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Abstract
BeamqualityQ=Z2/E (Z= ion charge, E= energy), an alternative to the conventionally used linear
energy transfer (LET), enables ion-independentmodeling of the relative biological effectiveness (RBE)
of ions. Therefore, theQ concept, i.e. different ionswith similarQhave similar RBE values, could help
to transfer clinical RBE knowledge frombetter-studied ion types (e.g. carbon) to other ions.However,
the validity of theQ concept has so far only been demonstrated for lowLET values. In this work, theQ
concept was explored in a broad LET range, including the so-called overkilling region. The particle
irradiation data ensemble (PIDE)was used as experimental in vitro dataset. Data-drivenmodels, i.e.
neural network (NN)models with low complexity, were built to predict RBE values forH,He, C and
Ne ions at different in vitro endpoints taking different combinations of clinically available candidate
inputs: LET,Q and linear-quadratic photon parameterαx/βx.Models were compared in terms of
prediction power and ion dependence. The optimalmodel was compared to publishedmodel data
using the local effectmodel (LEM IV). TheNNmodels performed best for the prediction of RBE at
reference photon doses between 2 and 4Gy or RBEnear 10%cell survival, using onlyαx/βx andQ
instead of LET as input. TheQmodel was not significantly ion dependent (p> 0.5) and its prediction
powerwas comparable to that of LEM IV. In conclusion, the validity of theQ concept was
demonstrated in a clinically relevant LET range including overkilling. A data-drivenQmodel was
proposed and observed to have anRBE prediction power comparable to amechanisticmodel
regardless of particle type. TheQ concept provides the possibility of reducing RBE uncertainty in
treatment planning for protons and ions in the future by transferring clinical RBE knowledge
between ions.

1. Introduction

Compared to conventional photon therapy, ion therapy is characterized by, first, an energy deposition peak at
the end of its range, called the Bragg peak, and, second, an increased relative biological effectiveness (RBE).
While the RBEof certain ions, e.g. carbon, has been studied in some detail for decades (Raju andCarpenter 1978,
Hawkins 1996, Ando andKase 2009,Mizoe et al2012), more research on other particles is desired. For example,
a constant RBEof 1.1 is widely applied for proton beam therapy (Heuchel et al 2022, Paganetti et al 2019) but
variable clinical protonRBEhas been reported (Connor et al2017, Lambrecht et al2018, Bahn et al2020,
Underwood et al2022, Eulitz et al2019, 2023). In addition to particles that have already been applied clinically,
i.e. proton and carbon, new applications using e.g. helium (Mein et al2019), oxygen (Chang et al2014) and
multi-ion beams (Ebner et al2021) are emerging. An ion-independentmodel, would help to enrich the data
pool by assembling data of different ions and to transfer knowledge frombetter-investigated ones. In order to
quantify and predict RBE, different RBEmodels have been proposed. Phenomenological proton RBEmodels
(Tilly et al 2005, Carabe-Fernandez et al 2007,Wedenberg et al 2013,McNamara et al 2015,Mairani et al 2017,
McMahon 2021)were built byfitting fixed formulas on the RBE data for protons. For thesemodels, the
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transferability of their specific formalismneeds to be verified against clinical data as the clinical endpoint differs
from the biological in vitro endpoint used formodeling. Furthermore, thesemodels are driven by linear energy
transfer (LET), which only quantifies the integral energy depositionwhile ignoring themicrodosimetric features
of the beam; thus, it can hardly be used for themany different ions that are naturally involved in clinical ion
beams.Mechanisticmodels, e.g. the local effectmodel (LEM) (Scholz et al 1997, Friedrich et al 2012) and the
microdosimetric–kineticModel (Hawkins 1998), take into account themicrodosimetric features and are based
on generally believedmechanisms, including that the enhanced RBE of ions is determined by themicroscopic
dose distribution in the cell nucleus. However, some quantities required for thosemodels, e.g. the cell nucleus
size ormicroscopic dose distribution (nanometer scale) (Kase et al 2008), may be difficult to determine in clinical
application.

