prozessen.
LPBF Verfahren gehören zur additiven Fertigung, welche die schichtweise Herstellung
von Bauteilen ermöglicht. (Metallische) Partikel einer Pulverschicht werden durch einen
Laserstrahl selektiv geschmolzen, um ein Bauteil zu fertigen. Dadurch ergeben sich in-
novative Möglichkeiten hinsichtlich Design, Struktur, Materialkombinationen und maß-
geschneiderten Teilen. Aufgrund des hohen Temperatureintrags treten komplexe thermi-
sche, mechanische und metallurgische Phänomene auf, darunter auch Phasenumwand-
lungen von Pulver über geschmolzenes zu wieder erstarrtem Material. Diese Hochtempe-
raturzyklen mit schnellem Aufheizen und Abkühlen verursachen verschiedene Defekte,
wie zum Beispiel Hohlräume, Verzug und Eigenspannungen. Um die verschiedenen Feh-
ler eines mit LPBF hergestellten Werkstücks besser vorhersagen zu können, sind neue
Ansätze erforderlich. Der erste Schwerpunkt dieser Arbeit liegt auf der Entwicklung ei-
nes physikalisch motivierten Materialmodells, das thermodynamisch konsistent ist und
auf der Minimierung der freien Energiedichte basiert. Dieses Modell wird im kleinen
Maßstab einer einzelnen Schmelzspur angewendet. Im zweiten Teil der Arbeit wird ein
Multiskalen-Ansatz entwickelt, der das Phasentransformationsmodell mit der Methode
der inhärenten Dehnung kombiniert, um ein vollständiges Teil simulieren zu können. Die-
ses stellt im Hinblick auf physikalische Genauigkeit und Rechenzeit einen vernünftigen
Kompromiss dar. Hierfür wird ein vollständig thermomechanisch gekoppelter Frame-
work verwendet, welcher mithilfe des kommerziellen Finite Elemente Programms Abaqus
gelöst wird. Die Simulationen werden auf die α-β-Titanaluminiumlegierung Ti6Al4V an-
gewendet, die je nach Abkühlgeschwindigkeit eine unterschiedliche Zusammensetzung
der Mikrostruktur entwickelt. Daher wird im letzten Teil der Arbeit ein Festkörper-
Phasentransformationsansatz mit einer neuartigen Dissipationsfunktion vorgestellt, um
das entsprechende kontinuierliche Zeit-Temperatur-Umwandlungsschaubild modellieren
zu können. Das thermodynamisch und physikalisch fundierte Modell wird anschließend
auf LPBF-Temperaturprofile auf lokaler Ebene angewendet.
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Abstract

The present work deals with a novel micromechanically motivated framework for the
modelling and simulation of laser powder bed fusion (LPBF) processes. LPBF processes
belong to additive manufacturing (AM) which allows the layer-wise manufacturing of
components. (Metallic) particles of a powder layer are selectively molten by a laser
beam to construct a part. This opens up innovative possibilities in terms of design,
structure, material combinations and custom-made parts. Due to the high temperature
input, complex thermal, mechanical and metallurgical phenomena occur, including phase
changes from powder to molten to re-solidified material. These high temperature cycles
of rapid heating and cooling cause diverse defects such as voids, warpage and residual
stresses. New approaches are necessary in order to better predict the various defects of
a workpiece manufactured with LPBF. The first focus of this work is set on developing
a physically well-motivated material model that is thermodynamically consistent based
on the minimisation of the free energy density. This model is then applied to the small
scale of a single melt track. Secondly, a multiscale approach is developed combining
the phase transformation model with the inherent strain (IS) method to simulate a
complete part. This represents a reasonable compromise in view of physical accuracy and
computational time. For this purpose, a fully thermomechanically coupled framework is
employed using the commercial finite element programme Abaqus. The material used
for the simulations is the α-β titan aluminium alloy Ti6Al4V, which developes a different
microstructure composition based on the cooling rate. Therefore, in the last part of the
work, a solid-state phase transformation approach with a novel dissipation function is
presented in order to be able to model the respective continuous cooling transformation
diagram. The thermodynamically and physically sound model is then applied to LPBF
temperature profiles at the local scale.
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1 Introduction

This thesis develops a thermodynamically consistent and thermomechanically
coupled phase transformation model for laser powder bed fusion processes applied to
small scales in Chapters 3 and 4. Moreover, an extension to determine the distortion
and residual stress of complete parts based on a multiscale framework by using inherent
strains is established in Chapter 5. Finally, a phase transformation model to incorporate
different solid phases for the titan aluminium alloy Ti6Al4V is developed in Chapter 6.
As basis for all chapters, both thermomechanical setting and implementation into the
commercial finite element software Abaqus are introduced in Chapter 2. The main
features regarding the laser powder bed fusion process and the current state of the art
are presented in Section 1.1, and the outline and aim of the thesis at hand is given in
Section 1.2. Chapter 7 closes this thesis with a summary of the main results and gives
a brief outlook on future research options.

1.1 Motivation and state of the art

Additive manufacturing of metallic parts – such as the laser powder bed fusion process
– has gained high interest in the industry, as it allows the manufacturing of components
layer by layer which offers a new design freedom and a production of custom-made
assemblies. However, especially high temperature gradients caused by the laser beam
heat input and phase changes influence the characteristics of the part, i.e. the mechanical
eigenstresses and plastic deformations of the component. In particular, coupled thermal,
mechanical and metallurgical processes arise during the production. Furthermore, the
component’s quality is highly influenced by the numerous present process parameters.
Additive manufacturing and especially the laser powder bed fusion process itself are
briefly described in Section 1.1.1. Furthermore, the origins of different material defects
are discussed to explain the necessity of micromechanically motivated models for finite
element simulations. Moreover, Section 1.1.2 gives an overview of present modelling
approaches for laser powder bed fusion processes for small scales and regarding complete
parts, as well as phase transformations models in the context of additive manufacturing
to consequently discuss open issues in the literature. Novel modelling approaches are
necessary to predict and minimise the diverse defects and residual stresses of a part
made by laser powder bed fusion.
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1 Introduction

1.1.1 Additive manufacturing processes and material defects

Additive manufacturing (hereinafter referred to as AM) technologies – starting with
stereolithography in 1986 – have developed into one of the most promising methods
for the manufacturing of almost arbitrarily shaped and thus complex workpieces and
structures. In contrast to subtractive or formative manufacturing technologies, e.g.
milling or moulding, additive techniques are characterised by the fact that the part is
fabricated by sequentially adding material to create the workpiece layer by layer. Thus,
the final part has little geometrical and material restrictions. Customised parts can be
manufactured at relatively low cost and in a comparatively short amount of time. Due to
the advantages of this rather new technology, it offers a considerable potential for possible
and promising applications in areas such as aerospace, automotive, rapid tooling, and
biomedical technology. AM can in particular demonstrate its benefits in the context of
custom-made designs and lightweight constructions. Significant and general advantages
are exemplified by the fact that AM does not require any tools during the essential
process (except for post-process surface treatments for instance), that manufacturing
processes can be quickly initiated, and that changes to such processes can be easily
implemented. Overall, a reduction of process steps and less process planning is required
compared to conventional technologies. Furthermore, it saves time and expense and helps
to conserve resources because less waste occurs. However, there are some disadvantages
such as slow building rates and limited part sizes, which hinder implementation into
regular assembly lines. Above all, it is difficult to select and predict the correct process
parameters that ensure a part with high accuracy and quality. These issues are discussed
later on in this section.

Nowadays, there are various technologies that differ e.g. in the material used (mostly
powder or wire), in the heat source and in the general principle. An overview of (single-
step) AM processes for metallic materials is given in Figure 1.1. Single-step AM processes
refer to such processes during which the geometry of the part is created simultaneously
in one operation. Similar materials, e.g. powder, are usually fused during the process.
There are different (single-step) process principles for ceramic and polymer materials,
which are not within the scope of this thesis. In this work, the focus is set on the laser
powder bed fusion (LPBF) process, also referred to as selective laser melting (SLM), in
which a work piece is manufactured in a – in this case – metal powder bed. The process
can be classified as shown in Figure 1.1.

Looking at the process chain, the part is directly built based on a three-dimensional
computer aided design (CAD) model, leading to AM being often referred to as near-net
shaping technique. The CAD model is then converted into a standard triangulation
language (STL) format that is widely used for all AM machines. It represents the
geometry of the CAD model as a simple mesh. This file is digitally sliced into thin
cross-sectional layers and can then be constructed by the chosen AM process and scan
pattern. The production is carried out by depositing and bonding of these layers. Thus,
no additional tools are required to initiate the AM process (except for any necessary

2



1.1 Motivation and state of the art

post-processing).

Figure 1.1: Overview of single-step AM processing principles for metallic materials, [7]. From Additive
Manufacturing Technologies, Springer Cham, Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Copy-
right (2021), [59]. Reproduced with permission from Springer Nature.

A brief overview of this specific AM technique – namely LPBF – is to be given, since
the understanding of a build cycle is mandatory for the modelling in the subsequent
chapters. The LPBF process can be subdivided into several essential steps: Starting
from the input data, e.g. a STL file as previously described, a layer of powder is applied
to a build platform. A moving laser beam heat source then selectively melts the powder
particles of the corresponding layer according to the defined model resulting in rapid
heating of the material. The layer height and the hatching distance has to be selected
according to the size of the melt pool in such a way that a complete fusion of neighbouring
layers and melt tracks is guaranteed. After a cooling period the material re-solidifies
again. The build platform is then lowered and a new layer of powder is applied. This
combination of material deposition, selective melting the powder material, and lowering
of the platform is repeated until final geometry of the part is achieved. Finally, the
remaining unmelted powder is removed and can be reused for new LPBF processes.
A detailed representation of the LPBF process with its most important properties is
illustrated in Figure 1.2. Thereby, almost arbitrary scan patterns are possible, which
can be constant for the complete part, i.e. line scanning, or based on smaller regions,

3



1 Introduction

referred to as scan islands. Between the layers the pattern may be constant or may
rotate. An overview of different scan patterns is given in, e.g., [5, 33, 93, 162]. In a
post-processing step, the support structure can be removed and residual stresses can be
relaxed by heat treatment. Overall, it is possible to manufacture parts by melting metal
powder in a layer-upon-layer technique.

In general, particle dynamics, thermal fluid dynamics, solid-state transformation and
solid mechanics are present during an LPBF process, compare Figure 1.3 for an overview
of the physical phenomena that occur in the melt pool. Particle dynamics is not a subject
of this work and therefore not further described. With regard to thermal fluid dynamics,
some fundamentals are important for the modelling of the molten phase. The melt pool
behaves like a fluid, whereby the melt pool shape is influenced by surface tension and
capillary forces, as well as by the wetting behaviour. Heat transfer within the melt flow
is governed by Marangoni convection rather than by heat conduction, compare [117].
The focus is set on solid mechanics and on the different state transformations due to
the heat input of the laser beam. As a consequence of the high temperature impact,
the powder particles first melt and then solidify after a cooling period, resulting in a
dense part. Depending on the heat impact, there is not only the phase transformation
between solid and liquid, but to some extent also vapour when the evaporation tem-
perature is exceeded. A detailed view of the three specific material states – powder,
melt pool, and re-solidified material– is pictured in Figure 1.2 for the LPBF process.
During the cooling process, solidification begins, which affects the material properties
of the final part. Depending on the exact position of the laser beam and the section
of material examined, the cooling rates, respectively the temperature gradients, of the
material significantly differ: Material that is directly in the focus of the laser beam ex-
hibits significantly higher cooling rates than material outside of the laser impact zone.
The area in which the material is not melted but is exposed to high temperatures and
thereby has changing material properties is referred to as heat affected zone (HAZ).
As a consequence, the associated thermal eigenstrains are heterogeneously distributed,
leading to bending due to the temperature gradient mechanism (TGM) as described
in [29, 93, 183]. This process not only causes distortion, but also potential failure of
the part due to delamination or cracking. In addition, the three different states of the
material exhibit different material properties as well as significantly changing mass den-
sities, so that the phase changes evoke relevant process-induced eigenstrains. Moreover,
depending on the material, non-negligible solid-state phase transformation can occur.
This results in high residual stresses within the part that can have a major impact on the
mechanical properties of the final product, in particular with respect to the long-term
behaviour and its lifetime. Besides large-scale material defect such as cracks, delamina-
tion and undesired deformation, various types of small-scale defects are also present, e.g.
voids due to lack of fusion, unwanted grain structure, surface deformation and keyhole
porosity, see [18].

The aerospace, automotive and biomedical sectors in particular promote the LPBF
process, where parts with long durability, high load capacity and geometrical accuracy
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Figure 1.2: Schematic view of the complete LPBF process. Adapted from [132] under the terms of the
Creative Commons Attribution License (CC BY).
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Figure 1.3: Schematic illustration of the different phenomena during the LPBF process based on coupled
thermal, mechanical and metallurgical processes which also include different scales. Reprinted from [139]
under the terms of the Creative Commons Attribution License (CC BY).

are especially important. Predicting the influence of the AM process parameters on the
workpiece’s properties is still challenging, as these effects have not yet been comprehen-
sively studied. This necessitates the modelling and simulation of the LPBF process or,
more generally speaking, AM processes, with an overview of the current state of research
being given in the subsequent Section 1.1.2.

1.1.2 Modelling and simulation of laser powder bed fusion processes

So far, experiments have mostly been made in order to identify the optimal parameter
configuration on a purely empirical level. However, simple experiments alone are not
sufficient to investigate and determine the origin of defects, as it is difficult to cover,
respectively characterise, all physical effects in experiments. Especially since the LPBF
process involves multiple phenomena and scales. In addition, experiments are costly
and time consuming. Therefore, simulations with physically well-motivated models are
necessary to gain a deeper understanding of the relation between e.g. process parameters
and the eigenstresses of the LPBF manufactured part. As a consequence, numerical
schemes such as the finite element (FE) method are useful to acquire further insight
into the mechanical, thermal and metallurgical phenomena visualised in Figure 1.3 and
into the underlying physics, so that manufactured parts are correctly predicted. This
thesis covers and connects several areas of modelling and simulation approaches based
on continuum mechanics. Therefore, the state of the art is divided into three parts,
namely welding models, LPBF models and phase transformation models in the context
of AM.

6



1.1 Motivation and state of the art

Welding models

LPBF has similar process characteristics to welding when considering the complex cou-
pled process interactions during manufacturing, in particular the thermal and metallur-
gical properties. However, modelling and simulating these LPBF processes comes along
with additional challenges compared to welding including but not restricted to the ad-
dition of material, plenty of laser passes and finer bead width, cf. [42] and the references
cited therein. Nevertheless, the established modelling methods regarding, e.g., heat
source models and multiscale frameworks are adapted or extended for the LPBF pro-
cess. Using a volumetric heat source with Gaussian distribution for the laser beam stems
from the modelling of welding processes and is also referred to as Goldak heat source
based on [60]. In addition, the inherent strain (IS) method has been introduced in [169]
for welding simulations. Various thermal expansions and contractions occur within the
weld seam leading to residual strains and plastic deformations of the original part. It is
concluded that the residual or so-called inherent strains εinh are the reason for the high
eigenstresses within the final part. With this method, accurate predictions for welding
simulations have been performed. These inherent strains are extracted from a thermo-
mechanical analysis for one joint and can then be applied to the modelling of the total
welding distortion by using a purely mechanical analysis, where the total strains are gov-
erned by an elastic and an inherent contribution, i.e. ε = εel + εinh. This approach has
been further developed and applied for welding processes in, e.g., [67, 123, 182]. In the
latter, the inherent strains are additively decomposed into εinh = εpl + εth + εcr + εtrans,
each representing a plastic, thermal, creep and transformation contribution, respectively.

LPBF models

In the following, a literature overview of LPBF models based on the different scales
(small-scale and part-scale) and modelling methods (finite element and others) is given.
Here, the small-scale models mostly refer to frameworks, where a single-line melt track
is simulated.

Finite Element models on small-scale
Starting with [164] in 1991, pioneering works with respect to LPBF process simulations
are based on the finite element method for small scales, i.e. considering only single-line
melt tracks. The finite element-based solution of the purely thermal problem and the
related determination of the process-induced temperature distribution is shown for ex-
ample in [37, 54, 71, 89, 100, 101, 150, 159, 165]. More sophisticated thermomechanical
small strain models are available in literature, e.g., [36, 55, 68, 72, 148, 149, 181, 190],
where the calculations with respect to the temperature field are enhanced by the pre-
diction and analysis of the residual stresses and by the alteration of the geometry. The
advantage of a thermomechanical model and the difference in the temperature evolution
is also presented in [55]. Most of these frameworks have in common that the material
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is considered at the local scale as a homogeneous medium with temperature-dependent
properties such as density, heat capacity or elastic stiffness. The different states of the
material – powder, molten, and re-solidified – are rather implicitly captured by one-to-
one correlations between the local temperature and the present state of the material.
Furthermore, the powder is considered as an already homogenised continuum in these
simulations.

Alternative models on small-scale
In [84], the arbitrary Lagrangian Eulerian (ALE) method is used for the coupling of
thermal diffusion and hydrodynamics. The particles are randomly distributed and also
exhibit temperature-dependent material properties. Alternatively, as shown in [96], a
two-dimensional lattice Boltzmann model can be used to model and simulate the ma-
terial deposition and the melting process. This approach allows for the consideration
of capillary effects within the powder as well as of the surface topology of previously
applied layers. In such models, the stochastic character of the powder material is par-
ticularly taken into account which, at the same time, increases the time required for
the associated calculations. Therefore, compromises between physical plausibility and
computational effort have been proposed, as for example shown in [56]. This model is
based on a coupling between the discrete element method for the powder material – the
constituents of which are modelled as thermally and mechanically interacting spheres
– and on finite differences with respect to the substrate. Thermal fluid dynamics are
necessary when considering all interactions within the melt pool such as convective flow,
wettability, capillary effects and recoil pressure. However, only small scales regarding
time and domain can be simulated. In [118], a smoothed particle hydrodynamics for-
mulation is used to model the capillary phase change with the complete set of thermal
and mechanical interface fluxes. Here, the focus is set on the melt pool dynamics as
visualised in Figure 1.3 rather than on the complete process. These alternative frame-
works are based on the modelling of the powder material as conglomerate of discrete
particles. A comprehensive overview of different models for the distinct length scales,
i.e. the resolution of the part, the powder particles or the metallurgical microstructure,
can be found in [117]. One of the few thermomechanical finite deformation frameworks
is developed in [174, 175] to predict the melting and solidification process on the powder
scale by using the optimal transportation mesh-free algorithm.

Finite element models on part-scale
Accurate thermomechanical models that resolve all individual laser scans and layers
require a high element density and a fine time discretisation to properly capture the great
temperature gradients of the heat impact, see for example the studies in [184]. Even with
increasing computational capabilities, the size of a physically accurate model is limited
to a few laser passes or layers, as the AM process involves various physical processes and
multiple scales. For industrial use, the influence of process parameters, product quality
and the prediction of deformation and residual stresses still remains challenging for a
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physically real component. So far, especially the high computational cost of part-scale
simulations and the difficult quantification of the parameter sensitivity have made further
studies in the direction of optimisation difficult. With the appropriate simulation tools it
is then possible to determine the pre-deformed shape and optimal initial build orientation
of the part to overcome problems due to warpage and high residual stresses. Therefore,
researchers are currently focusing on advanced models for the numerical investigation of
larger parts contrary to single-line melt tracks. Based on the goal of modelling complete
parts in industrial applications, two different methods are available in the literature.
On the one hand, the computational effort is reduced. In consequence, high performing
finite element algorithms are developed to speed up computation time, for example in
[58, 88, 124, 125, 136]. On the other hand, various other simplifications with regard
to the physics, i.e. the heat source model, the scan pattern and the layer thickness are
possible for which a comprehensive overview is given in [62, 92]. The different (indirect)
approaches existing in the literature can be divided into four groups: flash heating,
process agglomeration, inherent strain method and multiscaling laws.

Flash heating refers to a layer-wise heating of the part as applied in, e.g., [91, 126,
140, 157, 183, 187]. In particular, the simulation of each layer at the same time is used
to speed up the process. There are models in the literature in which, for example, 20
layers in [183], or only three layers in [140] are combined. The drawbacks in view of
accuracy are partly improved by the sequential flash heating as introduced in [18]. The
scan pattern cannot be examined in flash heating simulations, although it is known and
shown to have a high impact on the final deformation and stress state, cf. [5, 33, 94, 104].

Process agglomeration or lumping is used for example in [57, 69, 162], where an
enlarged layer and beam size is used with an elaborated material model for the solid
phase. In this case, the scanning strategy of the laser beam can still be evaluated to
some extent, since the complete layer is not heated up at once. Overall, sufficiently
accurate simulation results can be achieved with process agglomeration. However, the
influence of the scan pattern cannot be examined in detail. The difference of the strain
values for the simulation of the continuous and island scan pattern is rather small in
comparison to the experiments, see [57]. Moreover, the computational time is still quite
large. Adding sophisticated adaptive mesh refinement routines to this approach further
reduces the computation time, cf. [58]. Nevertheless, the developing and application of
such routines is quite advanced.

Multiscaling laws, also referred to as multiscale models, employ distinct scales
to achieve an efficient prediction of part distortion and residual stresses. In [99], a
thermomechanical multiscale model for the heat source approach is developed. Three
distinct scales, i.e. the microscale, the mesoscale and the macroscale, are present in e.g.
[81, 82, 99, 157]. The multiscale approach of the latter contribution is more advantageous
to those methods, in which the calculation time is reduced by exposing whole layers at
once and by directly combining multiple layers, where the scanning strategy can no
longer be taken into account. Another method to model large parts is developed in [156]
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by using a sequentially coupled three-dimensional thermal model and a two-dimensional
mechanical plane stress model.

The Inherent strain method stems from welding and has meanwhile established
itself as a standard method for the modelling of LPBF processes, for instance in [82,
102, 153, 158]. The application of the inherent strain (IS) method for LPBF is justified
by the similar temperature history of each micro-weld seam, i.e. single-line melt track.
This results in a stationary problem, where the size of the problem can be reduced to a
small hatching region. However, the size of each hatch, also called scan island, influences
the overall mechanical properties of the manufactured part, see e.g. [112]. Overall, the
challenge in using this method lies in the correct determination of the IS tensor εinh.

The IS, also referred to as eigenstrain, has to be properly defined either by simula-
tions using a detailed thermomechanical model or by experimental data for an inverse
analysis. The latter approach is used in [158, 160], where the IS is determined by mea-
suring test samples. These strains are then applied in mechanical simulations to model
the distortion of arbitrary parts. A similar approach is also used in commercial AM
software such as AdditiveLab. However, with this method it is still necessary to con-
struct test samples and measure the deformation of the built specimens for all possible
combinations of process parameters. In the multiscale approach developed in [81, 82],
an IS is extracted from a detailed thermomechanical simulation of a small-scale model,
which is then applied to a real-sized part in a linear elastic mechanical analysis. Here,
the IS tensor is not experimentally measured, but determined by using the finite ele-
ment method. A similar approach is used in [26], where a mesoscale submodel is used
to determine the eigenstrains for the macroscale part model.

In [102], a modified inherent strain method usable for direct energy deposition has
been developed, which has also been employed in [29, 46, 103] for other AM processes
such as LPBF. The modified inherent strain method refers to two different time states
t1 (intermediate state) and t2 (steady state), whereas the standard IS approach only
considers the steady state. It is defined by εinh = εelt1 − εelt2 + εplt1 , where the difference
εelt1 − εelt2 between the elastic intermediate and elastic steady state contribution shall

capture the influence of the thermal shrinkage and where εplt1 denotes the plastic strain
of the intermediate state. Consequently, multiple layers (at least two) are modelled.
With this, the build cycle of the building process shall be better captured.

Altogether, different magnitudes of IS can be found throughout the literature. In par-
ticular, there is a large discrepancy between the values obtained by the modified method,
cf. [30, 103], and the standard or experimental approach, e.g. [158, 160]. On the one
hand, these two approaches are essentially different regarding the determination of the
IS. On the other hand, the respectively used material models with the chosen material
parameters as well as the modelling approaches for the laser beam differ significantly.
In addition, there is a variance regarding the tensor components incorporated. Overall,
simulations using the IS method are rather fast and the scan pattern can be examined
in a straightforward manner. This enables optimisations of the scan pattern in terms of
minimal bending, which is part of [30], by using the modified IS method. In addition,
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the IS framework can also be used either to determine the necessary pre-deformation of
the manufactured part according to the calculated deformation of the original design,
cf. [82] or to optimise the support structure of a part, for instance in [188]. The primary
drawback of the IS procedure is based on the purely mechanical simulation approach on
the part scale, so that no temperature history of the part is included. This results in
different problems, e.g. for the correct deformation of larger parts or different geome-
tries, as described in [26, 143]. Because computational time is quite small, the increased
usability for large models nevertheless leads to the incorporation of the IS method in dif-
ferent kinds of commercial software, e.g. MSC Simufact, Amphyon Works, GE GenonX
as stated in [26, 29]. The commercial software Abaqus recently also added a feature to
easily incorporate IS simulations (since 2019) by using the AM-Modeler, [1]. However,
with all these commercial software-based approaches, the IS tensor itself, which can then
be applied in a simulation to model complete parts, has to be already known.

Phase transformation models

When considering phase transformation models, a distinction has to be made between
two model types: those that explicitly take into account the different aggregate states,
namely liquid, i.e. melt pool, and solid, i.e. powder and re-solidified material, and some-
times even gas, i.e. vapour, and those that incorporate solid-state phase transformations
within the re-solidified material. Regarding the aggregate states, various modelling ap-
proaches exist. In, e.g., [68], the standard thermomechanical finite element approach is
enhanced by explicitly taking into account the phase change in terms of using Stefan-
Neumann equations. The level set method is used in [31] to model the interface between
solid and gas. A different approach is employed in [89], where a mathematical phase
change function is calibrated by experiments. In [151], a purely thermal model is de-
veloped which explicitly incorporates two state variables for both the phase and the
porosity. This enables the capturing of the consolidation of the material. All these
works conclude that incorporating the phase transformation improves the simulation
results compared to experiments. However, most researchers use the melting point tem-
perature to indicate the phase changes, so that these are purely temperature-driven with
temperature-dependent material properties.

Different modelling approaches can be found in the literature for solid-state phase
transformations, most of them relying on algebraic equations for isothermal conditions
based on the Johnson-Mehl-Avrami(-Kolmogorov) (JMA(K)) theory, compare [8, 76, 90]
and the concept of additivity as introduced in, e.g., [115]. In addition, the Koistinen-
Marbuerger (KM) model, see [87], is frequently used for martensitic transformations. In
[185], not only the physical state changes, i.e. melting and solidification, but also the met-
allurgical solid-state phase transformations are incorporated. Here, the physical state
changes are based on the solidus and liquidus temperatures (rather temperature-driven),
whereas a phenomenological approach is used for the solid-state phase transformation.
To be more specific, the time temperature transformation (TTT) diagram, an extended
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JMA model for diffusional transformations and the KM model are combined. Five dif-
ferent phases of Ti6Al4V are considered in the generic parent-child framework, where
the critical cooling rates are taken from [4]. For a homogeneous stress state, two differ-
ent heating-cooling cycles are prescribed and the resulting microstructure is discussed.
However, no predictions are made regarding the stress-strain behaviour. Other recent
publications in the field of AM that are based on the JMA and KM models are, e.g.,
[10, 19, 40, 50, 180]. The model in [180] not only predicts the distribution of the dif-
ferent solid-state phases during the process and after heat treatment, but also proposes
a Rosenthal-based solidification process map for LPBF. In [50], a visualisation of the
difference and improvement in residual stress prediction incorporating martensitic phase
transformations for tool steel is shown. A part-scale model coupled with the JMA equa-
tion is used in [40, 170]. In [109], the authors present an integrated simulation framework
distinguishing between a thermal process model, a predictive solidification model for the
molten pool and a solid-state phase transformation model for β → α/α′. One of the few
thermally coupled models is [19], where a process-based finite element model simulating
a thin walled structure is presented. An Abaqus model is presented in [10], where not
only the JMA and KM equation are incorporated, but also a purely temperature driven
melting and solidification. However, the above described models are purely empirical. It
appears that micromechanically motivated and thermodynamically consistent material
models appropriately predicting stress and strain states are missing.

As an alternative, a phase field approach for the solid-state phase transformation
is suggested in [2] for welds, which could also be applied to AM processes. In [106],
a framework based on crystal plasticity is presented for H13 tool steel. An extended
two-dimensional finite element model is developed in [155], where a phase transforma-
tion contribution is calculated and added to better predict the behaviour of partially
austenitic and martensitic steels with evolving phase fractions. In [17], a different ap-
proach is chosen where temperature-dependent functions are fitted to account for the
different material properties of the α′- and β-phases. Therefore, the respective function
of the solid phase is used based on the current temperature θ and the β-tansus tem-
perature θβ,trans. However, no rate dependency is incorporated. In [127], a stochastic
approach is used to model the microstructure evolution during solidification. Based
on the work of [4], the authors of [128] developed a phenomenological material model
which captures the phase transformations during LPBF processes. In this contribution,
the β, α, α′-phases are considered, the evolution of which are either diffusion-based or
non-diffusion based. The model parameters are determined by an inverse identifica-
tion process based on TTT diagram data. With this framework at hand, continuous
cooling transformation (CCT) diagram data can be predicted with sufficient accuracy.
The authors in [166] propose a new concept denoted time-phase transformation-block to
simultaneously take into account the different phase transformation mechanisms. Appli-
cations of this concept in the context of direct energy deposition are shown. The results
obtained with this approach may help to adapt and improve the present JMA and KM
models in the future. However, the aforementioned time-phase transformation-block
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model is rather complicated as it includes quite many parameters and, in addition, it
does not provide a relation between stresses and strains. More simple models are pre-
sented in [28, 34], where a phenomenological and explicit relation between the phase
fractions and the present temperature as well as the cooling rate is used.

1.2 Objective of this work

Overall, the different approaches in the literature overlap and, so far, there is not one
model that can take into account all physical processes during LPBF in an adequate
simulation time. In addition, there is still a lack of comprehensive understanding of
the phase transformation processes, especially for the rapid temperature cycles present
in LPBF, which is essential to ensure adequate mechanical properties. The most
challenging reasons are stated in [88] as: highly localised and moving temperature
gradients, nonlinearities due to phase changes of the material, growing and large
computational domains compared to melt pool size, large range of spatial and temporal
scales and coupled multi-physics. Altogether, different formulations are available for the
simulation of the distinct scales with help of the finite element method. However, from
the author’s point of view, no frameworks exist which take into account the mechanical
material model and phase change in a physically well-motivated approach. The
temperature profiles associated with these processes, which are highly heterogeneous
in space and time, further increase the complexity regarding the finite element model
and appropriate computing time and have to be considered when developing novel
frameworks.

The key aspect of Chapter 3 is the treatment of the different (aggregate) states of
the material – powder, molten, and (re-)solidified – as different phases of the material,
compare Figure 1.2. During the transformation process, the material first melts and
then solidifies. Thus, the transitions between these states are treated as phase trans-
formations. Adapted from frameworks for solid-solid phase transformations provided
in, e.g, [12, 13, 78] in the context of shape memory alloys, the constitutive behaviour
of each phase is modelled via phase energy densities with reference values for the un-
derlying material constants. The constitutive model for the case of coexisting phases
is obtained via a mixture rule and specific homogenisation assumptions which yield the
averaged energy density, where particularly the volume fractions of each phase are taken
into account. These are determined via energy minimisation depending on the current
state of local strains and temperature. This approach is specifically designed for the
consideration of more than just one solid phase which forms during the cooling period
which is discussed in Chapter 6. The formulation of the material model as well as the
finite element model consider full thermomechanical coupling. Due to the computing
time, however, only a single melt track can be efficiently considered.
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Chapter 4 focuses on the advancement of the model presented in the previous chap-
ter. As the density of the different material states varies considerably, this effect shall
be incorporated in the phase transformation framework motivated by existing literature.
The effect of volume shrinkage of the powder bed due to porosity has been investigated
in [37] by using a purely thermal model. In [55, 149] a thermomechanical model is used
where a pseudo-thermal expansion is implemented to take into account not only the
thermal expansion of the material, but also the shrinkage of the powder bed. In [31], the
apparent volume shrinkage is incorporated for ceramics by a compressible Newtonian
law. In particular, the present modelling framework explicitly takes into account the
mass fractions of the different phases, their mass densities, and specific inelastic strain
contributions. Thus, a formulation based on mass fractions is developed. The inter-
nal state variables including the mass fractions of the different phases are calculated
by using thermodynamically consistent evolution equations solved at the material point
level. The transformation strains are introduced as material constants to capture the
significant change of the mass densities during the phase changes. The present inves-
tigations aim at the accurate prediction of essential process-induced quantities such as
eigenstresses. Furthermore, the present modelling framework can be used to calculate ef-
fective inelastic strains for a multiscale framework, which is introduced in the subsequent
chapter.

Within Chapter 5, a part-scale simulation shall be developed, which uses a reason-
able compromise in view of considered phenomena according to Figure 1.3 and compu-
tation time. This results in simpler yet faster process simulations to simulate residual
stresses and deformation of complete parts. So far, it is still challenging to predict the
characteristics of real-sized manufactured workpieces, e.g. the residual stresses and the
final deformation, which reduces the ability to use additively manufactured parts in
industrial applications. This shows the necessity of simulation tools and appropriate
material models, not only for the single melt track, but also on the part scale, to gain a
deeper understanding of the relation between optimal process parameters and the final
part so that time and cost consuming practical trials can be avoided. However, finding
appropriate simulation models regarding accuracy and efficiency is a rather challenging
task. If deformations and eigenstresses are to be predicted, a thermomechanical analy-
sis will be necessary. Therefore, a multiscale approach is elaborated which is physically
sound and micromechanically motivated. This method allows the consideration of differ-
ent simplifying assumptions regarding the complexity of material models and heat source
models, in order to significantly reduce the required computation time for part-scale sim-
ulations. In particular, a combination of a multiscale relation is used to determine the
inherent strain (IS) and the application of the established IS method based on [81]. By
coupling a complex and appropriate model at the small scale – the laser scan model for
the single melt track – and with simplifications regarding the layer hatch model, which
is used to model a scan island, it is possible to extract an IS for the mechanical finite
element simulation of complete parts in an appropriate time span. Nevertheless, this
method and the models used incorporate physically well-motivated assumptions of the
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different material models. With this enhanced approach, it is possible to establish an ef-
ficient simulation framework to predict residual stresses and the final geometry for larger
process simulations. More complex geometries and laser beam paths can be modelled
without the need for extremely time consuming simulations. Altogether, it is possible to
demonstrate the influence of process parameters and scan patterns for a twin cantilever
beam. The presented model can predict the eigenstress evolution during manufacturing
and after the partition from the build platform.

Chapter 6 sets the focus on the incorporation of modelling solid-state phase trans-
formations for multiphase alloys, such as Ti6Al4V, an enhancement the phase transfor-
mation modelling framework of the previous chapters is specifically designed for. This
extension is considered highly important for two reasons: the cooling rate during the
manufacturing process of the part as well as possible subsequent reheating or heat treat-
ments alter the microstructure evolution and residual stress state of the manufactured
part. Thus, the consideration of the transitions between the related β- and α-phases
is of considerable importance for the modelling and simulation of additive manufac-
turing processes such as, e.g., LPBF processes, as the crystal structure and material
properties of the phases differ. This is supported by in-situ experimental validation
of the microstructure during LPBF such as, e.g., [83, 172]. Therefore, especially for
heat treatable alloys like Ti6Al4V, the incorporation and monitoring of solid-state phase
transformation cannot be neglected, as the strongly cooling rate dependent phase com-
position needs to be additionally considered. In this context, the aim of the present
chapter is to develop a material model, which is capable of simulating phase transfor-
mations between (two) different solid phases as well as their effect on deformation and
– if incorporated into a finite element approach in future – on residual stresses based on
a linear elasticity analysis. The focus is set on the prediction of phase fractions during
temperature-induced transformations for different temperature rates on a local scale.
The fact that the model is based on the principles of thermodynamics and appropriate
homogenisation assumptions (in contrast to, e.g. [10, 19, 28, 34]) should, in principle,
lead to more accurate predictions of effective quantities. In order to adapt the modelling
framework to the complex behaviour of Ti6Al4V, a new approach with respect to the
dissipation function is developed. The material parameters incorporated in the material
model and, in particular, in the new dissipation function are identified using continuous
cooling temperature (CCT) curves available from the literature. With this framework,
the formation of different solid phases as well as evolving strain and stress states can be
adequately predicted for distinct cooling rates.
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2 Thermomechanical framework

First of all, the notation which is used in this thesis is briefly presented in
Section 2.1. Here, an overview of the symbolic and index notation of tensors as well
as its products is given. The aim of this chapter is to introduce the foundations of
continuum mechanics in terms of kinematics in Section 2.2, as well as the kinetics for
the thermomechanical setting. This incorporates the used strain measure as well as the
underlying thermomechanically fully coupled balance equations in their strong and weak
forms. In the following chapters of this thesis, the mechanical or thermomechanically
fully coupled framework is used for different boundary value problems in the context
of finite element simulations in the commercial software Abaqus. Thus, the basic
balance equations, the constitutive relations and the finite element (FE) framework is
summarised in the following Sections 2.3, 2.4 and 2.5, respectively, where the content
is adapted from standard literature. In addition, a first insight into using Abaqus for
thermomechanical simulations and the used user subroutines is given in Section 2.6.

2.1 Notation

For the reader’s convenience, the essential relations of tensor calculus used in this thesis
are collected and provided in the following. For a more complete overview of tensor
calculus, the interested reader is referred to the textbook of, e.g., [73]. For the sake of
simplicity, this thesis is based in the three-dimensional Euclidean space E3, where the
Cartesian basis vectors ep, p = 1, 2, 3 are used to span the tensors

α , (zero-order tensor, i.e. scalar) (2.1)

a = ai ei , (first-order tensor, i.e. vector) (2.2)

A = Aij ei ⊗ ej , (second-order tensor) (2.3)

A = Aijkl ei ⊗ ej ⊗ ek ⊗ el , (fourth-order tensor) (2.4)

using Einstein’s summation convention. With this, the corresponding second order-
identity tensor can be defined as

I = δij ei ⊗ ej , (2.5)
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with the Kronecker delta symbol

δij = ei · ej =

{
1 if i = j

0 else
. (2.6)

In addition, it is possible to define inner tensor products, where the number of dots refer
to the number of contractions, resulting in

a · b = ai bi , (2.7)

A · b = Aij bj ei , (2.8)

A ·B = Aij Bjk ei ⊗ ek , (2.9)

A : B = Aij Bij , (2.10)

A : B = AijklBkl ei ⊗ ej , (2.11)

A : B = Aijkl Bklmn ei ⊗ ej ⊗ em ⊗ en . (2.12)

In the following, the inverse A−1 and the transpose At of a tensor are often used and
are defined as

A ·A−1 = I , (2.13)

At · b = b ·A . (2.14)

With help of Voigt and Kelvin notation, tensor-valued quantities can be described as
vectors and matrices. For Voigt notation, this generally results in

[A]voi = [A11, A22, A33, A12, A13, A23]
t , (2.15)

[A]voi3×3×3×3 = [Aij]6×6 . (2.16)

If A equals the strain tensor ε, the following relation

[ε]voi = [ε11, ε22, ε33, 2 ε12, 2 ε13, 2 ε23]
t (2.17)

is valid. Thereby, the order is based on the (non-standard) Abaqus convention. For
Kelvin notation, a slightly different relation is applied, precisely

[S]kel = [S11, S22, S33,
√
2S12,

√
2S13,

√
2S23]

t , (2.18)

where the elements are weighted so that the norm of the tensor is preserved.
Finally, the gradient of quantity (•) with respect to the reference configuration is

defined as

∇X• = GRAD(•) = ∂(•)/∂X . (2.19)
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2.2 Kinematics

The material time derivative of a quantity (•) with respect to the reference configuration
is introduced as

•̇ = d•
d t

∣∣∣∣
X

. (2.20)

2.2 Kinematics

In this section, the deformation and motion of a body shall be briefly described. With
this at hand, it is possible to derive the respective strain measure, which is needed for
the definition of the balance equations in Section 2.3. For a more complete overview of
different strain measures and continuum mechanics in general, the interested reader is
referred to the textbooks by e.g. [24, 70, 107, 141, 168, 176]. The following derivations
are based on an orthogonal Cartesian basis for simplicity.

