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Abstract: The optimisation (tuning) of the free parameters of Monte Carlo event generators by
comparing their predictions with data is important since the simulations are used to calculate experi-
mental efficiency and acceptance corrections, or provide predictions for signatures of hypothetical
new processes in experiments. We present a tuning procedure that is based on Bayesian reasoning
and that allows for a proper statistical interpretation of the results. The parameter space is fully
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1 Introduction

Monte Carlo event generators (MCEGs) are an indispensable tool in experimental and theoretical
particle physics. They simulate final states in high-energy particle collisions according to the
predictions of the Standard Model of Particle Physics (SM). While the interactions of partons,
i.e., quarks and gluons, are calculated from first principles, the transition from partons to hadrons
is modeled using a semi-empirical approach, see, e.g. ref. [1] for a review. In the analysis of
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experimental data, the predictions from MCEGs are combined with a detailed simulation of the
experimental setup, which is crucial for understanding of the data. Examples include the precise
determinations of the top-quark mass and the 𝑊-boson mass [2, 3]. The use of MCEGs to
calculate predictions of particle physics theory to investigate a data likelihood is an application of
simulation-based inference [4].

Recent advances in the development of MCEGs include an improved treatment of higher-order
perturbative corrections for the simulation of hard scattering processes and an improved theoretical
precision of the simulation of the parton showers. To tune the simulation of parton showers, MCEGs
typically have a small number of free parameters, such as the value of the strong coupling constant
𝛼𝑆 , the lower limit of the evolution parameter in the parton shower, and the parameters of the
hadronization models. It is these parameters that have to be optimized in order to achieve the best
possible description of the experimental data.

A first complete workflow for the determination of optimal MCEG parameters was developed
by the DELPHI collaboration [5]. Today, the standard for such a workflow is a set of data-to-
prediction comparison codes (analysis modules), which are included in the Rivet package [6].
The tuning workflow in the Professor [7] system creates multiple event samples with different
parameter settings, approximates the predictions as functions of the tuning parameters for all data
points, and finally finds the optimal values of the parameters by comparing the approximation
functions to the data.

The original application for tuning workflows were data from LEP including event shape
observables, jet production rates, charged and identified particle multiplicities, and charged particle
momentum spectra [5, 7]. In previous studies, some datasets were weighted during the final
optimization step to improve the description of the data after fitting. Detailed studies of the choice of
these weights were performed in refs. [8, 9]. While this procedure was introduced to ensure a good
description of the phenomenologically important observables, a proper statistical interpretation of
the parameter estimation, in particular the uncertainty estimation, was not possible.

The application of the Professor workflow on parameter subspaces was explored in ref. [10].
Other approaches to tuning MCEGs are Bayesian optimisation [11] and machine learning-based
reweighting using the complete simulated final states [12, 13]. Even though many approaches for
complete tuning workflows have been proposed, manual procedures are still followed [14].

In this study, a tuning procedure based on Bayesian reasoning that allows for a proper statistical
interpretation of the results was developed. Using Markov chain Monte Carlo algorithms, the full
posterior distributions for the MCEG parameters were determined. Those posterior distributions
provide a better understanding of the parameter space and may also reveal the limitations of the
underlying physical models. In addition, the full posterior distribution allows uncertainties to
be coherently propagated from the parameter space to the space of observables. As a result,
the tuning procedure provides not only an estimate of the optimal MCEG parameters (with
uncertainties and correlations), but also uncertainty estimates for the predictions. As a study case, the
developed tuning procedure was applied to a well-defined set of measurements and the parameters
of the Herwig7 MCEG with two different hadronization models were optimized. In addition,
the effects of including experimental correlations of the measurements were studied. To allow
comparison with the approaches of other groups, the tuning was repeated considering the weights
for individual measurements.
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2 Data selection

Similar to previous tuning studies [7, 15, 16], the data measured in 𝑒+𝑒− collisions were used. The
main motivation for this choice was to avoid ambiguities in the choice of parton density functions,
which are unavoidable when using the data from proton-proton or proton-lepton colliders. In addition,
the process 𝑒+𝑒− → (𝑍/𝛾)∗ → partons is very well understood in perturbative QCD (pQCD), and
in modern MCEGs it is used together with parton showers for accurate and stable simulations of the
process 𝑒+𝑒− → (𝑍/𝛾)∗ → hadrons.