Recently, a new concept, namely, beamqualityQwas proposed for RBEmodeling (Lühr et al 2017, Tian et al
2022). The beamquality is defined asQ=Z2/E, with Z and E being the ion’s charge and kinetic energy per
nucleon, respectively. It has been shown that aQ-drivenmodel is able to predict the RBE, regardless of ion type
and for individual ions, comparable to anotherwidely used ion-specificmodel (Tian et al 2022). This opens up
the possibility of using RBEdata fromdifferent ions formodel building and thereby improving the precision of
RBEpredictions. However, the proposedQ-dependentmodel is a simple linearmodel and, thus, only works in
the region of low to intermediateQ values, i.e. for LET values below the so-called overkilling region (Tian et al
2022). Accordingly, the general validity of the ion-independentQ concept still needs to be shown.

Therefore, the purpose of this workwas,first, to demonstrate the validity of the ion-independentQ concept
for a broad LET range including largerQ values and the overkill domain and, second, to propose an
experimental data-driven, non-linearQmodel describing the RBE for different ionswhile focusing on clinically
available input variables.

2.Material andmethods

2.1. PIDEdataset anddata selection
The particle irradiation data ensemble (PIDE, version 3.2) (Friedrich et al 2021), consisting of a dataset recording
the in vitro experimental data of cell survival experiments of 115 publications covering 1118 data points of 21
types of ion irradiation, was used in this work.

The following data selection criteria were applied. Data from experiments withmonoenergetic irradiation of
ions no heavier than neon (Z< 11)were considered. Theminimumkinetic energy thresholds for different ions
were chosen such that the ion ranges inwaterwere at least 25μm (Lühr et al 2012), i.e. in the order of the size of a
single cell. In addition, only experiments with positive and finiteαx/βx and an asynchronous cell cycle were
considered. Here,αx andβx are theα andβ parameters of the linear-quadratic (LQ)model of photon
irradiation. Irradiation data of a specific ionwere only considered if at leastfive data points were available for
that ion.One proton data point with anαx/βx valuemuch higher (∼70Gy) than those of all others (<30Gy)was
excluded in this work. Consequently, irradiation data of the following ionswere selected: proton (48 data
points), helium (30), carbon (148) and neon (58)with aminimumenergy of 1.03, 2.29, 4.07 and 5.04A·MeV,
respectively. In the following, this selected dataset is called the PIDEdataset for simplicity.

For each PIDE record, an LET valuewas provided. These LET values were directly taken for this study, i.e.
regardless of their definition as, e.g. dose or track averaged LET. TheQ values were calculated using the energy E
and charge Z values recorded in the PIDE. Some of the experimental publications covered by the PIDE only
provide either an E or LET value. Themissing values were calculated by the PIDE group based on the reported
counterpart values using the software ATIMA (Geissel et al 2002, Friedrich et al 2021). Two types ofα andβ
values are recorded in the PIDE:first, the data originally reported by the experimenters and, second, the data
retrospectively obtained by the PIDE group using the LQmodel fitting of the underlying radiation response data.
In this work, only the originally reported datawere used.

RBE values at an isoeffective photon dose dx, RBEdx, were calculated for dx ranging from1 to 30Gy using the
LQmodel formalism (cf appendix) andαx,βx,αi andβi values as recorded in the PIDE. Themaximumand

minimumRBE values given byRBEmax=αi/αx, RBEmin= /b bi x (Carabe-Fernandez et al 2007, Dale et al
2009)were also considered and could be regarded approximately as RBE0 andRBE∞ at dx approaching 0 and∞,
respectively. Thus, the RBEdx values derived from the experimentalαx,βx,αi andβi values as recorded in the
PIDEwere regarded as the experimentally derived RBEdx ground truth in this work. RBE values defined by the
cell survival S, RBES, were also calculated (cf appendix) andmodeled for S= 0.1%, 1.0%, 10.0%, 50.0% and
90.0% for discussion.
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2.2. Correlation analysis
Thiswork aimed at building amodel that takes clinically available variables, i.e. LET,Q andαx/βx or
combinations thereof, as input and predicts the resulting RBE values. Spearman’s correlation coefficient values,
ρ, between different potential input variables and output data were calculated using the Python package Pandas
(Reback et al 2022).