The notation used in this thesis follows standard conventions: Let X ∈ B0 be the
spatial coordinates of material points or, in other words, particles defined for the ref-
erence configuration B0 of the body under consideration. The motion under loading of
material points x of a deformed body with configuration Bt is described by a nonlinear
mapping

x = φ(X, t) ∈ Bt (2.21)

as a function of the particles in the reference configurationX and time t. The mapping is
visualised in Figure 2.1, where X and x denote the location of particles in the reference
configuration B0 and current configuration Bt. Visually speaking, in the Lagrangian
description (reference configuration) the movement of particle X ∈ B0 is followed in
time, whereas the change of motion with time t is captured by the Eulerian description
(current configuration) for a fixed point in space x ∈ Bt. The displacement vector is
introduced as

u(X, t) = φ(X, t)−X = x−X . (2.22)

The deformation gradient can then be defined as

F = ∇X φ(X, t) = ∂x/∂X = ∇X [X + u(X, t)] = I +H , (2.23)

where the tensor H = ∇Xu denotes the referential displacement gradient. These mea-
sures can then be used to derive further deformation and strain tensors, see for example
[141, 176]. A multiplicative split of the deformation gradient

F = F rev · F irr (2.24)
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2 Thermomechanical framework

into a reversible part F rev and irreversible part F irr can be introduced. The reversible
part may be an elastic and thermal contribution, whereas the irreversible part may
include a viscous, plastic and transformation contribution.

Bt

∂Bt
n

x

N

u

ϕ, F

X

dX dx

B0

∂B0

ei

Figure 2.1: Reference (initial, material) configuration B0 and current (deformed, spatial) configura-
tion Bt of a deformable body.

The transformation of differential elements, i.e. volume, area and line, can be sum-
marised as

dv = det(F ) dV = J dV (2.25)

da = n da = J F−t ·N dA = J F−t · dA = cof(F ) · dA (2.26)

dx = F · dX (2.27)

with the determinant J = det(F ) > 0 and the cofactor cof(F ) = ∂J/∂F = J F−t. In
addition, N and n define the outward unit normal vectors in the respective configura-
tions on the boundaries ∂B0 and ∂Bt, respectively.

In the further course of this thesis, the small strain theory is considered to be appro-
priate, as the elastic and inelastic strains occurring during the manufacturing process
are considered small. In other words, the finite strain theory, where one distinguishes
between the initial and deformed configuration, is no longer required and the config-
uration shall be denoted as B. Therefore, an infinitesimal strain theory is established
based on the linearised strain measure ε. The linearised strain measure follows from the
Green-Lagrange strain tensor

E :=
1

2

[
F t · F − I

] (2.23)
=

1

2

[
H +Ht +Ht ·H

]
. (2.28)
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2.3 Balance equations

For the small strain theory, which assumes geometric linearity, the assumption ∥H∥ =
∥∇Xu∥ ≪ 1 is valid such that the higher order term can be neglected. This results in
the infinitesimal or linear strain measure

ε =
1

2

[
H +Ht

]
=

1

2

[
∇Xu+ [∇Xu]t

]
= ∇sym

X u , (2.29)

which corresponds to the symmetric part of the displacement gradient, whereas u de-
notes the displacement field. In this setting, the total strains can be additively decom-
posed as follows

ε = εel + εinel (2.30)

into an elastic part εel and an inelastic part εinel. This is in contrast to the multiplicative
split for large strains, compare eq. (2.24). The inelastic strains reflect the combination
of various effects e.g. viscous, thermal or plastic strains and the combination thereof,
and transformation strains, i.e. eigenstrains, capturing the phase transformation of the
material, as discussed in subsequent chapters.

2.3 Balance equations

This section briefly introduces the balance equations for the infinitesimal strain theory,
which are used within this thesis. This considerably simplifies the balance equations
compared with the large strain theory, see also Remark 1. To simulate the underlying
LPBF process, a thermodynamically fully coupled model is proposed. Thus, the prob-
lem at hand is based on the balance of linear momentum and on the energy equation
which follows from the first law of thermodynamics. The thermomechanical forces are
introduced for a finite body, compare Figure 2.1, where t refers to the surface trac-
tion vector, b defines the body forces, e.g. gravity, qn represents heat supply through
the body’s surface and rext introduces external volume heat supply (per unit volume),
e.g. chemical reaction or latent heat during solid-solid phase transformations. Such a
coupled problem requires suitable boundary conditions on ∂B and initial conditions as
well. Dirichlet boundary conditions refer to prescribed fields, such as temperature θ = θ
and displacement u = u. Surface quantities are prescribed for Neumann boundary
conditions, i.e. surface tractions t = t and heat supply though the body surface qn = qn.

Remark 1. For a large strain formulation, it is possible to derive the balance equations
with respect to both, the referential and spatial, configurations of a body. In addition,
different stress and strain measures can be used. These basics are not discussed in this
thesis, but can be found in e.g. [70, 107, 176].
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B

∂B

rext

t

θ = θ

n

qn

b

u = u

ei

Figure 2.2: Thermomechanical setting for a finite body B.

Conservation of mass: For so-called closed systems, mass is a conserved quantity, so
that ṁ = 0, where no material is exchanged over its boundaries or produced within the
body over time. This results in the integral form

dm

dt
=

d

dt

∫
B
ρ dV = 0 , (2.31)

where ρ denotes the mass density of the body B.

Balance of linear and angular momentum: The change in linear momentum, also
called the material time derivative during deformation, equals the sum of all external
forces acting on the body B. These are the body force b (per unit volume) and the stress
vector t. The balance of linear momentum in integral form thus reads

d

dt

∫
B
ρ u̇ dV =

∫
B
b dV +

∫
∂B

t dA . (2.32)

Notation •̇ denotes the time derivative of the respective quantity •. Cauchy’s theorem
t = σ · n and Gauß’s divergence theorem

∫
∂B σ · n dA =

∫
B∇ · σ dV is applied for the

last term in eq. (2.32). Here, n describes the outward normal unit vector and σ refers
to the (Cauchy) stress tensor. With this, the local spatial form is derived as

ρ ü = b+∇ · σ . (2.33)

The material time derivative of angular momentum with respect to a given point in a
body changes according to the sum of all external moments with respect to the same
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2.3 Balance equations

given point. From the balance of angular momentum it directly follows that only sym-
metric (Cauchy) stress tensors are allowed, i.e.

σ = σt . (2.34)

Using a constitutive law which enforces symmetry of the (Cauchy) stress fulfils the
angular momentum a priori, cf. [107]. This is the case for the model at hand, as a
standard mechanical continuum is regarded where body couples are neglected.

First law of thermodynamics (Balance of energy):
The first law of thermodynamics defines the interconversion of energy, which states that
the rate of change of the total energy of a body equals the sum of external powers acting
on the body. The total energy can be decomposed into kinetic energy

K =
1

2

∫
B
ρ ∥u̇∥2 dV (2.35)

and internal energy

E =

∫
B
ρ e dV , (2.36)

where e symbolises the specific internal energy, also referred to as energy density. One
can distinguish between the external mechanical input Pext from the mechanical loads
b and t and the thermal power supply Qext from qn and rext, such that

Pext =

∫
B
b · u̇ dV +

∫
∂B

t · u̇ dA , (2.37)

Qext =

∫
B
rext dV +

∫
∂B
qn dA . (2.38)

The global form of the balance of energy thus reads Ė + K̇ = Pext + Qext. Applying
Cauchy’s theorem and Gauß’s divergence theorem together with both the balance of
linear momentum eq. (2.33) and angluar momentum eq. (2.34), one can reformulate
eq. (2.37) to

Pext =

∫
B
ρ ü · u̇ dV +

∫
B
σ : ε̇ dV . (2.39)

In addition, the heat flux vector qn = −q · n holds, where q refers to the heat flux.
Eq. (2.38) is simplified by using Gauß’s divergence theorem to

Qext =

∫
B
rext dV −

∫
B
∇ · q dV . (2.40)
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2 Thermomechanical framework

As conservation of mass, eq. (2.31), is assumed, the expression ρ̇ = 0 is valid. This
results in the local form of the energy equation

ρ ė = σ : ε̇+ rext −∇ · q , (2.41)

where σ : ε̇ refers to the rate of mechanical work.

Second law of thermodynamics (Balance of entropy): The second law of ther-
modynamics defines the direction of energy conversion. It states that the entropy pro-
duction Ṡ is always larger than or equal to the rate of entropy input Rext, thus

Ṡ − Rext ≥ 0 . (2.42)

Entropy is defined as

S =

∫
B
ρ s dV , (2.43)

where s refers to the specific entropy. It is assumed that the input of entropy is propor-
tional to the thermal power supply Qext so that

Rext =

∫
B

rext

θ
dV +

∫
∂B

qn
θ
dA (2.44)

with the absolute temperature θ > 0 . With this, the entropy inequality in global form,
also referred to as Clausius-Duhem inequality, follows as∫

B
ρ ṡ dV ≥

∫
B

rext

θ
dV −

∫
∂B

qn
θ
dA . (2.45)

Using some mathematical conversions to reformulate the surface integral into a volume
integral, the second law of thermodynamics in local form reads

ρ θṡ ≥ rext −∇ · q +
1

θ
q · ∇θ . (2.46)

The second law of thermodynamics, i.e. eq. (2.46), can be reformulated in terms of the
dissipation symbolised with D and split into a mechanical and thermal part, i.e.

D = Dmech +Dtherm ≥ 0 . (2.47)
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2.4 Constitutive relations

Moreover, each contribution is assumed to be non-negative. This results in the Fourier
inequality for the thermal contribution on the one hand,

Dtherm = −1

θ
q · ∇θ ≥ 0 , (2.48)

and in the Clausius-Planck inequality on the other hand,

Dmech = θ ρ ṡ− rext +∇ · q (2.41)
= θ ρ ṡ− ρ ė+ σ : ε̇ ≥ 0 . (2.49)

A material model can be called thermodyamically consistent, if eqs. (2.48) and (2.49)
are fulfilled.

A fully coupled thermomechanical model is necessary for the AM process. For the
simulation of the underlying LPBF process, quasi-static conditions are postulated, such
that dynamic effects ü ≡ 0 are neglected. In addition, body forces are assumed to be
negligible hereafter, such that b ≡ 0. Thus, the balance of linear momentum in eq. (2.33)
simplifies to

0 = ∇ · σ . (2.50)

The system of equations is completed together with the energy equation, compare
eq. (2.41).

2.4 Constitutive relations

In order to define the material response of a body, constitutive relations are necessary.
In the following, the second law of thermodynamics is used to determine the internal
dissipation and to introduce the constitutive relations. As proposed in [35], the specific
Helmholtz free energy density Ψ shall be used for a thermodynamic consistent derivation.
In order to reformulate the problem depending on the absolute temperature θ as state
variable rather than on the entropy s, the specific Helmholtz free energy Ψ is obtained
via the Legendre transformation

e = Ψ + s θ , (2.51)

⇒ ė = Ψ̇ + s θ̇ + ṡ θ . (2.52)

In general, the Helmholtz free energy Ψ(ε, θ,V) depends on the total strains ε, the
absolute temperature θ and – at this point not further specified – on internal variables V .
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2 Thermomechanical framework

Thus, the set of independent thermodynamic variables is defined. With this at hand,
the time derivative of the Helmholtz free energy results in

Ψ̇ =
∂Ψ

∂ε
: ε̇+

∂Ψ

∂θ
θ̇ +

∂Ψ

∂V
• V̇ , (2.53)

where • represents a generalised scalar product. By using eq. (2.52), it is now possible
to reformulate eq. (2.49) such that

Dmech = σ : ε̇− ρ s θ̇ − ρ Ψ̇ . (2.54)

Inserting eq. (2.53) into eq. (2.54) and rearranging terms for the purpose of simplification
results in[

σ − ρ ∂Ψ
∂ε

]
: ε̇− ρ

[
s+

∂Ψ

∂θ

]
θ̇ − ρ ∂Ψ

∂V
• V̇ ≥ 0 . (2.55)

Following the lines of the Coleman-Noll procedure, cf. [35], the constitutive equations
based on the Helmholtz free energy density can be directly extracted, i.e.

σ = ρ
∂Ψ

∂ε
, (2.56)

s = −∂Ψ
∂θ

. (2.57)

From this, the definition of the stresses σ and the entropy s can be determined in a
straightforward manner. As a further abbreviation, the generalised energy-conjugated
and thermodynamic consistent driving force

F = −ρ ∂Ψ
∂V

(2.58)

of the respective internal variable V is introduced. Substituting these results by eq. (2.55)
finally leads to the reduced form of the mechanical dissipation as

Dmech = F • V̇ ≥ 0 . (2.59)

With these derivations at hand, eq. (2.41) can be rewritten in the more convenient form

0 = − ∇ · q − ρ c θ̇ + rext +Dmech + θ ∂θ[σ : ε̇−Dmech ] , (2.60)

where the specific heat capacity is defined by

c = −θ ∂2Ψ

∂θ ∂θ
(2.61)
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and where

rmech = Dmech + θ ∂θ[σ : ε̇−Dmech ] (2.62)

determines the volumetric heat generation caused by mechanical working of the material.
Here, the term ∂θ[σ : ε̇] refers to the Gough-Joule effect, whereas the remaining parts
are caused by internal variables.

In the following sections, it is assumed that the (unspecific) Helmholtz free energy
density is defined as ψ = ρ Ψ . With this it is possible to rewrite eq. (2.60) as

0 = − ∇ · q − c̃ θ̇ + rext + rmech , (2.63)

with the volume specific heat capacity

c̃ = −θ ∂2ψ

∂θ ∂θ
. (2.64)

2.5 Finite element framework

The discretised weak forms shall be derived in detail by considering the contributions
from both mechanical equilibrium in the absence of mechanical body forces and heat
equation for a thermodynamically fully coupled system as introduced in Section 2.3.
Based on this, the model equations are transformed into discrete forms. The FE imple-
mentation into the commercial FE programme Abaqus is briefly discussed in Section 2.6.
The weak forms are obtained by multiplying eqs. (2.33) and (2.60) by an arbitrary test
function for the displacement and temperature field, δu and δθ, respectively, that is ad-
missible regarding the continuity and the Dirichlet boundary conditions. Subsequently,
the resulting equations are integrated with respect to the volume of the underlying
body B. Finally, integration by parts and the divergence theorem are applied. This
yields ∫

∂B
[σ · n] · δu dA−

∫
B
σ : ∇δu dV = 0 , (2.65)

−
∫
∂B

q · n δθ dA+

∫
B
q · ∇δθ dV +

∫
B
ρ rext δθ dV −

∫
B
ρ c θ̇ δθ dV

+

∫
B
Dmech δθ dV +

∫
B
θ ∂θ[σ : ε̇−Dmech] δθ dV = 0 . (2.66)

Using Cauchy’s theorem, surface tractions per unit area are represented by t = σ · n.
The heat flux qn = −q · n is analogously defined.
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2 Thermomechanical framework

To discretise the problem in space, the body B under consideration is decomposed
into nel non-overlapping finite elements Be, i.e. B ≈

⋃nel

e=1 Be. The spacial discretisation
of the weak forms is represented by

nel∑
e=1

[ ∫
∂Be

t · δue dA−
∫
Be

σ : ∇ δue dV

]
= 0 , (2.67)

nel∑
e=1

[∫
∂Be
qn δθ

e dA+

∫
Be
q · ∇δθe dV +

∫
Be
ρ rext δθe dV −

∫
Be
ρ c θ̇ δθe dV

+

∫
Be
Dmech δθ

e dV +

∫
Be
θ ∂θ[σ : ε̇−Dmech] δθ

e dV

]
= 0 . (2.68)

In addition, the test functions are analogously discretised element-wise

δue ≈
nu
en∑

A=1

Nu
A δu

eA , δθe ≈
nθ
en∑

C=1

N θ
C δθ

eC , (2.69)

where nθ
en and n

u
en refer to the respective number of element nodes. Nu

A andN θ
C denote the

standard Lagrange-type interpolation polynomials or, in other words, the corresponding
set of shape functions. The contributions δueA and δθeC represent the respective values
of the test function at the corresponding nodes A or C of element e. With these relations
at hand, and by additionally defining the assembly operator A, the discretised weak
form finally reads

nel
nu
en

A
A=1
e=1

[ ∫
∂Be

tNu
A dA−

∫
Be

σ · ∇Nu
A dV

]
= 0 , (2.70)

nel

nθ
en

A
C=1
e=1

[ ∫
∂Be

qnN
θ
C dA+

∫
Be

q · ∇N θ
C dV +

∫
Be
ρ rextN θ

C dV −
∫
Be
ρ c θ̇ N θ

C dV

+

∫
Be
DmechN

θ
C dV + θ

∫
Be
∂θ[σ : ε̇−Dmech]N

θ
C dV

]
= 0 , (2.71)

independent of the respective test function values. In analogy to the test functions, the
same approximation is applied for the underlying physical fields such that

u ≈ ue =

nu
en∑

B=1

Nu
B ueB , θ ≈ θe =

nθ
en∑

D=1

N θ
D θ

eD , (2.72)
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from which the occurring gradients and rates can be derived as well. With this, the
residual form of the equilibrium equations follows as ru referring to eq. (2.70) and rθ to
eq. (2.71), respectively, such that[

ru
rθ

]
!
=

[
0
0

]
, (2.73)

where r• refers to the respective global residual vector. This results in a system of
nonlinear equations which have to be solved iteratively with e.g. Newton-Raphson algo-
rithm. In the subsequent Section 2.6, a possible solution scheme is discussed, where the
commercial FE programme Abaqus is used.

2.6 Thermomechanical simulations with Abaqus

In this section, we discuss the possibilities of implementing thermomechanical simula-
tions into the commercial FE programme Abaqus. Abaqus provides a built-in feature for
thermomechanical simulations, also referred to as fully coupled thermal-stress analysis,
cf. [1]. For this case, the update of the residuals introduced in eq. (2.73) reads

ri+1
• = ri• +∆r• (2.74)

with

∆r• =
dr•
du
·∆u+

dr•
dθ

∆θ , (2.75)

which is based on a linearisation at iteration step i. Newton’s method then solves the
nonlinear coupled system for every iteration step i, such that[

Kuu Kuθ

Kθu Kθθ

]
·
[
∆u
∆θ

]
= −

[
ru
rθ

]
(2.76)

is derived for an exact implementation. Thereby, ∆u and ∆θ are the corrections to
the displacements and temperature, K•∗ = dr•/d∗ define the submatrices of the fully
coupled Jacobian, also referred to as stiffness matrices. In addition, ru and rθ are the
corresponding mechanical and thermal residual vectors, compare eq. (2.73). The solution
vector, that is the displacements and the temperature, is updated after each iteration
until the norm of the global residuum is below a predefined tolerance.

In contrast, the submatrices Kuθ and Kθu are set to zero for an approximate im-
plementation, when only a weak coupling between temperature and displacements is
present. This does not affect the overall solution in Abaqus, but the convergence rate
and solver time, compare [1].
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2 Thermomechanical framework

Abaqus integrates the temperature rate in time in eq. (2.71) via a Backward-Euler
scheme. In general, all time derivatives •̇ are approximated in the following by

•̇ = d(•)
dt
≈ [•n+1 − •n]

∆t
, (2.77)

wherein •n refers to the previous and •n+1 to the current time step of the quantity •.
The time increment is defined as ∆t = tn+1 − tn.

Without self-implemented subroutines, the user can only employ standard material
models recorded within Abaqus and standard heat transfer without internal heat gener-
ation. If more complex material behaviour shall be implemented, this can be conducted
by using user subroutines coded in Fortran, cf. [1]. The fully coupled model developed
as this thesis proceeds, which is solved in Abaqus, is based on a phase transformation
model, as discussed in the following chapters. In addition, mechanical dissipation shall
be consistently taken into account, compare eq. (2.62). Therefore, it is necessary to
adapt the mechanical and thermal material behaviour by the user with the respective
subroutines UMAT and UMATHT. These subroutines are called at each integration point
within the Abaqus solver for eq. (2.76). To gain a better understanding of the imple-
mentation into Abaqus, the specific structure and all return values for both subroutines
shall be analysed. This will be discussed in detail in the following Sections 2.6.1 and
2.6.2 for small strains. For a large strain formulation, the interested reader is referred
to e.g. [134].

Another way of implementing this model is by using the most powerful and complex
subroutine UEL, where a user-defined element including the stiffness matrix, the state
variables and energy related quantities have to be defined, see for example [86]. Contrary
to the formulation of a user element in Abaqus via UEL, the time for development and
for testing the model is less when using a coupled temperature-displacement analysis
together with UMAT and UMATHT. This also enables the usage of all standard features
within Abaqus.

2.6.1 UMAT – User subroutine for a mechanical material model

For a mechanical user material, the general return quantities STRESS, STATEV, DDSDDE
have to be defined. Within the subroutine, not only the strain tensor ε is provided as
an input variable, but also the temperature θ. This is necessary to implement a ther-
momechanically coupled user material. For this case, the thermomechanical quantities
RPL, DRPLDT, DRPLDE and DDSDDT must be evaluated within the UMAT user subroutine for
the coupled material model. These abbreviations are summarised in Table 2.1.

In detail, the states of the underlying global variables, namely strains εn and tem-
perature θn, as well as the values of the respective internal state dependent variables Vn
and the mechanical material parameters are passed to the subroutine. These can be
accessed for the calculation of the current values, where a finite time step ∆t = tn+1− tn
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2.6 Thermomechanical simulations with Abaqus

is considered. Thus, the total strain and temperature at the beginning of the time step
have to be updated

θn+1 = θn +∆θ , (2.78)

εn+1 = εn +∆ε . (2.79)

Attention should be paid to the structure of the total strains, where Abaqus uses engi-
neering components for storage rather than tensor components, meaning γij = 2 εij. In
addition, the strains are passed into the subroutine in Voigt notation, compare eq. (2.17).
Using the constitutive relations of the material model, all state variables Vn+1 have to
be updated for the current time step tn+1. The specific procedure and the definition of
the corresponding values will be subject of the following chapters. Depending on the
number of scalar valued quantities, which can be saved within STATEV, enough storage
space has to be allocated by using the keyword ∗DEPVAR. These variables are also referred
to as state dependent variables SDV in the output format. The total stress σn+1 is then
calculated as introduced in eq. (2.56). Attention has to be paid especially regarding
the storage scheme of Abaqus. All tensor valued quantities have to be transformed to
classic Voigt notation as introduced in Section 2.1, and indicated in Table 2.1. Precisely
speaking, the stress variable then reads

[σ]voi = [σ11, σ22, σ33, σ12, σ13, σ23]
t . (2.80)

For a thermomechanically coupled model, the volumetric heat generation caused by
mechanical working rmech has to be determined as defined in eq. (2.62). Within this
quantity, dissipation due to internal variables and the Gough-Joule effect is expected.
Finally, the respective derivatives, i.e. the contributions to the Jacobian within the
Newton-Raphson-based solution scheme, can be computed, as summarised in Table 2.1.
Simplifying the contributions of the Jacobian does not influence the results itself, but
only affects the convergence rate of the outer Newton-Raphson scheme as introduced in
Section 2.6.

2.6.2 UMATHT – User subroutine for a thermal material model

Abaqus generally provides a standard treatment of the heat transfer problem without
the need of further subroutines. However, if thermal quantities depend on internal
variables V , the usage of the specific subroutine is necessary. The thermal material
model can be defined – and adapted – within the user subroutine UMATHT. In addition,
the heat equation and with it the subroutine UMATHT has been manipulated before, see
for example Appendix A.1 for a porous media model based on the continuity equation
(temperature θ ← p pore pressure) and [134] for a finite deformation gradient-enhanced
damage model (temperature field θ ← ϕ non-local damage field).
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Table 2.1: Specification of all Abaqus variables when implementing the user subroutine UMAT for a fully
coupled thermomechanical model.

UMAT variable thermomechanical model

PROPS all material parameters

STATEV V

STRESS [σ]voi

DDSDDE

[
dσ

dε

]voi
=

[
Ealgo

]voi
DDSDDT

[
dσ

dθ

]voi
=

[
βalgo

]voi
RPL rmech

DRPLDE

[
drmech

dε

]voi
=

[
γalgo

]voi
DRPLDT

drmech

dθ
= δalgo

Within this subroutine, the thermal material parameters and the current internal
variables V as determined in the subroutine UMAT are accessible. The quantities and
respective derivatives U, DUDT, DUDG for the internal energy and FLUX, DFDT, DFDG for the
heat flux have to be specified. These variables are presented in Table 2.2. In general,
the strong form of the energy balance in Abaqus [1] is defined as

ρ ė = −∇ · q + r∗ , (2.81)

where r∗ summarises all effective heat sources of the model. This format is more con-
venient for the implementation into commercial FE programmes. Following the deriva-
tions in Sections 2.3 and 2.4, some differences are visible, compare also eq. (2.60) with
eq. (2.81). Overall, the heat sources in a thermomechanical problem can be additively
decomposed into the sum of external heat supply rext and the volumetric heat generation
caused by mechanical working of the material rmech as defined in eq. (2.62). This results
in

r∗ = rmech + rext . (2.82)

All terms contributing to rmech are calculated within the user subroutine UMAT as contri-
butions to the variable RPL as defined in Section 2.6.1. In a thermomechanical analysis,
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2.6 Thermomechanical simulations with Abaqus

this contribution – if specified – is automatically added to the external heat sources.
In doing so, it is possible to directly include the influence of mechanical working and
dissipation in Abaqus. The update of the internal thermal energy per unit mass e and
its derivatives, as well as the heat flux vector q and its derivatives have to be actualised
within the subroutine. Following the derivations in Section 2.3, e = c θ is valid for
standard heat transfer. For the approach at hand, the update is defined as

en+1 = en + c∆θ , (2.83)

with the (mass) specific heat capacity c, compare eq. (2.61). In view of the specific heat
capacity the following aspect should be noted: The local energy balance in eq. (2.81)
already includes a density ρ, which cannot be directly changed within the subroutine
itself, but which is defined within Abaqus as an initial material condition of the whole
model. Finally, heat conduction is governed by the isotropic Fourier law

qn+1 = −k̃eff I · ∇θ , (2.84)

where k̃eff refers to the averaged thermal conductivity of the mixture and where I denotes
the second order identity tensor. The values of the variables c and k̃eff will be discussed
in the following chapters. Finally, the respective derivatives have to be defined, see
Table 2.2.

Table 2.2: Specification of all Abaqus variables when implementing the user subroutine UMATHT for a
thermal model.

UMATHT variable standard heat transfer

PROPS all material parameters

STATEV V

U e

DUDT
de

dθ

DUDG
de

d∇θ

FLUX q

DFDT
dq

dθ

DFDG
dq

d∇θ
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2 Thermomechanical framework

A Appendix

A.1 Using Abaqus for porous media

The implementation of a porous media problem is usually performed by using a cou-
pled pore fluid diffusion-stress analysis. Abaqus provides a built-in feature for such a
problem. However, it is assumed that both solid and fluid phases are intrinsically in-
compressible, which in turn means that Biot’s modulus approaches infinity. Therefore,
this assumption is not appropriate for other poroelastic problems. In the following, the
respective equations for poroelasticity are introduced and related to the heat equation,
before defining its computational treatment. The implementation into Abaqus by us-
ing the fully coupled thermal-stress analysis as introduced in Section 2.6 is discussed,
where the porous media material model is achieved with help of the subroutines UMAT
and UMATHT. This allows the implementation of the framework at hand without writing
a user element subroutine UEL.

First, the implementation of the macroscale system of equations into the commer-
cial finite element (FE) programme Abaqus is discussed. The mechanical equilibrium
statement for the porous medium, i.e. the simplified balance of linear momentum, com-
pare eq. (2.50), is considered together with the continuity statement, respectively the
conservation of mass,

ṗ(0) = −M [∇x · ⟨v⟩rf + α̃ : ε̇ ] (2.85)

for its liquid phase, where p(0) describes the present pore pressure, ⟨v⟩rf represents the
relative pore fluid velocity, M and α̃ are the Biot modulus and the Biot tensor, respec-
tively. The Biot tensor is defined as α̃ = α̃ I, where α̃ represents the Biot coefficient and
I is the second order identity tensor. In order to close the overall system of equations,
the following constitutive relations shall be introduced for the stresses as well as for the
relative pore fluid velocity, to be specific

σ = Ẽ : ε− p(0) α̃ , (2.86)

⟨v⟩rf = −⟨W ⟩f · ∇xp
(0) , (2.87)

where Ẽ denotes the effective elasticity tensor and where ⟨W ⟩f symbolises the hydraulic
conductivity. For further explanations, the reader is referred to [41] and the references
therein.
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A Appendix

Following the FE derivation in Section 2.5, the discretised weak form of eq. (2.85) is
derived as

nel

np
en

A
C=1
e=1

[ ∫
Be

1

M
ṗ(0)Np

C dV0 +

∫
∂Be
⟨v⟩rf · nN

p
C dS0

−
∫
Be
⟨v⟩rf · ∇N

p
C dV0 +

∫
Be

α̃ : ε̇Np
C dV0

]
= 0 , (2.88)

where Np
C denotes the corresponding set of shape functions for the pore pressure. In

general, the assumptions made for the temperature degree of freedom θ are now applied
to the pore pressure p(0), compare eqs. (2.69) and (2.72).

Comparing eq. (2.88) with eq. (2.71), it can be summarised that the heat equation as
well as the continuity equation are both partial differential equations (PDE) in a similar
form. The mechanical and thermal material behaviour with the respective subroutines
UMAT and UMATHT can be adapted by the user, as summarised in Sections 2.6.1 and 2.6.2.
By doing so, the heat equation is ”manipulated”, such that the temperature degree of
freedom θ is equal to the pore pressure p(0) and that the heat flux q corresponds to the
relative pore fluid velocity ⟨v⟩rf . Thus, the heat transfer equation is ”abused” to solve
the PDE of the pore pressure, so that Abaqus can be used to implement the discretised
macroscale system of equations as defined in eqs. (2.70) and (2.88).

Following Sections 2.6.1 and 2.6.2, the implementation into Abaqus is possible in
a straightforward manner, if the temperature degree of freedom θ is substituted by
the pore pressure p(0). For a thermomechanically coupled user material, the mechanical
quantities as well as the coupling terms have to be defined as introduced in Section 2.6.1.
The respective quantities for the porous media model are summarised in Table 2.3. The
return variable STRESS is updated according to the constitutive eq. (2.86). In view of
eq. (2.88), the only contribution dependent on the displacement field, namely volumetric
heat generation caused by mechanical working

rmech = −α̃ : ε̇ ≈ − 1

∆t
α̃ :

[
n+1ε− nε

]
, (2.89)

is incorporated into RPL. An implicit Backward Euler integration scheme is adapted for
the time discretisation of the strain rate ε̇. The continuity statement eq. (2.88) is incor-
porated within UMATHT following the derivations in Section 2.6.2, where the respective
counterparts and derivatives for poroelasticity are specified in Table 2.4. These quanti-
ties can be directly defined when comparing eq. (2.88) with eq. (2.71). The constitutive
relation (2.87) is used for the return variable FLUX.

The results obtained by solving the macroscale system of poroelastic PDEs introduced
above can be found in [41]. Here, the authors present the numerical solution of the one-
dimensional Terzaghi’s problem and of biological tissues, such as brain white and grey
matter and cell aggregates.
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2 Thermomechanical framework

Table 2.3: Specification of all return values for the porous media model when implementing the user
subroutine UMAT, where the temperature degree of freedom θ is substituted by the pore pressure p(0),
compare Table 2.1.

UMAT variable porous media model

STATEV -

STRESS σ = Ẽ : ε− p(0) α̃

DDSDDE
dσ

dε
= Ẽ

DDSDDT
dσ

dp(0)
= −α̃

RPL rmech = −α̃ : ε̇ ≈ − 1

∆t
α̃ :

[
n+1ε− nε

]
DRPLDE

drmech

dε
= − α̃

∆t

DRPLDT
drmech

dp(0)
= 0

Table 2.4: Specification of all return values for the porous media model when implementing the user
subroutine UMATHT, where the temperature degree of freedom θ is substituted by the pore pressure p(0),
compare Table 2.2.

UMATHT variable porous media model

U U =
1

M
p(0)

DUDT
dU

dp(0)
=

1

M

DUDG
dU

d∇p(0)
= 0

FLUX ⟨v⟩rf = −⟨W ⟩f · ∇xp
(0)

DFDT
dq

dp(0)
= 0

DFDG
dq

d∇p(0)
− ⟨W ⟩f
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3 A phase transformation framework
based on volume fractions

The complex multiphysical processes occurring during LPBF necessitates the
establishment of appropriate constitutive and process models in order to quantitatively
predict the properties of the final workpiece. In particular, the accurate determination of
process-induced eigenstresses is a challenging yet important task. The overall material
behaviour is determined according to a solid-solid phase transformation model, see, e.g.
[11–13, 78, 85]. In this chapter, a constitutive modelling framework stemming from
solid-solid phase transformations in shape memory alloys is adapted to the modelling
of the changes of state during LPBF processes. This model is based on energy densities
and energy minimisation in general, without taking into account the changing mass
densities of the material. As a first step, the present overall material model comprises
three phases of the material, namely powder, molten, and re-solidified material. It
specifically serves as a basis for further enhancements in the following Chapters, such
as the consideration of mass densities and mass conservation in Chapter 4 and multiple
solid phases in Chapter 6.

This chapter is structured as follows: the phase transformation model is discussed
in Section 3.1 in detail. The thermodynamically fully coupled FE-based process model
incorporates approaches for, e.g., the laser beam impact zone and the layer construction
model, which are explained in Section 3.2. It also comprises the numerical solution
strategies, e.g. in terms of the underlying inequality constraints, and the discussion
concerning user-defined Abaqus routines. In Section 3.3, numerical results are shown in
terms of a purely academic study in order to achieve a general proof of concept and a
basic LPBF process simulation.

3.1 Constitutive framework

In this section, the constitutive model shall be discussed in detail. This comprises the
specification of the phase transformation model in Section 3.1.1 as well as the approaches
adapted for the underlying thermal problem in Section 3.1.2. The models are thermo-
mechanically fully coupled with respect to the macro and micro scale. As this work
proceeds, the following simplifications shall be applied to eq. (2.63): The mechanical
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3 A phase transformation framework based on volume fractions

dissipation Dmech due to phase transitions described in the following Sections is consid-
ered negligible which is identical to setting F ≡ 0 and, as a consequence, also ∂θF ≡ 0.
In addition, all dependencies of σ with respect to θ shall be neglected, thus ∂θσ ≈ 0. It
follows that the heat equation simplifies to

0 = − ∇ · q − c̃ θ̇ + rext . (3.1)

3.1.1 Material model

The material model shall not solely rely on temperature-dependent material parameters,
where the phase transition is enforced by the melting temperature, see e.g. [54, 99, 185],
but rather on fundamental constitutive relations for each phase of the material. In this
context, the term phase is used in a broader sense here: Each state of the material –
namely powder, molten, and re-solidified – is considered as a solid-type phase of the
material. This can be considered only as an approximation, in particular with respect
to the molten phase. However, this assumption may be justified due to the fact that the
molten phase is not present for a significant period of time and that the associated fluid
structure interaction during this period can thus be considered negligible. Furthermore,
both the powder and the molten phase cannot transfer tension forces. Such tension
forces, however, do not occur in these phases within the present simulations so that
the constitutive framework at this stage does not account for this tension-compression
asymmetry.

Phase energies and mixture energy

First, the averaged volume specific energy density ψ(X) of a material point X on the
macro scale is given by

ψ(X) =
1

dV0

∫
B

ψ (ε (X)) dV , (3.2)

where ψ (ε (X)) denotes the respective quantity on the micro scale and where dV0 is the
total volume of the considered representative volume element (RVE) at the micro scale,
in other words the (infinitesimal) initial volume. The micro scale decomposes into the
aforementioned phases which in general occupy regimes Bpow, Bmel, and Bsol with related
volumes VBpow , VBmel

, and VBsol . The strain field on the micro scale is now supposed to
be piecewise constant, namely

ε (X) =


εpow , if X ∈ Bpow
εmel , if X ∈ Bmel

εsol , if X ∈ Bsol
. (3.3)
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3.1 Constitutive framework

Accordingly, the distribution of the energy density is generally given by

ψ (ε (X)) =


ψpow (εpow) , if X ∈ Bpow
ψmel (εmel) , if X ∈ Bmel

ψsol (εsol) , if X ∈ Bsol
. (3.4)

With this ansatz at hand, one can rewrite the energy density as

ψ(X) =
1

dV0

 ∫
Bpow

ψpow dV +

∫
Bmel

ψmel dV +

∫
Bsol

ψsol dV

 (3.5)

=
1

dV0

 ∫
Bpow

dV ψpow +

∫
Bmel

dV ψmel +

∫
Bsol

dV ψsol

 . (3.6)

By using the definitions

ξ• :=
1

dV0

∫
B•

dV =
VB•
dV0

(3.7)

for the respective volume fractions of each phase, one obtains

ψ(X) = ξpow ψpow (εpow) + ξmel ψmel (εmel) + ξsol ψsol (εsol) =

nph∑
i=1

ξi ψi (εi) , (3.8)

where nph refers to the number of phases present. The volume fractions thus connect
the transformed volume VB• to the initial volume dV0.

The respective energy densities, which define the constitutive behaviour of each single
phase as linear elastic, are chosen as

ψpow :=
1

2
εpow : Epow : εpow − c̃pow θ ln(θ) , (3.9)

ψmel :=
1

2
εmel : Emel : εmel − c̃mel θ ln(θ)− Lmel

θ − θrefmel

θrefmel

, (3.10)

ψsol :=
1

2

[
εsol − εthsol

]
: Esol :

[
εsol − εthsol

]
− c̃sol θ ln(θ) . (3.11)

In these definitions, E• denotes the respective fourth-order elasticity tensor, c̃• = c ρ• is
the weighted specific heat capacity, i.e. volume specific heat capacity, and θ the current
temperature. The energy density for the molten pool includes the weighted latent heat
Lmel = Lρmel as well as a constant reference temperature θrefmel. The only inelastic
strain contribution considered in the present framework is exemplified by thermal strains
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3 A phase transformation framework based on volume fractions

εinelsol = εthsol present in the re-solidified phase. The relation between the different occupy
regimes and strains are visualised in Figure 3.1. More insight into the structure and
interpretation of phase energy densities is given in Section 4.1.1, where also a more
complex material model is incorporated.

 
 

 
Bpow

Bmel Bsol

εpow = ε
el
pow

εmel = ε
el
mel

εsol = ε
el
sol + ε

th
sol

Figure 3.1: Visualisation of small strain kinematics for the modelling approach based on volume frac-
tions.