The focus of the study is on the tuning of hadronization models used in the MCEGs.
Therefore, a set of measurements that can be used to assess the quality of the modeling of
hadronic final states [5, 6, 17–20] was selected. The corresponding Rivet analysis modules
are ALEPH_1996_S3486095 [17], ALEPH_2001_S4656318 [18], DELPHI_1996_S3430090 [5],
JADE_OPAL_2000_S4300807 [19] and PDG_HADRON_MULTIPLICITIES [20]. The Rivet
analysis modules ALEPH_1996_S3486095 and DELPHI_1996_S3430090 provide calculations for
the event shape observables such as sphericity, thrust, aplanarity etc. These observables and the
differential jet rates provided by the JADE_OPAL_2000_S4300807 analysis module are sensitive to
𝛼𝑆 . The ALEPH_1996_S3486095 analysis module also provides identified particle spectra sensitive
to fragmentation parameters. The 𝑏-quark fragmentation function observables were calculated with
the ALEPH_2001_S4656318 analysis module. The PDG_HADRON_MULTIPLICITIES module
was used to study the simulation of particle multiplicities.

In total, 100 observables from these five Rivet analysis modules were used. The full list of the
used observables is given in tables 8, 10 and 9 in appendix B.

3 Monte Carlo event generators

To perform the calculations for the 𝑒+𝑒− → (𝑍/𝛾∗) → 2, 3, 4, 5 partons processes the Herwig7
MCEG version 7.2.2 [21] was used with the MENLOPS method [22] using the MadGraph5 [23]
matrix element generator and the OpenLoops [24] one loop library. The two-parton final states were
predicted with full NLO accuracy in perturbative QCD in this scheme. The QCD matrix elements
were calculated with mass effects taken into account for massive 𝑏-quarks. Two models were used
for the modeling of the hadronization process and the details on these models are given below. The
simulated events produced by the MCEG were put into the HepMC format [25] and passed to the
Rivet package, where they were processed by the Rivet analysis modules for the corresponding
data sets. The comparison between the MCEG predictions and the data is explained in section 4.

3.1 Herwig7 with the cluster hadronization model

The default hadronization model of the Herwig7 MCEG is the cluster hadronisation model [26].
This model is referred to as Herwig7-H7. For this model, the list of parameters, as well as the ranges
in which the parameters were varied, are listed in table 1.

The selection of the parameter ranges was driven by two factors: the desire for a wide coverage
of the physically meaningful parameter space and the constraints imposed on the parameters by the
MC generator code and models. As a result, most parameter ranges were chosen to be in a ±50%
window around their default settings with some exceptions that will be discussed in the following.
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Table 1. Parameters for the Herwig7-H7 tune, their ranges and default values. The quantities without units
are dimensionless.

Parameter Range Default
AlphaQCD [0.1000, 0.1417] 0.1181

IRcutoff (GeV) [0.5004, 1.5012] 1.0080
𝑚𝑔 (GeV) [0.7445, 1.1400] 0.9500
𝑚𝑠 (GeV) [0.4734, 0.5000]𝑚𝑔 0.4500

ClMax (GeV) [1.9334, 5.8000] 3.8667
ClPow [0.8295, 2.4885] 1.6590
ClSmr [0.1719, 0.8593] 0.3437
PSplit [0.3450, 1.0348] 0.6899

The ranges for the AlphaQCD parameter were chosen taking into account the hardcoded minimal and
maximal values in the generator code. Similarly, the gluon and strange quark constituent masses are
limited by the boundaries set by the hadronization model [27]. The implementation of the model
in Herwig7 also requires the gluon and the strange quark to fulfill the condition 𝑚𝑔 >

𝑚𝑠

2 for a
successful run. Hereby, a lower bound can be set with the condition 𝑚𝑠 > 𝑚𝑢,𝑑 = 0.35. Given the
constraints of the constituent masses, 𝑚𝑠 was chosen to be varied as a fraction of 𝑚𝑔 with the lower
fraction equal to the default ratio of 𝑚𝑠/𝑚𝑔 = 0.47 which gives a lower bound of min(𝑚𝑔) = 0.74.

3.2 Herwig7 with the Lund string hadronization model

The second hadronization model available for Herwig7 is the Lund string hadronization model as
implemented in Pythia8 [28]. The Pythia8 hadronization code is interfaced to Herwig7 using
the TheP8I interface [10, 29]. This model is referred to as Herwig7-P8 and used Pythia 8.306
to generate the Herwig7-P8 samples. The selection of the parameter ranges for the Herwig7-P8
model was done in the same way as for the Herwig7-H7 model. The ranges for the tune were
chosen within the allowed scope of the Pythia8 framework. The parameters aExtraDiQuark and
aExtraSQuark have been varied and fitted as well. However, due to a lack of sensitivity of the
observables to these parameters, they were fixed when running the tune. Their fixed value was
derived from the Monash Tune [14] with 0.0 for aExtraSQuark and 0.97 for aExtraDiQuark. The
parameter ranges for Herwig7-P8 are shown in table 2.

Table 2. Parameters for the Herwig7-P8 tune, their ranges and default values. The parameters marked as
fixed are set to their default values for the tuning process. The quantities without units are dimensionless.