2.3. RBEmodeling
Aneural network (NN)model was used to performdata-driven RBEmodeling to avoid any presumption on the
functional formof the RBEmodel. Considering the limited amount of available data (284 experimental records),
amodel with a comparably simple architecture was applied, i.e. a fully connectedNNconsisting of two hidden
layers of the size of 6. As activation function, the ReLU (rectified linear unit)was used. Themachine learning
package scikit-learn (Pedregosa et al 2011)was used for themachine-learning application in this work.

Three RBEmodels with different input variables, i.e. combinations of the physical and biological quantities
Q, LET andαx/βx, were compared; namely, RBE2Gy(Q,αx/βx), RBE2Gy(LET,αx/βx) andRBE2Gy(Q, LET,
αx/βx), respectively, with RBE2Gywas explicitly chosen as an example in thismanuscript.

2.4.Model evaluation
Themodels of RBE2Gy(Q,αx/βx), RBE2Gy(LET,αx/βx) andRBE2Gy(Q, LET,αx/βx)were trained and tested
using the same training and test set, respectively. The test set (20%of the total selected dataset)was randomly
chosen in the domain ofQÎ (0, 15) (A·MeV)−1 andαx/βxÎ (0, 30)Gy. The remaining data of the PIDEdataset
fulfilling the selection criteria specified in section 2.1were used as training set. The prediction power of the
trainedmodels was compared bymeans of the coefficient of determination (called r2 score in the following) and
themean square error (MSE) between the predicted and experimentally derived RBE2Gy of the test set regardless
of particle type. The ion dependence (95% confidence level) of themodels was tested by applying anANOVA
(analysis of variance) test on the residuals between themodel calculated and the experimentally derived RBE2Gy
of different particles. For the ANOVA test, all eligible PIDEdata, i.e. training and test set, were used due to the
limited amount of data of individual particles in the test set.

2.5. Uncertainties of themodel prediction
The uncertainty of themodel prediction in the two-dimensional (2D) space spanned by the two parametersQ
andαx/βx was evaluated by the following procedure:

(1) randomly divide the PIDEdataset into a training set (80%) and a test set (20%);

(2) train amodel using the training set and savemodel parameters;

(3) repeat (1) and (2) until 100models based on different training sets are built and saved;

(4) determine the uncertainty of the model by calculating the standard deviation (SD) of the 100 RBE2Gy values
calculated by those 100models at each (grid)point in the 2D space ofQ-αx/βx.

2.6. Comparison to other RBEmodels
The prediction of the proposed data-drivenmodel was compared to RBE results of LEM IV for the biological
endpoint of 10% survival fraction, i.e., RBE10 (Elsässer et al 2010) considering radiation data of human salivary
gland (HSG) cells reported by (Furusawa et al 2000). For the fairness of the comparison, theNNmodel was re-
trained for RBE10 and the inputs ofQ andαx/βx. The data of theHSG cells reported by (Furusawa et al 2000,
Elsässer et al 2010)were used as test set while the remaining PIDEdataset was used for training. The
experimentally derived RBE10 values were calculated as before by applying the LQmodel on PIDE-recordedαx,
βx,αi andβi values (cf appendix). Note that the ion dependence of themodel should not be inferred by this
analysis as the training and test set were not split randomly.