Homogenisation approach

The relation (3.8) together with eqs. (3.9) to (3.11) defines the constitutive framework
except for the determination of different total strains in each phase, namely εpow, εmel,
and εsol. To this end, specific homogenisation assumptions have to be made. In the
present framework, it is assumed that the strain states of each phase will take on values
which minimise the overall energy density at the micro scale subject to the restriction

rε := ε− ξpow εpow − ξmel εmel − ξsol εsol = 0 , (3.12)

where ε is the (prescribed) strain state at the macro scale. Therefore, eq. (3.12) is also
referred to as compatibility condition. The related minimisation problem

{εpow, εmel, εsol} = argmin
{
ψ
}

subject to rε = 0 (3.13)

leads to the calculation of the Reuss-bound, where constant or homogeneous stress states
at the micro scale are assumed in each phase. For further insight, Remark 2 gives an
overview of different types of homogenisation assumptions. The resulting effective energy
obtained by this minimisation also coincides with the convex hull, which is identical to
Sachs bound, as illustrated in Figure 3.2. In addition, the phase volume fractions are
assumed to minimise the energy density as well which leads to the enhancements

{ξpow, ξmel, ξsol} = argmin
{
ψ
}

(3.14)
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3.1 Constitutive framework

subject to

ξpow + ξmel + ξsol = 1 (3.15)

and

0 ≤ ξ• ≤ 1 (3.16)

as constraints for every phase. In contrast to standard solid-solid phase transformation,
see e.g. [11, 13, 78], an additional constraint is necessary regarding the evolution of the
powder phase. Due to the physical behaviour of powder particles, the melting of powder
is not reversible. Thus, the physically motivated restrictions eqs. (3.15) and (3.16) need
to be extended by

ξ̇pow ≤ 0 , (3.17)

so that the powder – once molten – cannot re-transform to powder and thus its volume
fraction can only decrease or remain constant. This behaviour is also illustrated in
Figure 3.1. The equality constraint (3.15) can be incorporated by, e.g., the substitution

ξpow = 1− ξmel − ξsol . (3.18)

In total, the effective constitutive model is defined by the optimisation problem

{εpow, εmel, εsol, ξmel, ξsol} = argmin
{
ψ
}

(3.19)

subject to the constraints

rε := ε− [1− ξmel − ξsol] εpow − ξmel εmel − ξsol εsol = 0 , (3.20)

r1 := −ξmel ≤ 0 , (3.21)

r2 := −ξsol ≤ 0 , (3.22)

r3 := ξmel + ξsol − 1 ≤ 0 , (3.23)

r4 := ξ̇pow ≤ 0 . (3.24)

For conceptual simplicity, we define

r := [r1 r2 r3 r4] (3.25)

and the related quantity

λ := [λ1 λ2 λ3 λ4] (3.26)
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3 A phase transformation framework based on volume fractions

containing Lagrange multipliers. Together with the equivalent quantity λε related to rε

the Lagrangian

L := ψ + λε : rε + λ · r (3.27)

may be defined. The related necessary conditions for the minimum then read

∂εpowL = 0 , (3.28)

∂εmel
L = 0 , (3.29)

∂εsolL = 0 , (3.30)

∂λεL = 0 , (3.31)

∂ξmel
L = 0 , (3.32)

∂ξsolL = 0 , (3.33)

which are completed by the complementarity conditions

ri ≤ 0 , λi ≥ 0 , ri λi = 0 , i = 1, ..., 4 , (3.34)

also referred to as Karush-Kuhn-Tucker conditions. Conditions (3.28) to (3.31) can be
used to derive analytical solutions for optimal strain states in each phase, namely

ε∗pow = Ẽ
−1

:
[
Esol : Epow :

[
ε− ξsol εthsol

]]
, (3.35)

ε∗mel = Ẽ
−1

:
[
Emel : Esol :

[
ε− ξsol εthsol

]]
, (3.36)

ε∗sol = Ẽ
−1

:
[
Emel : Epow :

[
ε− ξsol εthsol

]]
+ εthsol , (3.37)

with

Ẽ := ξmel Esol : Epow + ξsol Epow : Emel + [1− ξmel − ξsol] Emel : Esol , (3.38)

as well as the Lagrange parameter

λε ≡ σ = Ẽ
−1

: [Emel : Esol : Epow] :
[
ε− ξsol εthsol

]
, (3.39)

which turns out to be identical to the resulting stresses σ. As discussed later on, this
has an effect on the algorithmic treatment as well. With these solutions at hand, the
problem reduces to

{ξmel, ξsol} = argmin {L∗ := ψ∗ + λ · r} , (3.40)

where

ψ∗ := ψ
∣∣
εpow←ε∗pow, εmel←ε∗mel, εsol←ε∗sol

. (3.41)
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3.1 Constitutive framework

The remaining necessary conditions for the minimum of L∗ now read

∂ξmel
L∗ = 0 , (3.42)

∂ξsolL∗ = 0 , (3.43)

together with

ri ≤ 0 , λi ≥ 0 , ri λi = 0 , i = 1, ..., 4 . (3.44)

Specifications of the derivatives present in eqs. (3.42) and (3.43) are, of course, possi-
ble but will not be explicitly mentioned here due to the fact that the resulting terms
are rather lengthy, but are exemplarily determined for the framework of Chapter 4 in
Appendix B. The algorithms and numerical methods used to solve this problem are
elaborated in Section 3.2.1.

Remark 2. As summarised in, e.g., [152], different types of homogenisation assump-
tions can be made. Especially Voigt’s assumption, also referred to as Taylor’s bound and
the Reuss’ assumption, also called Sachs bound, are well known. Thereby, Voigt [171]
defines the upper bound with a homogeneous strain state and Reuss [147] determines the
lower bound of a problem, where a uniform stress field is assumed. These assumptions are
illustrated in Figure 3.2 for two arbitrary energy densities. Visually speaking, Voigt-type
homogenisation is exemplified by parallel springs, whereas Reuss-type homogenisation is
represented by serial springs.

ψ1

ψ2

ψ

ε

Taylor’s bound

Sachs bound

Figure 3.2: Visualisation of homogenisation assumptions based on two arbitrary energy wells.

3.1.2 Heat effects

As heat transfer mechanism, only heat expansion and conduction are considered and
shall be briefly discussed in what follows. Radiation and convection are neglected at
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3 A phase transformation framework based on volume fractions

this point, but are incorporated in Section 4.1.5, while the minor effect is discussed in
Appendix B.3.

With respect to the heat expansion model and related thermal strains εthsol, a standard
linear relation of the form

εthsol := αsol

[
θ − θini

]
I , (3.45)

is used, where αsol represents the (isotropic) heat expansion coefficient of the solid phase
and where θini denotes the initial or reference temperature at which the material is
defined as undeformed in the absence of mechanical loads. The heat expansion of the
powder and molten phase is negligible compared to the expansion of the solid phase.
As introduced in eqs. (2.63) and (2.64), the balance equations depend on the effective
volume specific heat capacity which can be specified for the model at hand by

c̃eff := − θ ∂2θθψ = [1− ξmel − ξsol] c̃pow + ξmel c̃mel + ξsol c̃sol . (3.46)

In addition, a standard isotropic Fourier-type form is used for the heat conduction
model, viz. in eq. (2.84) with k̃eff as averaged heat conduction of the phase mixture.
This quantity is chosen as

k̃eff := [1− ξmel − ξsol] kpow + ξmel kmel + ξsol ksol , (3.47)

where k• represents the respective heat conductivity for each phase. Eq. (3.47) represents
a Voigt-type homogenisation assumption, cf. Remark 2, whereby a Reuss-type format
– in analogy to the elastic problem – could have been chosen as well, see for example
eq. (4.64).

3.2 Implementation and algorithmic treatment

The framework at hand has been realised with help of the commercial FE-based software
Abaqus. Thus, the focus in this section will also lie on specific aspects regarding related
algorithmic issues. The implementation does not only comprise the incorporation of the
local material routine in Section 3.2.1, but also for example the construction of different
powder layers in Section 3.2.2 and the modelling of the laser heat source in Section 3.2.3.
Finally, the specific implementation of the user-defined routines is summarised in Sec-
tion 3.2.4.
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3.2 Implementation and algorithmic treatment

3.2.1 Numerical solution strategies

The following aspects refer to the local part of the overall model, i.e. the material routine.
Prior to the algorithmic formulation, restriction (3.24) needs to be specified in terms of
a time discretisation, cf. eq. (2.77). To this end, the rate of ξpow, i.e.

ξ̇pow = − ξ̇mel − ξ̇sol (3.48)

is discretised according to

ξ̇pow ≈ −
n+1ξmel − nξmel

∆t
−

n+1ξsol − nξsol
∆t

. (3.49)

This time discretisation also affects the complete set of equations or inequalities (3.42)
to (3.44) in the sense that the quantities ξmel and ξsol are now substituted by their
time-discrete counterparts n+1ξmel and

n+1ξsol.
With these specifications at hand, the problem to be solved reads{

n+1ξmel,
n+1ξsol

}
= argmin {L∗} (3.50)

which leads to

∂n+1ξmel
L∗ = ∂n+1ξmel

ψ∗ − λ1 + λ3 −
1

∆t
λ4 = 0 , (3.51)

∂n+1ξsolL
∗ = ∂n+1ξsolψ

∗ − λ2 + λ3 −
1

∆t
λ4 = 0 , (3.52)

subject to eq. (3.44). The latter conditions are implemented into the algorithmic frame-
work via the Fischer-Burmeister nonlinear complementarity problem functions√

r2i + λ2i + ri − λi = 0 , i = 1, . . . , 4 . (3.53)

This approach was established in [51] and was first applied to problems in continuum
mechanics in [154]. These functions have proven to work well in the context of material
modelling, for instance for shape memory alloys, cf. [12, 15, 85], and piezoceramics,
cf. [48]. With this approach at hand, the residual

r :=


∂n+1ξmel

L∗
∂n+1ξsolL∗√

r21 + λ21 + r1 − λ1
...√

r24 + λ24 + r4 − λ4

=


0
0
0
...
0

 (3.54)
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3 A phase transformation framework based on volume fractions

is defined. The vector of unknown variables corresponds to

f := [ξmel ξsol λ1 λ2 λ3 λ4]
t . (3.55)

Using the Fischer-Burmeister nonlinear complementarity function has the advantage
that a standard solver is applicable even though inequality conditions have to be ful-
filled. Without going into further detail, this system of equations can be solved by using
standard Newton-type approaches, see Remark 3, where specific smoothing techniques
have to be applied with respect to the Fischer-Burmeister functions, see, e.g., [79].

Remark 3. For the system of equation (3.54), the vector of unknowns (3.55) needs to
be updated. Therefore, the local Jacobian matrix

J =
∂r

∂f
(3.56)

is introduced. The updated value for iteration i is then determined via

f i+1 = f i − J−1 · r . (3.57)

The new residuum is then calculated with the updated variables. This procedure is re-
peated until the tolerance of the residual vector is sufficiently small, e.g. ∥r∥ < ϵ = 10−8.

3.2.2 Layer construction model

The layer construction model is based on the so-called element birth and death strategy
for the construction of multiple layers proposed in [110, 150]. This technique has also
been employed in, e.g., [36, 53]. Accordingly, the number of applied layers has to be
known in advance and all of them are a priori considered within the initial FE mesh. At
the beginning of the simulation, all redundant layers are deactivated. This is called the
element death. This means for example that they do not contribute to the stiffness (ma-
trix) of the body under consideration. The addition of a new powder layer coincides with
the activation of a complete set of elements, referred to as element birth. Hence, these
elements also affect the stiffness (matrix). The conceptual steps of the layer construction
model are visualised in Figure 3.3.

Within the software Abaqus, this can be accomplished with the help of the command
MODEL CHANGE, where sets of elements can be defined which are then removed from
or added to the complete FE model, respectively. As suggested in [1], the “newborn”
elements are activated as strain-free within an additional short time step. This procedure
is used to closely approximate the actual processes of the LPBF. It is noteworthy that
the activation of new elements additionally affects the algorithms within the subroutine
DFLUX since the reference height for the heat flux distribution changes, see Section 3.2.4.
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initial part layer 2+3
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layer 3
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layer 1

base material

Figure 3.3: Illustration of the layer construction during the simulation based on element ’birth death’
technique. Reprinted from [14].

3.2.3 Laser beam model

Various models exist for the application of the heat flux rext generated by the laser beam
in order to model the impact of the laser beam as accurately as possible. Specific models
for the laser beam and its impact zone are provided in [36, 37, 53, 72, 89, 150] in terms
of surface heat flux models. Extension in terms of different volume heat flux models are
given in [42, 64, 68, 116, 148, 164, 175]. For this model, a moving and non-uniformly
distributed volumetric heat source is prescribed, where the laser beam profile is modelled
as a Gaussian distribution. As proposed by Goldak in [60] for welding, the Gaussian
heat source is adjusted for LPBF and is defined via

rext(x
′
1, x
′
2, x
′
3) =

4
√
2P

r30 π
√
π

exp

(
− 2 [x′1

2 + x′2
2 + x′3

2]

r20

)
, (3.58)

where P defines the laser power and where r0 is the characteristic (focus) radius of
the laser beam. For eq. (3.58), approximately 85 % of the total energy lies within the
maximum radius spot, thus the concentration coefficient equals two, see [146]. The
heat flux in the x1-x2-plane is illustrated in Figure 3.4. The coordinates x′i introduced
in eq. (3.58) are defined with respect to a moving orthonormal frame: In view of the
numerical examples, where the laser will move in positive x1 direction (cf. Figure 3.6),
the following relations are applied

x′1 = x1 − [t− t0] vlsr , x′2 = x2 , (3.59)

with vlsr as prescribed velocity of the laser. To incorporate such a non-uniform dis-
tributed heat flux, the subroutine DFLUX is necessary, see Section 3.2.4 for further details,
where the precise relation for x′3 will be discussed and is defined in eq. (3.60).

3.2.4 User-defined routines

In order to define user specified mechanical and thermal material behaviour in Abaqus,
the subroutines UMAT and UMATHT are provided. These are used to incorporate the afore-
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Figure 3.4: Distribution rext(x
′
1, x

′
2, x

′
3) of heat flux for Goldak heat source as defined in eq. (3.58) with

focus radius r0 = 0.0002 m and laser power P = 110 W.

mentioned constitutive model and to adapt the calculation of the heat transfer equations
for the thermodynamically fully coupled simulations. In addition, the subroutine DFLUX
is used to define the non-uniform and moving heat flux of the laser beam model.

DFLUX

The subroutine DFLUX is used in order to define the direction, power and the velocity
of the non-uniform heat source. This subroutine is called up at the beginning of each
iteration. While being activated, it determines the magnitude of the heat flux FLUX(1)

as defined in the source code. The volumetric heat source is modelled in Abaqus as
a body heat flux through all subjacent layers. By doing so, it is guaranteed that the
heat flow can spread unhindered through the whole body. The laser parameters and
initial positions are defined within the subroutine, whereas the position (x1, x2, x3) by
the variable COORDS and the current time t, respectively TIME(1), are passed in for
usage by Abaqus. Due to the layer activation as defined in Section 3.2.2, the reference
height x′3 within the subroutine DFLUX changes. Thus, the coding has to adapt the
height of the part in accordance to the respective step, as the origin of the volumetric
heat flux x′3 depends on the height hlyr of a single layer and on the current number of
applied (activated) layers nlyr. To be specific, the relation

x′3 = x3 + nlyr hlyr (3.60)

holds. With this information at hand, it is now possible to determine the current heat
flux rext(x

′
1, x
′
2, x
′
3) as defined in eqs. (3.58) to (3.60). Different models for the laser beam

are able to be incorporated into the algorithm in a straightforward manner.
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UMAT

The constitutive model of the phase transformation is implemented into the subroutine
UMAT. The general properties have been introduced in Section 2.6.1. The states of the
underlying global variables, namely strains ε and temperature θ, as well as the values of
the respective internal state dependent variables SDV – here, the quantities ξmel and ξsol
– are passed to the subroutine and can be accessed for the calculation of the current
SDV via eq. (3.54) and, as a consequence, for the determination of current stresses via
eq. (3.39).

In addition to the SDV and the stresses themselves, their total derivative with respect
to strains – frequently denoted as algorithmic tangent operator Ealgo – has to be provided
as output parameter within the UMAT subroutine. Here, we use an approximation of this
quantity, viz.

Ealgo ≈ ∂σ

∂ε
= Ẽ

−1
: [Emel : Esol : Epow] , (3.61)

for conceptual simplicity. The simplification does not affect the results themselves, but
only the convergence rate of the outer Newton-Raphson scheme (see Abaqus user subrou-
tine reference guide [1]). This is suitable since the time steps of the global calculations
need to be rather small in view of the thermomechanical coupling. Therefore, the con-
vergence of the outer Newton-Raphson scheme is sufficiently high during the simulation.
Due to the fact that the assumptions ∂σ/∂θ ≈ 0 and that the underlying mechanical
dissipation Dmech is set to zero, no further derivatives are required in this case, i.e. the
thermomechanical coupling RPL equals zero.

UMATHT

Abaqus generally provides a standard treatment of the heat transfer problem, see
eq. (2.81), without the need of further subroutines. However, the effective heat con-

duction k̃eff , see eq. (3.47), and the effective heat capacity c̃eff , see eq. (3.46), depend on
SDV ξmel and ξsol, necessitating the use of the subroutine UMATHT. As the internal variables
are available within the subroutine, averaging the thermal quantities is then possible.
In the context of the present framework, the density of the whole model ρ is set equal to
ρpow, i.e. the mass density of the powder. In order to account for the different densities
of the remaining phases which cannot be changed within the subroutine UMATHT, the
averaged volume specific heat capacity defined in eq. (3.46) needs to be redefined to a
effective specific heat capacity as follows

ceff := [1− ξmel − ξsol]
c̃pow
ρpow

+ ξmel
c̃mel

ρpow
+ ξsol

c̃sol
ρpow

, (3.62)

as proposed in, e.g., [189]. Another approach is presented in [75], where the overall
density equals one, while the volume specific heat capacity is defined in the subroutine
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UMATHT. This contribution also discusses the positive influence of using the correct density
on the simulation results. Overall, this concept assures a thermal material behaviour
corresponding to the previously defined constitutive framework.

3.3 Numerical examples

In this section, representative numerical examples generated with the previously defined
material model are discussed. For the numerical examples, the material properties of
a Ti-based alloy, namely Ti6Al4V, are used. This material is one of the materials fre-
quently used in research for additive manufacturing. The respective thermomechanical
material properties are summarised in Table 3.1, see also Remark 4. The material pa-
rameters are adapted from [121] and [148], where the reference temperatures 1073.15 K
(for the solid and powder phase) and 2273.15 K (for the molten phase) have been used.
Furthermore, the required values of the initial and the reference temperature are chosen
as θini = 273.15K and θrefmel = 1873.15K. Material parameters are assumed constant for
each phase and that their respective effective counterparts follow from the phase mix-
ture in contrast to material models which directly incorporate temperature-dependent
effective material properties.

Table 3.1: Overview of the used material parameters of Ti6Al4V adapted from [121] and [148].

Material parameters Powder Melt Solid

Extraction temperature θ [K] 1073.15 2273.15 1073.15

Mechanical parameters
Density ρ [kg/m3] 4309 3700 4309
Poisson’s ration ν [−] 0.33 0.45 0.33
Young’s modulus E [GPa] 7.6 2.9 63.4

Thermal parameters
Expansion coefficient α [1/K] - - 11e-06
Heat capacity c [J/(kgK)] 714 831 714
Conductivity k [W/(mK)] 9.5 33.4 17.8
Latent heat L [kJ/kg] - 286 -

Remark 4. Within Abaqus, no explicit units are prescribed. Thus, consistent SI-units
can be freely chosen. However, the present choice affects the convergence rate of the
constitutive framework at material point level due to the numerical solution strategies
defined in Section 3.2.1. The usage of the Fischer-Burmeister necessitates similar mag-
nitudes for the field variables. Instead of the standard SI-units [m,kg,s,K], the material
parameters are incorporated based on [mm,kg,ms,K]. This results in stress having the
unit [GPa] and in energy being based on [kNmm].
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3.3.1 Proof of concept

Prior to the implementation into the overall complex FE model, the constitutive frame-
work derived in Section 3.1.1 shall be discussed. Therefore, a single material point is
considered and its behaviour due to cyclic thermal loading is investigated. At the begin-
ning, the temperature is linearly increased in a time interval ∆t = 1ms from θ = 873K
to θ = 2873K, then decreased back to θ = 873K in the same time span, see Figure 3.5a.
Therefore, a homogeneous stress state with zero Neumann boundary conditions is as-
sumed. The strain components are iteratively calculated in such a manner that the
related stress components vanish. The material shall initially purely consist of powder,
thus ξpow = 1. The resulting strain components ε11, ε22 and ε33 evolve homogeneously, as
shown in Figure 3.5b, and the occurring phase volume fractions are shown in Figure 3.5c.
The volume fractions of the respective phases change when reaching the melting point
of θmelt = 1873.15 K as defined in the material model. Due to the fact that the solid
phase is the only one exhibiting inelastic/thermal strains, the evolution of the solid phase
induces residual strains.
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Figure 3.5: Simulation results of the temperature-driven calculations (3.5a) in terms of the strain
evolution (3.5b) and the evolution of volume fractions ξ• (3.5c) for homogeneous stress state with zero
Neumann boundary conditions.
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3.3.2 Simulation of a basic process

This section deals with the modelling and simulation of a basic LPBF process. The main
geometrical model for the build chamber is illustrated in Figure 3.6a, where the final
configuration is conceptually shown. The height of a single layer is given by hlyr = 50 µm.
The height of the base material has to be chosen in such a way that it will not melt
completely, in particular during the application of the first layer. Therefore, its height
is set to 200 µm. For symmetry reasons, only one half of the chamber is considered so
that the centre of the moving laser beam will be applied exactly along one edge of the
modelled part, i.e. at positions with x2 = 0, see Figure 3.6b.

(a)

0.002 m0.0033 m

layers

base material

build platform

5× 10−5 m

2× 10−4 m

x1

x2

x3

(b)

r

scanning path

∂Bθ , ∂Bu

∂Bux1
, ∂Bux2

∂Bux1
, ∂Bux2

∂Bux1
, ∂Bux2

symmetry plane, ∂Bux2

x1 x2

x3

Figure 3.6: Geometry (3.6a) and boundary conditions (3.6b) of the used LPBF example to demonstrate
a basic process simulation. (3.6b) reprinted from [14].

The applied boundary conditions are indicated in Figure 3.6b: At the bottom face of
the part, homogeneous Dirichlet conditions are applied with respect to displacements,
and the temperature is prescribed to 373.15 K throughout the calculations. The dis-
placement boundary conditions on the side edges of the part only allow displacements
in x3-direction where the upper edge is subjected to homogeneous Neumann boundary
conditions with respect to the displacement field. Except for the bottom face, only ho-
mogeneous Neumann boundary conditions are applied with respect to the temperature
field.

The laser beam power is set to P = 100 W with r0 = 100 µm, and the velocity of the
laser beam is vlsr = 1 m/s, cf. eq. (3.59). The time step used by Abaqus was constantly
set to ∆t = 2× 10−5 s, which means – in view of the prescribed scanning velocity of the
laser beam –, that 50 time steps will be used for the scanning period of 10−3 s for each
layer. The spatial discretisation in terms of finite elements is carried out via element
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type C3D8T which exhibit 8 displacement nodes in addition to a temperature degree.
Due to high temperature gradients and laser velocity, a dense mesh is used close to the
laser beam path. Within this region, a characteristic element length of lchar ≈ 15µm is
applied, compare also Figure 4.9.

At first, the part – which initially only consists of the powder material and where
the first layer of material is already activated – is homogeneously pre-heated via the
prescribed temperature boundary conditions at the bottom face. After the necessary
period of time for the pre-heating, the laser beam is applied along the scanning path
in the aforementioned way. Before activating the second layer of new powder, a cooling
period of 0.01 s is applied. Then, after the activation of the new layer, the laser beam
is applied once more. This procedure is repeated one more time so that three layers of
powder have been added in total.

The calculation results of the above process shall be discussed in what follows: Fig-
ure 3.7 shows the temperature evolution as the laser beam moves along the scanning
path (Figures 3.7a to 3.7d) and during the subsequent cooling period (Figures 3.7e and
3.7f) prior to the application of the new powder layer. The “tail” occurring behind the
laser beam position is due to the fact that the conductivity of the forming re-solidified
material (cf. Figure 3.8) is significantly higher than that of the surrounding powder.
The legend of Figure 3.7 is not linear in the sense that all temperature values above
1923 K are displayed in the same red colour. The maximum temperatures reach values
of approximately 3400 K.

Figure 3.8 shows the spatial distribution of the powder phase, the molten pool, and
the re-solidified material at different time steps. It can be observed how the distribution
of the molten pool and the re-solidified material follows the path of the applied laser
beam. Due to the fact that, according to the chosen material parameters, the phase
transformations are mainly temperature-driven, the evolution of the solid phase is very
similar to the temperature distribution displayed in Figure 3.7. The dimensions of the
molten pool during the laser impact can be estimated to be 375 µm in length (≈ 25
elements), 120 µm in width (≈ 2 times 4 elements), and 60 µm in depth (≈ 4 elements).
In the same way, the final dimension of the solid material can be estimated to be 1005
µm in length and – still – 120 µm in width as well as 60 µm in depth. The apparent
intermediate values of the phase fractions (green colour) mainly stem from the internal
interpolations used within Abaqus for illustration purposes.

The dimensions of the final manufactured part are illustrated in Figure 3.9a, where
the phase fractions of the solidified material are shown after the consecutive application
of three powder layers and a subsequent cooling period. It becomes obvious that the
final part is not of regular shape as presumably desired. This is a direct consequence
of the model for the heat source supplied by the laser beam and, in addition, of the
underlying process parameters. This result shows that the presented framework is capa-
ble of providing a deeper understanding and insight into the interaction between system
parameters and the quality/properties of the final product.
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Figure 3.7: Temperature evolution θ(x) during the impact of the moving laser beam (3.7a - 3.7d) and
during the subsequent cooling period (3.7e - 3.7f). Temperatures above 1923 K are displayed in the
same red colour, where the maximum values are approximately 3400 K. Reprinted from [14].

Finally, Figure 3.10 depicts the distribution of stresses after finishing the manufac-
turing process, here in terms of the normal stresses in each direction, i.e. σ11, σ22, σ33,
and of the von Mises equivalent stresses σvM. It becomes evident that the manufac-
turing process induces high eigenstresses which then may have significant effects on the
component’s quality and usability. For instance, possible fatigue, damage, and related
delamination processes may be affected by these eigenstresses. In this context, high
eigenstresses occur at the interface between the different material layers applied which
are chosen three elements thick in the calculations. According to the simulation results,
these interfaces are subject to high tensile stress states in x1-direction and high com-
pression states in x2-direction as well as to moderate compressive normal stresses in
x3-direction. This could hint at the fact that the final workpiece may be prone to Mode
II-type failure (shearing) and Mode III-type failure (tearing) and, conversely, exhibits
improved resistance with respect to Mode I-type failure (opening) referring to potential
cracks aligned with the x1-direction.
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Figure 3.8: Evolution of the volume fractions of the powder (3.8a), the molten pool (3.8b) and the
re-solidified material (3.8c) at different time steps. The laser impact is active up to t4 = 0.001 s so that
the distributions shown for t5 and t6 reflect the evolution of the underlying phases during the cooling
sequence. Reprinted from [14].

55



3 A phase transformation framework based on volume fractions

(a)

ξsol
1.0

0.5

0.0

(b)

x1 x2

x3

Figure 3.9: Distribution of the volume fraction of the re-solidified material after the application of three
consecutive layers (3.9a), the cross-section normal to x1 is obtained by a virtual cut indicated by red
lines in (3.9b). Reprinted from [14].
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Figure 3.10: Distribution of different residual stresses after cooling the final workpiece to the initial
temperature along the cross-section as defined in Figure (3.9b). Reprinted from [14].
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based on mass fractions

The reproduction of the constitutive and structural response of LPBF pro-
cesses is challenging due to the complex material behaviour and its interactions.
This motivates the aims of this chapter: To establish a more sophisticated material
model that accounts for the behaviour of the different phases occurring during LPBF
but that still allows the use of (basic) process simulations, where the focus lies on
the advancements of the model presented in the previous Chapter 3. First of all, a
thermodynamically fully coupled framework is incorporated without any simplifications.
In addition, an advanced material model is used for the molten and re-solidified phase,
where several inelastic strain contributions are taken into account. More precisely
speaking, viscous strains and transformation strains are considered in the molten
phase as well as thermal strains, plastic strains, and transformation strains in the
solid phase. The transformation strains are introduced as material constants and
capture the significant change of the mass densities during the phase changes. The
thermodynamically fully coupled framework is then implemented into the software
Abaqus. The numerical examples emphasise the capabilities of the framework to
predict, e.g., essential process-induced quantities such as eigenstresses, also referred
to as residual stresses, occurring in the final part. Furthermore, a post-processing of
averaged inelastic strains is presented yielding a micromechanics-based motivation for
inherent strains, which will be employed for the multiscale simulations in subsequent
Chapter 5.

This chapter is set up as follows: In Section 4.1, the phase energy densities and the
inelastic strains are specified to introduce the constitutive material model which is based
on mass fractions. The formulation of the material model as well as the FE model con-
sider full thermomechanical coupling. A deeper insight is given into the local algorithm
and Abaqus implementation of the framework at hand in Section 4.2. Calculations at
the material point level designed to yield a proof of concept as well as representative
three-dimensional boundary value problems are studied in Section 4.3.
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4.1 Constitutive framework

The thermomechanical material model based on phase energy densities is introduced in
this section. The overall material behaviour is determined according to a phase transfor-
mation model. Furthermore, the specifications of the thermal problem are introduced.
Altogether, both models are thermodynamically fully coupled.

4.1.1 Phase energy densities

As already indicated in Section 3.1.1, each state of the material is represented by an en-
ergy density. Altogether, the material response of the complete model is determined with
the help of a homogenisation approach. The material model is based on the averaged
Helmholtz free energy density ψ, where additively decomposed energy densities

ψi := ψmech
i + ψpl

i + ψcal
i (4.1)

are chosen for each possible phase denoted by the index i. The first part describes the
mechanical energy density ψmech

i , ψpl
i denotes a possible plastic contribution of the energy

density, while the last part ψcal
i is a purely caloric contribution due to the temperature

dependence of the material model. The mechanical part of the energy density is defined
as

ψmech
i :=

1

2

[
εi − εineli

]
: Ei :

[
εi − εineli

]
, (4.2)

whereas the caloric part is a function of temperature and specific material parameters,
i.e. heat capacity and latent heat, and which is to be defined later. The ansatz for
the caloric heat contribution is adapted from [52]. Here, the latent heat refers to the
remaining temperature change after an adiabatic transformation cycle and is not directly
related to the change of entropy. Furthermore, εi denote the total strains of each phase,
εineli describe the inelastic strains and Ei represents a fourth-order elasticity tensor of
the respective phase. Each energy density represents a potential well which is shifted
due to ψcal

i and εineli . The influence of the caloric part and the inelastic strains on the
potential well is visualised in Figure 4.1.

At this point, three distinct phases representing the different states of the material,
namely powder, molten, and re-solidified, are explicitly taken into account. All of these
phases are modelled as a solid continuum, which may be arguable in particular for the
molten phase with respect to the (viscous) solid approach and for the powder phase
regarding the continuum ansatz. Motivations for these simplifications are, however,
provided in the subsequent paragraphs.
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Figure 4.1: Influence of the different contributions on the phase energy densities. Reprinted from [131]
under the terms of the Creative Commons Attribution License (CC BY).

Powder phase

Powder particles are assumed to move freely due to their high degree of porosity between
the powder grains. Therefore, the material behaves solely elastic. It has to be kept in
mind that only compression strains are admissible within the powder particles. In the
framework at hand, the powder is modelled as a continuum with a significantly higher
compliance than the solid material. Overall, the powder shall not undergo states of high
stress or strain levels. In the initial state, only the powder phase is present. In addition,
due to the high porosity of the powder phase, any existing thermal strains are neglected
for this state of the material. Thus, the powder is considered as the parent phase so that
no inelastic strains are incorporated for this phase, i.e. εinelpow = 0. The energy density of
the powder is approximated by

ψpow :=
1

2
εpow : Epow : εpow − c̃pow θ ln(θ) + Lpow

θ − θrefpow

θrefpow

, (4.3)

where c̃pow = ρpow c is the weighted heat capacity of the powder, and where Lpow = ρpow L
describes the weighted latent heat of the powder at a constant reference tempera-
ture θrefpow. The weighted volumetric values are calculated by the mass density of the
powder ρpow and the specific value of the heat capacity c and latent heat L, respectively.

Molten phase

The molten phase shall also be approximated as a solid-type phase. This behaviour is
assumed to be appropriate, as the molten pool is only present for a brief time span.
Fluid effects such as the Marangoni flow are therefore neglected. However, to include
a fluid-like behaviour of the molten pool in the material model, a visco-elastic strain
contribution εvemel is included, which shall be used to enable full stress relaxation within
the molten phase. Furthermore, the mass density of the three phases varies considerably.
A transformation strain εtransmel is incorporated to take into account the volume change,
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respectively shrinkage, of the material due to the different mass densities of the powder
and the molten phases. Both inelastic strains will be further defined in what follows.
Overall, an additive split of the inelastic strains is used for the molten phase, i.e.

εinelmel = εtransmel + εvemel . (4.4)

As the molten phase is the high temperature phase, the influence of the latent heat is
only integrated into the powder and re-solidified phases. With this information at hand,
the specific energy density of the molten phase is defined as

ψmel :=
1

2

[
εmel − εinelmel

]
: Emel :

[
εmel − εinelmel

]
− c̃mel θ ln(θ) , (4.5)

with the heat capacity defined as c̃mel = ρmel c and the mass density of the molten phase
denoted as ρmel.

Re-solidified phase

An additive decomposition of the inelastic strains into three parts is chosen according
to

εinelsol = εthsol + εplsol + εtranssol (4.6)

for the re-solidified phase. The transformation strains εtranssol take into account the vol-
ume changes of the material during the phase transition from the molten phase to the
re-solidified phase due to the changing mass densities. In contrast to the previously
introduced phases, two further inelastic strain contributions are considered. Plastic de-
formation can arise due to high eigenstrains after the phase transformation and due to
high temperature gradients present. A plastic strain tensor εplsol is used to capture this
behaviour whose evolution will be further defined in Section 4.1.4. Furthermore, ther-
mal strains εthsol are considered in the re-solidified phase to take into account inelastic
strains stemming from the high temperature changes during the process. These strains
are already defined in Section 3.1.2. Special attention has to be paid to the used ref-
erence temperature, as only the cooling (and thus shrinkage) of the material is taken
into account for the laser scan model and as no previous heating (and thus expansion)
is considered. This also motivates the inclusion of heat expansion within the inelastic
strains in eq. (5.1). Finally, the energy density of the re-solidified phase is defined by
analogy with the previously introduced energies as

ψsol :=
1

2

[
εsol − εinelsol

]
: Esol :

[
εsol − εinelsol

]
+
Hsol

2
[khardsol ]2 (4.7)

− c̃sol θ ln(θ) + Lsol
θ − θrefsol

θrefsol

.
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4.1 Constitutive framework

The heat capacity and the latent heat are defined in an analogous manner as c̃sol = ρsol c
and Lsol = ρsol L. The mass density of the solid phase is denoted by ρsol. In addition,
Hsol defines the hardening modulus of the solid phase, whereas khardsol indicates the accu-
mulated equivalent plastic strain related to isotropic hardening. This is assumed to be
appropriate as non-cyclic mechanical loading is present. In the energy density, no further
direct thermomechanical coupling, except the thermal strains, is included in eq. (4.7).

Altogether, an overview of all inelastic strain contributions, which contribute to the
total strains, are given in Figure 4.2. In comparison to Chapter 3, where the material
model is visualised in Figure 3.1, the previous approach is considerably simpler.
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Figure 4.2: Visualisation of small strain kinematics for the modelling approach based on mass fractions.

4.1.2 Specification of transformation strains

The transformation strains εtransi of the molten and re-solidified phases shall be intro-
duced next, as they are solely dependent on the transformation process and on material
parameters previously introduced. These strains shall capture the volume changes of
the material during phase transitions due to the different mass densities, as illustrated
in Figure 4.3. A transformation strain can straightforwardly be calculated. In fact, the
validity of the small strain theory needs to be carefully scrutinised in view of physi-
cally plausible transformation strains. The incorporation of volume shrinkage has been
introduced and discussed in, e.g., [37].

Initially, the material solely consists of the mass density ρ0 and mass contribution dm0,
thus it is possible to derive the transformed volume as

dV0 =
dm0

ρ0
. (4.8)

Changes in volume are included by phase transitions due to different mass densities ρ•.
Hypothetically assuming that this infinitesimal volume element of the parent phase,
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4 A phase transformation framework based on mass fractions

i.e. powder, fully transforms into one of the other phases, i.e. molten and re-solidified
material, the volume of the new phase is given by

dV• =
dm0

ρ•
= [1 + tr(εtrans• )] dV0 . (4.9)

Conservation of mass shall be fulfilled in every material point. In consequence, the
mass of an infinitesimal material volume remains constant, i.e. dm0 = const, (compare
conservation of mass in Section 2.3). Using eqs. (4.8) and (4.9) together with the phys-
ically sound assumption of εtrans• being purely volumetric, these transformation strains
are specifically given by

εtrans• =
1

3

[
ρ0
ρ•
− 1

]
I , (4.10)

where I corresponds to the second order identity tensor. For this case, the initial mass
density corresponds to the density of the powder phase, i.e. ρ0 = ρpow. This results in
the transformation strains

εtransmel =
1

3

[
ρpow
ρmel

− 1

]
I (4.11)

for the molten phase and

εtranssol =
1

3

[
ρpow
ρsol
− 1

]
I (4.12)

for the re-solidified phase.

dV0
dV•

ρpow ρ•

ε
trans
•

Figure 4.3: Visualisation of transformation strains.

4.1.3 Homogenisation via convexification

In Chapter 3, a material model for solid-solid phase transformations has been introduced
as a first approach for LPBF processes. It uses volume fractions as state variable, cf.
eq. (3.7), and as conserved quantity, compare eq. (3.15). This is motivated for shape
memory alloys by the fact that the mass densities of, e.g., austenite and martensite
can be considered identical. However, in the context of AM, the mass densities of the
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4.1 Constitutive framework

powder, molten phase and re-solidified material differ significantly. Thus, conservation of
mass does not coincide with conservation of volume. The volume consequently cannot be
used as a conserved quantity, and the homogenisation algorithm needs to be reformulated
accordingly by using mass specific quantities. This makes it possible to consistently take
into account the different mass densities of the powder, molten and re-solidified phase.

For the application at hand, the algorithm introduced in Section 3.1.1 needs to be
enhanced and re-formulated with respect to the mass fractions

ζi =
dmi

dm0

, (4.13)

which correlate the current mass dmi of the respective phase to the initial mass dm0 of
an infinitesimal volume element dV0. These mass fractions can be related to the volume
fractions introduced in eq. (3.7) via

ζi =
ρi dVi
dm0

=
ρi ξi dV0
dm0

⇔ ξi =
ζi dm0

ρi dV0
, (4.14)

where dVi denotes the corresponding volume of the respective phase (instead of VBi). For
the sake of consistency, the algorithm shall now be developed based on mass fractions
and on the averaged mass specific energy Ψ . While working with mass fractions ζi, some
adaptions to the aforementioned approach have to be made.

The averaged mass specific energy density Ψ is, analogously to eq. (3.2), calculated
via a linear mixture rule of the mass specific phases Ψi, thus

Ψ =
1

dm0

∫
B

Ψ dm =
1

dm0

∫
Bi

nph∑
i=1

Ψi dmi =

nph∑
i=1

ζi Ψi =
dV0
dm0

nph∑
i=1

ξi ψi , (4.15)

where the relation between the volume and mass specific energy density ψi = ρi Ψi still
holds and where eq. (4.14) is already employed. The use of mass fractions in particular
affects the compatibility condition

rε = ε−
nph∑
i=1

ζi εi = 0 , (4.16)

which defines the admissible strain state εi, as well as

0 ≤ ζi ≤ 1 and

nph∑
i=1

ζi = 1 (4.17)
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4 A phase transformation framework based on mass fractions

as constraints for the admissible region of the mass fractions. By doing so, the mass is
the conserved quantity. One can see the similarities between eqs. (4.15) and (3.8). This
is advantageous for the implementation, as will be explained in Section 4.2.1.

For the LPBF process, three phases – representing the powder, molten pool and
re-solidified material – are used within the framework such that nph = 3. Each of
these different material states are represented by an energy density ψ•, as introduced
in Section 4.1.1, where • = {pow,mel, sol}, corresponding to the powder, molten and
re-solidified material, respectively. Therefore, the explicit averaged energy density or, in
other words, the effective energy density employed for the modelling framework at hand
is given by

Ψ =
dV0
dm0

[ ξpow ψpow (εpow, θ,V) + ξmel ψmel (εmel, θ,V) + ξsol ψsol (εsol, θ,V)] ,

(4.18)

where the aforementioned state variable V includes the mass fractions but is not re-
stricted to these, so that V = {ζpow, ζmel, ζpow, I}. The newly introduced quantity I
symbolises further, at this point still unspecified, internal variables. This averaged en-
ergy density has to be minimised subject to the constraints regarding the domain of
feasible mass fractions ζ• ∈ A with

A = {0 ≤ ζ• ≤ 1 , ζpow + ζmel + ζsol = 1} (4.19)

and the domain of the admissible strain distributions ε• ∈ E with

E = {ζpow εpow + ζmel εmel + ζsol εsol = ε} . (4.20)

Eq. (4.20) states that the differently weighted strain contributions always equal the total
strain. This constrained minimisation problem results in the so-called convexification of
Ψ , i.e.

CΨ = inf
ζ•∈A

inf
ε•∈E

Ψ , (4.21)

where CΨ is also known as the convex hull of the energy densities Ψ•, which is identical
to the Reuss bound. This is qualitatively visualised in Figure 4.4. In addition, the
evolution of the powder phase as introduced in eq. (3.17) is reformulated to

ζ̇pow ≤ 0 , (4.22)

which has to be fulfilled in addition to the constraints in eq. (4.19), as the melting of
powder is non-reversible.

At this point, only the determination of the optimal strains shall be discussed. The
evolution equations of the mass fractions will be considered in detail in Section 4.1.4.
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Figure 4.4: Qualitative illustration of the convex hull CΨ of two energy potential wells Ψ1 and Ψ2.
Adapted from [131] under the terms of the Creative Commons Attribution License (CC BY).