Parameter Range Fixed Default
AlphaQCD [0.1000, 0.1417] × 0.1181

IRcutoff (GeV) [0.2002, 1.8014] × 1.0080
SigmaPT (GeV) [0.000, 1.000] × 0.335

aLund [0.20, 2.00] × 0.68
bLund (GeV−2) [0.00, 2.00] × 0.98
aExtraDiQuark [0.00, 2.00] ✓ 0.97
aExtraSQuark [0.00, 2.00] ✓ 0.00
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4 Tuning procedure and statistical model

The tuning procedure was implemented in the JULIA package BAT.jl [30] which is a software tool
for Bayesian analysis containing algorithms for parameter estimation, hypothesis testing, model
comparison, and goodness-of-fit tests. BAT.jl provides interfaces to define arbitrary data likelihood
functions and prior distributions for statistical models defined by the user. The data likelihood and the
prior were multiplied to obtain the (unnormalized) posterior distribution which was then explored with
dedicated algorithms, in particular Markov Chain Monte Carlo techniques and derivatives thereof.

The BAT.jl-based package EFTFitter.jl [31] provides a data likelihood function for
combining several quantities including uncertainties and correlated data. It has been developed for
the interpretation of data in the context of effective field theories, which is a mathematically similar
problem. The data likelihood 𝐿 ( ®𝐷 | ®𝜆) is a multivariate Gaussian, i.e.

ln 𝐿 ( ®𝐷 | ®𝜆) = −1
2
[ ®𝐷 − ®𝑓 ( ®𝜆)]𝑇 · 𝑀−1 · [ ®𝐷 − ®𝑓 ( ®𝜆)] . (4.1)

The data are represented by ®𝐷, where each component of the vector corresponds to a measured value
of an observable (either a single measurement or a bin of a differential distribution). The covariance
matrix of the data is denoted by 𝑀 . The components 𝑓𝑏,𝑂 ( ®𝜆) of the vector ®𝑓 represent the MCEG
predictions of bin 𝑏 for observable 𝑂 as a function of the parameters ®𝜆. For the sake of simplicity
and to facilitate comparison with previous results, the prior distributions of the MCEG parameters
are chosen to be uniform over the ranges shown in tables 1 and 2. For the Herwig7-H7 tune, an
additional constraint is imposed on the data likelihood by demanding 𝑚𝑔 > 𝑚𝑠/2 in the generated
samples. The covariance matrix was chosen to be a diagonal matrix, the case of non-negligible
off-diagonal elements is discussed in section 8.

The posterior distribution was sampled using the Metropolis-Hasting (MH) algorithm for which
convergence is achieved within a few tuning cycles. The MH sampling was performed using six
chains with 106 sampling steps. In order to check for convergence of the different chains, BAT.jl
uses the Gelman-Rubin test [32], which has been generalized for the multivariate case by Brooks
and Gelman [33]. The convergence parameter 𝑅, which is calculated by comparing the variance of
the samples within a chain to the variance of samples between different chains, see ref. [33], was
slightly increased to 1.3 from its default value of 1.1 to account for the larger number of chains
which leads to higher distances, causing higher 𝑅 values of the chains during tuning.

The global mode values of the posterior distribution were chosen as the optimal parameter
set. While the full multidimensional posterior distribution can be used for further investigations,
e.g. studies of global modes or the propagation of uncertainties, the uncertainties for the individual
parameters were defined as the smallest 68% credibility interval of the marginalized distributions.

5 Parameterization of the MCEG predictions

The data likelihood contains a vector of functions ®𝑓 that represents the MCEG predictions as a function
of the free parameters, e.g. the mean charged multiplicity as a function of 𝛼𝑠. Since the evaluation
of these predictions using MC simulated events is very CPU-time intensive, they were replaced by
approximative parametrizations. The resulting analytic expressions for the functions 𝑓𝑏,𝑂 are much
faster to calculate during the sampling of the parameter space during the optimization process.
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To parameterize the MCEG response the multidimensional cubic polynomials were used, i.e.
functions of the form

𝑓𝑏,𝑂 ( ®𝜆) ≈ 𝑓 cubic
𝑏,𝑂 ( ®𝜆) = 𝑐0 +

∑︁
𝑖

𝑐𝑖𝜆𝑖 +
∑︁
𝑖

∑︁
𝑗≤𝑖
𝑐𝑖 𝑗𝜆𝑖𝜆 𝑗 +

∑︁
𝑖

∑︁
𝑗≤𝑖

∑︁
𝑘≤ 𝑗

𝑐𝑖 𝑗𝑘𝜆𝑖𝜆 𝑗𝜆𝑘 (5.1)

for each bin 𝑏 and observable 𝑂. The parameters ®𝜆 for the used hadronization models are shown in
tables 1 and 2. The linear, quadratic and cubic polynomial coefficients are denoted 𝑐𝑖 , 𝑐𝑖 𝑗 and 𝑐𝑖 𝑗𝑘 ,
respectively. The total number of coefficients needed for the approximation with 𝑁 parameters was
1 + 𝑁 + 𝑁 (𝑁 + 1)/2 + 𝑁 (𝑁 + 1) (𝑁 + 2)/6.