The prediction of LEM IVwas interpolated using the data reported by (Elsässer et al 2010).
For the same test data, the prediction of the recently proposedQ-driven linear RBEmodel (Tian et al 2022)

was also considered and compared in terms of RBE10. Thismodel is called linearmodel in the following, as it
assumes RBEmax to be linear inQ/( )/a b .x x The prediction of RBE10 by the linearmodel is described in the
appendix.
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3. Results

3.1.Data distribution
The distribution of data points of the PIDEdataset in the 2D space ofQ-αx/βx is shown infigure 1. All data,
except for one data point for protons (Baggio et al 2002) and one for neon ions (Furusawa et al 2000), werewithin
theQ interval of (0, 15) (A·MeV)−1 andαx/βx interval of (0, 26)Gywith a lower data density at high-Q values,
especially, whenαx/βx valueswere also high.

3.2. Variable correlation
Spearman’s correlation coefficients ρ between output (RBEdx at different dose level dx) and clinically available
input variables (LET,Q andαx/βx) are presented infigure 2. The ρ betweenRBEdx and eitherQor LETwere
comparable, while the ρ betweenRBEdx andαx/βx was low. The ρ betweenRBEdx and LET orQwere highest for
dx values within the photon reference dose interval 2–4Gy.Hence, RBEdxwithin 2–4Gywas regarded as the
most ‘predictable’ output.

In linewith thisfinding, the prediction of the RBEdx for dx values between 2 and 4Gywas observed to be
better than that for dx in other domains, i.e. (0, 2)Gy and (4,∞)Gy. As this is a dose range of particular clinical
relevance, results presented in this work focus on the prediction of RBEwithin this dose domain (cf comparison
between the prediction of RBE for different dx domains in the appendix).

3.3. Comparison ofmodels using different input
The ability of the RBE2Gy(Q,αx/βx)model to predict the experimentally derived RBE2Gy values is shown in
figure 3. The same comparison for the two othermodels, namely RBE2Gy(LET,αx/βx) andRBE2Gy(Q, LET,

Figure 1.Distribution of theQ andαx/βx values of the dataset used in this work using both linear (a) and log–log (b) scale. The ion
type is referenced by color and symbol.

Figure 2. Spearman’s correlation values ρ between the candidate input (LET,Q andαx/βx) and output (RBEdx) data: (a) correlation
map for the three reference photon dose levels dx of 0 (RBEmax), 2 Gy (RBE2Gy) and∞ (RBEmin). (b) ρ between the input variables
(LET,Q andαx/βx) andRBEdx at dose levels dx within (0, 30)Gy.
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αx/βx), is shown in supplementary figure S1. A comparison between themodel calculated RBE2Gy by both
RBE2Gy(Q,αx/βx) andRBE2Gy(LET,αx/βx) for the entire dataset are shown infigure S3.

Themodel performance of the RBE2Gy(LET,αx/βx), RBE2Gy(Q,αx/βx) andRBE2Gy(Q, LET,αx/βx)models
is compared in table 1 regarding the r2 score, theMSE between the experimentally derived andmodeled RBE2Gy
and the result of the ANOVA test. Note that, according to the result of the ANOVA test, themodel of
RBE2Gy(LET,αx/βx) cannot provide ion-independent predictions, i.e. themodel cannotmake predictions
equally for different ions, even for the training set. Thus,measurement of the prediction power, i.e. r2 score and
MSE, should be regarded as invalid, although corresponding numbers could still be obtained and compared to
the other twomodels.

Considering themodels of RBE2Gy(Q, LET,αx/βx) andRBE2Gy(Q,αx/βx), their r2 scores andMSEwere
comparable and bothmodels were not significantly dependent on ion type. The differences (mean±SD)
between the predictions of the twomodels RBE2Gy(Q,αx/βx) andRBE2Gy(Q, LET,αx/βx) for the same data
point (0.00± 0.11)weremuch smaller than the differences between themodel RBE2Gy(Q,αx/βx) and the
respective experimental data points (−0.03± 0.67), as shown in supplementary figure S2. Thatmeans adding
LET as an additional variable did not substantially change or improve the predicted RBE2G values. Therefore,
adding LET to themodel cannot substantially decrease the observed differences between individual
experimental data points and predictions.