The strain states in each phase shall minimise the averaged specific energy density
while considering eq. (4.20). The aforementioned minimisation problem subject to the
respective equality constraint can be solved with help of a Lagrangian

L = Ψ + λε : rε , (4.23)

where λε contains the Lagrange multipliers, see also Remark 5. It is assumed that the
different strain states εi minimise eq. (4.23). Consequently, the necessary conditions for
the present minimisation are specified as

∂εpowL = 0 , ∂εmel
L = 0 , ∂εsolL = 0 , ∂λεL = 0 . (4.24)

With this information at hand, it is possible to derive an analytical expression for the La-
grange multipliers and the optimal strain distributions of each phase. By using eq. (4.24)
and by solving these equations with respect to the Lagrange multipliers one gains

λε =
1

ρ•

∂ψ•
∂ε•

. (4.25)

After taking into account eqs. (4.20) and (4.25), the following analytical results are
obtained for the respective optimal strains of each phase

ε⋆pow = Ẽ −1 :
[
ρpow Esol : Emel : ε

el
]
, (4.26)

ε⋆mel = Ẽ −1 :
[
ρmel Esol : Epow : εel

]
+ εinelmel , (4.27)

ε⋆sol = Ẽ −1 :
[
ρsol Emel : Epow : εel

]
+ εinelsol , (4.28)

with the abbreviation

Ẽ = ζpow ρpow Esol : Emel + ζmel ρmel Esol : Epow + ζsol ρsol Epow : Emel , (4.29)

εel = ε− ζmel ε
inel
mel − ζsol εinelsol . (4.30)
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4 A phase transformation framework based on mass fractions

In line with the hyperelastic format, the overall stress can then be calculated correspond-
ing to eq. (2.56) via

σ =
∂ψ

∂ε
=

nph∑
i=1

ξi
∂ψi

∂ε
=

dm0

dV0
Ẽ −1 : [Epow : Emel : Esol] : ε

el (4.31)

in a compact form. For the specific case at hand, no assumptions regarding the me-
chanical dissipation Dmech are initially made. Thus, this quantity is included within the
mechanical working rmech, as defined in eq. (2.62), in the present model to ensure a fully
coupled thermomechanically framework. The specific contributions of the dissipation
based on eq. (2.59) are determined in Appendix B.1.

In summary, the homogenisation approach for mass fractions is similar to the one
introduced for volume fractions in Section 3.1.1. However, the consolidated notation for
eqs. (4.26) to (4.28) and (4.31) can only be derived in case E• is an isotropic tensor, as
the Lagrange multiplier in eq. (4.25) differs for all phases. This assumption seems to be
appropriate for the material at hand, as defined in Section 4.3. With this, the structure
of the overall stress in eq. (4.31) and the optimal strains of each phase in eqs. (4.26) to
(4.28) are comparable to eqs. (3.39) and (3.35) to (3.37), respectively.

Remark 5. As already described in Section 3.1.1, compare eq. (3.27) and following,
the inequality constraints regarding the feasible domain A can also be realised by using
the Lagrangian. Furthermore, it is also possible to incorporate a dissipation function C,
which is introduced in Section 4.1.4, within a Lagrangian, such that

L = Ψ + λε : rε + λ · r+
∫
t

C dt , (4.32)

where r denotes the constraints regarding A and where λ contains the respective Lagrange
multiplier.

4.1.4 Evolution equations

In line with, e.g., [22], it is possible to derive evolution equations for state variables V
from a dissipation function C, i.e.

∂V ψ + ∂V̇ C = −Γ ∂V r , (4.33)

with the consistency parameter Γ and the generalised inequality constraint r ≤ 0. For
each inequality constraint r, a respective consistency parameter Γ has to be introduced.
For specific cases, it may be more convenient to use the dual dissipation function C⋆
instead. This quantity depends on the driving force

F = −∂ψ
∂V

(4.34)
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4.1 Constitutive framework

and can be computed by applying the Legendre-Fenchel transformation

C⋆ = max
V̇

{
F V̇ − C

}
. (4.35)

As an alternative to (4.33), the evolution equation is then given by

V̇ − ∂F C⋆ = −Γ ∂V r . (4.36)

This concept is now applied in order to derive the evolution equations for the model-
specific independent internal state variables

V = {ξmel, ε
ve
mel, ξsol, ε

pl
sol, k

hard
sol } . (4.37)

The mass fraction of the powder is substituted by

ζpow = 1− ζmel − ζsol (4.38)

according to conservation of mass. As the volume and mass fractions can be converted
into one another, compare eq. (4.14), the following framework is derived based on vol-
ume fractions ξ• rather than on mass fractions ζ•, see also Remark 6. This enables the
enforcement of the minimisation based on the Helmholtz free energy ψ without weight-
ing the equation itself with the respective mass density ρ•. The stresses can then be
calculated in a straightforward manner via eq. (4.31).

Remark 6. From a computational viewpoint, it is beneficial to use volume fractions
as the degree of freedom, despite the fact that the constraint minimisation problem in
eq. (4.21) is based on mass fractions. Volume fractions enable the use of the averaged
specific volume energy density ψ, which is also taken into account for the calculation
of the overall stress and for the evolution equations of the viscous strains. With this
reformulation at hand, the mass density ρ• of the different phases is no longer explicitly
included, so that the homogenisation approach reaches physically feasible results. How-
ever, the inequality conditions r• still consider the physically sound region of the mass
fractions ζ• as introduced in eq. (4.19).

Volume fractions

It is sufficient to define two evolution equations, e.g. for ξmel and ξsol, as the third
quantity can be computed with the help of the equality relation

∑nph

i ζi = 1. In view
of establishing evolution equations for the volume fractions ξmel and ξsol, a dissipation
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4 A phase transformation framework based on mass fractions

function Cξ referred to the volume fractions ξ• is introduced together with the inequality
constraints

rmel = −ζmel ≤ 0 , (4.39)

rsol = −ζsol ≤ 0 , (4.40)

rpow = −1 + ζmel + ζsol ≤ 0 , (4.41)

r∆ = ζ̇pow ≤ 0 , (4.42)

derived from eq. (4.19). The phase transformation shall develop over a finite temperature
range instead of jumping from zero to one, respectively from one to zero. A dissipative
quantity ηξ can influence the temperature range in which the phase transformation
occurs. To ensure a smooth transition, a time dependent dissipation function is defined,
i.e.

Cξ = ηξ

2

[
ξ̇2pow + ξ̇2mel + ξ̇2sol

]
. (4.43)

This results in a viscous approach, which additionally stabilises the computational frame-
work.

Altogether, two Biot-equations

−F ′ξmel
+ ∂ξ̇mel

Cξ = −Γmel ∂ξmel
rmel − Γpow ∂ξmel

rpow − Γ∆ ∂ξmel
r∆ , (4.44)

−F ′ξsol + ∂ξ̇solC
ξ = −Γsol ∂ξsol rsol − Γpow ∂ξsol rpow − Γ∆ ∂ξsol r∆ , (4.45)

are carried out which govern the evolution of the independent volume fractions. Using
the averaged energy density together with the constitutive model, the current phase
(mixture) can be determined. In this case,

F ′• = −
∂Ψ

∂V•
(4.46)

refers to the driving force based on the free energy density Ψ , such that eqs. (4.44) and
(4.45) are specified as

dV0
dm0

∂ψ

∂ξmel

+ ηξ ξ̇mel +
ρmel

ρpow
ηξ ξ̇pow = −Γmel ∂ξmel

rmel − Γpow ∂ξmel
rpow

− Γ∆ ∂ξmel
r∆ , (4.47)

dV0
dm0

∂ψ

∂ξsol
+ ηξ ξ̇sol +

ρsol
ρpow

ηξ ξ̇pow = −Γsol ∂ξsol rsol − Γpow ∂ξsol rpow

− Γ∆ ∂ξsol r∆ . (4.48)
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Viscous strains

The evolution of viscous strains εvemel within the molten pool is determined via a visco-
elastic and thus rate-dependent primal dissipation function

Cve = ηvemel

2
∥ε̇vemel∥2 . (4.49)

Therein, ηvemel denotes a viscosity related material constant. For this evolution equation
no inequality constraints have to be taken into account, therefore the right hand side
in eq. (4.33) equals zero when applied to the evolution of viscous strain contributions.
In general, the driving force is calculated via eq. (4.34), such that the standard driving
force for the viscous strains is defined as

Fve := − ∂ψ

∂εvemel

= ζmel σ . (4.50)

Here, the driving force Fve equals the stress tensor weighted with ζmel. However, this
driving force is a quantity averaged over a domain due to the homogenisation framework
applied, whereas the domain can contain multiple phases and changing mass fractions,
as visualised in Figure 4.5. This domain corresponds to an infinitesimal surrounding of
a material point. As a consequence, a local driving force

Fve
loc := −

1

ζmel

∂ψ

∂εvemel

= σ (4.51)

has to be defined that affects only the molten phase within the domain considered, see
Figure 4.5 and also Remark 7. This driving force is incorporated into the evolution

p1

p2

F
ve

F
ve

loc
, ε̇

ve

mel

Figure 4.5: Explanation of the standard driving force Fve taking into account the whole domain, in
contrast to the local driving force Fve

loc being effective in the molten phase p2 (grey), whereas p1 (white)
corresponds to all other possible phases present, also including p2. Reprinted from [131] under the
terms of the Creative Commons Attribution License (CC BY).
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equation, such that

ε̇vemel =
1

ηvemel

σ . (4.52)

The viscous strains incorporate a fluid-like response, as a complete relaxation of the
stresses is enabled.

Plastic strains

For the rate-independent evolution of the plastic strains εplsol as well as of the variable k
hard
sol

related to the isotropic hardening, the following dual dissipation function

C⋆pl = λΦ = 0 (4.53)

is used. In the aforementioned equation, λ denotes the Lagrange multiplier and Φ refers
to the yield function. Following the same argumentation as in the previous section, the
yield function

Φ = Φ̂(Fpl
loc, κloc) (4.54)

depends on the local driving forces

Fpl
loc := −

1

ζsol

∂ψ

∂εplsol
= σ , (4.55)

κloc := −
1

ζsol

∂ψ

∂khardsol

= −ξsol
ζsol

Hsol k
hard
sol , (4.56)

which yields the associated evolution equation for the plastic strains

ε̇plsol = λ
∂Φ

∂Fpl
loc

, (4.57)

and for the hardening variable

k̇hardsol = λ
∂Φ

∂κloc
. (4.58)
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The yield function is specifically chosen as

Φ :=
∥∥∥Fpl

loc,dev

∥∥∥−√
2

3
[σy

sol − κloc] (4.59)

=
∥∥σdev

∥∥−√
2

3

[
σy
sol +

ξsol
ζsol

Hsol k
hard
sol

]
, (4.60)

where σy
sol refers to the yield stress of the solid phase and where •dev := • − 1

3
tr(•) I

denotes the deviator of the quantity •. With this, the flow direction can then be specified
as

ν :=
∂Φ

∂Fpl
loc

=
σdev

∥σdev∥
, (4.61)

together with ∂Φ/∂κloc =
√

2/3.

Remark 7. In general, a driving force F = −∂V ψ is calculated for all internal vari-
ables V. However, the evolution of the internal state variables V̇ of the corresponding
material only depends on the local driving force Floc, as discussed before. In contrast,
the mechanical dissipation entry Dmech = F • V̇ regards the complete driving force, as
the thermodynamic consistent driving force F is already weighted within Dmech due to
the homogenisation approach applied for Ψ .

4.1.5 Heat effects

Heat expansion and heat conduction are applied as introduced in Section 3.1.2. Thereby,
the effective specific heat capacity is determined based on eq. (2.61) as

ceff := − θ ∂2θθΨ

=
dV0
dm0

[ξpow c̃pow + ξmel c̃mel + ξsol c̃sol]− χ (4.62)

for the present model. It is worth noting that the specific heat capacity is dependent
on the volume fraction ξ• rather than on the mass fraction ζ•. This is due to the direct
dependence of the effective specific heat capacity with the averaged specific energy ψ.
Besides, quantity χ stems from the thermoelastic coupling via the thermal strains in the
solid phase and is defined as

χ =
dm0

dV0
α2
sol ζ

2
sol [Ẽ

−1 : I] : [I : E⋆] . (4.63)
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However, in the present framework, this contribution turns out to be negligible due to
the dependence on the square of the heat expansion coefficient. For the heat conduction
model, the relation

k̃eff :=

[
ζpow
kpow

+
ζmel

kmel

+
ζsol
ksol

]−1
, (4.64)

now represents the averaged heat conduction coefficient of the phase mixture according
to a Reuss-type homogenisation with k• as the respective heat conductivity of each
phase.

Moreover, heat convection and radiation are regarded on the outer boundaries. In a
standard manner, heat convection is considered by

qconv = −h [θsurf − θamb] , (4.65)

where h refers to the convective heat transfer coefficient, i.e. the reference film coefficient.
Furthermore, θsurf and θamb denote the surface and ambient (sink) temperature of the
surrounding media, respectively. In addition, radiation heat flow can be given by

qrad = −σboltz ϵemiss

[
[θ − θZ]4 − [θamb − θZ]4

]
, (4.66)

with σboltz = 5.67 × 10−8 Wm−2K−4 corresponding to the Stefan-Boltzmann constant,
ϵemiss being the emissivity coefficient and with θZ defining the value of absolute zero on
the specific temperature scale used. For further insight into the heat transfer mechanism
the interested reader is referred to, e.g., [21].

4.2 Implementation and algorithmic treatment

In line with Section 3.2, the FE-based implementation of the present framework is carried
out by using the software Abaqus. For the FE implementation, the time discretisation
and the evolution of the volume fractions are necessary, which is part of Section 4.2.1.
The constitutive model defined in Section 4.1 has to be incorporated into Abaqus via
the subroutines UMAT and UMATHT, where important details regarding the implementation
are discussed in Section 4.2.2.

4.2.1 Numerical solution strategies

The time discretisation introduced in eq. (2.77) is applied not only for the temperature
and strain field rate, θ̇ and ε̇, respectively, but also for all rates of internal variables V̇ .
The solution of the time-discretised versions of the evolution equations with respect to
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n+1V is discussed in the following. Eq. (4.52) can be explicitly solved for εvemel by using
the backward Euler scheme, such that

n+1εvemel =
∆tσ(n+1ξmel,

n+1ξsol,
n+1εplsol)

ηvemel

+nεvemel . (4.67)

Consecutively, the viscous strains are replaced with this analytical expression through-
out the algorithm. The constraint (4.22) can be further reformulated by inserting rela-
tion (4.38) and by applying the forward difference quotient so that

ζ̇pow ≈ −
n+1ζmel − nζmel

∆t
−

n+1ζsol − nζsol
∆t

. (4.68)

With this conversion at hand, the distinct set of inequality constraints introduced in
eqs. (4.39) to (4.42) is now defined by

rmel = − n+1ζmel ≤ 0 , (4.69)

rsol = − n+1ζsol ≤ 0 , (4.70)

rpow = −1 +n+1ζmel +
n+1ζsol ≤ 0 , (4.71)

r∆ = − n+1ζmel +
nζmel −n+1ζsol +

nζsol ≤ 0 , (4.72)

which has to be fulfilled by the algorithm. The first two residuals emanating from the
evolution equations with respect to the volume fractions of the molten and solid phase
are specifically given by

r1 =
dV0
dm0

∂ψ

∂ξmel

− Γmel +
ρmel dV0
dm0

Γpow −
ρmel dV0
dm0

Γ∆

+
ηξ

∆t

[
n+1ξmel −nξmel

]
− ηξ

∆t

ρmel

ρpow

[
n+1ξpow −nξpow

]
, (4.73)

r2 =
dV0
dm0

∂ψ

∂ξsol
− Γsol +

ρsol dV0
dm0

Γpow −
ρsol dV0
dm0

Γ∆

+
ηξ

∆t

[
n+1ξsol − nξsol

]
− ηξ

∆t

ρsol
ρpow

[
n+1ξpow − nξpow

]
, (4.74)

where the dissipation function specified in eq. (4.43) is analogously discretised by using
eq. (2.77), and where the explicit definition for ξpow is not inserted because the terms are
already rather lengthy. Following Section 3.2.1, the compatibility conditions belonging to
the constraints (4.69) - (4.72) shall be transformed into equality constraints by using the
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regularised Fischer-Burmeister nonlinear complementarity function. Thus, the residual
entries

r3 =
√
Γ 2
mel + r2mel + 2 δ2 + rmel − Γmel , (4.75)

r4 =
√
Γ 2
sol + r2sol + 2 δ2 + rsol − Γsol , (4.76)

r5 =
√
Γ 2
pow + r2pow + 2 δ2 + rpow − Γpow , (4.77)

r6 =
√
Γ 2
∆ + r2∆ + 2 δ2 + r∆ − Γ∆ , (4.78)

can be implemented into the framework, where the perturbation parameter δ = 10−10 is
used. With this parameter, a continuously differentiable function exists. Furthermore,
eqs. (4.57) to (4.58) are discretised in time by using a backward Euler scheme, resulting
in

r7 =
nεplsol −

n+1εplsol +∆t λν(n+1ξmel,
n+1ξsol,

n+1εplsol) , (4.79)

r8 =
nkhardsol − n+1khardsol +∆t λ

√
2/3 . (4.80)

To calculate the consistency parameter λ in eqs. (4.79) and (4.80), the complementarity
conditions related to the evolution of plastic strains are incorporated via

r9 =
√
λ2 + Φ2 + 2 δ2 + Φ− λ . (4.81)

The final residual

r = [ r1, r2, r3, r4, r5, r6, [r7]
kel, r8, r9 ]

t = 0 , (4.82)

has to be solved with respect to

f = [ξmel, ξsol, Γmel, Γsol, Γpow, Γ∆, [ε
pl
sol]

kel, khardsol , λ ]
t , (4.83)

where the tensorial quantities r7 and εplsol are rewritten as vectors with the help of the

Kelvin notation, compare Section 2.1, resulting in vectorial entries [r7]
kelv and [εplsol]

kel.
In order to determine the unknowns f defined in eq. (4.83), a Newton-Raphson scheme
is applicable, compare Remark 3. The local Jacobian J can be determined by using
standard calculus methods and is not further specified at this point.

4.2.2 User-defined routines

As discussed in Section 3.2.2, the internal strategy of Abaqus – the command MODEL

CHANGE – is used once more to model the layer construction during the LPBF process.
Furthermore, the incorporation of the specific user-defined routines for LPBF processes
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is discussed in Section 3.2.4. Within this section, only new aspects regarding the three
subroutines, which are needed to specify the framework presented in Section 4.1, are
pointed out.

As a thermomechancial coupling is present for the constitutive model, the coupling
terms as introduced in Section 2.6.1 have to be determined within UMAT. Thus, not only
RPL but also the respective (four) derivatives of the algorithmic tangent are necessary.
The value of RPL corresponds to Dmech as defined in Appendix B.1, whereas the time
derivatives are implemented by using eq. (2.77). The derivation of all tangent contri-
butions is summarised in Appendix B.2. However, these quantities are not absolutely
necessary for the subroutine. Due to the rather small step size, the convergence is suf-
ficiently good and not negatively influenced when the approximated tangent is used
instead of the analytical one. In contrast, the complex calculations of the correct ana-
lytical tangent within the subroutine (for every element and time increment) resulted in
noticeably longer simulation durations. Thus, for the current framework, only the me-

chanical tangent Ealgo ≈ ∂εσ = dm0/dV0 Ẽ
−1

: [Epow : Emel : Esol] is incorporated, while
the remaining (three) derivatives are set to zero.

In addition, the subroutine UMATHT as defined in Section 2.6.2 has to be adapted
again. For the model at hand, the effective density obviously changes during the process
due to the evolution of the mass fractions. In analogy to eq. (4.16), the current density
is defined as ρ = ζpow ρpow + ζmel ρmel + ζsol ρsol. At the beginning of the simulation, the
material completely consists of powder material in Abaqus, thus ρ := ρpow. This can be
implemented within the user subroutine UMATHT, where the effective heat capacity and
density is artificially adapted, cf. the respective paragraph in Section 3.2.4 again. The
contribution χ in eq. (4.63) it set to zero.

To complete the model, a volumetric moving heat flux as discussed in Section 3.2.3
is used to represent the laser beam. The external heat source is defined within the
Abaqus subroutine DFLUX by eq. (3.58), where x′i refers to the moving coordinate system
whose origin lies in the centre of the laser beam at the top surface of the current powder
layer, see Figure 4.8. Coordinates x′1 and x

′
2 are needed to define the laser movement in

dependence of the laser velocity vlsr within the x1-x2-plane, coordinate x
′
3 is defined by

eq. (3.60).

4.3 Numerical examples

In this section, different numerical examples are discussed. The material model is
adapted to a Ti6Al4V titanium aluminium alloy with material parameters according
to Table 4.1. The transformation strains are directly defined via the mass densities.
The parameter ηξ incorporated in the dissipation potential Dξ is set to ηξ = 0.005 for
the examples at hand. This parameter can be used to adjust the temperature range,
in which the phase changes occur in comparison to experimental findings, compare also
Appendix C.2. Moreover, it can be used to potentially stabilise the global FE scheme
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in terms of numerical robustness. In addition, the viscous strain parameter is chosen
as ηvemel = 70, so that a high relaxation within the molten (fluid) phase is feasible. The
mechanical parameters for an isotropic tensor, i.e. Poisson’s ratio ν and Young’s mod-
ulus E, as well as yield limit σy, are taken from the literature, see [121, 148, 173].
The hardening modulus Hsol is, at this stage, chosen without particular literature ref-
erence. The thermal material parameters, i.e. the expansion coefficient α, the specific
heat capacity c, the conductivity k and the latent heat L, as well as the initial temper-
ature θini and the reference temperature θref are parameters based on [121, 148]. The
respective effective counterparts which are used to calculate the material response follow
from the homogenisation approach introduced in the previous chapters in contrast to
material models which directly incorporate temperature-dependent averaged material
properties. Furthermore, the difference in the mass densities of the material’s phases is
rather large and, in consequence, the volume changes captured by the transformation
strains. Therefore, one could argue that the small strain approach used may not be
appropriate. However, the small strain formulation is considered acceptable, as little
rotations are present, see Remark 8, and the rather large transformation strains are
completely volumetric.

Table 4.1: Overview of the used material parameters of Ti6Al4V adapted from [121, 148, 173].

Material parameters Powder Melt Solid

Mechanical parameters
Density ρ [kg/m3] 2800 3800 4420
Poisson’s ration ν [−] 0.33 0.45 0.33
Young’s modulus E [GPa] 1.2 2.9 88.8
Yield limit σy [GPa] - - 0.55
Hardening modulus H [GPa] - - 1
Viscosity parameter ηve - 70 -

Thermal parameters
Expansion coefficient α [1/K] - - 1.1e-05
Initial temperature θini [K] - - 273.15
Heat capacity c [J/(kgK)] 750 750 750
Conductivity k [W/(mK)] 9.5 33.4 17.8
Latent heat L [kJ/kg] 286 - 286
Reference temperature θref [K] 1873.15 - 1873.15

Remark 8. The deformation gradient F can be multiplicatively split into a rotation
tensor R and a stretch tensor U , so that F = R · U . With this, a different approach
is possible by using the small strain theory. The general definition of the small strain
tensor has been introduced in eq. (2.29). The small strain measure can also be intro-
duced via the deformation gradient with eq. (2.23), so that, e.g., ε := 1

2
[F + F t] − I.

For negligible rotation R ≈ I, it follows that ε ≈ U − I. For the model at hand,
ε = 1

2
[∇Xu+ [∇Xu]t] ≈ U − I is then valid.
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4.3.1 Proof of concept
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Figure 4.6: Proof of concept via thermal cycle at material point level: (4.6a) prescribed temperature
evolution and (4.6b) resulting strain evolution. The significant drops in the strain evolution occur
during the transitions between powder, molten, and re-solidified material. Reprinted from [131] under
the terms of the Creative Commons Attribution License (CC BY).

In order to investigate the pure material response of the proposed framework, the same
temperature cycle as defined in Section 3.3.1, respectively Figure 4.6a, is prescribed at
material point level with zero Neumann boundary conditions as a proof of concept.
The resulting strain evolution is shown in Figure 4.6b, while Figure 4.7 illustrates the
corresponding evolution of mass and volume fractions. The significant changes in the
strains occur simultaneously to the evolution of phase fractions. For constant phase
fractions, the strains are therefore also constant, except for the re-solidified phase where
the strains decrease while the material cools down due to heat expansion. Due to the
zero Neumann boundary conditions, no stresses arise so that no viscous or plastic strains
are present in this conceptual proof.

In Figure 4.7, particularly the difference in the evolution of the mass and volume
fractions for the three phases can be examined. The material initially purely consists of
powder, thus ξpow = ζpow = 1. With increasing temperature, the first phase change to-
wards the molten phase starts at approximately θ ≈ 1880K and finishes at θ ≈ 2330K.
The solidification process begins at θ ≈ 1870K and ends at θ ≈ 1520K. As already indi-
cated above, the parameter ηξ governs the time span and temperature interval in which
the phase transition occurs. If no dissipation potential is incorporated, corresponding
to ηξ = 0, an immediate transition occurs, compare Figure 3.5. This jump is now re-
placed by a smooth transition due to the dissipation function Cξ defined in eq. (4.43),
cf. the evolution in Figure 4.7. In other words, it is possible to affect the mushy region
between the solidus and liquidus temperature with the parameter ηξ, as it controls the
rate-dependent behaviour. From this numerical example it can be concluded that a
volume change of approximately 36% occurs during the process, which is captured by
introducing the transformation strains in Section 4.1.2. Therefore, the framework based
on mass fraction considerably improves the results in view of the changing mass densities
compared to the previous Chapter 3.
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Figure 4.7: Evolution of the respective mass and volume fractions over time and temperature for the
three phases: (4.7a) powder phase, (4.7b) molten phase and (4.7c) re-solidified material, with prescribed
temperature evolution according to Figure (4.6a). Reprinted from [131] under the terms of the Creative
Commons Attribution License (CC BY).

4.3.2 Simulation of basic processes

In the following, the modelling and simulation of basic LPBF processes are presented.
The main geometrical model with all boundary conditions on ∂B is conceptually illus-
trated in Figure 4.8 for the representative build chamber. For the example at hand,
homogeneous Dirichlet boundary conditions are prescribed for the displacement, so that

∂B2 : u3 = 0 ∀ x3 = d , (4.84)

∂B3 : u2 = 0 ∀ x2 = w , (4.85)

∂B4 : u2 = 0 ∀ x2 = 0 , (4.86)

∂B5 : u1 = 0 ∀ x1 = l , (4.87)

∂B6 : u1 = 0 ∀ x1 = 0 . (4.88)
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Figure 4.8: Definition of the boundaries for basic process simulations. Reprinted from [131] under the
terms of the Creative Commons Attribution License (CC BY).

The temperature at the bottom surface is prescribed based on

∂B2 : θ = 373.15K ∀ x3 = d . (4.89)

Additional heat flux terms due to convection qconv and radiation qrad are present at the
top surface, i.e.

∂B1 : qconv ∀ x3 = 0 , (4.90)

∂B1 : qrad ∀ x3 = 0 , (4.91)

which have been neglected in the previous Chapter 3. In addition, the laser beam heat
input which is represented by the volume-distributed heat source rext exists along the
respective scanning path.

For the following simulations, the laser power is set to P = 130W with velocity
vlsr = 1m/s and focus radius r0 = 0.15mm. A convective heat transfer coefficient of
air h = 25WK−1m−2 is used, whereas the emissivity of the titanium alloy is set to
ϵemiss = 0.19, cf. [9]. A layer height hlyr = 0.05mm is used, whereas the height of the
base material is chosen to be larger (0.15mm). Overall, once more a part made out of
three layers nlyr = 3 will be simulated.

The initial part only consists of powder material where the first layer of material is
already activated. At first, the build chamber is homogeneously pre-heated to θ = 373K
subject to the respective boundary conditions. Afterwards, the laser beam is applied
along the predefined scanning path and a cooling time is given before the next layer of
powder is activated. This procedure is repeated until all three layers have been activated
and until the laser beam has been applied. Finally, the work piece cools down to the
build chamber temperature θ. For this simulation, the element type C3D8HT is chosen
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Figure 4.9: Geometry of the straight laser path model in mm with a layer height of 0.05 mm and a
height of the base material of 0.15 mm. In addition, the corresponding mesh is visualised. Reprinted
from [131] under the terms of the Creative Commons Attribution License (CC BY).
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Figure 4.10: Geometry of the L-shaped laser path model in mm with a layer height of 0.05 mm and a
height of the base material of 0.15 mm. In addition, the corresponding mesh is visualised. Reprinted
from [131] under the terms of the Creative Commons Attribution License (CC BY).

because the Poisson’s ratio of the molten phase represents almost incompressibility.
The mesh for the straight laser path is in analogy to Figure 4.9, where a characteristic
element length of lchar ≈ 20µm is applied. For the L-shaped laser path, a constant mesh
of lchar ≈ 20µm is used, as shown in Figure 4.10. For both examples, three elements
per layer are used in thickness direction. During the simulation, the automatic time
incrementation included within Abaqus is used. The simulations are performed on the
Linux HPC cluster (LiDO3) at TU Dortmund University, where one compute node using
eight cores is taken for both simulations.

Straight laser path

For this example, the laser beam moves 1mm along the x1-direction. The geometry
considered, respectively half of the part, is specified by l = 3.3mm, w = 1mm and
d = 0.3mm for the boundary conditions introduced in eqs. (4.85) to (4.89), respectively.
In Figure 4.11, the temperature evolution θ(x, t) and the evolution of the mass fraction
of the molten phase ζmel is illustrated. The deformed mesh (with scale factor one) is
plotted for all consecutive figures. The depth of the molten pool increases as can be seen
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Figure 4.11: Distribution of temperature θ on the left side and the respective mass fraction ζmel of the
molten phase on the right side for the same time step while scanning (4.11a) layer 1, (4.11b) layer 2
and (4.11c) layer 3, where the laser beam has reached the end of each straight line. Reprinted from
[131] under the terms of the Creative Commons Attribution License (CC BY).

in Figures 4.11b and 4.11c compared to Figure 4.11a due to the higher conductivity of the
already re-solidified layers. This allows the connection of newly added layers to previous
ones so that there is one compound. The volume shrinkage of the material during the
melting is indicated in Figure 4.11. After the application of all three layers and the
consecutive cooling, the final re-solidified part can be identified in terms of the volume
fraction ξsol, see Figure 4.12a and 4.12b, where in the latter Figure the solid part has been
virtually extracted. These two Figures show the re-solidified material after applying the
laser beam to three layers in contrast to Figure 4.11c, where only the current state of
the molten material during the third scanning is visualised. The maximum value of the
volume fraction of the solid phase equals 0.633 (i.e. max ξsol = ρpow/ρsol = 0.633) in
contrast to the related mass fraction (max ζsol = 1), compare Figure 4.7c.

The incorporation of rmech in the subroutine UMAT as defined in eq. (2.62) is quite im-
portant. Without the coupling term RPL, the maximum temperature within the molten
pool would be overestimated by approximately 200K, compare Appendix B.3. Within
rmech, not only the dissipative effects due to the internal state variables V are included,
but also the latent heat effects are thermodynamically consistent incorporated into the
framework. In the literature, mostly the apparent heat capacity method as introduced
in [23] is used to capture the effects of the latent heat by an artificial increase of the heat
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(a)

ξsol

(b)

ζsol

Figure 4.12: Final distribution of (4.12a) the re-solidified volume fraction ξsol and (4.12b) the final
virtually extracted part with re-solidified mass fraction ζsol (cut at the red line displayed in (4.12a) and
rotated; red dot used for graphs in Figure 4.14) after cooling down to the build chamber temperature.
Reprinted from [131] under the terms of the Creative Commons Attribution License (CC BY).

capacity, see e.g. [36, 54, 56, 159, 165, 174]. An in-depth study on different methods to
include latent heat effects during phase changes can be found in [145]. In [159], the in-
fluence of the latent heat for the solely thermal problem has been specifically examined,
where results similar to those in our studies were obtained. Overall, eq. (2.62) mainly
regulates the temperature evolution and thus the melt pool geometry, see Appendix B.3,
rather than the absolute stress values. In general, the laser beam parameters influence
the melt pool geometry which affects the hatching strategy and the layer height while
simulating a complete part.

The residual stresses stemming from heat expansion and, more significantly, the vol-
ume changes due to the phase transitions, are illustrated in Figure 4.13. These stresses
are particularly significant within the re-solidified part, as the powder material exhibits
a small Young’s modulus, compare Figure 4.13d. In the contour plots it can be observed
in Figure 4.13a that particularly high tensile normal stresses are present in x1-direction
of the third layer, in other words along the direction of the moving heat source. In ad-
dition, high compressive normal stresses exist in x2-direction which is perpendicular to
the direction of the moving heat source, see Figure 4.13b. Negligible stresses are present
in x3-direction as visualised in Figure 4.13c. The shear stresses are not pictured, as
they are negligible (for the coordinate system considered) compared to the highlighted
normal stress contributions.

The temporal evolution of various significant quantities is exemplarily presented in
Figure 4.14 to gain a better understanding of, e.g., the stress evolution. Therefore, one
centred element indicated by a red dot in the first layer shall be considered in detail, see
Figure 4.12. The values of the nodes are averaged for the element. In Figure 4.14a, the
related temperature and the molten mass fraction are illustrated. A steep temperature
increase is found when the laser beam is applied. During the second scanning, the top
material re-melts, whereas during the scanning of the third layer, the first layer does not
completely re-melt again. High total strains are present for ε22 and ε33 in Figure 4.14b.
When examining the stress evolution in Figure 4.14c, the relaxation of the stress σ11
is noticeable during the scanning of the second layer. In contrast, stress σ22 increases
because the expansion and contraction of the material in x2-direction is hindered. After

82



4.3 Numerical examples
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Figure 4.13: Distribution of normal stresses σ•• of the virtually extracted final re-solidified part in
(4.13a) x1-direction, (4.13b) x2-direction and (4.13c) x3-direction. The von Mises equivalence stress
σvM for the overall part is shown in (4.13d). Reprinted from [131] under the terms of the Creative
Commons Attribution License (CC BY).

cooling down for the third time, see Figure 4.14a, a steady-state is reached for the strains
and stresses, as visualised in Figure 4.14c and 4.14b. The evolution of an accumulated
inelastic strain,

εinel = ζmel [ε
trans
mel + εvemel] + ζsol [ε

trans
sol + εthsol + εplsol] (4.92)

is exemplarily plotted in Figure 4.14d. This averaged inelastic strain εinel can be evalu-
ated with the introduced model in a post-processing step. This quantity is comparable
to the so-called inherent strain, as introduced in Section 1.1.2. However, most models,
see e.g. [82, 102, 153, 158], use a phenomenological approach to define a macroscopic
inelastic strain contribution that accumulates all inelastic processes, whereas in this
framework the inelastic strain is micromechanically motivated. Due to the volumetric
transformation strains, the evolution of the averaged inelastic strain is (quasi) volumetric
for the particular boundary value problem considered up to the point where the part so-
lidified. The accumulated inelastic strain evolution then differs: larger strains are found
in x2- and x3-direction, while these strains almost coincide again during the second re-
melting. After cooling, almost no further changes occur. Only one small peak is visible
when the third layer is applied and molten. This is in accordance with Figure 4.14a, as
the element does not completely re-melt during the third cycle. In the final state, high
inelastic strains for the x2- and x3-direction are present.

L-shaped laser path

In addition to the aforementioned case, a more complex laser beam path is simulated. For
this example, the laser beam moves 0.75mm along the x1-direction and 0.75mm along
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Figure 4.14: Temporal evolution of representative quantities for one centred element as indicated in Fig-
ure (4.12a): (4.14a) averaged temperature evolution θ and molten mass fraction ζmel, (4.14b) averaged
total strains ε11, ε22, ε33, (4.14c) averaged normal stress evolution σ11, σ22, σ33 and (4.14d) accumu-
lated inelastic strains εinel11 , εinel22 , εinel33 . Reprinted from [131] under the terms of the Creative Commons
Attribution License (CC BY).

the x2-direction. Similar to the example before, three layers are consecutively added.
The boundary conditions defined in eqs. (4.85) to (4.89) are referred to a geometry with
l = 1.6mm, w = 1.6mm and d = 0.3mm, cf. Figures 4.8 and 4.10. In theory, it is
possible to model even more complex geometries. However, the computational time
increases considerably with a larger number of elements and longer laser beam paths.
When comparing both simulations, the straight laser path needs approximately 17 hours,
where 27 693 elements are used. Overall, the model exhibits 151 821 degrees of freedom.
The example of the L-shaped laser path, however, uses 108 800 elements and a total
of 581 192 degrees of freedom. Altogether, the computational time increases to almost
eight days. The final results of the L-shaped path are presented in what follows, where
the solid part has been virtually extracted for all illustrations.

First of all, the normal and shear strain distribution is pictured in Figure 4.15, where
the deformed mesh (with scale factor one) is presented. Here, a couple of effects are
striking: the dependence of the strains and the laser path orientation is clearly visible,
compare Figure 4.15a for normal strains ε11 and ε22. While the beam moves along the
x1-direction, small tensile strains ε11 are present. The values of the strains change as
soon as the laser beam turns and moves along the x2-direction. The normal strains ε11
switch from tensile to compressive strains and small tensile strains ε22 are present. In
addition, especially high normal compressive strains ε33 are found within the part, as
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Figure 4.15: Distribution of total strains ε•• of the virtually extracted final re-solidified part: (4.15a)
normal and (4.15b) shear strains. Reprinted from [131] under the terms of the Creative Commons
Attribution License (CC BY).

it shrinks the most in depth. Due to the changing laser beam path, shear stresses are
induced, as illustrated in Figure 4.15b. Large negative shear strains ε23 change to high
positive shear strains ε13 after the kink, as a symmetry is present with respect to a plane
parallel to −x1 = x2. Altogether, the strains are rather constant along the width of the
re-solidified part and within one direction of each layer. In contrast – with an increasing
number of layers – the magnitude of the strains increases.

Although the laser beam path, respectively the objective geometry, is symmetric with
respect to the underlying symmetry plane and although the distribution of the strains is
almost symmetric as well, the distribution of the resulting solid part is not completely
symmetric. The widths of the two sides differ slightly. This can be explained by the
rather coarse discretisation. In addition, the depth of the simulated workpiece increases
at the turning point of the laser beam and the part is notably wider at the kink. Due to
the turning of the laser, the heat influence takes place over a longer time period compared
to the positions further afield and to the straight lines considered in Section 4.3.2. This
effect has to be kept in mind when manufacturing more complex components.

Figure 4.16 shows the normal stresses which are significantly larger than the related
shear stresses. In analogy to Figure 4.15a, the stresses vary according to the laser beam
movement. This becomes especially visible when comparing Figures 4.16a and 4.16b.
High tensile stresses σ11 and σ22, respectively, can be found along the movement of
the laser beam. High compressive strains exist perpendicularly to the laser movement,
especially in the lower portion of each layer. In x3-direction, less normal stresses σ33 are
computed.

Finally, the equivalent inelastic strain εinel based on eq. (4.92) (in analogy to the
equivalent von Mises stress) shall be analysed, as illustrated in Figure 4.17. Overall,
the results show a symmetric distribution of εinel with respect to the loading path.
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Figure 4.16: Distribution of normal stresses σ•• of the virtually extracted final re-solidified part in
(4.16a) x1-direction, (4.16b) x2-direction and (4.16c) x3-direction. Reprinted from [131] under the
terms of the Creative Commons Attribution License (CC BY).

ε
inel

Figure 4.17: Equivalent inelastic strain εinel (analogous to von Mises stress) of the virtually extracted
final re-solidified part. Reprinted from [131] under the terms of the Creative Commons Attribution
License (CC BY).