As the set of reference points for the fit, 500 (700) randomly chosen parameter sets were used
for the parametrization of the Herwig7-H7 (Herwig7-P8) models. For each set 106 MC events
were generated. Below, those samples are referred to as analysis samples. For each resulting sample
of events, the predictions for each observable were calculated using the Rivet framework. Finally,
the polynomial model was fitted to the MCEG predictions using the LsqFit.jl [34] package, which
implements the Levenberg-Marquardt algorithm [35, 36] for non-linear fitting procedures.

A reasonable agreement between the MCEG predictions and the corresponding parametrization
functions was observed. Studies of the goodness-of-fit can be found in appendix D. While the focus
of the current study is on the tuning process itself, it is worth noting that for a high-precision tune
that is used, e.g., by experimental collaborations, the parametrization of the predictions should be
addressed in more detail and alternative techniques, e.g. template morphing, should be considered.

To give a visual impression of the agreement between the MCEG predictions and the parametriza-
tion functions, additional test samples were produced for which only one parameter at a time was
varied. All parameters were set to their default values according to tables 1 and 2, and one parameter
was varied in the range given there in eleven equidistant steps. The first bin content of a sphericity
distribution as a function of four parameters is shown in figure 1 as an example. The markers indicate
the MC calculation and the red line represents the fitted parameterization function. The red area
represents the uncertainties from the fitting procedure. To guide the eye, the blue area represents
the range of predicted values from the parametrization model when changing the default values by
±5%. In general, the parameterization functions describe the MCEG predictions reasonably well
with deviations of the order of a few percent.

6 Propagation of uncertainties

One of the main advantages of using a Bayesian approach in combination with a fast parametrization
of the predictions is the opportunity to propagate the uncertainty from the parameter space to the
space of observables. The resulting uncertainty is then related to the tuning procedure and limited
knowledge about the MCEG parameters. The uncertainty propagation is done by re-sampling the
posterior distribution to generate 106 parameter points ®𝑝. For each bin of each observable, these
points were evaluated according to the parametrization function with the corresponding coefficients
®𝑦𝑏,𝑂 = 𝑓𝑏,𝑂 ( ®𝑝) using eq. (5.1). The resulting values ®𝑦𝑏,𝑂 represent the statistical distribution of the
bin content and the width of this distribution reflects the statistical uncertainty from the tuning process.

As an example, figure 2 shows these distributions for the first bin of the sphericity observable (top)
and for the multiplicity of 𝐵+

𝑢 mesons (bottom). One often uses the standard deviation as a measure of
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Figure 1. The content of the first bin of the sphericity distribution from the Rivet module DEL-
PHI_1996_S3430090 as a function of AlphaQCD, ClSmr, ClMax and ClPow with parameter sets from
the test samples. The approximation model is shown in red in comparison to the MCEG test sample
predictions. The red band represents the uncertainty obtained by propagating the uncertainty of the fitted
coefficients. The blue band represents variations caused by shifting the default values for the evaluation of the
approximation model by ±5%.

Figure 2. Distribution of the bin content for two bins of two observables using the parametrization with the
posterior samples as input. The figure on top shows the first bin of the sphericity observable while the bottom
figure shows the multiplicity of 𝐵+

𝑢 mesons.
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uncertainty, silently assuming a Gaussian distribution. In the case of the sphericity observable, this
assumption is roughly valid as the distribution is uni-modal and symmetric. However, in the case of the
𝐵+
𝑢-meson multiplicity, the distribution has two separate modes and is not symmetric. In such cases, a

full propagation of the uncertainty is required even if it is difficult to display graphically. For simplicity,
the standard deviation was used as a measure of uncertainty for the tuning process in the following.

7 Results

We perform the tune of the Herwig7-H7 and the Herwig7-P8 models according to the procedure
defined above. The global modes are quoted as the final results of the tune, while the modes and
smallest 68% intervals of the marginalized distributions are quoted as results for the individual
parameters and their uncertainties. We also display and discuss the one- and two-dimensional
marginalized distributions. In order to evaluate the quality of the tune, we generate a new MC
sample with the parameters set to the global mode and compare each data and MCEG distribution
by calculating the 𝜒2 and the corresponding 𝑝-value.

7.1 Herwig7-H7 tune

The global mode as well as the marginal and the smallest 68% credibility intervals of the marginalized
posterior probability are summarized in table 3. The global and marginalized modes are close. The
marginalized mode values are in agreement with the default settings shown in table 1 within the
uncertainties for each parameter except for ClSmr. For that parameter, the default setting of 0.3437
lies within the 95 percentile.

Table 3. Results of the tune of the Herwig7-H7 model. The values of the global and marginalized mode of
the posterior samples as well as the smallest intervals containing 68% of the probability are listed.