The performance of RBES(Q,αx/βx) defined by cell survival is shown in table A2 in the appendix and is
consistent with the performance of RBEdx(Q,αx/βx). The r2 score was shown to be highest in the domain near
10% survival fraction; while at all survival fraction levels, themodels were not significantly ion dependent.

Figure 3.Comparison between the predicted RBE2Gy(Q,αx/βx) and experimentally derived RBE2Gy values for the test dataset. The ion
type is color coded. The reference red line demonstrates y= x, i.e. the ideal case that the prediction equals the corresponding
experiment.

Table 1.Performance of the neural networkmodels using different inputs to predict
RBE2Gy: coefficient of determination (r2 score), mean square error (MSE), p value of
ANOVA test and the results of corresponding ion-dependence test.

Models r2 score MSE p (ANOVA) Ion dependence

RBE2Gy(LET,Q,αx/βx) 0.77 0.60 0.13 Not significant

RBE2Gy(Q,αx/βx) 0.77 0.60 0.58 Not significant

RBE2Gy(LET,αx/βx) 0.74 0.68 2.1× 10−5 Significant
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3.4.Model uncertainties
Figure 4 shows themean and SD values resulting from the 100 trained RBE2Gy(Q,αx/βx)models in the 2D space
ofQ andαx/βx. RBE2Gywas observed to increase with increasingQ in the low-Qdomain (Q< approx. 3 [A
MeV−1]) and to decrease with increasingQ in high-Qdomain. This resembles thewell-known overkilling effect.

The same SD values are shown infigure 5 as a 2D colormap overlaid by the experimental data points from
the PIDEdataset. Themodel uncertainty was observed to be comparably low in regions of high data point
density and particularly high in regionswhere experimental data points weremissing.

3.5. Comparisonwith other RBEmodels
The experimental RBE10 values forHSG cells (αx/βx= 5.09Gy) irradiatedwith helium and carbon ions as
reported by (Furusawa et al 2000)were compared to themodel predictions given by LEM IV (Elsässer et al 2010)
and the presentNNmodel usingQ andαx/βx. They are shown as a function of LET infigure 6(a). Infigure 6(b),
the same experimental data andmodel predictions given by theNNQmodel were compared to the earlier
proposed linearQmodel (Tian et al 2022) but shown as a function ofQ/(αx/βx).

For the RBE10 of helium and carbon irradiation, the r2 andMSEbetween theNNmodel prediction and
experimental RBE datawere 0.85 and 0.08, respectively (figure 7). For the LEM IVmodel interpolation, the r2
andMSEwere 0.82 and 0.10, respectively. Accordingly, bothmodels were comparable in terms of r2 andMSE.
Systematic bias for different particles was observed for both RBEmodels: for the LEM IVmodel interpolation,

Figure 4.RBE2Gy(Q,αx/βx)model in theQ andαx/βx space: (a)mean and (b) standard deviation of 100 trained RBE2Gy(Q,αx/βx)
models. Note thatmodel predictions with uncertainties larger than 0.5 are not displayed.

Figure 5.Colormap of the RBE2Gy standard deviation of 100 trained RBE2Gy(Q,αx/βx)models with an overlay of the experimental
data points, which are color coded by ion type. The standard deviation is particularly high in regions with no experimental data points.
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the residuals of helium and carbonRBE10were−0.24± 0.17 and 0.22± 0.17, respectively. For theNNmodel
prediction, the residual values of helium and carbonRBE10were 0.19± 0.28 and−0.15± 0.22, respectively.

Both, theNNand the linearQmodel were observed to follow a similar trend in theQ/(αx/βx) interval of (0,
0.4) (A·MeV·Gy)−1. However, the linearmodel cannot predict experimentally derived RBE10 data in the domain
of overkilling, i.e. forQ/(αx/βx) larger than 0.4 (A·MeV·Gy)−1 in this case.