This coincides with the inherent strain method, where the orientation of the laser beam
path is of utmost importance, cf. [82]. In summary, the values of strains and stresses
themselves significantly change with respect to the loading path, but correlate to one
another when taking into account the movement of the laser beam. This information
may be incorporated in a phenomenological model by using an averaged inherent strain
tensor.
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B Appendix

B.1 Determination of mechanical working

For the specific case at hand the mechanical dissipation Dmech is defined via eq. (2.59)
and the thermodynamic consistent driving force F = −∂V ψ for the phase transformation
approach, compare Remark 7. With the internal variables V as introduced in eq. (4.37),
the mechanical dissipation reads

Dmech = − ∂ψ

∂ξmel

ξ̇mel + ζmel σ : ε̇vemel −
∂ψ

∂ξsol
ξ̇sol + ζsol σ : ε̇mech

sol −
∂ψ

∂khardsol

k̇hardsol ,

(4.93)

where the driving forces stemming from viscous strains, compare eq. (4.50), and from
plastic strains based on eq. (4.55) are already incorporated. The specific derivatives of
the averaged energy density can be further determined as

∂ψ

∂ξmel

= − ρmel

ρpow
ψpow + ξpow

∂ψpow

∂εpow
:
∂εpow
∂ξmel

+ ψmel + ξmel
∂ψmel

∂εmel

:
∂εmel

∂ξmel

+ ξsol
∂ψsol

∂εsol
:
∂εsol
∂ξmel

(4.94)

∂ψ

∂ξsol
= − ρsol

ρpow
ψpow + ξpow

∂ψpow

∂εpow
:
∂εpow
∂ξsol

+ ξmel
∂ψmel

∂εmel

:
∂εmel

∂ξsol
+ ψsol + ξsol

∂ψsol

∂εsol
:
∂εsol
∂ξsol

(4.95)

∂ψ

∂khardsol

= ξsolHsol k
hard
sol . (4.96)

The remaining derivatives are not further specified, but follow from the partial deriva-
tives of the energies, introduced in eqs. (4.3, 4.5, 4.7) and the partial derivatives of the
optimal strains as defined in eqs. (4.26) to (4.28) in a straightforward manner.

In addition, the partial derivative of the mechanical dissipation with respect to the
temperature follows from eq. (4.93) as

∂Dmech

∂θ
= ζsol

∂σ

∂θ
: ε̇mech

sol + ζmel
∂σ

∂θ
: ε̇vemel −

∂ψ

∂ξmel ∂θ
ξ̇mel −

∂ψ

∂ξsol ∂θ
ξ̇sol , (4.97)
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where − ∂ψ

∂khardsol ∂θ
= 0. Finally, the partial derivative of the stress with respect to the

temperature reads

∂σ

∂θ
=

dm0

dV0
Ẽ −1 : [Epow : Emel : Esol] : [−ζsol αsol I] . (4.98)

With this, all parts of the mechanical work rmech as defined in eq. (2.62) are now specified.

B.2 Derivation of consistent tangent

To determine the consistently linearised Jacobian for the global Newton-Raphson of the
FE framework, compare eq. (2.76), the total derivatives of the stress σ, as defined in
eq. (4.31), and the mechanical working rmech, as specified in Appendix B.1, have to be
determined. These read

dσ =
∂σ

∂θ
dθ +

∂σ

∂ε
: dε+

∂σ

∂f
• df (4.99)

drmech =
∂ rmech

∂θ
dθ +

∂ rmech

∂ε
: dε+

∂ rmech

∂f
• df , (4.100)

where f refers to all unknown variables of the minimisation as defined in eq. (4.83). For
the consistent tangent moduli, the total derivatives with respect to strain ε at constant
temperature θ as well as with respect to temperature θ at constant strain ε have to be
determined for the stress

dσ
∣∣∣
θ=const

=
∂σ

∂ε
: dε+

∂σ

∂f
• df = Ealgo : dε

⇔ Ealgo =
dσ

dε

∣∣∣
θ=const

, (4.101)

dσ
∣∣∣
ε=const

=
∂σ

∂θ
dθ +

∂σ

∂f
• df = βalgo dθ

⇔ βalgo =
dσ

dθ

∣∣∣
ε=const

, (4.102)

and analogously for the mechanical coupling term

drmech

∣∣∣
θ=const

=
∂rmech

∂ε
: dε+

∂rmech

∂f
• df = γalgo : dε

⇔ γalgo =
drmech

dε

∣∣∣
θ=const

, (4.103)

drmech

∣∣∣
ε=const

=
∂rmech

∂θ
dθ +

∂rmech

∂f
• df = δalgo dθ

⇔ δalgo =
drmech

dθ

∣∣∣
ε=const

. (4.104)
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Comparing the abbreviations with Table 2.1, eq. (4.101) is always necessary and refers
to DDSDDE, while the remaining contributions are only necessary for a thermomechanical
problem. Thereby, eq. (4.102) corresponds to DDSDDT, eq. (4.103) denotes DRPLDE and
eq. (4.104) specifies DRPLDT.

The linearisation of the local problem, compare eqs. (4.73) to (4.82), is used to find
a relation between df and dε and df and dθ, respectively, which results in

dr
∣∣∣
ε=const

=
∂r

∂θ
dθ +

∂r

∂f
• df = 0

⇔ df
∣∣∣
ε=const

= −J−1 · ∂r
∂θ

dθ , (4.105)

dr
∣∣∣
θ=const

=
∂r

∂ε
: dε+

∂r

∂f
• df = 0

⇔ df
∣∣∣
θ=const

= −J−1 · ∂r
∂ε

: dε , (4.106)

where J =
∂r

∂f
refers to the Jacobian of the local Netwon-Raphson scheme. Insert expres-

sion (4.105) into eqs. (4.101) and (4.103) and, respectively, eq. (4.106) into eqs. (4.102)
and (4.104). Then, all unknowns of the four tangent moduli are determined, which read

Ealgo =
∂σ

∂ε
− ∂σ

∂f
· J−1 · ∂r

∂ε
, (4.107)

βalgo =
∂σ

∂θ
− ∂σ

∂f
· J−1 · ∂r

∂θ
, (4.108)

γalgo =
∂rmech

∂ε
− ∂rmech

∂f
· J−1 · ∂r

∂ε
, (4.109)

δalgo =
∂rmech

∂θ
− ∂rmech

∂f
· J−1 · ∂r

∂θ
. (4.110)

Looking at eqs. (4.107) to (4.110), the derivatives with respect to the set of local in-
ternal variables f still have to be defined, as well as the derivatives regarding the local
residuum r. In contrast, the local Jacobian J is already specified when solving the lo-
cal algorithm. Altogether, solely various partial derivatives are required using standard
calculus methods to evaluate the given expressions of the tangent moduli.

B.3 Influence of using a thermomechanical setting

Based on the thermomechancial setting, the maximum temperature θmax clearly changes,
as summarised in Table 4.2. The difference in temperature based on the thermal bound-
ary conditions, qconv in eq. (4.65) and qrad based on eq. (4.66), are minor. When com-
paring the temperature evolution for various thermal boundary conditions, no visible
difference can be seen. Thus, the temperature evolution is mainly influenced by the
heat flux model of the laser beam. In contrast, incorporating rmech based on eq. (2.62)
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4 A phase transformation framework based on mass fractions

is quite important for an LPBF model, i.e. using a thermodynamic consistent model
highly influences the maximal temperature. Especially the effects with regard to the
phase transformation make a considerable difference. For example, the incorporation of
the latent heat in ψpow and ψsol mainly changes the maximal arising temperature. In
addition, the latent heat terms also change the magnitude of heat conduction and the
cooling speed.

Table 4.2: Influence on maximal temperature θmax within the molten pool of first layer based on
thermomechanical setting.

thermomechanical setting max. temperature
rmech qconv,rad θmax

= 0 = 0 3176
= 0 ̸= 0 3166
̸= 0 = 0 2927
̸= 0 ̸= 0 2924

Overall, the melt pool geometry changes with the different temperature evolution as
shown in Figure 4.18. This can be explained by a larger molten pool due to overall
higher temperatures. In consequence, the part without mechanical working is slightly
larger compared to the thermodynamic consistent model (approximately two elements in
length and width, same depth). This influences different modelling assumptions such as
hatching strategy and layer height. Furthermore, the size of the final part may slightly
change. Therefore, using a thermodynamic consistent model and incorporating rmech

improves the accuracy of predicted simulation results.

rmech neglected, RPL=0
rmech included, RPL6=0
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Figure 4.18: Influence on melt pool size in x1-direction based on mechanical working rmech, correspond-
ing to RPL in Abaqus, for molten mass fraction ζmel.
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5 A multiscale framework using the
inherent strain method

For the broader industrial usage of metal additive manufactured parts, especially
made by LPBF, a better prediction and understanding of the warpage and of eigen-
stresses within the final part are necessary. Due to the diverse and sophisticated met-
allurgical and thermal processes during production as explained in Section 1.1.1, the
physically motivated simulations introduced in Chapter 3 and, based on this, Chapter 4
are rather complex and time consuming. Therefore, various simplifications concerning
the process and material model are frequently made to develop reliable and useful mod-
els of large parts. This leads to practicable simulation times at the expense of physical
accuracy. However, especially the material and heat source models influence the simula-
tion results. If accurate predictions of residual stresses and deformation are desired, both
complete temperature history and mechanical behaviour have to be included in a ther-
momechanical model. This motivates the procedure in this contribution: A multiscale
approach combining various modelling levels, in particular regarding the heat source and
the material model. Therefore, a simulation technique is developed to simulate complex
parts in an efficient and precise manner by using the finite element (FE) method. By
doing so, an acceptable computation time is ensured while having a physically sound
model.

A detailed overview of the multiscale framework is given in Section 5.1. The model
is based on three FE simulations on different levels and with distinct specific aims, i.e.
the laser scan model in Section 5.1.1, the layer hatch model in Section 5.1.2 and the
part model in Section 5.1.3. In Section 5.2, the implementation of the aforementioned
models into Abaqus is presented. In addition, the extraction of the transfer parameters
between the distinct scales is defined. Different simulation results are examined for the
specific model scales in Section 5.3, demonstrating the influence of process parameters
and scan patterns. Moreover, the capabilities of the present framework are investigated
by simulations on the behaviour of a twin cantilever beam. The effects of the different
process parameters on the overall material and on the structural response in terms of
eigenstress evolution and deformation are examined.
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5 A multiscale framework using the inherent strain method

5.1 Methodology of the multiscale framework

This section provides detailed information on the methodology of the employed mul-
tiscale framework which is based on, cf. [81, 82, 99]. In the current contribution, a
thermodynamically fully coupled framework is presented which is based on the thermo-
mechanical balance equations introduced in Chapter 2. The multiscale approach com-
bines three separate FE simulations, namely with respect to the laser scan model, the
layer hatch model and the part model. Thereby, the established approach is enhanced in
terms of a micromechanically motivated material model of the laser scan model leading
to improved inherent strains (IS) of the layer hatch model and elevated predictions of the
complete part. In Figure 5.1, an illustration of the multiscale approach with the three
models, i.e. the laser scan model (microscale), the layer hatch model (mesoscale) and the
part model (macroscale), is visualised; see also Remark 9 in view of the determination
of the respective levels of analysis. First, some general remarks are made, before the
distinct models shall be introduced in detail in what follows, i.e. Sections 5.1.1 to 5.1.3,
respectively.

x1

x2 x3

laser scan model layer hatch model part model

vlsr

vlsr

rGext
rcext

ε
inhdw, dd

θmelt, θsolid

single melt track [µm] scan island [mm] complete part [cm]

Figure 5.1: Visualisation of the three different levels (with respective dimension) considered in the
multiscale approach, where the melt pool dimensions dw, dd, temperatures θmelt, θsolid and the inherent
strain εinh are passed from one level to the other. White structures are initially made of powder,
grey body consists of solid material. Reprinted from [129] under the terms of the Creative Commons
Attribution License (CC BY).

Remark 9. In view of multiscale modelling frameworks for additive manufacturing pro-
cesses, the terms microscale, mesoscale and macroscale are also used to indicate different
model levels. Thereby, these denominations are used according to the level of analysis,
see e.g. [6, 63, 81, 82, 99, 120, 179], which is in contrast to the understanding of the
denomination micro, meso and macro in the context of, e.g. classic solid-state physics.
The microscale then refers to the modelling and simulation of a single melt track, the
mesoscale addresses the scan island, and the macroscale deals with the complete part.
To be mentioned here is that a clear scale separation which is required in, e.g. standard
homogenisation schemes, is not given in this context, cf. Table 5.1. In order to avoid
any misunderstanding and confusion of denominations used in different communities,
the terms micro, meso and macro are not used in a multiscale context in the present
work, but direct reference to the respective level of analysis is made.
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For the smallest scale considered, a material model based on the sophisticated thermo-
dynamically fully coupled model introduced in Chapter 4 is incorporated. A volumetric
Goldak heat source rGext is used to model the laser beam, compare Figure 5.1, left side.
The goal of this detailed simulation is to extract and calibrate an effective model of the
heat source based on a physically sound material model. This can then be applied to
the next level of simulation, i.e. the layer hatch model. Overall, the simulation of the
laser scan model has to be conducted once for all considered combinations of material
and process parameters.

The purpose of the layer hatch model, where a single scan island is simulated, is to
extract the so-called inherent strains εinh, which can then be transferred to the part
model. A simplified constitutive model is used, where the critical phase transformation
temperatures θmelt and θsolid are extracted from the simulation results of the single melt
track. These temperatures directly impact the present phase of the layer hatch model,
as no phase transformation framework is used. The heat input is approximated by a
cuboid heat source rcext as visualised in Figure 5.1, middle. The simulations of the scan
island can be defined for different process parameters, as well as layer heights and scan
island sizes.

The inherent strains (IS) are then used to finally specify the part model, which uses
a simpler purely mechanical simulation to efficiently and directly compute the residual
stresses and deformations of arbitrary large parts. This approach is illustrated in Fig-
ure 5.1, right side. Here, no differentiation between any specific phases is conducted.
The same IS can be used for identical material and laser parameters, regardless of the
complexity of the complete part. Different scan patterns can be examined by using the
same IS.

Altogether, the multiscale framework allows the establishment of a simulation where
all significant details of the LPBF process are included. An accurate modelling approach
of the laser scan model is necessary, as related simulation results directly influence the
layer hatch model and thus also indirectly affect the part model. In view of the response
at the larger scales considered, some simplifications are necessary in order to reduce
computational costs, while still obtaining appropriate results. Overall, a model ansatz
with an accurate simulation on the different levels is established. The characteristics at
distinct levels, respectively of the underlying models, are summarised in Table 5.1. By
using these models, a simulation of a complex macroscopic part manufactured by LPBF
processes is enabled, while the computation time is kept within reasonable bounds.

5.1.1 Laser scan model – single melt track

As the results of the single melt track are relevant for both other modelling levels and
therefore influence the overall results, it is required to model the formation of the single
melt track as accurately as possible and take into account the various physical processes.
Therefore, an elaborated and micromechanically motivated material model is used to ex-
amine the melting and solidification process during the LPBF process in detail. The
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5 A multiscale framework using the inherent strain method

Table 5.1: Comparison of the main characteristics of the three different models considered in the present
multiscale approach.

Characteristic Laser scan model Layer hatch model Part model

Domain single melt track scan island complete part
Scale µm mm cm
FEM thermomechanical thermomechanical mechanical
Load volumetric Goldak

heat source
cuboid heat source inherent strains

Material model phase transformation temperature-dependent elastic
Material state powder, melt, solid powder, melt, solid solid
Aim calibrate heat source extract inherent strains calculate eigenstresses

and warpage

thermodynamic consistent and coupled material model for the laser scan model is based
on the phase transformation algorithm presented in Chapter 4. Thus, the mechanical
material model explicitly incorporates the three phases, namely the powder, the molten,
and the re-solidified material, where the phase transformation is defined via a homogeni-
sation approach and explicit evolution equations. In addition, a volumetric Goldak heat
source similar to the one discussed in Section 3.2.3 is applied as external heat supply rGext
to model the laser beam. The aim of the model is to calibrate the geometric parameters
of the Goldak heat source corresponding to the laser beam heat input via experiments,
so that the melt pool geometry of the simulation coincides with the one of experiments.
Within the heat source resembling the laser beam, the process parameters laser veloc-
ity vlsr and laser power P are included. This approach is visualised in Figure 5.1, left
side.

With these simulation results, both melting and re-solidifying temperature, θmelt

and θsolid, respectively, can be identified and extracted for the temperature-dependent
material model of the next scale. In addition, the melt pool dimensions dGw and dGd ,
referring to the width and depth of the melt pool, are determined. These can then
be passed to the layer hatch model as parameters of the cuboid heat source rcext. The
two modelling assumptions for the material model and the laser beam model will be
described in detail in what follows. It is noted that the model performs properly for
the conduction mode only, i.e. keyhole modes cannot be predicted correctly, see also
Remark 10.

Remark 10. For LPBF processes it is essential to choose correct process parameters,
which have to lie within an appropriate processing window. This results in a continuous
melt pool, an even surface and little porosity, see for example [43, 61, 77]. Outside the
suitable range, either incomplete melting due to lack of fusion, also denoted as balling, or
overheating based on the keyhole mode is present. The model at hand is capable of pre-
dicting non-continuous melt pools, cf. the results in Section 5.3, specifically Figure 5.14.
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However, the keyhole mode, where material vaporises and thus a high recoil pressure is
present, cannot be modelled with the framework at hand. The keyhole mechanism leads
to high penetration depths within the material as visualised in e.g. [43]. The focus of this
work lies on the modelling of the complete part. There are various established models
that focus on melt pool dynamics and the development of a keyhole in small scale simu-
lations, e.g. [31, 118, 138, 186], but which do not include predictions of eigenstresses or
of the final deformation of a complete part.

Constitutive framework

In what follows, only differences to the phase transformation approach introduced in
Section 4.1 shall be discussed. For the laser scan model, the initial density ρ0 always
corresponds to the density of the powder phase ρpow. In contrast to Section 4.1.1, where a
rate-independent plasticity approach is used, a visco-plastic material behaviour is chosen.
On the one hand, a creep behaviour, i.e. a material behaviour strongly dependent on
strain rates, can be observed for metals at high temperatures. This justifies the use of
visco-plasticity for the solid phase, as the temperatures are elevated directly after the
phase transformation. On the other hand, a viscous approach regularises and stabilises
the framework, such that from a computational viewpoint larger time steps are possible
compared to using rate-independent plasticity, see for example [161]. More complex
material models for visco-plasticity may be implemented in the future, see for example
[57, 133] and the references cited therein, where a combination of visco-plastic and
rate-independent plastic material behaviour is used in dependence of the underlying
temperature. For the current framework, a visco-plastic strain contribution εvpsol is present
resulting in the definition of the inelastic strains of the solid phase as

εinelsol = εtranssol + εvpsol + εthsol . (5.1)

The rate-dependent evolution of the visco-plastic strains εvpsol, as well as of the quan-
tity khardsol which is related to isotropic hardening can be defined with the help of the
yield function Φ and the Lagrange multiplier

∆λ := ∆t
⟨Φ⟩
ηvpsol

, (5.2)

where ∆t refers to the time increment and where ηvpsol corresponds to the viscosity related
material constant of the solid phase, such that

ε̇vpsol := ∆λ
∂Φ

∂Fvp
loc

, (5.3)

k̇hardsol := ∆λ
∂Φ

∂κloc
. (5.4)
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Here, ⟨•⟩ denotes the Macaulay ramp function of the quantity • defined as ⟨•⟩ =
max{0, •} = [•+ | • |] /2. The quantities Fvp

loc = σ and κloc = − ξsol
ζsol

Hsol k
hard
sol corre-

spond to the respective local driving forces. The ansatz used in eq. (5.3) is also referred
to as Perzyna-type visco-plasticity. For the material model at hand, a standard isotropic
yield function as defined in eq. (4.59) of the type

Φ :=
∥∥Fvp

loc,dev

∥∥−√
2

3
[σy

sol − κloc] = ∥σdev∥ −
√

2

3

[
σy
sol +

ξsol
ζsol

Hsol k
hard
sol

]
(5.5)

is chosen, where σy
sol refers to the (so far temperature-independent and constant) yield

stress, Hsol is the hardening modulus and khardsol denotes the equivalent plastic strain due
to isotropic hardening of the solid phase. The abbreviation •dev := •− tr(•)/3 I defines
the deviator of the second order tensor •. The additional factor scaling the isotropic
hardening related contribution results from the local driving force κloc, as introduced in
detail in Section 4.1.4. Due to the homogenisation framework, local driving forces have
to be defined, which only consider the current region of the respective phase in contrast
to the whole domain, such that F•loc = F•/ζ•.

In consequence, the advanced set of state variables of the present model is deter-
mined as V = {εvemel, ε

vp
sol, k

hard
sol , ξpow, ξmel, ξsol}. Consequently, the mechanical dissipation

introduced in eq. (2.62) can now be specified for the underlying material model to

Dmech = − ∂ψ

∂ξmel

ξ̇mel −
∂ψ

∂ξsol
ξ̇sol + Fve : ε̇vemel + Fvp : ε̇vpsol + κ k̇hardsol , (5.6)

where the standard (total) driving forces F are required, cf. Remark 7.
One key advantage of the present modelling framework is exemplified by the fact that

the process-induced inherent strains can be obtained in a straightforward manner via
post-processing. Based on the inelastic strain contributions defined above, the inherent
strain tensor εinh is, analogously to the accumulated inelastic strain in eq. (4.92), defined
by

εinh = ζmel

[
εtransmel + εvemel

]
+ ζsol

[
εtranssol + εthsol + εvpsol

]
. (5.7)

Volumetric heat source

The present laser beam model is also based on a Gaussian distributed volumetric heat
source introduced in [60] for welding simulations. However, compared to Section 3.2.3, a
higher intensity is used, i.e. 95 % of the total energy lies within the maximum radius spot
(concentration coefficient equals three). This modelling approach is more established in
literature compared to the one presented in the previous chapter, namely Section 3.2.3.
In addition, a double ellipsoidal volumetric heat source is used to better model the laser
beam heat input rGext. Therefore, some differences to the previous laser beam model are
present.
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In general, the temperature gradients related to the laser beam are not symmetric
with respect to the current laser path. Thus, for the distribution in front of the laser
beam rf an ellipsoid different to the one for the rear dispersion rr is chosen. Furthermore,
an absorption coefficient ηab is introduced to take into account the efficiency during the
laser beam input. The heat input is thus defined as

rf(x
′
1, x
′
2, x
′
3) =

6
√
3 ηab P ff

af b c π
√
π

exp

(
−3

[
x′1

2

a2f
+
x′2

2

b2
+
x′3

2

c2

])
, (5.8)

rr(x
′
1, x
′
2, x
′
3) =

6
√
3 ηab P fr

ar b c π
√
π

exp

(
−3

[
x′1

2

a2r
+
x′2

2

b2
+
x′3

2

c2

])
, (5.9)

where the total heat input is then determined via

rGext = rr + rf . (5.10)

To model this ellipsoid, the heat fractions ff and fr in front and rear of the centre,
respectively, are determined as

ff = 2
af

af + ar
, (5.11)

fr = 2− ff . (5.12)

Furthermore, the geometrical parameters af , ar, b, c affect the semi-axes of the ellipsoid
as visualised in Figure 5.2, whereas P denotes the power of the laser beam and x′1, x

′
2, x
′
3

refer to the moving coordinate system, which depends on laser velocity vlsr and time t.
The coordinates x′i = 0 (with i = 1, 2, 3) define the centre of the laser beam. With the
help of the coordinate x′1, the laser beam movement in x1-direction can be defined based
on the laser velocity vlsr, time t and initial position x01 of the laser beam, such that
x′1 = x1 − vlsr t− x01 is valid for the single melt track considered here. Furthermore, the
relations x′2 = x2 and x′3 = x3 apply for this case, as the laser beam moves only along
the x1-direction.

The dissipative quantity ηξ in Cη, which is formally introduced for the first time
in eq. (4.43), can be fitted with experiments, so that the melt pool geometry in the
simulation corresponds to the one observed in experiments.

5.1.2 Layer hatch model – scan island

In general, a standard size of a scan island simulation is between 1-5 mm, cf. [36, 82,
142] and [5, 112, 177], where the effect of different island sizes and scan strategies has
experimentally been investigated in the latter contributions. A complete layer is made
of continuous, see e.g. [158], or multiple island scans, where adjacent layers are rotated,
cf. [57]. Further and more complex scan strategies are also examined in the literature,
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Figure 5.2: Schematic view of Goldak’s ellipsoidal double well volumetric heat source rGext. Reprinted
from [132] under the terms of the Creative Commons Attribution License (CC BY).

see for example [33, 94, 113], but have so far not been established for manufacturing
processes.

With the help of the layer hatch model, the scan pattern of an individual scan island
can be analysed. According to the melt pool geometry of the single melt track, it is
possible to study different hatching distances wh and layer heights hlyr by using the
layer hatch model. The simulation has to be conducted once for each combination of
material and process parameters, as well as hatching distance, layer height and scan
island size. The purpose of the model is to extract the averaged inherent strain εinh

which can then be applied to the part model. The extraction of the IS tensor will be
discussed in detail in Section 5.2.2. These eigenstrains are applicable for different parts
with distinct scan patterns by using the part model.

To minimise the computational effort of the thermomechanically coupled FE analysis
at hand, which set up on a geometrically larger scale than the laser scan model (mm in
size), two simplifications are made:

At first, a constitutive material model based on temperature-dependent material pa-
rameters is adapted by using the corresponding critical phase transformation tempera-
tures for melting, θmelt, and solidification, θsolid, similar to e.g. [99, 185]. This approach
still captures the different states of the material, i.e. the powder, the molten, and the
re-solidified phases. Therefore, in contrast to the laser scan model, no explicit evolution
equations for the mass fractions have to be solved in order to determine the current
phase of the process. Thus, the phase transformation only depends on the maximum
temperature θmax, the current temperature θ and the critical phase transformation tem-
peratures θmelt and θsolid, which are extracted in advance by using the laser scan model,
see Section 5.2.2.
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5.1 Methodology of the multiscale framework

Furthermore, the heat input for the layer hatch model of the scan island is approx-
imated by a cuboid heat source rcext instead of Goldak’s ellipsoidal double well. The
cuboid heat source is calibrated by using the aforementioned determined melt pool di-
mensions width dGw and depth dGd and process parameters of the single melt track. A
relation between the Goldak heat source and the cuboid heat source with parameters dw
and dd is established in Section 5.2.2. This heat source moves along the top layer of the
scan island in, for example, a meandering pattern, compare Figure 5.1 (middle). Due to
the cuboid heat source, a larger element size can now be used in order to save compu-
tation time. The element size is chosen in accordance with the powder layer height and
the hatching distance to reduce the overall element number in the FE analysis. This is
the smallest possible element size at which it is still possible to simulate the scan pattern
of the scan island, cf. [81].

Constitutive framework

To reduce the computational time for the scan island, no evolution equations for the
mass fractions by using a phase transformation approach are included, but the phase
change itself is purely temperature-dependent instead. This phenomenological approach
seems to be appropriate for the layer hatch model, as the main focus of the scan island
simulation is no longer set on the micromechanical behaviour of the material on a small
scale, but on the overall material response and the respective inherent strains due to the
scanning of a larger partition. Similar approaches are taken in, e.g., [99, 185]. Thus, the
phase transformation now solely depends on the maximum temperature θmax, the current
temperature θ and the corresponding melting and solidification temperature, θmelt and
θsolid, respectively. The melting and solidification temperature will be extracted from
the single melt track simulation to resemble the material behaviour defined in the phase
transformation model. In contrast to the phase transformation model in Section 5.1.1,
the mass fractions are either zero or one – no phase mixture is assumed to exist here.
Thus, the present phase strain ε• also corresponds to the total strain ε. With this
information, the phase change from the initial powder to melting and solidification can
be described as a whole, as illustrated in Figure 5.3.

powder, ζpow = 1 melt, ζmel = 1 solid, ζsol = 1

melting

solidification

re-melting

θmax < θmelt
θmax > θmelt

θ < θsolid

θmax ≥ θmelt

θ ≥ θsolid

Figure 5.3: Illustration of the temperature-dependent phase transformation approach taken for the
layer hatch model. Reprinted from [132] under the terms of the Creative Commons Attribution License
(CC BY).

99



5 A multiscale framework using the inherent strain method

Due to the chosen ansatz of the layer hatch model, some features regarding the
averaged energy densities and transformation strains shall be elaborated in the following.
The lower part of the scan island already consists of solid material so that the solid
phase is regarded as the parent phase here. It is assumed that the lower part consists
of a perfect solid base layer without initial residual strains and stresses. The top layer,
however, consists of powder, so that the powder phase is the parent phase, as also
indicated in Figure 5.4. This necessitates a case differentiation for the two different
parts, where

Ψbot = ζmel Ψmel(ε, θ, ε
trans
mel,bot, ε

ve
mel) + ζsol Ψsol(ε, θ, ε

trans
sol,bot, ε

th
sol, ε

vp
sol) , (5.13)

Ψ top = ζpow Ψpow(ε, θ) + ζmel Ψmel(ε, θ, ε
trans
mel , ε

ve
mel) + ζsol Ψsol(ε, θ, ε

trans
sol , εthsol, ε

vp
sol)
(5.14)

are the averaged energy densities for the bottom and top of the scan island, respectively.
This also affects the phase transformation approach illustrated in Figure 5.3 due to the
fact that for the lower part only the re-melting and solidification process is feasible.
Moreover, eqs. (5.13) and (5.14) show the dependence of the particular energy den-
sity contributions on the respective inelastic strains considered. The newly introduced
transformation strain εtransmel,bot can now be defined as

εtransmel,bot =
1

3

[
ρsol
ρmel

− 1

]
I , (5.15)

in analogy to eq. (4.10), where the solid phase is used as initial mass density. In
consequence, no transformation strain is present for the solid phase of the bottom,
i.e. εtranssol,bot = 0. In addition, the volume fraction of the molten phase has to be ad-
justed accordingly as the solid material is now considered to be the reference for the
bottom material of the scan island. Corresponding to eq. (5.15), the volume fraction
ξmel,bot = ρsol/ρmel is defined, which can be derived by applying eqs. (4.14) and (4.15)
to eq. (5.13). The remaining assumptions introduced in Sections 5.1.1 and 4.1 are still
feasible. In other words, for the molten phase, a visco-elastic strain εvemel is present.
Moreover, a thermal strain εthsol and a visco-plastic strain εvpsol exist in the solid phase.
In addition, the resulting mechanical dissipation contribution no longer depends on the
evolution of the volume fractions, cf. eq. (5.6), but solely on the present phase and the
corresponding internal variables, such that

Dmech =


0 , if ζpow = 1

Fve : ε̇vemel , if ζmel = 1

Fvp : ε̇vpsol + κ k̇hardsol , if ζsol = 1

. (5.16)
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Finally, the process-induced inherent strains εinh of the layer hatch model can be
calculated based on the total inelastic strain contributions analogously to eq. (5.7).
Thus, the IS tensor can be determined directly in a post-processing step via

εinh = ζmel

[
εtransmel + εvemel

]
+ ζsol

[
εtranssol + εthsol + εvpsol

] ζsol=1
= εtanssol + εthsol + εvpsol , (5.17)

where, in contrast to the modified IS method, e.g. [46, 103], the standard approach
originated from welding to determine the IS is incorporated in the model at hand, cf.
[26, 82] and Section 1.1.2. For the final state, where the part is cooled down to the
ambient temperature, all the material is solidified. Thus, only the inelastic strains of
the solid phase influence the inherent strains. During the process, the material model is
still capable of predicting and taking the melting and re-solidification into account.

Cuboid heat source

To decrease the computational time of the layer hatch simulations, a cuboid heat
source rcext is used to model the laser beam path of the scan island following a meandering
pattern, introduced in [81, 82] as a so-called cubic heat source. A similar simplification
to incorporate an equivalent body heat flux used for the layer hatch model is made
in [99], whereas in [57] an approach for a likewise uniform heat source is used. For the
case at hand, the size of this cuboid heat source is determined by the laser scan model
in terms of the molten pool as defined in Section 5.2.2. Furthermore, the scan island is
spatially discretised by finite elements, where each element of the regular mesh exhibits
the size of the heat source. Thus, less elements are needed to resolve the layer hatch
model. The newly introduced heat source can only be seen as an approximation of the
laser beam heat source. It is assumed that the length of the heat source equals the width
of the cuboid heat source. The edge length of the sides of the heat source is denoted
by dw, whereas dd refers to the penetration depth. In general, the depth of the molten
pool is larger than the height of the newly added layer hlyr, which means dd > hlyr has
to be valid. With these approximations, the cuboid heat source can be defined as

rcext(x
′
1, x
′
2, x
′
3) =


ηab P

d2w dd
, if |x′1,2 − x1,2| ≤

dw
2

∧ hlyr − x3 ≤ dd

0 , else
(5.18)

depending on the current position (x′1, x
′
2, x
′
3) and including the aforementioned melt

pool dimensions in width dw and depth dd. Moreover, P refers to the laser power and
ηab denotes the already introduced absorption coefficient. As a first approach, the heat
source path will follow serpentine lines as used in [36, 81], which depend on the moving
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coordinate system x′1, x
′
2, x
′
3. For the example shown in Figure 5.4, the moving coordinate

system is now defined via

x′1 =
1− [−1]n

2
llyr + [−1]n

[
dw
2

+

[
t− s

⌊
t

s

⌋]
vlsr

]
, (5.19)

x′2 =
dw
2

+ nwh , (5.20)

x′3 = x3 , (5.21)

where the floor function ⌊•⌋ returns the largest integer value less than or equal to •.
Moreover, n =

⌊
vlsr t

llyr−dw

⌋
denotes the index of the scanned melt line, s =

llyr−dw
vlsr

is an

abbreviation for the movement in x′1-direction, llyr refers to the length and width of
the scan island and wh represents the hatching distance. For the present case, the
hatching distance equals the size of the cuboid heat source, such that wh = dw, as the
scan island is not resolved in detail. Altogether, this allows the use of larger elements
corresponding to the hatching distance and layer thickness for the sake of significantly
improved computational efficiency, so that the element size equals the heat source size.

dw

dw

dd wh

hlyr

x1

x2

x3

v
lsr

llyr

llyr

powder

solid

Figure 5.4: Schematic view of the cuboid heat source rcext and corresponding scan pattern. Reprinted
from [132] under the terms of the Creative Commons Attribution License (CC BY).

5.1.3 Part model – complete part

In the part model, a purely mechanical simulation with an elastic material model is
incorporated – in other words, thermomechanical coupling as well as further direct tem-
perature influences are neglected in order to reduce the computing time. The determined
inherent strains, cf. eq. (5.17), are applied as an external load-like contribution to, e.g.,
the frequently used benchmark structure of a cantilever beam, see illustration in Fig-
ure 5.1 (right), or any other arbitrary structure. The simplification of using the IS
method is considered appropriate for the LPBF process, as each melt line undergoes
a similar thermomechanical history. This also results in so-called global models where
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5.1 Methodology of the multiscale framework

complete layers are thermally loaded, see for example [91, 140, 183]. However, the overall
used scan pattern of the final component can still be taken into account with the help
of the multiscale framework, i.e. by rotating the corresponding inherent strain tensor for
the respective sections. Therefore, the previously determined inherent strain tensor can
be used to model various sets with different scan patterns, as long as the same process
parameters are used. In general, this ansatz enables the efficient optimisation and re-
duction of the final residual stresses and the deformation of the part. The concept of the
layer activation and application of the inherent strains is visualised in Figure 5.5, where
the influence of the inherent strains on the current and final deformation is schematically
illustrated. By doing so, not only the final deformation and distortion, also referred to
as warpage, but also the eigenstresses of the part can be predicted.

1) 2) 3) 4)

repeat for all layers

prescribed boundary conditions at the bottom
deactivate boundary conditions

previous layers

current layer ε
inh applied

x3

Figure 5.5: Schematic view of layer activation concept: 1) all (solid) layers initially deactivated, 2) one
current layer activated, 3) inherent strain εinh applied as external load to current layer, 4) warpage of
part after deactivation of boundary conditions. Reprinted from [129] under the terms of the Creative
Commons Attribution License (CC BY).

To be specific, the stresses within the layers are determined by using the standard
Hooke’s law in the form

σ = Esol :
[
ε− ε̃ inh

]
, (5.22)

where Esol refers to the elasticity tensor of the solid phase and ε̃ inh is the rotated inherent
strain tensor. In accordance to the scan pattern of the corresponding layer, see for
example Figure 5.6, the predefined inherent strain tensor is rotated by using a rotation
tensorR, so that ε̃ inh = R·εinh ·Rt. The rotation tensorR(e, φ) in the Euler-Rodrigues-
representation is given by

R(e, φ) = [1− cos(φ)] e⊗ e+ cos(φ) I − sin(φ) ϵ · e , (5.23)

where the unit vector e defines the rotation axis, here aligned with the x3-axis, φ refers
to the rotation angle, and where ϵ denotes the third order permutation tensor. When
incorporating appropriate case differentiations, which depend on layer number nlyr, the
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spatial location (x1, x2) and the rotation angle φ, it is now possible to explicitly model
different scan patterns, as exemplarily indicated in Figure 5.6.

00◦ layer-wise (long) 90◦ layer-wise (short) 00− 90◦ rotating pattern

60◦ layer-wise 45◦ layer-wise 45− 135◦ rotating pattern

layer n

layer n

layer n+ 1

layer n+ 1

x1

x2

Figure 5.6: Overview of (an excerpt of) possible scan pattern combinations. Reprinted from [129] under
the terms of the Creative Commons Attribution License (CC BY).

5.2 Implementation and algorithmic treatment

To give some insight into the implementation of the multiscale framework, the different
user-defined subroutines are summarised in Section 5.2.1. Furthermore, the emphasis in
Section 5.2.2 is set on the extraction of parameters, which are transferred between the
different model scales. These are therefore of utmost interest for the implementation of
the multiscale framework. With this information at hand, it is then possible to perform
simulations and generate numerical results, which are presented in Section 5.3.

5.2.1 User-defined routines

In the following, some remarks on the user-defined subroutines for the different models
are made.

Laser scan model

The laser scan model for a single melt track as introduced in Section 5.1.1 is implemented
into the commercial FE software Abaqus. To incorporate the aforementioned material
model, the user subroutines UMAT and UMATHT have to be used. Thereby, the strategies
discussed in Section 4.2 are still valid. Furthermore, the subroutine DFLUX is called
during the simulation which defines the volumetric moving heat source rGext in analogy
to the model discussed in Section 3.2.
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Layer hatch model

For the layer hatch model the user subroutine UMAT has to be adapted according to
the material behaviour defined in Section 5.1.2. Due to the different initial material
states for the scan island simulations, a case differentiation based on the underlying
user-defined material name, referred to as CMNAME, is necessary. With this, the initial
mass fractions, i.e. ζsol = 1 or ζpow = 1, and the material model are set for the base layer
and the top layer. The implementation for the phenomenological approach without
homogenisation is rather simple, resulting in a case differentiation based on Figure 5.3,
where the maximum temperature has to be saved as internal variable. In addition,
the inherent strain tensor is calculated and stored in the state dependent variable SDV.
In contrast, little changes are necessary for the subroutine UMATHT developed for the
laser scan model, now taking into account the different initial conditions of the material
states. Within the subroutine DFLUX, the cuboid heat flux rcext is implemented in a
straightforward way as specified in Section 5.1.2.

Part model

For the following calculations of the part model, a self-written UMAT based on eq. (5.22)
is used, in which the rotation of the inherent strain tensor for different layers is included.
The current Abaqus versions, starting 2019, contain various special-purpose techniques
for AM. This also makes it possible to directly define eigenstrain-based simulations
within the so-called AM-Modeler. Thereby, table collections that begin with the name
ABQ EIG determine the analysis as described in [1]. The advantage of the AM-Modeler

compared to the subroutine UMAT lies in the modelling of more complex scan patterns.
However, in order to generate reliable results, new commands need to be understood
and special attention has to be paid to the coordinate systems and the orientation of the
part. A correct implementation can be better overseen and tested with the help of a self-
written subroutine. Furthermore, it should be emphasised that the inherent strain tensor
itself still needs to be previously determined elsewhere, if eigenstrain-based simulations
are to be carried out using the AM-Modeler. Some insight into the implementation
using the AM-Modeler is given in the Appendix C.1. Another way to implement the IS
method in commercial FE codes is to use a modified thermal expansion with uniform
temperature change, see e.g. [102] and Remark 11. However, the implementation of
different scan patterns is rather straightforward when using the subroutine UMAT or the
AM-Modeler.

Remark 11. The equivalent thermal strain εth is determined by εth = α∆θ, where α
corresponds to the equivalent coefficients of thermal expansion (CTE) and where ∆θ
denotes the temperature change. Assuming the IS tensor corresponds to the thermal
strains, i.e. ε̃inh := εth,

σ = Esol :
[
ε− ε̃ inh

] !
= Esol :

[
ε− εth

]
(5.24)
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is conceptually valid. The CTE then contains the coefficients of the previously determined
inherent strain tensor, i.e. α := ε̃inh, if a uniform temperature change is applied to
the model, i.e. ∆θ = 1 K. In consequence, the following static equilibrium analysis of
eq. (5.24) yields the same results as eq. (5.22).

5.2.2 Extraction of transfer parameters

The transfer parameters of the laser scan model and layer hatch model, see Figure
5.1, are of central importance for the results of the part model. Thus, the procedure
for defining and extracting these material parameters is now presented in detail. The
detailed instructions on the BVP with the respective process parameters are given in
the next Section 5.3. Due to the extraction of transfer parameters and the structure of
the model framework, the determination of the inherent strains can straightforwardly
be automatised. This way, the application is usable in the industry without requiring a
profound knowledge of the underlying material model.