Parameter Global Marginal Smallest
mode mode 68% interval

AlphaQCD 0.115 0.115 [0.112, 0.118]
IRCutoff (GeV) 0.879 0.755 [0.580, 1.020]
𝑚𝑔(GeV) 0.709 0.738 [0.700, 0.955]
𝑚𝑠(GeV) 0.353 0.375 [0.346, 0.470]

ClMax (GeV) 2.591 4.025 [3.200, 4.750]
ClPow 0.823 0.910 [0.740, 1.260], [1.540, 2.260]
ClSmr 0.675 0.725 [0.480, 0.885]
PSplit 0.868 0.728 [0.615, 0.865]

The one- and two-dimensional marginalized distributions are shown in figure 3. None of the
parameters are described by a normal distribution. The distributions for the parameters AlphaQCD,
IRCutoff and PSplit have only a slight asymmetry in their distributions, while ClSmr and ClMax
show a more pronounced asymmetry. The distributions representing the gluon and strange quark
constituent masses, (𝑚𝑔 and𝑚𝑠), are almost one-sided with a sharp increase and slow drop-off towards
higher values. The marginalized distribution for ClPow is multimodal. The global mode is located in
the first peak, while the default value is closer to the second peak. Most two-dimensional distributions
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show a mild linear correlation. The most prominent exceptions are a very strong correlation between
𝑚(𝑔) and 𝑚(𝑠) and the highly non-Gaussian shape of the distributions of ClPow and ClMax.

Figure 3. One and two-dimensional marginalized posterior distributions of the parameters for the tune of the
Herwig7-H7 model. The green, yellow and red areas contain the smallest 68, 95 and 99% intervals of the
marginalized probability distributions, respectively. The dots and the lines are projections of the global mode
representing the point with the highest probability.

The distribution of the 𝑝-values for each observable using the Herwig7-H7 model with tuned
and nominal parameter sets are shown in figure 4. The mean 𝑝-value increases from 0.095 for the
default parameter values to about 0.133 for the tuned values. Since a majority of observables still
tend to have low 𝑝-values we compare the two parameter sets on a logarithmic scale.

To demonstrate the impact of the tuning, figure 5 shows two observables as an example, namely
the sphericity (left) and the 𝐵+

𝑢 multiplicity (right), calculated from the tuned and the nominal MCEG
sample as well as from the data. The uncertainty bands for the tuned sample contain the MC statistical
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Figure 4. Distributions of 𝑝-values for the tuned and nominal MC samples for the Herwig7-H7 tune.
Each observable contributes one 𝑝-value toward the histogram. The bottom figure shows a subrange of the
distribution 𝑝 > 10−4 in a logarithmic scale.

uncertainty and the propagated uncertainty from the tuning process as discussed in section 6. The
uncertainties associated with the tuned sample are thus larger than those associated with the nominal
sample. The tuned MCEG model results either in the same or in a better agreement with the data
compared to the results obtained with the nominal sample. We find values of 𝜒2/𝑛𝑑𝑓 after (before)
tuning of 7.60 (9.82) for the sphericity distribution and of 3.86 (25.6) for the mean 𝐵+

𝑢 multiplicity.
This trend is seen in most observables and expected from the average 𝑝-value distribution.

Figure 5. Distribution of the sphericity observable from DELPHI [5] (left) and the mean 𝐵+
𝑢 multiplicity [20]

(right) for the data and the tuned and nominal MCEG samples for the Herwig7-H7 tune. The calculation of
the uncertainties for the nominal and tuned results is explained in the text. The bottom sections of the figures
show the ratio to data.

7.2 Herwig7-P8 tune

The marginal mode and smallest 68% intervals for the Herwig7-P8 tune can be found in table 4.
For AlphaQCD, SigmaPT, IRCutoff and aLund the default values, listed in table 2, are within the
smallest 68% intervals while the bLund default values are significantly smaller.
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Table 4. Results of the tune of the Herwig7-P8 model. The values of the global and marginalized mode of
the posterior samples as well as the smallest intervals containing 68% of the probability are listed. Fixed
parameters are set to their mode value. The quantities without units are dimensionless.

Parameter Global Marginal Smallest Fixed
mode mode 68% interval

AlphaQCD 0.120 0.120 [0.117, 0.122] ×
IRCutOff (GeV) 1.079 1.079 [0.730, 1.390] ×
SigmaPT (GeV) 0.303 0.311 [0.284, 0.336] ×

aLund 1.287 1.435 [0.950, 1.760] ×
bLund (GeV−2) 1.302 1.325 [0.940, 1.720] ×
aExtraDiquark 0.970 0.970 - ✓

aExtraSQuark 0.0 0.0 - ✓

Figure 6 shows the posterior distributions for theHerwig7-P8 tune. TheAlphaQCD andSigmaPT
parameters are well constrained with both marginalized distributions being almost symmetric and
showing a smaller width compared to the full prior size. The IRCutoff variable shows similar
behavior. aLund and bLund show a correlation as visible in their two-dimensional marginalized
distribution. Contrary to the other variables, their constraint is rather weak as the one-dimensional
marginal distribution has a larger width which results in them being cut-off by the prior edges
towards higher values. Compared to the posterior of the Herwig7-H7 tune in figure 3, the posterior
has a single mode indicating a less ambiguous solution tune.