4.Discussion

In this work, we aimed to test the concept ofQ-drivenRBEmodeling, i.e. irradiationwith different ions has
similar RBE at similarQ level over awide LET range, including the domain of so-called overkilling. For this
purpose, a data-drivenNNmodel irradiations was built that only takesQ andαx/βx as input to predict RBE
(defined by either reference photon dose or cell survival level) for different ions. The prediction powerwas
evaluated (coefficient of determination) to be near 0.8 for the RBE defined by either the clinically relevant dose
interval of 2–4Gy or cell survival level of about 10%.No significant ion dependence was found in theQ-based
prediction of RBE in thementioned intervals, i.e. theQ concept was not rejected. In addition, the RBE10
predictionwas observed to be comparable to LEM IV regarding accuracy and precision. The relevance of aQ
model that does not depend on ion type could be the consolidation of clinical RBE research for different ions in
the future.

The considered combinations of candidate inputs, i.e. (Q, LET,αx/βx), (Q,αx/βx) and (LET,αx/βx), were
compared in terms of the difference between predicted and experimentally derived RBE2Gy. Themodel taking
(LET,αx/βx) showed significant ion dependence andworst performance and, thus, was abandoned. Compared
to themodel of (Q,αx/βx), predictions based on themodel using (Q, LET,αx/βx) as input were not found to be
better despite the additional information of LET. Considering that unnecessary input dimensionsmay degrade
the data efficiency due to potential overfitting (Hastie et al 2009), the input of thefinalNNmodel proposed in
this workwas set to (Q,αx/βx). From amodeling point of view, the ‘underlying assumption’ of themodels using
(Q,αx/βx) and (LET,Q,αx/βx) can be regarded as ‘RBE can be predicted givenQ andαx/βx’ and ‘RBE can be
predicted given LET,Q andαx/βx’. As particle type can be deduced if bothQ and LET are given, the assumption
of (LET,Q,αx/βx)model is equivalent to ‘RBE can be predicted given particle type, LET andαx/βx’, which is
generally applied bymost (ion-specific) LET-driven RBEmodels. TheQmodel was shown to have noworse
performance compared to this kind of ion-specific LETmodel.

It is well-known that the application ofNNmodels should be limited to interpolation. This limitationwas
clearly observed for theQ-drivenNNRBEmodel. It can be seen infigure 5 that themodel uncertainty in the
Q-αx/βx domain covered by data points ismuch smaller (σ around 0.5) than the uncertainty in the remaining
‘extrapolation’ domain. Generally,model extrapolation should be treated cautiously, since the extrapolation of a
model cannot be verified by experimental data. The same limitation applies to themodel in terms of the
dependence on dose and cell survival.Measures of themodel prediction power, r2 andMSE,were shown to be
better within a certain photon reference dose (2–4Gy) or cell survival interval (near 10%).We believe thismay
be related to our inference that RBE values calculated in these domains are generally better supported by the
consistency of experimentalmeasurements (cf appendix). The currently resulting limitations do not prevent

Figure 6.Comparison between the experimentally derived RBE10 for theHSG cell line and themodel predictions by the neural
network (NN)model and the local effectmodel IV (LEMIV) for different ions as function of (a) LET and (b)Q/αx/βx. For
comparison, the linearQmodel is also shown in (b). Note that the splitting of data in training and test sets used here was not done
following unbiasedmodeling rule, instead it was done non-randomly for the purpose of fair comparisonwith LEM IV. Thus, the
systematic error seen here is not suitable for the evaluation of ion dependence of themodel.
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Figure 7.Comparison between experimentally derivedRBE10 for helium and carbon irradiation ofHSG cells and the predictions
given by the LEM IV (a, full data), theQ-drivenNN (b, full data) and theQ-driven linearmodel (c, only non-overkilling domain).
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future improvement of theNNmodel in these domains, since data could eventually bemeasured in all domains
of relevance and fed into themodel.Moreover, this can also be seen as an advantage of theNNmodel since the
prediction uncertainty can be used as an indicator of how strongly themodel predictionwas supported by the
available experimental evidence.