Laser scan model

As introduced in Section 5.1.1, four transfer parameters have to be extracted from the
laser scan model. These are on the one hand the temperatures θmelt and θsolid, which
are required for the material model of the layer hatch model, and on the other hand the
melt pool dimensions dw and dd, which define the size of the cuboid heat source used in
the layer hatch model.

The temperature vs. time curve and the molten mass fraction vs. time curve are
visualised in Figure 5.7 for an element in the centre of the heat affected zone and for an
element on the boundary of the heat affected zone, i.e. the transition zone from powder
to re-solidified material, see also Figure 5.8. The temperature level in some elements
significantly exceeds the evaporation temperature for the specific laser parameter set,
see also Remark 12. For the simplified material model of the layer hatch model, θmelt

is the temperature where the material first considerably melts (ζmel = 0.1). The value
is set to this magnitude as the temperature defines the molten pool for the layer hatch
model. Figure 5.7a shows that the temperature evolves differently for different elements
within the molten pool. This is in line with the viscous-type ansatz for the evolution of
the mass fractions where the dissipation parameter ηξ is employed. Here, the most outer
element that completely melts is used to define that θmelt ≈ 2000 K is the appropriate
temperature based for the proposed material model. This element is chosen because
the focus of the layer hatch model lies on the lowest temperature for complete melting.
The same approach (ζmel = 0.9, respectively) is used to define θsolid in Figure 5.7b,
where the material in the layer hatch model will be completely re-solidified. Here, the
temperature for both elements takes similar values, as the cooling phase is longer and
smaller temperature rates are present. For the element in the centre, a temperature
plateau is nearly visible due to the latent heat of fusion. This behaviour is further
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Figure 5.7: Evolution of temperatures θ and molten mass fraction ζmel during heating (5.7a) and cooling
(5.7b) of the laser scan model to extract temperatures θmelt and θsolid, respectively, for the layer hatch
model. Reprinted from [129] under the terms of the Creative Commons Attribution License (CC BY).
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discussed in Appendix C.3. When focusing on the transition zone in detail, this transition
zone corresponds to the inflection point of the curve. This finally leads to θsolid ≈ 1800 K.
In literature, a liquidus temperature of 1933 K and a solidus temperature of 1878 K, can
be found, cf. [25]. Hence, both extracted temperatures for the layer hatch model differ
in the same magnitude from the literature values. Overall, the determined temperatures
are located in an appropriate physical range.

dGw
dG
d

x2
x3ζmel

finer discretisation

Figure 5.8: Contour plot of the molten mass fraction ζmel for a steady state size of the melt pool to
extract the melt pool width dGw = 0.14 mm and depth dGd = 0.08 mm. Finer discretisation to distinctly
mark melt pool shape. Reprinted from [129] under the terms of the Creative Commons Attribution
License (CC BY).

Next, the melt pool size of the laser scan model is extracted to determine the heat
source of the layer hatch model in such a way that the calculated areas of the heat
sources coincide. With this assumption, the parameters dd and dw for the cuboid heat
source of the layer hatch model can be meaningfully defined. As illustrated in Figure 5.8,
the shape of the melt pool of the laser scan model is approximately elliptical which is
made more easily visible by a finer discretisation. The depth dGd and the width dGw of
the melt pool can be determined by a virtual measurement in a post-processing step.
All elements where ζmel ≥ 0.9 are taken into account in order to define these lengths.
Based on the dimensions resulting from the simulation, the counterparts for the layer
hatch model are determined as follows: The depth of the melt pool is assumed identical
for both models, so that dd = dGd . As a consequence, the width of the melt pool for the
layer hatch model is determined by dw = π dGw/4, where d

G
w represents the vertical radius

of the semi-ellipse and dw the width of the rectangular heat source, respectively.

Remark 12. For some elements, in particular in or close to the centre, the peak temper-
ature significantly exceeds the evaporation temperature θevap = 3200 K for a short period
of time. This is caused and amplified by the intensity profile of the heat source approach
using a Gaussian distribution. This is physically not realistic. In the future, some
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modelling adjustments will be necessary. For example in [27, 108], the molten phase is
represented by an artificially increased heat conductivity as proposed in [97]. By doing
so, Marangoni flow within the molten pool is indirectly considered and the peak tempera-
ture decreases. From a physics viewpoint, it would be rather straightforward to consider
an additional gas phase, so that the latent heat of evaporation is also incorporated. Its
modelling, however, is rather complex, as the transition into gas is non-reversible. As a
simpler version, an additional heat flux taking into account the thermal energy of evap-
oration (without mass flux) in line with e.g. [118] would be possible. For the model at
hand, it turned out that the consideration of radiation or convection does not sufficiently
influence the peak temperature, compare again the findings in Appendix B.3. Moreover,
a different heat source approach, e.g. [64], could also be incorporated and compared to
literature and experiments.

Layer hatch model

To determine the averaged inherent strain coefficients for the layer hatch model of the
scan island, the corresponding values are extracted along different paths throughout the
whole scan island and subsequently averaged. These paths are visualised in Figure 5.9a.
The extracted results along these paths are exemplarily illustrated in Figure 5.9b for εinh11 .
The contour plot of the inherent strain coefficient εinh11 is also shown in Figure 5.9a.
Within the middle region, the values along all paths are rather constant. However, on
the boundaries large oscillations are visible, which occur due to the jump-type transi-
tion of εinh from zero within the powder (see the red region in Figure 5.9a) to a (quasi)
constant value in the re-solidified material (see the green region in Figure 5.9a) con-
nected with the FE approximation using a C0-continuous spatial discretisation. Thus,
the contributions of the outer five elements are ignored when calculating the averaged
inherent strain components (grey bounding box in Figure 5.9a and shaded in grey in
Figure 5.9b). This is reasonable, as the values of the inner region are (quasi) constant
and predominate the contributions of the transition zone. Overall, the values of the
different paths are close to the average value (red path in Figure 5.9b). This strengthens
the approach that extracting an inherent strain tensor εinh, which can be applied to the
complete part, is an appropriate approximation for a computational efficient model, cf.
for example [29, 81, 82, 102]. Since qualitatively similar responses are obtained for all
coefficients of εinh, only the values for εinh11 are explicitly visualised.

5.3 Numerical examples

This section discusses numerical results based on the multiscale framework using the
commercial FE programme Abaqus together with Fortran subroutines and external
Python coding. First, the distinct thermomechanical material models of the laser scan
model and the layer hatch model are compared in Section 5.3.1. The influence of the
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Figure 5.9: Sketch of paths used to illustrate inherent strain εinh11 -distribution with respective contour
plot in the background (5.9a) and exemplarily extracted values for εinh11 along the aforementioned paths
and total determined averaged inherent strain εinh11 = −0.0104 (5.9b). Reprinted from [129] under the
terms of the Creative Commons Attribution License (CC BY).

laser power and velocity are varied to examine the effects on the melt pool size and tem-
perature, compare Section 5.3.2. Furthermore, the influence of the thermal behaviour
on the residual stresses and inherent strains of the layer hatch model shall be analysed
in Section 5.3.3. For a given set of material parameters and varied laser parameters,
the presented multiscale approach is used to simulate a standard benchmark problem
of a twin cantilever beam. The deformation and eigenstresses of this workpiece are il-
lustrated and interpreted in Section 5.3.4. In addition, the influence of different laser
parameters and scan patterns on the inherent strains and deformation is discussed.

As one of many appropriate materials for the LPBF process, a titanium aluminium
alloy Ti6Al4V is chosen for the examples at hand. The mechanical and thermal material
parameters are summarised in Table 5.2. So far, the hardening modulus Hsol and the
viscous parameters ηv• are meaningfully selected without particular literature reference.
For the visco-elastic strains in the molten phase, a high viscosity parameter ηvemel = 70
is chosen to model the fluid-like behaviour. In contrast, a lower parameter is used for
the visco-plastic behaviour of the solid phase, namely ηvpsol = 5. Finally, the value of
the dissipation parameter ηξ, which is introduced for the phase change, has to be deter-
mined. As the experimental identification of dissipative quantities is typically difficult,
the dissipation parameter has to be estimated as accurately as possible. The influence
of this quantity is shown in Appendix C.2. The parameter choice influences the temper-
ature range in which the phase transformation process takes place. In the future, this
parameter could be adjusted to fit experimental results. As this work proceeds, different
dissipation parameters are used. For the detailed results of Sections 5.3.2 and 5.3.3, a
value of ηξ = 0.002 is used, while for the results of the part simulations in Section 5.3.4
and the extraction of the transfer parameters in Section 5.2.2 a dissipation parameter of
ηξ = 0.001 is used. Altogether, the parameters η• are also used to increase the numerical
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Table 5.2: Summary of the material parameters used for Ti6Al4V, adjusted from [121, 148, 173].

Material parameters Powder Melt Solid

Mechanical parameters
Density ρ [kg/m3] 2800 3800 4420
Poisson’s ratio ν [−] 0.33 0.45 0.33
Young’s modulus E [GPa] 1.2 2.9 88.8
Yield limit σy [GPa] - - 0.55
Hardening modulus H [GPa] - - 1
Viscosity parameter ηv• [−] - 70 5

Thermal parameters
Expansion coefficient α [1/K] - - 1.1e-05
Initial temperature θini [K] - - 1873.15
Heat capacity c [J/(kgK)] 750 750 750
Conductivity k [W/(mK)] 9.5 33.4 17.8
Latent heat L [kJ/kg] 286 - 286
Reference temperature θref [K] 1873.15 - 1873.15

stability of the FE scheme regarding the step size. With the help of the densities ρ•,
it is possible to directly calculate the transformation strains εtrans• . Due to the large
differences in mass densities, the volume changes incorporated by the transformation
strains are rather large. As the transformation strains are purely volumetric and small
rotations are present, the small strain formulation is still regarded appropriate at this
point, as previously discussed in Section 4.3.

5.3.1 Proof of concept

Before presenting the results of the laser scan model and layer hatch model, the material
models introduced in Section 5.1.1 and 5.1.2 shall be compared. Therefore, the time
evolution of a completely molten element within the melt pool line is extracted for both
simulations and visualised in Figures 5.10 and 5.11. For these results, the same model
assumptions are used, only changing the material model incorporated in the subroutine
UMAT. For the layer hatch model, both the melting temperature θmelt ≈ 2000 K and the
solidification temperature θsolid ≈ 1800 K have been extracted from the results of the
laser scan model, compare Section 5.2.2.

First, the mass fraction distributions are outlined in Figure 5.10, where the dashed
line refers to the phase transformation approach and where the solid line indicates the
material behaviour of the layer hatch model. Here, it can be seen how the phase trans-
formation model allows an evolution of the mass fractions. Especially for the solid mass
fraction ζsol an extended time span is necessary for solidification, as the cooling period
takes longer than heating up the material above the melting point with the laser beam.
After a time span of t = 2.0 ms, no further development of the mass fractions is visible,
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as the temperature for the respective element has decreased below the melting point. In
contrast, the mass fractions directly jump from zero to one when using the layer hatch
approach.
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Figure 5.10: Comparison of phase transformation model (heat source approach – blank circles) and
temperature-dependent material model (layer hatch approach – solid circles) exemplary for simulation
case P = 100W and vlsr = 1.0mm/ms for one representative element in the middle of the melt pool:
excerpt of development of mass fractions over time. Reprinted from [132] under the terms of the Creative
Commons Attribution License (CC BY).

The normal inelastic strain contributions and the corresponding inherent strains εinh

according to eq. (5.7) are visualised in Figure 5.11. In particular, the respective inherent
strain εinhij can be calculated by weighting the appropriate inelastic strains with the mass
fractions visualised in Figure 5.10. The coordinate system at hand corresponds to the
principal axes up to numerical accuracies, i.e. |εij| ≪ |εii| (no summation with respect
to i and i ̸= j), such that the shear components are approximately zero for a single
melt track. Therefore, only the normal components are visualised. The first drop in the
inherent strains εinh arises due to the transformation strain of the molten phase εtransmel ,
whereas the second drop and the following evolution is mainly governed by the trans-
formation strain of the re-solidified material εtranssol and the visco-plastic strain εvpsol. The
influence of the visco-elastic strains of the molten phase εvemel is negligible as no previously
present residual strains exist for the molten phase for a single melt track. Overall, high
direction-dependent visco-plastic and inherent strain contributions are visible for the
single melt track. A high visco-plastic tensile strain εvp11 is present in scanning direction,
whereas all other strains are compressive. Especially high compressive inherent strains
εinh22 and εinh33 exist transversally and vertically to the laser beam movement. The thermal
strains and the transformation strains are uniformly distributed according to eqs. (3.45)
and (4.10), respectively. During the evolution of the strains, larger differences can be
seen in the range of t1 ≈ 0.75 ms to t2 ≈ 4.0 ms, as the different evolution of the mass
fractions notably influences the respective values. However, during the following process
of cooling, the discrepancy further reduces and a steady-state is reached. The final de-
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Figure 5.11: Comparison of phase transformation model (heat source approach – blank circles) and
temperature-dependent material model (layer hatch approach – solid circles) exemplary for simulation
case P = 100W and vlsr = 1.0mm/ms for one representative element in the middle of the melt pool:
(5.11a - 5.11c) evolution of all strain components over time. Reprinted from [132] under the terms of
the Creative Commons Attribution License (CC BY).
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viation at t = 20.0 ms, where the part has completely cooled down to θend ≈ 393 K, is
minor compared to the absolute values of the quantities themselves. All in all, the con-
clusion is permitted that the layer hatch model is sufficiently accurate, if only the final
residual strains for completely molten and re-solidified particles are relevant. However,
the layer hatch model neither precisely covers the phase transformation behaviour nor
can display partly molten particles in, e.g., the heat affected zone (HAZ).

5.3.2 Laser scan model

Definition of the laser scan model
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Figure 5.12: Specification of the simulation model for the laser scan model of a single melt track:
(5.12a) boundary conditions and loads, (5.12b) overall dimensions with corresponding mesh (element
size equals 20µm). Reprinted from [132] under the terms of the Creative Commons Attribution License
(CC BY).
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Initially, the whole domain consists of powder so that ζpow = 1. Furthermore, the
complete domain is preheated to θ = 373.15K to resemble the preheating of the build
chamber. The domain with the corresponding Dirichlet boundary conditions on the
boundaries ∂B is illustrated in Figure 5.12a. During the simulation, the temperature
is set constant at the bottom of body considered, whereas all other sides are assumed
to be insulated, so that heat convection and radiation are neglected. The volumetric
moving heat source resembling the laser beam embeds thermal energy into the part.
Afterwards, the unit cools down to the temperature of the build chamber. During the
whole simulation, the displacements of the bottom and the sides of the component are
fixed. The mesh and the geometric size of the domain is defined in Figure 5.12b. The
element size is set to a characteristic length of lchar = 0.02 mm which approximately
corresponds to the range of the size of the powder particles, see e.g. [43]. This is also
in accordance with [184] where a minimum of four elements per laser beam diameter is
concluded to be sufficiently accurate. The element type is set to C3D8HT, an eight node
thermally coupled hybrid brick element with trilinear approximation of displacements
and temperature with constant pressure. The cause and influence on the results of
a thermodynamically fully coupled model is discussed in Appendix C.3. During the
simulations, an adaptive time step procedure provided by Abaqus is used, where a
maximum temperature change of ∆θmax = 1000 K and and a maximum time step of
tmax = 0.01 ms is used as criteria to use smaller time steps.

The volume-distributed heat source rGext moves along the indicated scanning path in
Figure 5.12a. For the single melt track simulation, constant parameters of the heat source
are used for the semi-axis of the ellipsoid. For now, the variables are chosen to resemble
a laser beam with a focus radius of 50µm. Therefore, the parameters af = ar = 50µm
and b = 50µm are used which corresponds to a hemispherical distribution in x1- and x2-
direction, whereas the penetration depth is set to c = 100µm. The absorption coefficient
is selected as ηab = 0.6. For the values of the laser power P and the laser velocity vlsr

different parameter combinations are used, where the influence of P = {50, 100, 150}W
and vlsr = {0.5, 1.0, 1.5}m/s is studied in the following.

Influence of parameter variation on melt pool size

First, the influence of laser power and laser velocity on the melt pool size is analysed.
Therefore, both parameters are varied so as to examine the effects on the thermal be-
haviour. As it is difficult to determine the length of the melt pool in experiments, only
the depth and the width of the melt pool are measured according to Figure 5.13b. One
advantage of the phase transformation approach is the possibility to visualise the HAZ
underneath the melting range which is often neglected in common approaches. Due to
the evolution equations which are used for the mass fractions, it is not only distinguished
between temperatures above and underneath the melting point, but the temperature
history and residual strains also affect the final values of the mass fractions. The tem-
perature profile during the simulation is exemplarily visualised in Figure 5.13a, where
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(a)
x2

x3

θ [K]

(b)
x2

x3

width

ζsol

HAZ

depth

Figure 5.13: Cut at x1 = 0.5 mm in the x2-x3-plane for simulation case P = 150 W and vlsr = 1.0 m/s:
(5.13a) temperature profile θ during the simulation, (5.13b) solid mass fraction ζsol after cooling down,
visualising the heat affected zone (HAZ) and dimensions of the solidified material. Reprinted from [132]
under the terms of the Creative Commons Attribution License (CC BY).

the red colour refers to the temperature above the standard melting point of Ti6Al4V in
literature (θref = 1873.15 K). Overall, the maximum temperature increases drastically
with growing laser power and fixed scan speed, whereas the cooling rate increases with
reduced scan speed for fixed laser power. The HAZ in Figure 5.13b is similar to the
one in the experiments, see for example [43], where a Ti6Al4V baseplate has been used
instead of working in a complete powder bed. With increasing distance from the ac-
tual melt pool, the influence on the material decreases and the solid mass fraction also
reduces. Altogether, the temperature profile in Figure 5.13a and geometry of the melt
pool region in Figure 5.13b resemble the shape of a bowl. The reduction in height, i.e.
in x3-direction, at the top layer of Figure 5.13a is due to the transformation strain εtransmel ,
whereas the larger height-wise decrease in Figure 5.13b stems from the additional trans-
formation strain εtranssol and the thermal shrinkage based on εthsol. The different sizes of
the red bowl shapes in Figure 5.13 arise, as a temperature of θmelt ≈ 2000 K (compare
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Section 5.2.2) is necessary for a purely molten and then solidified material point when
using the phase transformation approach, see also the explanations in Section 5.3.1.
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Figure 5.14: Size of melt pool in simulation based on phase transformation algorithm (solid line)
compared to experimental results presented in [43] (dashed line): (5.14a) width and (5.14b) depth of
the corresponding melt pool geometry. Grey colouring refers to minimum requirements for width and
depth. Adapted from [132] under the terms of the Creative Commons Attribution License (CC BY).

With Figure 5.13b, it is possible to extract the melt pool geometry for all parameter
combinations, as illustrated in Figure 5.14. It is visible that with an increase in laser
power intensity, the width and depth of the melt pool increases, whereas both quantities
decrease with increasing laser velocity. In this plot, the simulation results can be directly
compared with experimental results shown in e.g. [43], where the same findings are made.
Without any further parameter determination or validation, for example referring to
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the semi-axes of the Goldak heat source or the heat absorption coefficient, a similar
behaviour can be seen for the bead width of the melt pool size, see Figure 5.14a, whereas
the depth of penetration seems to be constantly larger in our simulations than in the
experimental investigations, compare Figure 5.14b. In a next step, parameter c of the
Goldak heat source could therefore be adapted to fit the experimental results even
better. Overall, the phase transformation algorithm is able to predict different melt pool
geometries depending on the laser velocity and power. However, with such a model it is
not possible to determine effects such as porosity or balling. For such simulation results,
even more detailed models of the single powder particles are necessary. In contrast, it
is possible to make predictions regarding the existence of a melt pool, e.g. a parameter
combination of P = 50 W and vlsr = 1.5 m/s is not sufficient for a regular continuous
melt pool.

With the single track simulation results concerning the melt pool geometry, it is
possible to extract the proper parameter combinations for the scan island simulation,
where at least a melt pool width of 0.06 mm and depth of 0.06 mm are desired (coloured
in grey in Figure 5.13). The influence of these six parameter combinations, namely 50 W
- 0.5 m/s, 100 W - 0.5 m/s, 100 W - 1.0 m/s, 150 W - 0.5 m/s, 150 W - 1.0 m/s and
150 W - 1.5 m/s, on the eigenstrains and stresses shall be discussed when presenting the
results of the suitable layer hatch model for the scan island simulations in the subsequent
Section 5.3.3.

5.3.3 Layer hatch model

Definition of the layer hatch model

(a)

rCext
scanning path

∂B1: u = 0, θ = 373.15K

x1

x2 x3

powder

solid

(b)

x1

x2
x3

1
.0
m
m

l l
y
r

llyr

∆l

∆l

∆
l

∆
l

Figure 5.15: Specification of the simulation model for the layer hatch model: (5.15a) boundary con-
ditions and loads, (5.15b) geometry of the scan island with corresponding mesh (element size equals
cuboid heat source size). Reprinted from [132] under the terms of the Creative Commons Attribution
License (CC BY).
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A simple model resembling a single scan island is employed for the layer hatch model,
where the lower portion is initially made out of solid material, thus ζsol = 1. In con-
trast, the powder material with ζpow = 1 is assigned to the top layer as indicated in
Figure 5.15a. The complete domain is preheated to θ = 373.15K. During the simula-
tion, this temperature is prescribed at the bottom of the body considered. In addition,
no displacements are allowed at the bottom, while all other sides have no predefined
conditions. All boundary conditions and loads are illustrated in Figure 5.15a. To ensure
a continuous melt pool, a minimum of four time increments per cuboid heat source is
used for the maximum time step size as proposed in [184]. The element type used is
C3D8T, an eight node thermally coupled brick element with trilinear displacements and
temperature approximations.

In the following, two different scan island sizes with the side length llyr = {3, 5} mm
are considered. The geometry is exemplarily shown in Figure 5.15b, where ∆l refers to
an additional domain of five elements of the respective simulation which are not molten
by the laser beam heat source. These elements indicate the surrounding powder bed
during the scanning of the scan island. This distance seems to be sufficient, as the
surrounding powder has a low conductivity and Young’s modulus. Thus, only a small
buffer zone is necessary, see e.g. [36], where almost no temperature influence is visible
on powder particles further away from the laser beam.

A distinct relation is present between the layer height and heat source depth. In
general, the heat source depth needs to be larger than the layer height to ensure a re-
melting of the underlying layers so that a bonding between layers can be assured. The
height of the powder layer corresponds to the height of half an element, thus hlyr = dd/2,
whereas the hatching distance equals the element length wh = dw. As already explained
in Section 5.1.2, the element size equals the size of the cuboid heat source. However,
sufficiently large melt pools are necessary to obtain a proper rapid process model, so that
only the material combinations defined and summarised in Table 5.3 are considered. In
consequence, the results presented in Figure 5.14 directly affect the layer hatch model,
i.e. the hatch distance and the powder layer height. The two cursive values in Table 5.3
(penetration depth dd for cases 4 and 5) are manually adapted to ensure a completely
molten element because the initial energy input was not high enough to completely melt
the element for these large melt pools. As the cuboid heat source size, i.e. element
size, also influences the necessary melt line tracks of the meandering pattern, the time
period to completely melt the scan island has to be adaptively chosen according to the
laser beam velocity, the cuboid heat source size and the size of the scan island. After
having scanned the complete scan island in a meandering pattern with the cuboid heat
source rcext as marked in Figure 5.15a, an appropriate time span tend = 100 ms is chosen
so that the part can (almost) completely cool down to the initial temperature θ. The
impact of these different process parameters, i.e. laser power, scan speed and island size,
on the layer hatch model results are presented next.
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Table 5.3: Overview of the laser beam parameters and size of cuboid heat source rcext for the layer
hatch model.

Case Laser power P Laser velocity vlsr Edge length dw Edge height dd

1) 50 W 0.5 m/s 0.06 mm 0.06 mm
2) 100 W 0.5 m/s 0.14 mm 0.08 mm
3) 100 W 1.0 m/s 0.06 mm 0.06 mm
4) 150 W 0.5 m/s 0.18 mm 0.10 mm
5) 150 W 1.0 m/s 0.10 mm 0.06 mm
6) 150 W 1.5 m/s 0.06 mm 0.06 mm

Influence of parameter variation on scan island

An overview of the necessary scan tracks n and scan time ttot is given in Table 5.4 for
the smaller scan island llyr = 3 mm. In the following, especially the effect on the process
time and the thermal material behaviour is analysed. The impact on the necessary time
period ttot and on the maximum average temperature θavg, i.e. the maximum temperature
averaged over one element, is clearly visible. For a low laser power and velocity, the
longest scan time is necessary (case 1). The process parameters of cases 4 - 6 create the
scan islands the fastest time-wise. Especially keeping in mind that each complete part
consists of multiple layers with many scan islands, the time period for manufacturing
each scan island considerably affects the overall process time. This is also the reason
why the remaining parameter combinations are not examined further.

Table 5.4: Summary of scan island results for llyr = 3 mm.

Case Scan tracks n Scan time ttot Avg. temp. θavg End temp. θend

1) 50 294.00 ms 2616 K 430 K
2) 21 117.60 ms 2055 K 426 K
3) 50 147.00 ms 3225 K 455 K
4) 17 97.92 ms 2477 K 440 K
5) 30 87.00 ms 3373 K 444 K
6) 50 98.00 ms 4309 K 467 K

The average temperature of the element during scanning varies drastically due to the
element size, laser velocity and power as summarised in Table 5.4. For a constant laser
beam power, the temperature increases with increasing laser velocity when applying
a cuboid heat source with a geometry as defined in Table 5.4. In contrast, the end
temperature θend after cooling down for tend = 100 ms barely differs. In Figure 5.16a,
the temperature distribution for case 6 at the specific time frame t∗ = 29.4 ms during
the scanning period is illustrated, where a maximum temperature of θavg = 4308.99 K is
reached. Even though evaporation is possible above θevap = 3200 K, it is appropriate to
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neglect this process in the layer hatch model as the melt pool is considered as a whole.
The corresponding size of the molten pool and the already solidified material is presented
in Figure 5.16b. For all cases, the laser beam completely melts the powder within the
inner region of llyr = 3 mm. In addition, the solid material underneath is also partly
re-melted so that a compound with a proper bonding between the layers is formed. In
addition, adjacent elements are heated up numerous times below the melting point due
to the influence of neighbouring scan tracks. Changing the powder layer thickness and
hatching distance can further influence the magnitude of re-melting of previous particles.
However, these parameters are limited as a sufficient bonding between layers has to exist.
Furthermore, it has to be kept in mind that they also regulate the production rate during
manufacturing.
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Figure 5.16: (5.16a) Temperature θ and (5.16b) corresponding material state for case 6 (P = 150 W,
vlsr = 1.5 m/s) and llyr = 3 mm at t∗ = 29.4 ms. Reprinted from [132] under the terms of the Creative
Commons Attribution License (CC BY).

Analogous temperature ranges can be reported for the larger scan island llyr = 5 mm.
However, slightly different cooling and re-heating rates are present due to the distinct
length of the scan track. In [93], the influence on cooling and re-heating due to the length
of scan vectors is discussed. Using larger scan vectors results in a slower re-scanning of
adjacent tracks so that more cooling occurs in between. The number of scan tracks for
llyr = 5 mm can be determined by scaling the respective results in Table 5.4 with 5/3,
i.e. weighting the number of scan tracks with the size of the scan islands, whereas the
overall time period has to be calculated with respect to the laser velocity. However, with
regard to time efficiency, cases 4 - 6 are once again preferable.

Altogether, the thermal model of the scan island can be seen as a plausible approxima-
tion, where employing a cuboid heat source saves an enormous amount of computational
time. However, using a cuboid heat source with an element size having the magnitude of
the melt pool also results in some drawbacks. As the hatching distance equals the width
of the melt pool, no studies on the influence of overlapping scan lines is possible, see
for example [47]. These studies could albeit be incorporated into the laser scan model.
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In addition, the cuboid heat source obviously no longer represents the real contour of
the melt line compared to the Goldak heat source. Nevertheless, only these reasonable
simplifications can provide computational efficient models for large parts.

Final inherent strain and eigenstress distribution

Next, the effect of the thermal behaviour and scan island size on the residual stresses
and inherent strains shall be evaluated. The shear values and the x3-component are
considered throughout this thesis, as discussed in Remark 13. Therefore, the equivalent
inherent strain

εinh =

√
1

2

[[
εinh11 − εinh22

]2
+
[
εinh22 − εinh33

]2
+
[
εinh33 − εinh11

]2]
+ 3

[
εinh12

2
+ εinh13

2
+ εinh23

2
]

(5.25)

is defined analogously to the von Mises equivalent stress σvM. Both quantities are visu-
alised for the computational efficient cases, i.e. referring to case 2 and cases 4 - 6, for
either scan island size in Figure 5.17. The variables are plotted along the x2-coordinate,
where the corresponding position x1 and the respective path for which the values are
extracted, are marked in Figure 5.16a (this corresponds to path 2 in Figure 5.9a).

Remark 13. No coefficients of the inherent strain tensor are set to zero for the part
model, as is often seen in literature, in order to simplify the experimental determination
of the inherent strains, cf. [158, 160]. Instead, all coefficients of εinh will be considered in
the simulation of the twin cantilever beam, as these coefficients are directly determined
when using the layer hatch model. From a modelling point of view, it may be argued that
the εinh33 -component may be set to zero, as the shrinkage of the layer itself is negligible
due to the re-coating/re-activation of the next layer. However, no model simplification
is gained with this assumption. It is noted that the averaged inherent strain of the layer
hatch model mostly depends on the laser parameters, but may also be influenced by the
scan island size as discussed in Section 5.3.

Considering Figure 5.17a first, the averaged inherent strains within the re-solidified
material in the interval x2 ∈ [0.0, 3.0] mm, respectively x2 ∈ [0.0, 5.0] mm, are rather
constant across the scan island itself. Only the inherent strains directly at the transition
zone from powder to solid (especially close to x2 = 0.0 mm) have to be excluded.
This supports the approach defined in Section 5.2.2 for the extraction of the inherent
strain tensor, where oscillating values at the transition zone are not taken into account.
Overall, the range of the different equivalent inherent strains in Figure 5.17a is quite
narrow for the middle region of the re-solidified material based on the underlying case
and size. Altogether, stationary equivalent inherent strains can be extracted along the
x2-coordinate. The independence of the inherent strain from the scan island size supports
the presented modelling approach of the IS method.
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Figure 5.17: (5.17b) von Mises equivalent stress σvM and (5.17a) equivalent inherent strain εinh along
the x2-direction for llyr = 3 mm (solid line) and llyr = 5 mm (dashed line) using the computational
efficient cases according to Table 5.4. Reprinted from [132] under the terms of the Creative Commons
Attribution License (CC BY).
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However, the overall mean value of the von Mises equivalent stresses differs when
regarding Figure 5.17b. Altogether, not only the case itself but also the length of the
scanning vector considerably influences the residual stresses. It can be concluded that
with increasing scan track length llyr the residual stresses decrease for all cases. This
result coincides with the conclusions made in, for instance, [112] where 2×2, 3×3, 5×5
and 7× 7 mm2 island scanning strategies are experimentally compared for IN718. Here,
the 5× 5 mm2 scan island pattern had the lowest residual stresses while having the best
mechanical properties, with similar results for the 7 × 7 mm2 specimen. In [94], it is
reasoned that the influence of the orientation of scan vectors is major compared to the
length of scan vectors themselves. In addition, the influence of the scan island size itself
on the deflection of a complete part is negligible, while the overall result improves when
using island scanning.
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Figure 5.18: Inherent strain distribution of a single layer at the end of the simulation for case 5, i.e.
P = 150 W, vlsr = 1.0 m/s and llyr = 5 mm: (5.18a) normal components εinh11 , (5.18b) εinh22 , (5.18c) εinh33 ,
and shear components (5.18d) εinh12 , (5.18e) εinh13 , (5.18f) εinh23 . (5.18a)–(5.18c) reprinted from [132] under
the terms of the Creative Commons Attribution License (CC BY).

For the present simulations, the lowest residual equivalent stress is observed for case 5
and llyr = 5 mm. For this case, the respective inherent strains along the x1-, x2- and
x3-direction are visualised in Figure 5.18, respectively. Here, only the re-solidified ma-
terial of the newly added layer is shown. The oscillating values at the boundaries are
neglected in the following discussion, as they arise due to the jump-type behaviour and
projection operation applied as previously mentioned. It becomes visible that all direc-
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tional inherent strains are negative due to the thermal shrinkage and the transformation
strains. The normal components εinh11 and εinh22 are minor compared to εinh33 . Especially
high εinh33 -contributions lead to shrinkage of the newly added layer and will not contribute
to any stresses, as shrinkage is not constrained in x3-direction. Due to the multiple re-
coatings and slim layer height, the overall shrinkage of the part is small. Along the laser
beam movement in x1-direction and perpendicular in x2-direction, almost the same in-
herent strain magnitude is visible. Upright, the strains are marginally higher and the
distribution is not as uniform as it is for the other two directions. This is in contrast
to the results in, e.g., [81] for SS316L, where higher inherent strains along the scanning
direction are predicted. However, similar findings are made, e.g., in [29] for IN718, where
a steady-state inherent strain tensor is extracted with uniform negative values for the
transversal and longitudinal direction. These inherent strains are then applied to the
model of the complete part.

Overall, the distribution of the inherent strains for the scan island is contrary to the
results of the single melt track in Figure 5.11, where the normal components εinh22 ≈ εinh33 ,
while εinh11 is considerably lower. However, in comparison to a single melt track, the
material cannot contract as freely for the scan island due to the preceding melt tracks
and the solid build platform. Therefore, the distribution is more uniform in the x1-
x2-plane with lower residual strains. Higher inherent strains are present in the x3-
direction i.e. the depth of the powder layer, where the shrinkage of the material caused
by the transformation strains is mainly absorbed. For the current simulation, the shear
components εinh12 and εinh13 are close to zero, compare Figures 5.18d and 5.18e, respectively.
In addition, a rather high shear strain εinh23 arises, which is not present for a single melt
track, where all shear components are approximately zero. This shear component εinh23

is illustrated in Figure 5.18f and lies within the (positive) range of εinh11 and εinh22 , i.e.
up to εinh23 ≈ 0.02, compare also Table 5.6. This shear strain is expected to be present
due to the successive solidification and shrinkage of the material (especially in depth,
i.e. x3-direction, and perpendicular to the melt track, i.e. x2-direction). Therefore, the
occurrence of a shear strain between the different seams of the laser tracks is necessary
and reasonable. However, as a cuboid heat source and a coarse element size is chosen,
it is possible that the value is overestimated. Overall, the inherent strains are (quasi-)
constant within the not pictured layer height, i.e. in x3-direction, as only one element is
used per layer to establish a computational efficient simulation. In the literature, shear
strains are often neglected a priori (for the coordinate system at hand) in the part model,
cf. [81, 102], as the influence of these strain contributions is assumed to be insignificant,
compare also Remark 13. This is not supported by the current model.

With these inherent strains, the residual stress distributions pictured in Figure 5.19
are gained. Within the inner region of the scan island, stationary residual stresses can
be found. Thereby, the normal components σ11 and σ22 are positive tensile stresses,
whereby the stresses in the x1-direction visualised in Figure 5.19a are superior to the
ones in x2-direction in Figure 5.19b. Thus, the highest residual stresses are present along
the melt line track. In x3-direction, small negative compressive residual stresses exist, see
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Figure 5.19: Residual stress distribution of a single layer at the end of the simulation for case 5, i.e.
P = 150 W, vlsr = 1.0 m/s and llyr = 5 mm: normal components (5.19a) σ11, (5.19b) σ22, (5.19c) σ33,
and shear components (5.19d) σ12, (5.19e) σ13, (5.19f) σ23. (5.19a)–(5.19c). Reprinted from [132] under
the terms of the Creative Commons Attribution License (CC BY).

Figure 5.19c. The shear components σ12 and σ13, which are illustrated in Figures 5.19d
and 5.19f, respectively, are close to zero. This corresponds to the value of the respective
inherent strain component. The σ23-component visualised in Figure 5.19f is slightly
higher, but not as dominant as the normal components σ11 and σ22. The temperature
gradient mechanism (TGM) is generally made responsible for the creation of stresses,
where a bending of the body considered towards the laser beam, i.e. in direction of −x3,
is explained by different tension and compression stresses throughout the layers. Due to
the surrounding solidified material, the thermal expansion induced by the laser beam is
constrained and thus non-uniform compressive stresses and strains arise in x1-and x2-
direction. During cooling, thermal shrinkage is also restricted resulting in tensile stresses
and strains. Altogether, shear stresses are minor compared to normal stresses. Once
the manufactured part is detached from the build platform, the bending and overall
deformation will become visible as a stress relaxation takes place during this process.
This feature can be observed in the next section, where a complete part is simulated.
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5.3.4 Part model – twin cantilever beam

Definition of the part model

...

...

...

...∂B1: u = 0 ∂B2: u = 0

∂B2: u = 0

x1

x2 x3

8
m
m

80mm

7.
2
m
m

A

B

C
D

E

Figure 5.20: Boundary conditions and geometrical specification for the simulation of the part model:
u = 0 on ∂B1 is present during the whole simulation while u = 0 on ∂B2 is enabled only during layer
activation steps. Reprinted from [129] under the terms of the Creative Commons Attribution License
(CC BY).

To examine the capabilities of the introduced model, a twin cantilever beam
is simulated. This construction is frequently used as a benchmark structure, cf.
[3, 29, 104, 155, 158, 160], and will also be employed in the following. The boundary con-
ditions and the geometry are illustrated in Figure 5.20, where the detailed dimensions are
taken from [26]. Two elements per rib width and a quadratic element formulation C3D20

are used for the beam-type geometries to properly capture the bending mode. First, the
influence of the laser parameters is analysed, then the scan pattern is varied for the best
parameter combination. During manufacturing, 267 physical layers are applied. To in-
crease the computational efficiency, multiple physical layers are lumped in the following.
The (relevant) quantities, such as u3-displacement, σ11- and σ22-contributions, do not
change significantly if at least 38 equivalent layers are used, i.e. seven physical layers are
consolidated, see also the results of the convergence study in Appendix C.4.

Determined transfer parameters

Different laser parameters compared to Section 5.3.2 in terms of power and scan speed
are used in the present section in order to study the influence of the laser parameters on
the part model. The variation in laser power and scan speed not only results in different
cuboid heat sources, but also in distinct scan times ttot for the scan island. For the
results of the part model, the parameters of the lower scales are defined as follows:

Laser scan model The Goldak heat source parameters are kept constant with
a = b = 0.8 mm and c = 0.9 mm, whereas the absorption coefficient is set to ηab = 0.5,
cf. Remark 14. The laser power and scan speed is varied as defined in Table 5.5. It is
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5 A multiscale framework using the inherent strain method

assumed that a conduction mode is present for all parameter sets, see Remark 10. In
addition, a dissipation parameter ηξ = 0.001 is used. The diameters of the melt pool
for the laser scan model are also summarised in Table 5.5. It is reasonable that, with
decreasing velocity, the diameters of the melt pool increase while an intensification of
power also elevates the size.

Table 5.5: Overview of extracted Goldak heat source parameters for varied laser parameters.

Laser power P Scan speed vlsr Width dGw Depth dGd

180 W 1.2 mm/ms 0.14 mm 0.06 mm
180 W 1.0 mm/ms 0.14 mm 0.08 mm
180 W 0.7 mm/ms 0.18 mm 0.10 mm
250 W 1.2 mm/ms 0.14 mm 0.08 mm
250 W 1.0 mm/ms 0.18 mm 0.10 mm
250 W 0.7 mm/ms 0.22 mm 0.12 mm

Remark 14. The parameters for the heat source are adapted from [30], whereas the
absorption coefficient is used from [103] without further experimental validation. Overall,
the range of the absorption coefficients for the titanium aluminium and the semi-axes
of the Goldak heat source are rather large in literature, cf. [103] and [108]. In the
following, it is noticed that the size of the heat source and the absorption coefficient not
only influence the size of the melt pool, but also the maximum temperature of the model.

Layer hatch model A standard island size of llyr = 5 mm is used for the model at
hand. A layer height of hlyr = 0.03 mm independent of the melted region is present.
The obtained results for all inherent strain coefficients are summarised in Table 5.6.
For lower scan speeds, especially the normal inherent strain component in x2-direction
decreases, as well as the shear component εinh23 . In contrast, the x1-component marginally
increases.