The distributions of the 𝑝-values for the Herwig7-P8 tune compared to the default parameter
set are shown in figure 7. Similarly to the Herwig7-H7 tune, the mean of the 𝑝-values increases
from 0.096 to 0.143 for the tuned MCEG with fewer observables showing a 𝑝-value below 𝑝 < 10−4.
As examples, the sphericity and 𝐵+

𝑢 multiplicity observables for the tuned and nominal samples are
shown in figure 8. In this case, the sphericity distribution shows an improved agreement to data,
while the multiplicity distribution shows no improvement. We find values of 𝜒2/𝑛𝑑𝑓 after (before)
tuning of 6.42 (16.6) for the sphericity distribution and of 13.5 (13.3) for the mean 𝐵+

𝑢 multiplicity.
However, the overall agreement to the data improves as indicated by the 𝑝-values.

7.3 Herwig7-H7 and Herwig7-P8 comparison

In addition to the comparison of the tuned and nominal samples, both hadronization models can
be compared to each other. While it is not possible to compare the parameters one to one, the
distributions of the observables and their agreement with the data can be compared. The distributions
of the 𝑝-values of the observables suggest that the Herwig7-P8model has a better overall agreement
to data, as can be seen in figure 9, with an increase in 𝑝-value of about 8% when compared to
Herwig7-H7. A comparison of the sphericity and 𝐵+

𝑢 multiplicity observables is shown in figure 10
together with their tuning uncertainty as discussed in section 6. It is noticeable that this uncertainty
is systematically larger for the Herwig7-H7 tune. This behavior is, at least in part, expected as the
larger number of parameters leads to larger uncertainties, even if those are individually constrained
to the same degree. The predictions from the models are in agreement within their uncertainties for
the sphericity observable, while the central values of the Herwig7-P8 model better reproduce the
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Figure 6. Results for the tune of the Herwig7-P8 hadronization model. See the caption on figure 3 for a
detailed explanation.

Figure 7. Distributions of 𝑝-values for the tuned and nominal MC samples for the Herwig7-P8 tune. Each
observable contributes one 𝑝-value toward the histogram. The right figure shows a subrange 𝑝 > 10−4 of the
distribution in a logarithmic scale.

data. However, the multiplicity, shown in figure 10, is described better by the Herwig7-H7 model.
In conclusion, both models have similar performance with some observables being better described
by either of them. Overall, the Herwig7-P8 model has a marginally better agreement with the data
in this exemplary set of observables.
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Figure 8. Distribution of the sphericity observable from DELPHI [5] on the left and the mean 𝐵+
𝑢

multiplicity [20] on the right for the data and the tuned and nominal MCEG samples for the Herwig7-P8
tune. See the caption on figure 5 for further details.

Figure 9. Distributions of 𝑝-values for the tuned Herwig7-H7 and Herwig7-P8 hadronization models. Each
observable contributes one 𝑝-value toward the histogram. The bottom figure shows a subrange 𝑝 > 10−4 of
the distribution in a logarithmic scale.

Figure 10. Distribution of the sphericity observable from DELPHI [5] on the left and the mean 𝐵+
𝑢

multiplicity [20] on the right for the data and the tuned MCEG samples for the Herwig7-H7 and Herwig7-P8
hadronization models. See the caption on figure 5 for further details.
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8 Studies of correlations

For the tuning presented in section 7 the uncertainties were assumed to be uncorrelated. In
general however, it is expected that uncertainties, especially systematic uncertainties, are in fact
correlated to some degree. In order to evaluate the impact of such correlations, additional tunes
were performed. The main difference compared to the tunes in section 7 is that the covariance
matrix 𝑀 in eq. (4.1) is no longer purely diagonal. The covariance matrix is now constructed to be
blockwise diagonal with a block for each observable distribution. For the off-diagonal entries in each
block, the product 𝑟 · 𝜎𝑖𝜎𝑗 was inserted, where 𝜎𝑖, 𝑗 are the systematic uncertainties of data points
𝑖 and 𝑗 , and 𝑟 quantifies the amount of correlation between both in terms of a linear correlation
coefficient. Due to the lack of information regarding the correlation of systematic uncertainties from
the analyses, a pragmatic approach was chosen by scanning through the values of the correlation
factor 𝑟 = [0.0, 0.4, 0.6, 0.8, 0.9].