TheNNmodel provided RBE predictions that are comparable to those by LEM IV. TheNNmodel relies
primarily on experimental data rather than pre-knowledge of, e.g.,microdosimetric dose distribution, detailed
information on the cells, biological effect at extremely high dose (near the center of the ion track). Thismay
allow theNNmodel to bemore flexible and less demanding regarding the needed input data when trained in a
clinical setting. In fact, themodel was intentionally developed based on only two parameters, Q andαx/βx, that
are clinically accessible to enable clinical application in the future after successful clinical training and testing.

For themodeling of clinical RBE, factors beyond the physical and biological process within the cell should be
considered including institute-specific factors, e.g. specific irradiation conditions andmedical decisions (Karger
and Peschke 2017). In this work, experimental details on, e.g., energy spectrum, secondary particles,
institutional differences including biological protocols and the level of their specification vary between the
records in the PIDEdataset. The data-drivenQmodel showed that the in vitroRBE is predictable in the domain
of clinically relevant dose level by using onlyQ andαx/βx as input butwithout the need for a specific previously
known formalism, e.g. the formulas used inmost phenomenologicalmodels (Tilly et al 2005, Carabe-Fernandez
et al 2007,Wedenberg et al 2013,McNamara et al 2015,Mairani et al 2017,McMahon 2021) andmodel
parameters inmechanisticmodels (Hawkins 1998, Elsässer et al 2010). Going from an in vitro to a clinical
endpoint, the use ofQ andαx/βx as an input allows forflexible data-driven RBEmodeling.

A systematic deviation between experimental data and the prediction for different ionswas observedwhen
theNNmodel was applied to predict the data reported by Furusawa et al (2000). This does not conflict with the
conclusion of the ion-dependence test, as for this case, theNNmodel was trained on all data but those fromone
specific publication (Furusawa et al 2000), and then tested on this particular publication (Furusawa et al 2000).
As training data and test data were divided systematically (one particular publication), a systematical errorwas
not unexpected. This test design serves only as an example for the comparisonwith the other RBEmodels but is
unsuited to test a systematic bias of themodel. In addition, systematic deviations between the same experimental
data and the predictions for LEM IV (Elsässer et al 2010)were observed, too.

Futurework onQmodeling needs to focus on investigating howQcan be uniquely investigated in a spread-
out Bragg peak aswell as demonstrating the validity of theQ concept (i.e. the RBE of different particles follows
the same trendwhen characterized byQ) for in vivo and clinical data. Yet, some clinical studies on brain toxicity
associatedwith a variable RBE have emerged for patients treatedwith both protons (Bahn et al 2020, Eulitz et al
2019, 2023) and carbon ions (Koto et al 2014, Shirai et al 2017) and could be considered as a potential clinical
endpoint of clinically related future studies.

SinceQ is a relatively simple physical quantity, it can be easily implemented in treatment planning systems
and used in place of LET in biological effectiveness guided treatment plan optimization that is emerging for
proton therapy (Hahn et al 2022).

5. Conclusion

In this work, data-driven non-linear RBEmodeling based onQwas proposed, analyzed and compared to
experimental in vitro data aswell as to a clinically applied RBEmodel. UsingQ andαx/βx as input, the RBE at a
clinically relevant dose range (2–4Gy) can be predictedwithout explicit knowledge of ion type. This suggests the
possibility of an empirical, ion-independent clinical RBEmodel that supports the transfer of RBE knowledge
frombetter- to less well-studied ions, ultimately advancing clinical RBE research.

Data availability statement

Nonewdatawere created or analyzed in this study. Data will be available from31 January 2023.

Appendix

TheRBE, under a different definition, can be calculated using the linear-quadratic (LQ)model, which calculates
the survival fraction (S) of cells at the dose level ofD:

( )= a b- -S e A1D D2

where theα andβ aremodel parameters.
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TheRBEdx is the ratio of the dose of the reference photon dx and the corresponding ion dose di that result in
the same biological effectiveness which is described by formula (A1).