Before presenting the results of the part model, the values extracted for the inherent
strain tensor with the present modelling approach shall be compared to values in liter-
ature. The explicit values as obtained by these approaches established in the literature
are summarised in Table 5.7. It is obvious that some models yield volume conserving in-
herent strains, which is physically not sound regarding the overall phase transformation
process from powder to re-solidified material. In addition, there is a discrepancy regard-
ing the normal component εinh33 , which is sometimes set to zero, compare Remark 11.
Hence, only the εinh11 - and ε

inh
22 -contributions are considered when experimentally deter-

mining the inherent strain. In contrast, all components of the extracted inherent strain
specified in Table 5.6 directly follow from the modelling framework presented here with-
out further modifications. Altogether, the extracted εinh11 - and ε

inh
22 -components lie in the

same range as the results obtained by the models presented in the aforementioned refer-
ences for Ti6Al4V. The calculated εinh33 -components are physically sound as a shrinkage
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5 A multiscale framework using the inherent strain method

Table 5.7: Literature overview of inherent strains for Ti6Al4V.

Reference
Averaged inherent strain εinh

εinh11 εinh22 εinh33

[103] -0.0069 -0.002 0.008
[30] -0.02 -0.01 0.015
[160] -0.0047 -0.002 0
[158] -1⋆ -0.33⋆ 0 ⋆ normalised value
[143] 0.001 0.001 -0.002

rather than an expansion is expected due to the different densities of powder and solid.
In e.g. [103], it is stated that the shear components are neglected, as these are minor
compared to the normal components. This is not supported by the present results,
where the εinh23 -component significantly contributes to the total inherent strain. This
shear component is also explicable as the process is non-symmetric.

A more complex material model for the single melt track or layer hatch model will
result in a new and possibly longer calculation of these two scales. However, one main
advantage is that the resulting (quantitatively improved) inherent strains are still appli-
cable for an efficient simulation of the part model.

Influence of laser parameters

Table 5.8: Overview of maximal u3-displacement for a constant 90◦ layer-wise (short) scan pattern and
varied laser parameters.

Laser power P Scan speed vlsr Max. u3-displacement

180 W 1.2 mm/ms -4.247 mm
180 W 1.0 mm/ms -4.040 mm
180 W 0.7 mm/ms -3.524 mm
250 W 1.2 mm/ms -4.449 mm
250 W 1.0 mm/ms -3.879 mm
250 W 0.7 mm/ms -3.368 mm

First, a uniform scan pattern of 90◦ layer-wise (short), compare Figure 5.6, is used to
study the influence of the final deformation of the twin cantilever beam based on different
laser parameters. The results for the maximum deflection in x3-direction after changing
the boundary conditions, i.e. cutting the part from the build platform, except from the
middle feet, are summarised in Table 5.8. In Figure 5.21, the displacements at the top
longitudinal edge of this workpiece in the different directions are plotted. Generally, the
u1-displacements in Figure 5.21a occur due to the longitudinal necking and are symmetric
as explained in e.g. [104]. The change in the u2-displacements in Figure 5.21b arises due
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P = 250 W, vlsr = 1.2 mm/ms
P = 250 W, vlsr = 1.0 mm/ms
P = 250 W, vlsr = 0.7 mm/ms

P = 180 W, vlsr = 1.2 mm/ms
P = 180 W, vlsr = 1.0 mm/ms
P = 180 W, vlsr = 0.7 mm/ms

P = 180 W, vlsr = 0.7 ∧ 1.2 mm/ms

P = 250 W, vlsr = 0.7 ∧ 1.2 mm/ms

Figure 5.21: Displacements along x1-coordinate at the top edge of the twin cantilever beam, along the
path A-B as indicated in Figure 5.20, in the respective direction for the corresponding laser parameter
sets. Reprinted from [129] under the terms of the Creative Commons Attribution License (CC BY).
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Figure 5.22: Distribution of σvM-stress and deformed configuration for different laser parameters:
(5.22a) vlsr = 0.7 mm/ms and P = 180 W, (5.22b) vlsr = 0.7 mm/ms and P = 250 W, (5.22c)
and (5.22d) combination of vlsr = 0.7 mm/ms for upper continuous layers and vlsr = 1.2 mm/ms for
ribs with (5.22c) P = 180 W and with (5.22d) P = 250 W. Reprinted from [129] under the terms of the
Creative Commons Attribution License (CC BY).

to the different εinh12 contributions, see Table 5.6. A non-zero value results in a non-
symmetric course of the curve. Here, the slowest scan speed vlsr = 0.7 mm/ms for both
laser powers results in the lowest u3-displacement at both ends of this construction,
cf. Figure 5.21c. All u3-displacements are symmetric for the examined scan patterns.
Altogether, the smallest u3-displacement is found for the parameter set P = 250 W
and vlsr = 0.7 mm/ms. The corresponding equivalent von Mises stress σvM and the
deformed configuration (with scale-factor one) for the lowest scan speed is illustrated in
Figures 5.22a and 5.22b. This coincides with the findings related to Table 5.6, where
an increased laser speed seems to introduce larger eigenstrains. For the laser power
P = 250 W the variation in displacement is more pronounced than for P = 180 W. This
also correlates to the values of the extracted inherent strains in Table 5.6.

It has been examined that the residual stresses are mainly induced by the εinh11 - and
εinh22 -contributions. In Figure 5.23, the stress distribution along the centred path in x1-
and x3-direction is plotted for the σ11-, σ22- and σvM-contributions. Even though the
values of εinh11 vary more than the εinh22 -contributions, cf. Table 5.6, this is not the case
for the stress distribution, compare Figures 5.23a and 5.23b. In view of the equivalent
von Mises stress in Figure 5.23c, mainly the laser power P seems to influence the stress
level, rather than the laser speed vlsr. All other stress components are negligibly small
compared to σ11 and σ22 and are therefore not explicitly displayed.

In general, a minimum deflection with uniformly distributed residual stresses and a
fast production cycle is favourable. To gain less deflection, lower scan speeds should
be chosen. However, the production time increases with decreasing scan speed, cf.
Table 5.6. Obviously, these two goals require opposing scan strategies. A possible
solution to obtain an appropriate compromise is to use different scan patterns for the
ribs and the upper solid layers. If, for example, the cantilever is produced with a
combination of scan speeds, the production time can be minimised. It is interesting to
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P = 250 W, vlsr = 1.2 mm/ms
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P = 250 W, vlsr = 0.7 mm/ms

P = 180 W, vlsr = 1.2 mm/ms
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Figure 5.23: Stress distributions along x1-coordinate (white) with x1(x2 = 0, x3 = 0) and x3-coordinate
(grey) with x3(x1 = 40, x2 = 0) at the centre of the twin cantilever beam, along the path C-D-E as
indicated in Figure 5.20, in the respective direction for the corresponding laser parameter sets. Reprinted
from [129] under the terms of the Creative Commons Attribution License (CC BY).
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see in Figure 5.21c that the deflection does not increase if the ribs are manufactured
with a scan speed vlsr = 1.2 mm/ms, whereas the upper solid layers are manufactured
with vlsr = 0.7 mm/ms. With these parameter choices, the deflection still coincides with
the one of a constant scan speed of vlsr = 0.7 mm/ms, as visualised in Figure 5.21. In
view of the von Mises stress σvM, only some minor differences are visible, as illustrated in
Figures 5.22 and 5.23c. The same conclusion can be drawn when examining the σ11- and
σ22-distributions in Figures 5.23a and 5.23b, respectively. Therefore, the use of faster
scan speeds for the ribs can significantly reduce the production time while the distortion
remains low.

Influence of scan pattern

σvM [GPa]
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(c) (d)
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Figure 5.24: Distribution of σvM-stress and deformed configuration of twin cantilever beam for different
scan patterns: (5.24a) 00◦ layer-wise (long), (5.24b) 90◦ layer-wise (short), (5.24c) 00 − 90◦ rotating
pattern, (5.24d) 60◦ layer-wise, (5.24e) 45◦ layer-wise, (5.24f) 45 − 135◦ rotating pattern. Reprinted
from [129] under the terms of the Creative Commons Attribution License (CC BY).

Next, the influence of different scan patterns is examined, whereby the optimal pa-
rameter set is taken with P = 250 W and vlsr = 0.7 mm/ms. The manufacturing of
the twin cantilever beam is simulated by using six different scan patterns, where the
equivalent von Mises stress and the deformed configuration (with scale-factor one) is
shown in Figure 5.24. The σ11- and σ22-coefficients as well as the σvM-distribution along
a specific path in x1- and x3-direction are plotted in Figure 5.25. The results in terms
of displacements are illustrated in Figure 5.26. Some specific aspects shall be discussed
in the following.

When examining the displacements, it has to be distinguished between layer-wise
scanning and rotating patterns. The results for the rotating patterns are rather sym-
metric. In contrast, especially for the non-symmetric 60◦ and 45◦ layer-wise scanning,
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Figure 5.25: Stress distributions along x1-coordinate (white) with x1(x2 = 0, x3 = 0) and x3-coordinate
(grey) with x3(x1 = 40, x2 = 0) at the centre of the twin cantilever beam, along the path C-D-E as
indicated in Figure 5.20, in the respective direction due to different scan patterns. Reprinted from [129]
under the terms of the Creative Commons Attribution License (CC BY).
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Figure 5.26: Displacements along x1-coordinate at the top edge of the twin cantilever beam, along
the path A-B as indicated in Figure 5.20, in the respective direction due to different scan patterns.
Reprinted from [129] under the terms of the Creative Commons Attribution License (CC BY).
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Figure 5.27: Stress contributions σ11 (first row), σ22 (second row) and σ33 (third row) and deformed
configuration of half of twin cantilever beam for different scan patterns: (5.27a) 00◦ layer-wise (long),
(5.27b) 90◦ layer-wise (short), (5.27c) 00− 90◦ rotating pattern. Reprinted from [129] under the terms
of the Creative Commons Attribution License (CC BY).

the twin cantilever beam is significantly twisted as visualised in Figure 5.26b and Fig-
ures 5.24d and 5.24e (scale-factor one). For these cases, the u3-displacement at both
edges is also different, compare Figure 5.26c. Here, also non-symmetric von Mises stress
distributions are visible. Interestingly, the torsion of the twin cantilever beam is in-
significant for the 45 − 135◦ rotating pattern. The highest necking and deformation
while having the lowest σ11- and σ22-contributions, compare Figures 5.25a and 5.25b,
respectively, are present for 00◦ layer-wise scanning as also pictured in Figure 5.24a,
whereas the contrary behaviour is present for 90◦ layer-wise, cf. Figure 5.24c.

The general results are qualitatively comparable with the normalised vertical distor-
tion shown in [158] and the longitudinal necking shrinkage behaviour reported in [104].
In general, the least bending of the specimen is present for the 90◦ scanning, see also [94].
Due to the different scan patterns, distinct maximal temperatures and temperature gra-
dients are present in the physical process. For this modelling approach, temperature
is only a degree of freedom in the laser scan model and layer hatch model. However,
varying the scan pattern indirectly affects the results of the part model which can be ex-
plained due to the theoretical temperature history. The laser takes different time spans
to reach the neighbouring laser track. While the highest temperature input is present
for 90◦ layer-wise, the lowest is necessary for 00◦ layer-wise. It is concluded that, among
other reasons, the residual stresses are reduced by lower thermal gradients, also referred
to as temperature gradient mechanism, e.g. [33, 119]. When focusing on specific stress
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5 A multiscale framework using the inherent strain method

contributions in detail, cf. Figures 5.27b, 5.27a, 5.25a and 5.25b, the stresses are higher
for 90◦ layer-wise in comparison to 00◦ layer-wise. Especially in the centred support
structure, a difference becomes visible for σ11 and σ22-contributions between 00◦ and 90◦

layer-wise scan patterns. In general, the highest stresses can be found in x3-direction.
For the 00 − 90◦ rotating scan pattern, it is visible in Figure 5.27c how the σ11- and
σ22-contributions are rotated for each layer due to the prescribed inherent strain pat-
tern. Thus, the stress distribution and magnitude distinctly changes. As can be seen in
Figure 5.25c, the von Mises stress distribution σvM is the lowest for 00− 90◦. Therefore,
rotating scan patterns may be favourable in terms of stress distributions. The highest
magnitude is visible for 90◦. However, the least bending is present for this scan pattern,
cf. Figure 5.26c.

In summary, two different effects can be observed, compare Table 5.6. On the one
hand, lower scan speeds, for example across the height of the structure, reduce the εinh22 -
component, while εinh11 is kept rather constant. On the other hand, a higher laser power
increases the εinh11 -component, but does not change the inherent strain magnitude of εinh22

for constant scan speeds. However, a higher laser power and lower scan speed increase
the melt pool size. The simulations show that the use of different scan speeds for the ribs
and the twin cantilever beam itself influences the overall deformation only marginally,
whereas the manufacturing time of one production cycle is significantly reduced. Dis-
tortion of the workpiece is present for non-symmetric layer-wise scan patterns, whereas
rotating scan patterns are preferential in terms of the σ11- and σ22-distribution.

Overall, however, the von Mises stress is far beyond the yield limit of Ti6Al4V. The
yield limit of the titanium aluminium alloy is only taken into account for the laser scan
and layer hatch model, cf. eqs. (5.5) and (5.14), respectively. In contrast, a purely
elastic material model is used for the complete part, see eq. (5.22). This is the current
standard approach for the IS method, cf. [30, 103, 143, 158]. The question arises as
to whether plasticity should be additionally considered for the part model in order to
reduce the overall stress response to a realistic magnitude. This is the case for the inverse
experimental approach in e.g. [160].
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C Appendix

C.1 Implementation of inherent strain method using the
AM-Modeler

The main advantage of the AM-Modeler lies in the simulation of more complicated scan
patterns, e.g. island scan patterns. However, using this special purpose technique is
not that straightforward. In the Abaqus manual, compare [1], the relevant information
is summarised under additive manufacturing process simulation. If the inherent strain
method shall be used, this is referred to as eigenstrain-based simulation of additive man-
ufacturing processes. For the multiscale approach, a layer-by-layer activation approach
is used, which leads to a pattern-based eigenstrain analysis. This is in contrast to a
trajectory-based eigenstrain analysis, in which elements are activated according to the
trajectory of e.g. the path of the laser beam in LPBF processes.

Table 5.9: Overview of necessary parameter tables ABQ AM EigenStrain keyword for the table collection
ABQ EIG.name of an eigenstrain based analysis using the AM-Modeler.

Keyword Content

Method ”PatternBased” activation
Define components of eigenstrain tensor εinh

PatternBased Activation build parameters for layer activation, e.g. layer
thickness, coordinate system, time,

PatternBased Define patch/island of scan pattern with local rotation an-
gle, size and eigenstrain

PatternBased ScanStrategy Define region of particular scan pattern strategy, i.e. patch/
island, with global rotation angle between layers

PatternBased ScanStrategies list of labels of former keyword, e.g. to realise differ-
ent scan strategies based on part height

PatternBased Advanced ”layerbylayer” activation

In general, python scripts can be used to generate more complicated models in
Abaqus. If the AM-Modeler shall be used, this database has to be imported by us-
ing the appropriate system path and subsequently installed. The regular model can
then be imported, creating the corresponding AM-Model. Characteristic for this special
purpose technique of an eigenstrain analysis is that a table collection has to be specified
beginning with ABQ EIG.name. Within this table collection, different parameter tables
of the type ABQ AM EigenStrain keyword have to be included as summarised in Ta-
ble 5.9. In addition, the progressive element activation has to be defined. In the case of
a pattern-based eigenstrain analysis, usually a complete layer is activated at once. Two
steps are then necessary for the simulation: First, all layers are consecutively activated
and the respective inherent strains are applied based on the predefined scan pattern.
This is done via activate elements referring to the progressive element activation and
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5 A multiscale framework using the inherent strain method

by using the table collection ABQ EIG.name. Secondly, the boundary conditions are
deactivated to release stresses and to visualise the warpage.

C.2 Influence of dissipation parameter ηξ

The influence of the dissipation parameter ηξ shall be briefly discussed. The liquidus
and solidus temperatures for the titan aluminium alloy Ti6Al4V are given in [25] as
1923.15 K and 1878.15 K, respectively. The temperature range between liquidus and
solidus depends on the used material and is rather small for the material at hand. To
model a smooth transition of ζmel due to the evolving temperature, the parameter ηξ

is introduced in the time dependent dissipation function Cξ, compare eq. (4.43). As
the dissipation quantity ηξ is incorporated into the material model as a viscous-type
quantity, the time and thus the laser beam velocity influences the result as well. In
addition, the parameter also increases the numerical stability of the local FE-scheme in
view of the time step size. To show the influence of the parameter ηξ on the evolution of
the molten pool, different dissipation parameters are used for a representative example
with P = 250 W and vlsr = 1.2 m/s, as visualised in Figure 5.28. The temperature
evolution in Figure 5.28a is almost independent of the values chosen for ηξ, only the peak
temperature increases visibly with larger ηξ. It becomes obvious that evaporation would
exist for this material parameter combination, which shall not further be discussed at
this point, compare Remark 12. However, the corresponding distribution of the molten
mass fraction ζmel as illustrated in Figure 5.28b varies considerably. For increasing ηξ, the
time span extends, mainly due to the longer conversion from molten to the re-solidified
material. Without parameter ηξ, two jumps of the molten mass fraction ζmel would exist.

C.3 Influence of thermomechanical coupling rmech

For the dissipation parameter ηξ = 0.002, an exemplary temperature evolution θ and the
corresponding mass fraction of the molten phase ζmel are visualised for a centred element
of the laser scan model, see Figure 5.29. Here, the temperature and mass fraction of an
uncoupled model, where rmech as introduced in eq. (2.62) is neglected, and of the coupled
model at hand is illustrated. It becomes apparent that the thermomechanical coupling
considerably influences not only the temperature but also the mass fraction evolution.
Thus, it is important to incorporate the quantities for volumetric heat generation RPL

within the Abaqus subroutine UMAT. The temperature plateau for the fully coupled model
(solid line) is observable due to the influence of the latent heat of fusion. For the coupled
model, a mixed region of powder and molten material is present between 1970 K and
5800 K and between molten pool and re-solidified material between 1830 K and 1711 K.
The procedure based on which the temperatures θmelt and θsolid are extracted is explained
in Section 5.2.2. The material in the layer hatch model will be completely solidified when
θsolid is reached, which lies within the temperature plateau.

140



C Appendix

(a)

time t [ms]

7000

6000

5000

4000

3000

2000

1000

0.0 0.5 1.0 1.5 2.0

ηξ = 0.0005
ηξ = 0.001
ηξ = 0.002
ηξ = 0.004

te
m
p
er
at
u
re

θ
[K

]

(b)

time t [ms]

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0

ηξ = 0.0005
ηξ = 0.001
ηξ = 0.002
ηξ = 0.004

m
ol
te
n
m
as
s
fr
ac
ti
on

ζ m
e
l

Figure 5.28: Evolution of temperature θ (5.28a) and molten mass fraction ζmel (5.28b) to show the
influence of ηξ for a centred element with laser parameters P = 250 W and vlsr = 1.2 m/s. Reprinted
from [129] under the terms of the Creative Commons Attribution License (CC BY).

C.4 Layer lumping

To gain reasonable results in terms of final deformation and residual stress, a case study
based on the modelling of explicit layer numbers is performed, cf. [103]. The results for
the twin cantilever beam are summarised in Figure 5.30, where a constant 90◦ layer-wise
scan pattern is used. For a workpiece height of 8.0 mm with a layer height of 0.03 mm,
267 physical layers are necessary to manufacture the part. The simulations are performed
for up to 188 physical layers, which means that two layers are lumped. Lumping describes
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Figure 5.29: Evolution of temperature θ (solid) and molten mass fraction ζmel (dashed) in the middle of
the melt pool for coupled model (blue) and uncoupled model (grey) with laser parameters P = 250 W
and vlsr = 1.2 m/s, while ηξ = 0.002. Reprinted from [129] under the terms of the Creative Commons
Attribution License (CC BY).

how many layers are consolidated in the simulation. In Figure 5.30a, the u3-displacement
vs. the equivalent layer number is visualised, whereas in Figure 5.30b the displacement
vs. the number of lumped layers is illustrated. The displacement variance decreases for
increasing equivalent layer numbers. As the simulation time increases with increasing
equivalent layer numbers, the twin cantilever beam is simulated with 38 equivalent layers
which corresponds to seven lumped layers. For this value, the change in u3-displacement
is minor.
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Figure 5.30: u3-displacement vs. equivalent layer number (5.30a) and vs. lumped layer number (5.30b)
for constant laser parameters with P = 250 W and vlsr = 0.7 m/s and 90◦ layer-wise scan pattern.
Reprinted from [129] under the terms of the Creative Commons Attribution License (CC BY).
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6 A phase transformation model for
titan aluminium alloys

Titan aluminium alloys as, e.g., Ti6Al4V, belong to the group of α-β-alloys,
which are used for many applications in industry due to their advantageous mechanical
properties. For LPBF processes, Ti6Al4V is one of the most frequently used titanium
alloys, compare, e.g., [45]. Therefore, this alloy is used for all process simulations in
Chapters 3 to 5. However, the composition of the crystal structure and the respective
magnitude of the solid fraction highly influences the material properties of titan
aluminium alloys. Specifically, the thermal history, i.e. the cooling rate, determines the
phase composition and microstructure for example during heat treatment and LPBF
processes. For that reason, this chapter introduces a phase transformation framework
based, amongst others, on energy densities and thermodynamically consistent evolution
equations similar to Chapter 4, which is able to capture the different material composi-
tions in the solid-state resulting from various cooling and heating rates. The evolution
of the underlying phases is governed by a specifically designed dissipation function,
the coefficients of which are determined by a parameter identification process based on
available continuous cooling temperature (CCT) diagrams. In order to calibrate the
model and its preparation for further applications such as the simulation of additive
manufacturing (AM) processes, these CCT diagrams are computationally reconstructed.
In contrast to empirical formulations, the developed thermodynamically consistent and
physically sound model can straightforwardly be extended to further phase fractions
and different materials. With this formulation, it is possible to predict not only the
microstructure evolution during processes with high temperature gradients, as occurring
in, e.g., LPBF processes, but also the evolving strains during and at the end of the
process on a local scale.

This chapter is structured as follows: At first, more insight into the material prop-
erties of the titan aluminium alloy is given in Section 6.1. In Section 6.2, the general
concept of the melt-solid-solid phase transformation framework with an extended dissi-
pation function is presented. Thereafter, the algorithmic implementation is summarised
in Section 6.3, where a focus is set on the parameter identification process for the dissi-
pation function. In Section 6.4, the reproduced CCT diagram and examples of different
boundary value problems on a local scale demonstrate the capability of the model at
hand.
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6 A phase transformation model for titan aluminium alloys

6.1 Material properties of titan aluminium alloy Ti6Al4V

Ti6Al4V belongs to the group of α-β-alloys, which possess different phases with distinct
crystal structures, compare Figure 6.1. Therefore, consideration of the transitions be-
tween the β- and the different α-phases is of great importance for the modelling and
simulation of, e.g., LPBF processes. Table 6.1 gives an overview of the chemical com-
position. It influences the volume fractions of the α- and β-phases along specific tem-
perature paths. The α-phase is stabilised by aluminium and the β-phase is stabilised
by vanadium. In addition, the β-transus temperature θβ,trans depends on the material
composition. Especially the content of oxygen, as well as the heat treatment define the
final crystal structure of the material. The α-phase can consist of lamellar or equiaxed
microstructures as well as a combination of both, see [25, 98] for further information.
The lamellar structure of the α-phase can be influenced by the cooling rate or heat treat-
ment with e.g. furnace, air, water or gas. This may result in plate-like α-, acicular α-,
Widmanstaetten α-, hcp martensite α′- or in orthorhombic martensite α′′-phases. Based
on the resulting microstructure, the thermal and mechanical properties of the titanium
alloy differ significantly, respectively are considerably influenced.

bcc (body centred cubic) hcp (hexagonal closed packed)

a1

a1 a2

c

α-phaseβ-phase

Figure 6.1: Crystal structures of unit cell for β- and α-phases of Ti6Al4V with lattice parameters
a1 = 0.319 nm for bcc and a2 = 0.2925 nm, c = 0.4670 nm for hcp, cf. [25]. Reprinted from [130] under
the terms of the Creative Commons Attribution License (CC BY).

Table 6.1: Chemical composition of Ti6Al4V (mass fraction in %) according to, e.g., DIN EN ISO
5832-3 [44].

Element Al V Fe O N C H Ti

min. 5.50 3.5 – – – – – balance
max. 6.75 4.5 0.30 0.20 0.05 0.08 0.015 balance
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6.1 Material properties of titan aluminium alloy Ti6Al4V

Especially high heating and cooling rates (up to 103-108 K/s) are characteristic dur-
ing and shortly after the material is heated by the laser beam, cf. [17, 105, 117, 166].
In addition, process parameters influence the overall temperature history and thus the
microstructure, resulting in fine acicular α′-martensite structures, as illustrated in Fig-
ure 6.2a, or in β-grain boundaries with α′-martensites in-between, cf. [137, 163]. Subja-
cent layers and previous melt tracks exhibit significantly different temperature gradients,
while low rates are present during the final cooling period. If subsequent annealing is
used, a new and distinct temperature cycle is applied to the material changing the over-
all microstructure, compare Figure 6.2b, and mechanical behaviour, cf. the experimental
investigations in [105, 111, 178].

(a) (b)

Figure 6.2: In-plane microstructure of Ti6Al4V parts manufactured by LPBF: (6.2a) as fabricated
(P = 280 W, vlsr = 1.2 m/s) resulting in complete α′ martensite with herringbone pattern and columnar
grains due to alternating scanning direction, (6.2b) heat treated at 900◦ C resulting in ≈30% β-phase.
Reprinted from Journal of Alloys and Compounds, 782, Liang, Z., Sun, Z., Zhang, W., Wu, S., Chang,
H., The effect of heat treatment on microstructure evolution and tensile properties of selective laser
melted Ti6Al4V alloy, 1041–1048, Copyright (2019), with permission from Elsevier, [105].

Therefore, not only time temperature transformation (TTT) diagrams, but mostly
CCT diagrams are necessary to understand the material’s behaviour and to calibrate
material models. Experimental studies of β → α phase transformation during contin-
uous cooling can be found in, e.g., [4, 39, 74, 115, 144]. In the previously mentioned
literature, one has to distinguish between cooling curves that were actually measured on
the specimen, also denoted as part, and are therefore not constant in the cooling rate θ̇
(e.g. [4, 39, 167]) and constant cooling curves (e.g. [74, 115]), where the prescribed
constant temperature rate θ̇ is used to construct the CCT diagram. A schematic CCT
diagram was first published in [4], compare Figure 6.3, where the continuous cooling by
using water or helium gas was monitored by thermocouples. An overview of different
critical cooling rates and characteristic temperatures is provided in Tables 6.2 and 6.3.

In [115], experimental investigations on the time-dependent evolution of phase frac-
tions are presented. This evolution is generally characterised by an asymptotic behaviour
towards values of zero and one. Furthermore, a clear tendency towards faster transforma-
tions for higher cooling rates is shown. In addition, at slow cooling rates it is observed
that the considered specimen exhibits a residual β-phase fraction of 9% in the final
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treatment at θ = 1323 K for 30 min

β

β → α

β → α′

β → α′ + α+ β

β → α+ β

temperature θ [K]

time t [s]

-525 K/s -410 K/s

-20 K/s

-1.5 K/s

θβ,trans

Ms

Figure 6.3: Schematic CCT diagram for Ti6Al4V. At the temperature θβ,trans, the β-phase first trans-
forms (partially) into the α-phase. Subsequently, different α-phases form depending on the temperature
and cooling rate, where Ms refers to the martensitic start temperature. Reprinted from Materials Sci-
ence and Engineering, 243, Ahmed, T., Rack, H., Phase transformations during cooling in α+β titanium
alloys, 206-2011, Copyright (1998), with permission from Elsevier, [4].

cooled state. In [74], it is reported that the amount of residual β-phase depends on
the cooling rates ranging from 12.7% for higher cooling rates to 6.5% for lower cooling
rates. The experimentally obtained results shown in [167] also confirm the occurrence
of residual β-phase. The state of research uniformly confirms that the morphology of
the α-phase depends on the cooling rate: decreasing the cooling rate results in increased
lamella, respectively grain size, whereas the morphology changes from Widmannstaetten
lamellas to equiaxed grain.

Table 6.2: Literature overview of critical cooling rates θ̇ for the different transformation possibilities of
Ti6Al4V.

Reference Diffusive Mixed Diffusionless (martensitic)
β → α+ β β → α′ + α+ β β → α′

[4] < 20 K/s 20 – 410 K/s > 410 K/s
[115] 0.167 – 0.83 K/s - -
[74] 0.01 – 10 K/s - 18 – 200 K/s
[39] 0.012 – 2.5 K/s 7.3 K/s 23.1 K/s
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Table 6.3: Literature overview of characteristic temperatures of Ti6Al4V during cooling.

Reference β-transus Martensitic start Martensitic finish
θβ,trans Ms Mf

[4] 1267 K 848 K -
[115] 1243 K - -
[144] 1268 K - -
[74] 1243 K 1143 K 998 K
[39] 1243 K 1188 K 963 K

6.2 Constitutive framework

The phase transformation framework is based on the consideration of two solid phases,
which is important for the underlying titan aluminium alloy as explained in Section 6.1.
In analogy to Chapter 4, the constitutive framework is briefly summarised in the fol-
lowing. For the current material model, three distinct phase energy densities are used,
namely the molten phase, the solid β-phase and the solid α-phase, which are introduced
in Section 6.2.1. In addition, the homogenisation approach is recapitulated. Further-
more, the evolution equations with the corresponding parameters are introduced, which
are used to adapt the material behaviour of the phase transformation model for different
cooling rates. In contrast to Chapter 4, the focus is set on a non-standard dissipation
function, which is introduced in Section 6.2.2.

6.2.1 Material model

The constitutive framework used in this work is based on the model established in
Section 4.1. While focusing on the transformation from the molten to the solid phases
in the present work, the framework of Chapter 4 is extended in terms of the consideration
of two solid-phases, namely the β- and α-phases. As this work proceeds, no distinction
between α- and α′-phases shall be made and the material behaviour in the solid phases
is assumed purely elastic. However, related model extensions would be possible in a
straightforward manner.

First, the phase energy density of the molten phase is introduced in a small strain
setting as

ψmel :=
1

2

[
εmel − εtransmel

]
: Emel :

[
εmel − εtransmel

]
− c̃mel θ ln(θ)− Lmel

θ − θrefmel

θrefmel

, (6.1)

where ε• refers to the total strain, E• represents the fourth-order isotropic elasticity
tensor, c̃• = ρ• c denotes the weighted heat capacity, θ is the absolute temperature,
and L• = ρ• L indicates the weighted latent heat with reference temperature θref• of the
corresponding phase. Moreover, εtransmel determines the transformation strains between
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6 A phase transformation model for titan aluminium alloys

the solid and molten phase, compare eq. (4.10) and Remark 15. The visco-elastic strain
contributions considered in Section 4.1 are neglected here since these mainly evolve
during the powder-melt transformation which is not taken into account in the present
work.

In addition, the respective energy densities of the solid phases are defined as

ψsol,β :=
1

2

[
εsol,β − εinelsol,β

]
: Esol,β :

[
εsol,β − εinelsol,β

]
− c̃sol,β θ ln(θ)− Lsol,β

θ − θrefsol,β

θrefsol,β

,

(6.2)

ψsol,α :=
1

2

[
εsol,α − εinelsol,α

]
: Esol,α :

[
εsol,α − εinelsol,α

]
− c̃sol,α θ ln(θ) , (6.3)

where

εinelsol,• = εthsol,• + εtranssol,• (6.4)

determines the inelastic strain contributions of the respective solid phase. A transfor-
mation strain εtranssol,• and a thermal strain εthsol,• is considered for the solid phases to take
into account the shrinkage after melting and the expansion, respectively shrinkage due
to the heat input. The thermal strains are included based on a standard linear heat ex-
pansion approach with the isotropic heat expansion coefficient αsol,• and the respective
reference temperature θrefsol,•, compare eq. (3.45), while the solid-transformation strain
which is assumed to be spherical is based on eq. (4.10). Further enhancements of the
material model are possible, compare Section 4.1, where visco-elasticity and plasticity
are incorporated, and Section 5.1.1, where visco-plasticity is considered.

Remark 15. The (infinitesimal) initial volume dV0 is defined based on eq. (4.8). Here,
the initial mass density ρ0 is defined by the mass density of the initially present phase,
i.e. either melt or solid-β in the present work, which depends on the boundary value
problem. With this at hand, it is possible to derive the transformation strain according
to eq. (4.10).

Based on the approach of homogenisation via energy relaxation, compare e.g. Sec-
tions 3.1.1 and 4.1.3, material models can be developed that are unconditionally ther-
modynamically consistent and mathematically well-posed. The basic approach stems
from martensitic phase transformations, where volume fractions and the averaged vol-
ume specific energy are used, see, e.g., [135]. For the application at hand, the algorithm
is formulated with respect to the mass fractions ζ• = dm•/dm0, compare eq. (4.13),
where dm• corresponds to the mass contribution of phase • and dm0 to the initial mass,
both referred to a material point. In consequence, the averaged mass specific energy Ψ
can be introduced based on the different mass densities in the solid and molten phase,
see Chapter 4 for a more detailed overview. Moreover, it is possible to relate the mass
fractions ζ• to the volume fractions ξ• via eq. (4.14). The overall energy Ψ is calculated
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via a linear mixture rule of the mass specific phases Ψ as defined in eq. (4.15). This
averaged energy density is minimised subject to the constraints of feasible mass fraction
domains, i.e. ζ• ∈ A with

A := {0 ≤ ζ• ≤ Rup
• , ζmel + ζsol,β + ζsol,α = 1} , (6.5)

and the domain of the admissible strain distributions, also denoted compatibility condi-
tion, i.e. ε• ∈ E with

E = {ζmel εmel + ζsol,β εsol,β + ζsol,α εsol,α = ε} . (6.6)

Therein, Rup
• defines the upper bound of the respective mass fraction •, which will be dis-

cussed in Section 6.3.1. The constrained minimisation as introduced in eq. (4.21) would
result in the so-called convex hull CΨ of Ψ , which is identical to the Reuss bound. In the
present approach however, only the different total strains in each phase are determined
via

{ε•} = arg inf
ε•∈E

Ψ . (6.7)

The evolution of mass fractions is, in contrast to strains, associated with dissipation
and thus treated differently as discussed in the subsequent section. The evolution of
mass fractions is, in contrast to strains, associated with dissipation and thus treated
differently as discussed in the subsequent section. In line with the hyperelastic format,
stresses are determined via eq. (4.31).

6.2.2 Evolution equations

As indicated above, the evolution of volume, respectively mass fractions is associated
with dissipation. According to, e.g., [22], and already applied in Section 4.1.4, variational
principles can be used to define

∂ψ

∂ξ•
+
∂C
∂ξ̇•

= 0 (6.8)

as representation of evolution equations for the variables ξ• depending on the dissipation
function C. Therein, notation •̇ indicates the derivative with respect to time. The first
term in eq. (6.8) includes the so-called driving forces F• := −∂ξ•ψ. In the present work,
the dissipation function is chosen as

C =
∑
•

Y•|ξ̇•|+
η•
2
ξ̇•

2 − C ′•(ξ•)|ξ̇•| . (6.9)

151



6 A phase transformation model for titan aluminium alloys

The coefficients Y• ≥ 0 and η• ≥ 0 can be interpreted as a threshold Y• where the phase
transformation is initiated, and as a viscosity-like parameter η• that influences the range
of the (rate-dependent) phase transformation. For further insight into these parameters,
the interested reader is referred to [16] and Remark 16. The additional term C ′•(ξ•) is
here defined as

C ′•(ξ•) = a•1 ξ• + a•2 ξ
2
• + a•3 ξ

3
• (6.10)

and adopted from [16], where bainitic phase transformations are considered. As shown
in [115], Ti6Al4V behaves quite similarly to bainite in terms of the evolution of phase frac-
tions, in particular for slow cooling rates, as visualised in Figure 6.4, see also Remark 16.
The coefficients Y•, η•, a•1, a•2 and a•3 significantly affect the material behaviour. There-
fore, special attention will be paid to the determination of these coefficients in Section
6.3.3.
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Figure 6.4: Transformed mass fraction ζsol,α as a function of time, where a ”fully” completed trans-
formation corresponds to 91% of ζsol,α and 9% remaining ζsol,β in the transformed state. Reprinted
from Metallurgical and Materials Transactions A, 32(4), Malinov, S., Guo, Z., Sha, W., Wilson, A.,
Differential scanning calorimetry study and computer modeling of β → α phase transformation in a
Ti-6Al-4V alloy, 879–887. Copyright (2001), with permission from Springer Nature, [115].

With the specific choice for the dissipation function at hand, the evolution equation
introduced in eq. (6.8) for each phase fraction is in general given by

−F• + [Y• − C ′• (ξ•)] sign
(
ξ̇•

)
+ η• ξ̇• = 0 (6.11)
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leading to

ξ̇• =
1

η•
⟨|F•| − Y• + C ′• (ξ•)⟩ sign (F•) , (6.12)

where

⟨•⟩ = max {•, 0} (6.13)

refers to the Macaulay brackets. As discussed in [16], the non-standard format of the
dissipation function requires the investigation of thermodynamic consistency. In this
context, it must be shown that

C ≥ 0 , (6.14)

which is satisfied for

Y• − C ′• (ξ•) ≥ 0 ⇔ C ′• (ξ•) ≤ Y• (6.15)

since η• ≥ 0. This condition is always fulfilled if

C ′•max := C ′• (ξ•max) ≤ Y• (6.16)

with

ξ•max =
−a•2 −

√
−c•1

3 a•3
(6.17)

and

c1 := −a•22 + 3 a•3 a•1 . (6.18)

In conclusion, two inequality constraints are derived, namely

c•1 := −a•22 + 3 a•3 a•1 ≤ 0 (6.19)

and

c•2 := a•3 ξ
3
•max + a•2 ξ

2
•max + a•1 ξ•max − Y• ≤ 0 . (6.20)

These conditions, eqs. (6.19) and (6.20), have to be implemented into the parameter
identification process, which will be discussed in Section 6.3.3.

Remark 16. In [16], an approach for phase transformations is developed to reproduce
the temporal behaviour of bainite. Based on this, an extension of the evolution equation to
model the characteristic material behaviour of bainite is sought, which is suitable for the
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6 A phase transformation model for titan aluminium alloys

modelling of the rate dependent behaviour of titan aluminum alloy, compare Figure 6.4.
This means that changing velocities, respectively rates, of solid mass fractions during the
phase transformation (from small to large to small), as well as changing accelerations,
respectively the time derivative of the rates, (from positive to negative) have to be captured
by the dissipation function. As a result, the cubic polynomial in ξ• has been proposed as
a dissipation function contribution in [16], see eq. 6.10.

For the present phase transformation framework, it is assumed that the additional
term (6.10) acts as a fully dissipative contribution. Therefore, C ′• is added to eq. (6.9)
and acts as an additional threshold contribution to the yield limit Y . However, as dis-
cussed in [16], it is also possible to assign this contribution to the energy by using an
additional surface-type energy density ψsurf

• = −
∫
C ′• dξ•, which is added to the corre-

sponding phase energy density. This can be interpreted as a contribution related to the
interaction between the different phases, which is not accounted for within the standard
energy density of the bulk material. By using a weighting factor, it is possible to allocate
C ′• as a contribution to either energy density or dissipation function or a combination of
both.

6.3 Implementation and algorithmic treatment

In general, the solution of eq. (6.12) determines the phase fractions of the mate-
rial and with it the predicted material behaviour. Due to the variational nature of
the problem, the associated constraints can be incorporated by using, e.g., smoothed
Fischer-Burmeister nonlinear complementarity functions, and standard solvers such as
the Newton-Raphson scheme can be applied. Further insight into the implementation
and the calculation of the phase fractions and resiudal strains, respectively stresses, is
given in Section 4.2. In the following, some specific aspects of the algorithmic imple-
mentation shall be addressed for the melt-solid-solid phase transformation at hand.