While these values are merely suggestive, they represent scenarios with mild, medium and
strong correlations. As an example, figure 11 shows the two-dimensional posterior probability
distribution for the two parameters ClMax and ClPow for different assumptions about 𝑟 . The smallest
areas containing 68% of the marginalized posterior shrink with increasing correlation factor 𝑟 . For
large correlation coefficients, such as 𝑟 = 0.9, this area splits into two parts indicating the presence
of a second mode within the posterior distribution.

0 1 2 3 4 5 6
P(ClMax)

0.5

1.0

1.5

2.0

2.5

3.0

P(
Cl

Po
w)

global mode
r = 0.0
r = 0.4
r = 0.6
r = 0.8
r = 0.9

Figure 11. Marginalized two-dimensional distribution of the posterior probability for the parameters ClMax
and ClPow for the Herwig7-H7 tune. The underlying distribution represents the contours of the posterior
for uncorrelated uncertainties with the green, yellow and red contours representing the smallest intervals
containing 68%, 95% and 99%, respectively. The overlayed colored contours represent the smallest interval
containing 68% of the posterior for different configurations of correlation coefficients.
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Introducing and increasing the correlation of uncertainties predominantly results in a narrowing
of the posterior phase space, i.e. reduced uncertainties of the global modes of the MCEG parameters.
The global mode for the MCEG parameters remains stable with only small deviations which are
within the parameter uncertainties. This behavior of the global mode can be seen in table 5 where
the global mode and the standard deviation of the parameters are listed for 𝑟 = 0.0 and 𝑟 = 0.9.
Hence, the results of the tune can be regarded as stable, while the estimation of uncertainties of the
tuned parameter depends on the choice of correlation factor.

Table 5. The mode and standard deviation of the tuned parameters for the tune of Herwig7-H7. Results are
shown without correlation and for a correlation of 𝑟 = 0.9. The quantities without units are dimensionless.

Correlation

𝑟 = 0.0 𝑟 = 0.9

Parameter Mode 𝜎 Mode 𝜎

AlphaQCD 0.114 0.0032 0.115 0.0018

IRCutoff (GeV) 0.810 0.221 0.730 0.126

𝑚𝑔 (GeV) 0.716 0.129 0.780 0.106

𝑚𝑠 (GeV) 0.357 0.062 0.390 0.050

ClMax (GeV) 2.543 0.872 2.081 0.742

ClPow 0.800 0.560 0.667 0.545

ClSmr 0.662 0.194 0.461 0.148

PSplit 0.916 0.128 1.050 0.101

9 Studies on the effects of weighting observables

Traditionally, MC tuning relies on the use of weights to stabilize the tuning process and/or increase
the importance of certain observables [10]. This procedure, however, compromises the statistical
interpretation of the resulting uncertainties and potentially biases the obtained results of the tune.
To test the effect, non-unity weights were introduced in the study and the results were compared to
the tune discussed above with all weights equal to unity. The weights were introduced by adding a
vector of coefficients ®𝑤𝑖=1...𝑁bins into the eq. (4.1) and dividing the likelihood by the sum of those
weights. All weights for the bins from the same distributions were set to be equal.

In order to investigate the impact of weighting on the tune, the tuning process was repeated
for two different weighting schemes 𝑤1 and 𝑤2 with the weight values for these schemes given in
tables 8, 10 and 9 in appendix B. The weighting scheme 𝑤1 applies higher weights for multiplicities
while leaving the event shape variables mostly unchanged. The weighting scheme 𝑤2 sets the weights
of the multiplicities to zero and in contrast, increases the weights of the event shape variables and
the weights of the mean charged multiplicities observable.

While changing from the unweighted tune to the weighting schemes 𝑤1 and 𝑤2, most of the
posteriors retain their shape with only very minor changes. Most notably the positions of the global
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modes were shifted by the weighting procedure, as seen in tables 6 and 7. The mode values of these
weighted tunes were also used for the MCEG to compare to data similarly to section 7. The 𝑝-values
were calculated for the Herwig7-H7 and Herwig7-P8 tunes for both weighting schemes.

Table 6. The mode and standard deviation of the tuned parameters for the tune of Herwig7-H7 using different
weighting schemes. The quantities without units are dimensionless.

Weighting scheme

none 𝑤1 𝑤2

Parameter Mode 𝜎 Mode 𝜎 Mode 𝜎

AlphaQCD 0.115 0.003 0.113 0.004 0.115 0.003

IRCutoff (GeV) 0.879 0.223 0.859 0.245 0.837 0.214

𝑚𝑔 (GeV) 0.709 0.128 0.706 0.136 0.708 0.13

𝑚𝑠 (GeV) 0.353 0.062 0.352 0.066 0.346 0.063

ClMax (GeV) 2.591 0.871 3.187 0.911 3.761 0.832

ClPow 0.823 0.561 0.847 0.567 2.147 0.541

ClSmr 0.675 0.193 0.501 0.228 0.806 0.213

PSplit 0.868 0.130 0.867 0.141 0.776 0.137

Table 7. The mode and standard deviation of the tuned parameters for the tune of Herwig7-P8 using different
weighting schemes. The quantities without units are dimensionless.