The RBEdx can be calculated by:

( )/=RBE d d A2d x ix

( )
( )

b a b
a

=
- -

d
4 ln s

2
A3i

i
2

i x i

i

( )= a b- -s e A4x
d dx x x x

2

where Sx is the survival fraction of corresponding photon irradiation,αx,βx,αi andβi are recorded in the PIDE.
TheRBE10 is the ratio of the dose of reference photon dose dx and the dose of the ion di when both result in

10% survival fraction. The RBE10 can be calculated by:

( )/=RBE d d A510 x,10 i,10

( )
( )

b a b
a

=
- -

d
4 ln 0.1

2
A6i,10

i
2

i i

i

( )
( )

b a b
a

=
- -

d
4 ln 0.1

2
A7x,10

x
2

x x

x

While the experimentally derived RBE10was calculated using theαx,βx,αi andβi recorded in the PIDE, the
RBE10 predicted by the linearmodel was calculated using theαx andβx recorded in the PIDE and theαi andβi
predicted by themodel:

( )a a= RBE A8i xmax

( )b b= RBE A9i xmin
2

· ( )
/a b

= + k
Q

RBE 1 A10Q
x x

max

( )=RBE 1 A11min

where kQ= 15.5 A·MeV·Gy (Tian et al 2022).
The performance of theNNmodel predicting RBEdx at dx levels of 0, 1, 2, 4 and 10Gy as well as RBES at cell

survival S of 0.1%, 1.0%, 10.0%, 50.0% and 90.0%was compared using the same training (80%) and test (20%)
data sets.

As themagnitudes of the experimentally derived RBE at different dx or survival level are different (cf
tables A1 andA2, respectively), theMSE of the relative error, instead of the error values discussed in the
manuscript, were used for comparison. Other evaluationmetrics, i.e. r2 score andANOVA tests are compared as
well. The results are shown in tables A1 andA2. Considering the r2 score andMSE (relative) tradeoff, the
performance of themodel was considered to be better for dx between 2-4Gy and cell survival around 10%, this is
consistent to the result of correlation analysis (cffigure 2).

Note that the experimentally derived RBE is calculated using PIDE-recordedα andβ values, whichwere
obtained by fitting themeasured cell survival data points using the LQmodel. However, the obtained values for
α andβ also depend on the applied fitting conditions. Refitting the same experimentallymeasured data points,
the PIDE group obtained and recorded also different sets ofα andβ values. The resulting effect on
experimentally derived RBE valueswasmeasured by comparing the twoRBE values calculated either based on
anα&β setfitted by the original experimenters or by the PIDE group. For a quantitative comparison, the r2
score between the two experimentally derived RBE valueswas applied at different levels of dose and cell survival.
The result is shown infigure A1.Note that noRBEmodeling is involved in this analysis.

Table A1.The performance of themodels of RBEdx(Q,αx/βx) at given photon
reference dose, dx, level of 0, 1, 2, 4 and 10Gy. The RBEmax, i.e.αi/αx, is
approximately regarded as RBE0Gy. The performance ismeasured by the
coefficient of determination (r2 score), mean square error (MSE) of the relative
difference, p value of the ANOVA test.

dx (Gy) RBEdx range r2 score MSE (relative error) p (ANOVA)

0 0.72–27.84 0.85 0.86 0.27

1 0.86–9.69 0.79 0.39 0.47

2 0.95–6.24 0.77 0.30 0.58

4 0.98–4.26 0.75 0.22 0.18

10 0.91–2.96 0.65 0.19 0.72
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The r2 scorewas observed to be highest in the domain of 2–4Gy or cell survival around 10%,which is
consistent with the domain that ourmodel showed better prediction.

We believe that the cell survival curves reproduced by different sets offittedα&β values should converge
(high r2 score)where there are sufficient experimentalmeasurements, while diverging (low r2 score)where
measurementsmay be insufficient. Thus, it can be inferred that, generally, the RBE values calculated in the
domains of higher r2 scores aremore likely to be confirmed by direct experimental evidence as cell survival
curves obtained by different groups are consistent in those domains.
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