6.3.1 Case differentiation

In general, the consideration of several and potentially co-existing phases is possible,
compare [12], but may become challenging in view of numerical stability and especially
efficiency. The goal of this section is to show as to how the implementation can signifi-
cantly be simplified by case differentiation. In general, the specimen is molten above the
melting point θmelt = θrefmel = 1873.15 K. As discussed in Section 6.1, Ti6Al4V completely
consists of the β-phase above the β-transus temperature, cf. Figure 6.3. Depending on
the initial temperature, the reference state is either ζmel = 1 or ζsol,β = 1. Only below
the temperature θβ,trans, the β-phase (partially) transforms into further phases, where
the focus is here laid on the α-phase as indicated above, while α′ is so far neglected.
Due to the physical behaviour of the titanium alloy, it is possible to consider only two
phases at the same time, which simplifies the related model, respectively mathematical
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6.3 Implementation and algorithmic treatment

problem. Therefore, several sets of variables along with corresponding constraints need
to be defined and considered within the model. In view of the melt→ β transformation,
constraints

{ζmel, ζsol,β} ∈ A1 , {εmel, εsol,β} ∈ E1 (6.21)

with

A1 := {0 ≤ ζsol,β ≤ 1 , ζmel + ζsol,β = 1} (6.22)

and

E1 = {ζmel εmel + ζsol,β εsol,β = ε} (6.23)

are introduced. Subsequently, the sets

{ζsol,β, ζsol,α} ∈ A2 , {εsol,β, εsol,α} ∈ E2 (6.24)

with

A2 :=
{
1−Rup

sol,α ≤ ζsol,β ≤ 1 , ζsol,β + ζsol,α = 1
}

(6.25)

and

E2 = {ζsol,β εsol,β + ζsol,α εsol,α = ε} (6.26)

are used for the solid-β → solid-α transformation, where Rup
sol,α is the upper bound

for the α-phase. Experiments show that the maximum value of the α-phase does not
necessarily have to be one and depends mainly on the given cooling rate. More precisely
speaking, the results presented in, e.g., [74, 115, 167] show that this holds for relatively
slow cooling rates. Based on these observations, the assumption

Rup
sol,α =


1.00→ ζsol,α, for high |θ̇|
0.95→ ζsol,α, for medium |θ̇|
0.90→ ζsol,α, for low |θ̇|

(6.27)

is made in the present model. The values for medium and low cooling rates are approx-
imated based on available literature data. The model relies in particular on the results
presented in [4], see also Remark 17. This leads to the definitions

high: 410K/s < |θ̇|
medium: 20K/s ≤ |θ̇| ≤ 410K/s

low: |θ̇| < 20K/s

(6.28)
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6 A phase transformation model for titan aluminium alloys

for the temperature rates. Moreover, the equality constraints in eqs. (6.22) and (6.25)
allow for the substitutions

ζmel = 1− ζsol,β or ζsol,α = 1− ζsol,β , (6.29)

so that in both cases only one mass fraction is used as variable. With this, the general
approach introduced in eq. (6.9) simplifies to one summand, i.e. only one independent
mass fraction remains for the particular case considered, cf. eqs. (6.21, 6.24, 6.29). Thus,
no distinction between coefficients related to different phases in the dissipation function C
is necessary as this work proceeds.

In addition, it is possible to consider cooling from melting or cooling from the
β-phase. In view of the parameter identification approach discussed in Section 6.3.3,
only solid-β → solid-α transformation is considered. For the LPBF process, all three
phases are present. This results in an adjustment of the initial composition of the mate-
rial, i.e. mass fraction ζ• and mass density ρ0, cf. Remark 15. Moreover, the respective
transformation strains according to eq. (4.10) have to be adapted in terms of the refer-
ence mass density ρ0. In conclusion, based on the particular process, e.g. heat treatment
or AM, one may either start with cooling from the molten phase, so that θstart > θrefmel, or
with θrefmel > θstart > θrefsol,β, where the initial material composition lies purely within the
β-phase. A consecutive heating and additional cooling of the material is also captured
by the implementation.

Remark 17. As summarised in Table 6.2 and also stated in the literature, see e.g.
[166, 167], the explicit values chosen for the critical rates, martensitic start temperature
and maximum values vary significantly. The model at hand can straightforwardly be
adapted to new experimental results, so that one could use improved maximum values for
the phase fractions and critical cooling rates. It would therefore be possible to determine
more reliable parameters for the dissipation function, see Section 6.3.3.

6.3.2 Stress-free states

In order to evaluate the material response of the present framework, the behaviour under
stress-free boundary conditions shall be analysed. Within the proposed material model,
the constitutive relation for the stresses is highly non-linear in terms of strains and
temperature. This, in general, requires an iterative computational approach to solve
for the unknown quantities. As this work proceeds, such algorithm shall be denoted as
constitutive driver, cf. Algorithm 6.1. Within this constitutive driver, different types
of temperature evolution, i.e. cooling and heating profiles θ(t) depending on time t,
are prescribed at material point level. Accordingly, one seeks the strain state εn for
the prescribed temperature path θ(t) at a particular instant in time tn with prescribed
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6.3 Implementation and algorithmic treatment

Initialisation of strains εn=0 = 0 and internal variables Vn=0

for n = 1 : steps

Set iteration index i = 1, strains ε1n = εn−1, and internal variables V1
n = Vn−1

while
∥∥∥σi

n

(
εin, θn, θ̇n, Vi

n

)∥∥∥ > tol

Compute constitutive relations and tangent{
σi

n, E
i
n, Vi

n

}
based on

{
εin, θn, θ̇n Vn−1

}
Update of strains

εi+1
n = εin −

[
Ei
n

]−1
: σi

n

Update of iteration index

i← i+ 1

end while

Save strains εn = εin and internal variables Vn = Vi−1
n

end for

Algorithm 6.1: Constitutive driver – temperature-induced stress-free transformations

temperature θn and temperature rate θ̇n which results in σn = 0. The determination of
strains includes the calculation of internal variables

Vn = V
(
εn, θn, θ̇n

)
= [ζmel, ζsol,α , ζsol,β]n , (6.30)

where index n refers to the current time step. In summary, the relation

σn

(
εn, θn, θ̇n,Vn

)
= 0 . (6.31)

needs to be solved using e.g. a Newton-Raphson scheme. Herein, the stresses σn are
evaluated based on eq. (4.31). A sketch of the related constitutive driver with its most
important equations is summarised in Algorithm 6.1. Therein, Ealgo ≈ E = ∂εσ denotes
the algorithmic tangent operator, here approximated by underlying isotropic elasticity
tensors.

6.3.3 Parameter identification

A classic Parameter Identification (PI) framework, as introduced in e.g. [20, 114], is
used to determine suitable values for the material parameters at hand. The PI is
based on the transformation behaviour as discussed in Section 6.3.1, so that all previ-
ously introduced model simplifications can be applied. As this work proceeds, a subset
κ = {Y, η, a1, a2, a3} of the underlying model parameters shall be considered within the
PI, whereas the remaining model parameters are prescribed, respectively taken from
literature. This means that the PI design variables, respectively material parameters κ,
are used to sufficiently match the material response of the simulation Rsim (κ) to the

157



6 A phase transformation model for titan aluminium alloys

available experimental data Rexp. Thus, a phenomenological relation can be established
between the material parameters κ and the cooling rate θ̇. For the particular cooling
rates, ζsol,α as predicted by the proposed model is compared to the related pairs of points
of the CCT diagram published in [128]. The two datasets are explicitly compared at
all the points in time tn considered. Therefore, the values in between the extracted
points and the maximum value Rup

sol,α of ζsol,α =
{
0.01, 0.05, 0.15, 0.45, 0.55, 0.85, Rup

sol,α

}
are computed via linear interpolation, as only these discrete values can be directly ex-
tracted from [128, Figure 6].

The overall framework corresponds to an inverse problem, whereby the least squares
functional

f(κ) =
nt∑
i=1

1
2

[
Rsim

i (κ)−Rexp
i

]2
(6.32)

is used as objective function, where nt denotes the number of time points considered.
The dataset Rsim

i (κ) is calculated with the help of the constitutive driver presented in
Section 6.3.2 for the respectively given cooling rate θ̇. The optimal values for κ are
determined by minimising f(κ). This procedure is repeated for all cooling curves as
discussed in the next Section 6.3.4.

Prior to the use of κ within the constitutive driver the related inequality constraints
(6.18) and (6.20) are checked. In the case where these constraints are violated, the re-
spective design variables are set to the related limit values. The gradient free fminsearch-
algorithm (a Nelder-Mead simplex algorithm) available within the commercial software
MATLAB is used for the PI by minimising the objective function defined in eq. (6.32).
The thermodynamic consistency constraints (6.19) and (6.20) are checked after the PI
is performed and, for the applications considered in this work, always turned out to be
satisfied. As no general proof can be established for the determination or existence of
the global minimum of the underlying least squares functional, multiple local minima
are to be expected. Thus, a set of different initial values of the design variables κ is used.
Conceptually speaking, a (coarse) grid search approach is applied to identify different
minima for κ. Section 6.4.1 discusses how the values between the identified points are
approximated.

6.3.4 Summary of complete workflow

For the present modelling framework, 18 cooling curves with the respective material
composition are extracted from the CCT diagram published in [128]. In line with exper-
iments, the temperature profiles are not assumed to be linear functions in time. Rather,
the calculated temperature-time curves depicted in Figure 6.5 are used, see also Re-
mark 18. The procedure for generating the temperature profiles is described in detail
in Appendix D.1. It is obvious that the cooling rate is generally not constant in time.
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In order to introduce a representative value for the particular cooling rate, the slope of
these curves at temperature 1173 K is used. This results in the following cooling rates

θ̇ = {0.01, 0.05, 0.1, 0.5, 1, 1.5, 5, 10, 20, 25, 30, 75, 100, 200, 300, 410, 525, 600}K/s .
(6.33)

The temperature-time curves are then used as input for the constitutive driver. For all
of these cooling rates the optimal design variables κ are determined with the help of the
PI approach introduced in Section 6.3.3. With this framework at hand, it is possible to
generate a complete CCT diagram by varying a cooling rate related scaling parameter sg,
cf. Appendix D.1. Based on this, e.g., 100 cooling rates between 0.01 K/s < θ̇ < 600 K/s
are generated. Within the framework, the respective set of design variables κ is chosen
and interpolated according to the prescribed cooling rate. The distribution of the design
variables as well as the complete CCT diagram is the subject of the next section, where
different boundary value problems are also discussed.
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Figure 6.5: Temperature profiles generated with the numerical approach presented in Appendix D.1
and in [128]. Reprinted from [130] under the terms of the Creative Commons Attribution License (CC
BY).

Remark 18. The temperature drops in Figure 6.5 arise from the structure of the analyti-
cal solution since eq. (6.37), see Appendix D.1, approaches infinity for some combinations
of t and sg, while eq. (6.39) takes value zero. For these cases, only eq. (6.38) contributes
to the calculation of the temperature profile, resulting in a non-smooth curve.
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6 A phase transformation model for titan aluminium alloys

6.4 Numerical examples

The results of the phase transformation framework are presented in the following. The
mechanical and thermal material parameters used for the titanium alloy Ti6Al4V are
summarised in Table 6.4.

Table 6.4: Summary of the Ti6Al4V material parameters used for the phase transformation framework,
adapted from [17, 121].

Material parameters Melt Solid-β Solid-α

Mechanical parameters
Density ρ [kg/m3] 3800 4420 4420
Poisson’s ratio ν [−] 0.45 0.33 0.33
Young’s modulus E [GPa] 10−9 10 109

Thermal parameters
Expansion coefficient α [1/K] - 13e-06 11e-06
Initial temperature θini [K] - 1873.15 1873.15
Heat capacity c [J/(kgK)] 750 750 750
Latent heat L [kJ/kg] 286 48 -
Reference temperature θref [K] 1873.15 1268.15 -

6.4.1 Fitting of dissipation function parameters

Depending on the respective starting points for the minimisation of the objective func-
tion, different results are determined for the material parameters κ, which also yield
different values for the minima of the objective function. Obviously, the objective func-
tion exhibits several local minima. However, the selection of the parameters that resulted
in the lowest values of the objective function in each case led to non-smooth progres-
sions of the phenomenological correlations κ(θ̇). In terms of numerical stability when
using these correlations in finite element simulations, this should be avoided. Therefore,
parameter sets κ were partly selected which did not yield the smallest value of the objec-
tive function (and yet corresponded to a local minimum), but ensured a rather smooth
function κ(θ̇).

Time discrete values for the experimental curve Rexp are taken from [128], whereas
the simulation results of ζsol,α exemplary depicted in Figure 6.6 are generated via in-
terpolation, as discussed in Section 6.3.3. Therein, six different curves are exemplarily
chosen in order to highlight the accuracy of the results. The results for the prescribed
fast, intermediate and slow cooling rates are visualised in Figure 6.6, where the concen-
tration of the α-phase, i.e. the mass fraction ζsol,α, is plotted over time. The comparison
of Figure 6.6a and Figure 6.6b clearly shows the influence of the prescribed cooling rate
on the effective material composition. With the exception of some significant deviations
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for the two highest cooling rates, the results obtained with the present framework show
satisfactory agreement with the experimental results. Here, the cubic polynomial C ′
cannot fully capture the course of the experimental curves. However, the approxima-
tion is considered sufficient for the current fundamental study. In addition, the need to
choose different maximum values for the mass fraction ζsol,α depending on the cooling
rate becomes evident.
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Figure 6.6: Exemplary verification of calculated material response Rsim(κ) based on experimental data
Rexp used for the PI considering rather steady cooling rates, Figure 6.6a, and rapid cooling rates
Figure 6.6b. Reprinted from [130] under the terms of the Creative Commons Attribution License (CC
BY).
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The values of the parameters in the subset κ obtained by the PI depend on the cooling
rate θ̇ via interpolation of the specific data points. Other approaches are also feasible,
cf. Remark 19. These phenomenological relations are illustrated in Figure 6.7. For the
viscosity parameter η shown in Figure 6.7a, a steep descent is visible for slow cooling
rates, whereas the slope changes and decreases for higher cooling rates. For both, the
threshold Y highlighted in Figure 6.7b and the parameters a1, a2, a3 visualised in Figure
6.7c, (quasi-) constant values are generated below θ̇ < 1 K/s, specifically a1 = −0.002,
a2 = −0.007, a3 = −0.004 GPa and above θ̇ > 525 K/s, in particular a1 = 0.033,
a2 = −0.0621, a3 = 0.009 GPa. In between, the cooling rates significantly affect the
phase changes and the temporal evolution of mass fractions. Thus, the parameters κ
of the dissipation function change accordingly in order to capture the correct material
response.

As there is a rather weak basis for CHT diagrams in the literature, the parameters of
the dissipation function for re-heating are not fitted to experiments. Therefore, only the
standard dissipation function is used, so that a1, a2 and a3 are set to zero a priori. The
remaining parameters Y and η are identified by a trial and error process to reproduce the
material behaviour and to appropriately reflect the material’s transformation properties
such that solid-α exists below θβ,trans and solid-β emerges above θβ,trans. This results in
the following case differentiation

{η, Y } =

{
{100GPa s, 500GPa} for θ < θβ,trans

{ 0GPa s, 0GPa} else
. (6.34)

These parameters cause a phase transformation to the β-phase only above the β-transus
temperature θβ,trans.

For the phase transformation from molten to the β-phase, only the standard dissipa-
tion potential is used, as no complex phase transformation behaviour is assumed. The
following parameters are identified in a trial and error process to ensure melting in the
range of θmelt,

{η, Y } =
{
2K/s

θ̇
GPa s, 0GPa

}
, (6.35)

whereas η = 0GPa s for θ̇ = 0K/s within the examples considered in the present work.
According to our results, the rate dependence of η implies that the transformation from
molten to the β-phase always starts and ends at the approximate same temperature.

Remark 19. For the current framework, the identified values of the subset
κ = {Y, η, a1, a2, a3} are interpolated based on the cooling rate. Thus, a piece-wise linear
relation in θ̇ of the specified values is assumed. A more sophisticated approximation is
possible by using a regression model based on, e.g., a least squares approach.

In general, a more elaborated approach would be the direct identification of the coeffi-
cients of smooth functions. In a next step, the current results could be used as a basis to
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Figure 6.7: Identified curves for parameters in dissipation function C: (6.7a) parameter η and (6.7b)
parameter Y , both introduced in eq. (6.9), and (6.7c) parameters a1, a2 and a3 as stated in eq. (6.10).
Reprinted from [130] under the terms of the Creative Commons Attribution License (CC BY).
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develop a PI algorithm that determines the coefficients of, e.g., exponential, hyperbolic
tangens and piecewise linear functions for all temperature rates simultaneously.

6.4.2 CCT diagram
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Figure 6.8: Computed CCT diagram for 100 cooling rates from θ̇ = 0.01 K/s to θ̇ = 600 K/s, where
different mass fractions ζsol,α for the respective cooling rates are visualised. Exemplarily, four charac-

teristic cooling rates θ̇ according to Figure 6.3 are plotted in the CCT diagram. Reprinted from [130]
under the terms of the Creative Commons Attribution License (CC BY).

With the presented rate dependent parameters it is now possible to generate a com-
plete CCT diagram for Ti6Al4V. Therefore, the parameter sg in eq. (??) is varied so
that 100 logarithmic spaced curves are generated. The related cooling rates vary be-
tween 0.01 K/s ≤ θ̇ ≤ 600 K/s and the resulting CCT diagram is illustrated in Figure
6.8. Within this Figure, the isolines for different α-concentrations ζsol,α are shown. The
computed CCT diagram is capable of predicting different α-fractions. The evolution of
mass fractions significantly depends on the cooling rate and is highly nonlinear in time,
in particular for medium cooling rates. Thus, the phase transformation begins and ends
at distinct temperatures. For slow cooling rates, with θ̇ < 20 K/s, and high cooling
rates, with θ̇ > 400 K/s, almost constant martensitic start temperaturesMs are present.

These general characteristics of the CCT diagram have been documented in the ex-
perimental findings of [4, 39, 74], whereas values characteristic for the transformation
process, such as those summarised in Tables 6.2 and 6.3, differ in literature, compare
also Remark 20. Since the curves given in [128] (which correspond to the experimental
results of the schematic CCT diagram in [4]) are used to identify the material parameters
in the present work, the agreement between these and the present results is sufficiently
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accurate. More precisely speaking, a β-transus temperature between 1250-1255 K is
obtained, which is close to θβ,trans = 1268.15 K found in literature, cf. Table 6.3. A
martensitic start temperature Ms ≈ 820 K is present for fast cooling rates, which agrees
with the findings in [4, 128]. However, the present model, and with it the predicted re-
sults, also takes into account the upper bound of ζsol,α depending on the applied cooling
rate, cf. eq. (6.27). The lower bound for slow cooling rates has a value of ζsol,α = 0.85
and lies around 400 K, which corresponds to the results in [128].

Remark 20. A comprehensive overview of the current state of the art is given in [166],
in particular with respect to CHT diagrams, CCT diagrams and microstructures for
Ti6Al4V. Among other things, the authors point out the lack of accurate models to pre-
dict and control the microstructural evolution during AM processes and the diverse and
contradicting values for significant model parameters provided in literature. This is sup-
ported by Tables 6.2 and 6.3. As the absolute values of the characteristic temperatures
during cooling differ in the experimental results of [4, 39, 74], it is not entirely clear which
characteristic temperatures for Ms and θβ,trans should be chosen, compare Tables 6.2 and
6.3. However, the proposed framework can straightforwardly be adapted to different CCT
data not only of this alloy, but can also be applied to other materials. If other literature
data is used as a basis, different material parameters κ would be identified by the PI,
resulting in, e.g., higher martensitic start temperature Ms as found in [39, 74].

6.4.3 Boundary value problems

First, academic examples with simple prescribed temperature profiles are discussed as a
proof of concept for the proposed framework. Thereafter, temperature profiles extracted
from realised LPBF simulations, cf. Section 5.3.3, are subsequently used to illustrate the
explicit phase transformation of the solid for real process-based examples.

Proof of concept

In Figure 6.9, different temperature profiles characterised by different cooling rates (high
and low) as well as final temperatures (373 K vs. 573 K) are prescribed, whereby the
corresponding simulated strain and mass fraction evolution over time t is visualised. For
all examples, the temperature starts above the melting point and the initial material
state corresponds to completely molten material. Due to the simpler dissipation ansatz
of the transformation melt→ solid-β, the transformation starts at the same temperature.
Based on the cooling rate, the phase transformation takes places during different time
periods. The phase change solid-β → solid-α is initiated at a later point for a slower
cooling rate. Furthermore, a longer time period is required until a phase change from
both melt → solid-β and solid-β → solid-α is completed. Overall, this qualitatively
corresponds to the expected physical behaviour of the titanium aluminium alloy. Due to
the maximum constraint in eq. (6.27), a portion of solid-β remains for the temperature
profiles prescribed in Figure 6.9a even for the complete transformation. For the higher
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Figure 6.9: Temporal evolution of homogeneous strains ε•• and mass fractions ζ• for the high (solid
lines) and low (dashed lines) cooling rate. The upper and lower figures differ from each other in terms
of the final temperatures, which are precisely given by 373 K for (6.9a) and 573 K for (6.9b). Reprinted
from [130] under the terms of the Creative Commons Attribution License (CC BY).

end-temperature in Figure 6.9b no complete phase change from solid-β to solid-α is
obtained, but a phase mixture exists. This corresponds to the findings in e.g. [128],
where different final temperatures, which - in view of LPBF processes - may refer to
different base plate temperatures, have been evaluated. The base plate temperature
highly influences the final percentage of solid-α and solid-β. The middle graph depicts
the evolution of the corresponding strain state. Here, especially the jump during the
phase transformation from molten material to solid due to the transformation strains
is visible. Furthermore, an increase of strains takes place as long as the temperature
decreases due to the thermal strain contribution. Once the temperature is constant, the
strains do not further evolve. In summary, the model is capable of predicting physically
meaningful results not only based on different temperature rates, but also based on the
final temperature.

Real process-based examples

For the real process-based example, a simulation of a scan island with 5× 5 mm is used
as a basis to extract the respective temperature profiles, as defined is Section 5.3.3. An
illustration of the underlying simulation is given in Figure 6.10. The results which are
based on the stress-free driver introduced in Section 6.3.2 are shown in Figures 6.11
and 6.12 for the centred element C of the scan island, as indicated in Figure 6.10.
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Figure 6.10: Scan island simulation with scan island size 5× 5 mm (side length llyr = 5 mm) with the
current temperature profile at t = 0.08 s due to cuboid heat source rcext with laser power P = 250 W and
laser velocity vlsr = 1.0 m/s as defined in Table 5.5 from which the temperature history θ is extracted
for elements A–E. Reprinted from [130] under the terms of the Creative Commons Attribution License
(CC BY).

For the example, the transformation considered begins in the molten phase (not powder
phase), where the current temperature is above the melting point, i.e. θmelt = 1873.15 K,
and the initial mass fraction is set to ζmel = 1. The prescribed temperature profile,
the resulting temperature rate, the calculated homogeneous strain evolution and the
determined distribution of the mass fractions are illustrated in Figure 6.11, where the
detailed temperature history and resulting evolution at the beginning is pictured in
Figure 6.12. The temperature rapidly decreases to θ < 1000 K, where the characteristic
high cooling rates present in LPBF processes are also recognisable. Due to the high
cooling rates and the identified material parameters, an instantaneous transition from
molten to solid-β occurs. This corresponds to a jump in the strain state. Solid-β
then almost linearly decreases while solid-α simultaneously increases until t ≈ 0.3 s,
compare Figure 6.11. In addition, the temperature rate decreases almost linearly until
t = 1 s. The oscillations in the temperature rate are mathematical artefacts due to
the temperature import from Abaqus associated with the small time steps in Matlab
and can therefore be neglected. After the first rapid cooling, the temperature is below
the martensitic start temperature Ms ≈ 820 K, compare Figure 6.8. This particular
martensitic start temperature is the consequence of the simulations and occurs for all
high cooling rates θ̇ > 400 K/s. This choice seems reasonable, as Ms is reported to
remain rather constant for high cooling rates in experimental work. The kinks in the
evolution of mass fractions at t ≈ 0.3 s occur due to the constantly decreasing cooling
rate and increasing Ms temperature, as θ̇ < 400 K/s is now valid. In consequence,
the transformation of the remaining mass fraction takes place slower. The conversation
reaches a plateau at t = 1 s with ζαsol = 0.83 and, in consequence, ζβsol = 0.17, where
θ̇ < 0.01 K/s. This is supported in [74, 115], where a small solid-β fraction is present
for low cooling rates. A similar curve is shown in [32], where the authors discuss the
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influence of neighbouring scan tracks and of inter-track idle time on the microstructure
of a low-temperature transformation alloy during and at the end of the process using
the KM equation. With idle-time, a complete transformation is enforced, while a small
amount of solid-β is present for the standard process. The temperature cycles, i.e. heat
treatment and cooling rate, not only influence the phase composition and structure,
but also the hardness of the part, cf. the experimental studies in e.g. [38, 80, 122]. An
analogous material behaviour can be observed in the experimental investigations in [83]
where the material has been melted and reheated with decreasing laser power. This
results in different temperature levels and, accordingly, the phase composition changes,
which has been measured by a diffractometer. Similarly, different temperature profiles
are prescribed in the simulations elaborated in [185], which result in different solid phase
fractions and evolution.
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Figure 6.11: Temporal evolution of homogeneous strains ε•• and mass fractions ζ• based on a prescribed

temperature profile θ and resulting temperature rate θ̇ extracted from Abaqus simulation for the centred
element C, compare Figure 6.10. Reprinted from [130] under the terms of the Creative Commons
Attribution License (CC BY).

In Table 6.5, final solid-α concentrations ζαsol for different elements, as indicated in
Figure 6.10, are summarised. Due to the different cooling rates as visualised in Figure
6.14, especially at the lower edge of the scan island, the value of ζαsol varies considerably.
As the scan island is surrounded by powder material, heat conduction is different for
all elements at the boundary of the scan island. Furthermore, no additional laser pass
is present for the bottom element E, resulting in a slightly shorter cooling period and
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Figure 6.12: Detail of temporal evolution of homogeneous strains ε•• and mass fractions ζ• at the

beginning of the prescribed temperature profile θ and temperature rate θ̇ illustrated in Figure 6.11.
Reprinted from [130] under the terms of the Creative Commons Attribution License (CC BY).
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Figure 6.13: Detail of temporal evolution of mass fractions ζ• based on a prescribed temperature
profile θ extracted from Abaqus simulation for element B, compare Figure 6.10. Reprinted from [130]
under the terms of the Creative Commons Attribution License (CC BY).

thus a considerably lower ζαsol value. Re-melting arises for the left and right elements B
and D, as the laser beam changes the direction at the end of the scan island. Therefore,
the subsequent laser pass of the neighbouring scan track results in a re-melting of these
elements as visualised in Figure 6.13 for element B. These elements B and D have also
very similar cooling rates, compare Figure 6.14. Overall, the visualised differences in the
cooling rates explain the changing final mass concentration, where a low cooling rate
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Table 6.5: Final solid-α (martensite) fraction of different elements as indicated in Figure 6.10.

Position Label α-concentration ζαsol

top, centre A 0.84072
middle, left B 0.81728
middle, centre C 0.83268
middle, right D 0.81435
bottom, centre E 0.71600

results in small αsol (element E) and high cooling rates in high αsol (elements A and
C) concentrations. Altogether, the typical characteristics of an LPBF process are cap-
tured, including re-melting and different heating and cooling rates due to neighbouring
laser scan tracks. In conclusion, from a physics viewpoint the model proposed at least
qualitatively correctly captures the material properties.
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Figure 6.14: Temperature rate θ̇ in dependence of relative cooling time ∆t of all elements indicated
in Figure 6.10, where ∆t = 0 corresponds to the specific time at which the laser beam has induced
the highest temperature. Reprinted from [130] under the terms of the Creative Commons Attribution
License (CC BY).
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D Appendix

D.1 Calculation of temperature profiles

As the current framework as well as the model introduced in [128] is based on the
experimental data generated in [4], the same ansatz as in [128] is used in the present
work to generate the temperature curves. This means that the current temperature at
position x and time t is defined via

θ(x, t) =
[
θ∞ − θ0

][
ferfc1(x, t)− a ferfc2(x, g, t)

]
+ θ0 (6.36)

with

a = exp
(
g x+ g2α t

)
, (6.37)

ferfc1(x, t) = erfc

(
x

2
√
α t

)
, (6.38)

ferfc2(x, g, t) = erfc

(
x

2
√
α t

+ g
√
α t

)
. (6.39)

Here, erfc refers to the complementary error function, which includes several (so far)
unknown parameters. Motivated by the experimental investigations in [3], the following
parameters are used in the present work: θ0 = 1323 K, which denotes the temperature
of the solid at the beginning of the experiment, and θ∞ = 293.15 K, representing the
temperature of the cooling fluid. The position parameter is set to x = 3.2 mm. The
material parameter α defines the thermal diffusivity and is set to α = 10 mm2/s. Finally,
the material related scalar g defines the ratio of convective heat transfer and thermal
conductivity and is determined based on the current temperature θ and a quadratic
ansatz so that

g(θ) = sg

[
ag + bg

θ − θ∞
θ∞

+ cg

[
θ − θ∞
θ∞

]2]
. (6.40)

The parameters [ag, bg, cg] = [73.8, −39.3, 6.3] m−1 have inversely been identified in [128]
and sg is introduced as a scaling parameter to generate arbitrary cooling curves. In order
to generate the temperature profiles in Figure 6.5, the following values are used for the
scaling parameter sg, i.e.

sg ={0.01, 0.029, 0.045, 0.134, 0.225, 0.29, 0.7, 1.19, 2.05, 2.47, 2.87, 6.38,
8.44, 17.69, 30.2, 50.8, 83.9, 125} . (6.41)
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7 Concluding remarks

In this work, micromechanically motivated thermomechanical modelling ap-
proaches for the simulation of laser powder bed fusion (LPBF) processes are presented.
A phase transformation model for the respective additive manufacturing (AM) process
is developed in Chapter 3 based on a framework stemming from solid-solid phase
transformation approaches in shape memory alloys. This model is further advanced in
Chapter 4, where the algorithm is formulated with respect to mass fractions, so that
the mass is the conserved quantity which is important for the changing mass densities
of the process at hand. In addition, a more suitable and advanced material model
is incorporated. The focus in Chapter 5 is set on the modelling of complete parts
rather than on single melt tracks as in the previous chapters. Therefore, a multiscale
framework by using the inherent strain (IS) method is developed, where the deformation
and residual stress of complete parts is predicted. Finally, in Chapter 6, a non-standard
dissipation function is introduced to capture the rate-dependent phase transformation
of the titan aluminium alloy Ti6Al4V, which can predict the fraction of α- and β-phases
with the corresponding residual strains. A more detailed summary of the respective
chapters is given in Section 7.1, whereas further research questions are discussed in
Section 7.2.

7.1 Summary and conclusion

Altogether, Chapter 3 deals with a three-dimensional and thermomechanical finite el-
ement framework for the simulation of LPBF processes, where mechanical dissipation
is neglected. The small strain constitutive model is established in the form of a phase
transformation approach where, in contrast to common approaches for LPBF models,
the different states of the material – powder, molten, and re-solidified – are explicitly
captured as single phases with respective volume fractions. These volume fractions are
determined via energy minimisation of the phase energy densities, where each phase
is modelled as linear elastic. Thermal strains are additionally considered for the re-
solidified phase. The finite element model of the manufacturing process itself incorpo-
rates approaches for the laser beam heat source and the layer build-up which necessitates
non-straight-forward interventions with respect to the utilised finite element code, in this
case the commercial programme Abaqus. The overall model is, at this stage, capable
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of predicting at least qualitative results concerning the workpiece’s final geometry and
process-induced residual stresses for a single melt track with three deposition cycles.

InChapter 4, a thermodynamically consistent and fully thermomechanically coupled
framework is presented based on the phase transformation model of the previous chap-
ter. Thereby, the model relies on the different states of the material with the respective
mass densities, where the mass fractions are determined via homogenisation and energy
minimisation. With this approach it is possible to include the changes in mass density
and to assure conservation of mass. The phase distribution is not coupled one-to-one
to the temperature distribution, e.g. the melting point, but is a result of the calculated
distribution of the mass fractions and of a dissipation parameter which is defined within
the minimisation problem. Furthermore, the volume change during the changes of the
material state is considered through physically sound transformation strains. In addi-
tion, the model incorporates further material-based inelastic strain contributions, i.e. a
viscous strain in the molten phase to capture the fluid behaviour and a plastic strain in
the re-solidified phase to model the material behaviour of the solid phase. These strains
are derived via dissipation functionals. Moreover, a thermal strain is included in the
re-solidified material. This constitutive model is then implemented into Abaqus to sim-
ulate the LPBF process by using the same simulation model as in the previous chapter.
With this, a three-line-layer deposition with a straight laser path and with an L-shape
are simulated. Due to the micromechanically properly motivated material model, it is
possible to predict the process induced residual stresses and the temperature evolution
in a reasonable manner. In a post-processing step, the accumulated inelastic strains
present are calculated which are usable for phenomenological models of e.g. complete
parts as discussed in the subsequent chapter.

The scope of Chapter 5 is to present a multiscale framework which is based on three
modelling levels incorporating specific loading conditions and different material models.
With this approach a micromechanically motivated phase transformation model for the
single melt track is combined with the inherent strain method so that residual stresses of
realistically sized parts are predictable within a reasonable amount of time. A coupled
thermomechanical simulation is introduced by using Abaqus, differentiating between the
laser scan model and the layer hatch model, whereas a purely mechanical simulation is
used for the part model. For the laser scan model, a phase transformation model with
a non-uniform volumetric Goldak heat source is used to simulate a single melt track. In
contrast, the phase changes are purely temperature-dependent for the material model of
the layer hatch model, where a cuboid heat source is used, so that a complete scan island
can be efficiently simulated. It is demonstrated that the layer hatch model is capable of
reproducing the residual strains and stresses of the laser scan model. Different sets of
technological parameters (laser beam, scan velocity, island size) are considered in order
to examine the influence on the inherent strains and residual stresses. Altogether, physi-
cally motivated inherent strains are determined, which depend on the underlying process
parameters. Based on these findings, a larger scan island is preferable. Altogether, the
framework adequately predicts different melt pool geometries and reasonable residual
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stresses. It is concluded that constant inherent strains can be extracted for the layer
hatch model to be applied to the simulation of a complete part. The part model rests
upon the established inherent strain method, whereas the determination of the inherent
strain tensor is micromechanically motivated and thermodynamically sound. With the
determined inherent strains, the laser scan model and layer hatch model simulations do
not have to be performed again. It is now possible to use not only the simulation of this
part model but also the incorporation of arbitrary, more complex real structures and
laser beam paths since the inherent strains are already set. This enables the simulation
of large parts in a computationally efficient manner. To ensure a satisfactory process
efficiency, an appropriate choice regarding laser velocity and melt pool size is necessary.
The part model, where a twin cantilever beam is simulated, is capable of predicting the
deformation, i.e. warpage and distortion, and residual stresses which have a reasonable
magnitude for different laser parameters and scan patterns. The determined inherent
strain tensors are qualitatively compared to results found in literature and are critically
scrutinised. The simulations show that the use of different scan speeds and laser powers
influences not only the magnitude of the inherent strains and overall deformation, but
also the manufacturing time of the scan island, respectively the part.

In Chapter 6, a melt-solid-solid phase transformation model is proposed and applied
to Ti6Al4V to explicitly capture the material behaviour of the molten, β- and α-phases
of this material as well as combinations thereof. This is of importance as the composition
of the crystal structure and material properties vary for the different phases. In conse-
quence, the prediction of eigenstrains and eigenstresses can significantly be improved.
The thermodynamically consistent and thermomechanically coupled framework is based
on phase energy densities, cf. Chapter 4, where a non-standard dissipation function is
used to calibrate the model to experimental data in terms of a continous cooling trans-
formation (CCT) diagram. With this, a model-based CCT diagram can be implemented
that consistently reflects available literature data. Therefore, only a limited number of
experiments is necessary to determine the coefficients of the introduced dissipation func-
tion. Once these parameters are fitted in dependence of the present cooling rate, the
remaining data, which is necessary for the dissipation function, is interpolated. The mod-
elling and prediction of the evolution of the underlying strain contributions in addition
to the microstructure composition can be considered physically plausible since a ther-
modynamically consistent and fully thermomechanically coupled phase transformation
approach is used. The proposed framework is applied on a local scale using a stress-free
driver to the elaboration of academically chosen examples as well as real process-based
LPBF temperature profiles extracted from Abaqus simulations of the previous chapter.
The simulations yield physically meaningful results in view of, e.g., strains and phase
fraction evolution of the underlying microstructure on a local scale. The modelling
and simulation framework proposed can straightforwardly be applied to different pro-
cess parameters during LPBF processes which is of significant advantage since related
experimental investigations are typically expensive and time consuming.
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7.2 Outlook

In general, various enhancements are possible which can be differentiated based on ne-
cessity, effort and area. It shall be emphasised that the framework can straightforwardly
be transferred and adapted to other materials which possess multiple solid phases, as
the approach is generally applicable and derived from energy densities. Moreover, it
can also be used for the simulation of other additive manufacturing processes based
on metallic powder, for example laser cladding or direct energy deposition, as well as
the examination of subsequent heat treatments. Machine learning concepts may be
incorporated for the laser scan model and layer hatch model to generate and store
inherent strains based on process parameters, e.g. laser power, laser velocity, layer
height, scanning strategy and others.

One of the future (short-term) objectives lies in the advancement of the material
model of the melt-solid-solid phase transformation framework in Chapter 6. For
example, a more complex material model for each phase can be incorporated in the
framework, cf. Chapters 4 and 5, where viscous and (visco)plastic strain contributions
model the different inelastic effects of the molten and solid phases. Finally, a coupling
and implementation with these extensions into the previously developed multiscale
framework in Chapter 5 by using the commercial finite element programme Abaqus
is of utmost interest. This may further improve the predicted residual stresses and
deformation, while giving insight into the microstructure evolution. Once implemented,
diverse parameter studies can be performed to find optimal initial conditions for
industrial applications, e.g. applying different scan speeds should be further studied
because the first results described in Section 5.3.4 are promising. In addition, it is
important to examine the influence on the microstructure by using different preheating
temperatures, scan patterns and to study subsequent annealing. With such an finite
element approach, the effects on the composition and structure of the part – as well
as the process-induced distortion and residual stresses – can be examined, cf. the
experimental findings regarding the scan pattern in e.g. [95].

In the long term, research may focus on different areas:

• Looking into an increase in computational efficiency of the simulation frame-
works, e.g. a mesh optimisation or code optimisation, could save further compu-
tational time. From a micromechanical viewpoint an enhancement of the material
model for the layer hatch model, i.e. the scan island simulation, would be preferen-
tial, where for example the cooling rate is explicitly taken into account. However,
to be able to use the phase transformation algorithm for the layer hatch model,
this framework has to be computationally optimised beforehand.

• The quality and accurateness of the final results are highly influenced by the under-
lying material model. A more advanced material model may be used regarding
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the developed phase transformation approach, so that e.g. the occurrence of ten-
sion in the powder and molten phases can be omitted in the spirit of [49] and
the references cited therein. This means that only compressive strain contribu-
tions in the powder and the melt phases are taken into account for stress, while
the material no longer stores any energy under tension. A further differentiation
into α′ (martensite), solid-α and solid-β and combinations thereof during cooling
can be conducted in a straightforward manner with the proposed homogenisa-
tion approach. The constitutive framework can also be enhanced in terms of the
modelling and simulation of subsequent heat treatments, compare Figure 6.2b, or
post-LPBF damage mechanisms which may significantly be influenced by, e.g., the
residual stresses and microstructure caused by the additive manufacturing process
itself. In addition, it has to be investigated if the assumption of constant material
parameters for each phase is valid or if, in contrast, for example temperature-
dependent material parameters for each phase should be used. This also includes
examining the need for a temperature-dependent yield limit for the plastic strains.
An overview of material behaviour and physical characteristics in the literature
is given in [17], which could be used to inlcude temperature-dependet material
porperties for the underlying thermal and mechanical material parameters of the
α- and β-phases in order to quantitatively improve the results. Due to the highly
changing mass densities and relatively large inelastic strains, an extension of the
constitutive framework to a large strain formulation needs to be investigated with
regard to the influence on predicted stresses and deformations.

• In view of the model calibration and verification, different aspects are impor-
tant. It is of utmost interest to verify the proposed multiscale modelling approach.
Experiments need to be performed especially for the laser scan model. The param-
eters of the Goldak heat source have to be calibrated with experiments in order to
achieve reliable results. In addition, some parameters, e.g. the dissipation param-
eter, need to be identified which requires comparisons to available experimental
data. In this way, the material model parameters can be calibrated in comparison
to experiments to further improve the simulation results. With these outcomes, it
would be possible to quantitatively verify the deformation of the part simulation
with experiments for the test structure of a twin cantilever beam. To ensure the
transferability of the simulation results from this test structure to more complex
parts, other geometries shall also be considered in the verification process.
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