Weighting scheme

none 𝑤1 𝑤2

Parameter Mode 𝜎 Mode 𝜎 Mode 𝜎

AlphaQCD 0.120 0.003 0.120 0.004 0.120 0.003

IRCutOff (GeV) 1.079 0.313 1.135 0.363 1.115 0.339

aLund 1.287 0.376 1.380 0.416 1.381 0.396

bLund (GeV−2) 1.302 0.359 1.369 0.379 1.393 0.363

aExtraDiquark 0.97 - 0.97 - 0.97 -

aExtraSQuark 0.0 - 0.0 - 0.0 -

SigmaPT (GeV) 0.303 0.026 0.304 0.031 0.302 0.027

The Herwig7-H7 tune seems to benefit from the first weighting scheme as the mean of 𝑝-values
increases from 0.133 to 0.151 while the second scheme decreases the overall agreement to data. In
contrast, the Herwig7-P8 benefits from both weighting schemes, although, only yielding a small
additional improvement from 0.143 to 0.147 when compared to the unweighted tunes from section 7.
The posterior distributions for the Herwig7-H7 and Herwig7-P8 tune are shown in figure 14 and
figure 15 respectively in appendix C.
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10 Conclusions

A MCEG tuning procedure based on proper statistical grounds using a Bayesian approach is presented.
As an application example, the procedure was used to tune the Herwig7MCEG with two different
hadronization models. The data used for those studies were collected by the LEP experiments and
include event-shape and jet rate distributions, charged hadron momentum spectra and multiplicities
from the process 𝑒+𝑒− → (𝑍/𝛾)∗ → hadrons. The Rivet framework was used to generate the
analysis code. The global mode values of the posterior distribution were chosen as the optimal
parameter set. In addition, appropriate uncertainty measures for the individual parameters are
provided, e.g. from the smallest 68% credibility intervals, as well as uncertainty propagation of these
parameters. The impact of different correlation assumptions and data-weighting schemes on the
final results was investigated.

Several conclusions can be drawn from these observations. First it was found that the Bayesian
approach to tuning MCEG works successfully. In particular, sets of optimized parameters including
appropriate uncertainty estimates were obtained. These estimates can then be used to propagate the
uncertainties on the optimal parameter set to the space of observables. As a result, the tuning of
MCEG improves the agreement between the data and the MCEG predictions, and it provides an
estimate for the uncertainties of prediction from the tuning process itself.

Second, it was shown that correlations between measurements can have an impact on optimization
results, especially when uncertainties are estimated. Therefore it is recommended to the experimental
collaborations if possible to derive and publish those correlations, and suggest that such correlations
be carefully considered in further tuning studies. Third, it was found that for the particular data sets,
the MCEG models examined, and the tuning parameters considered, the Herwig7 MCEG using
the Lund string hadronization model describes the data slightly better than the standard cluster
hadronization model.
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A Software used in the analysis

The list of the used software is given below. The statistical analysis was performed using the
BAT.jl [30] and EFTFitter.jl [31] packages of the JULIA language. The fitting was performed
using the LsqFit.jl package for the JULIA language. The generation of the MC event samples
and their processing was done using Herwig7.2.2 [21], MadGraph5 [23], OpenLoops [24],
Pythia8 [28], TheP8I [29], Rivet [6], ROOT 6.22 [37] and HepMC3 packages packed into
singularity containers based on Fedora Linux distribution.
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B Observables used in the analyses

Table 8. Lists of Rivet analyses and bins used in the tuning including their descriptions imported from
Rivet as well as two different weighting schemes used for different tunes, part I [17–19].
Rivet analysis and bin code Description Weight scheme

𝑤1 𝑤2

ALEPH_1996_S3486095 [17]
d01-x01-y01 Sphericity, 𝑆 (charged) 1 5
d02-x01-y01 Aplanarity, 𝐴 (charged) 2 10
d03-x01-y01 1-Thrust, 1 − 𝑇 (charged) 1 5
d04-x01-y01 Thrust minor, 𝑚 (charged) 2 10
d07-x01-y01 𝐶 parameter (charged) 1 5
d08-x01-y01 Oblateness, 𝑀 − 𝑚 (charged) 1 5
d09-x01-y01 Scaled momentum, 𝑥𝑝 = |𝑝 |/|𝑝beam | (charged) 1 5
d11-x01-y01 In-plane 𝑝𝑇 w.r.t. sphericity axes (charged) 1 5
d12-x01-y01 Out-of-plane 𝑝𝑇 w.r.t. sphericity axes (charged) 1 5
d17-x01-y01 Log of scaled momentum, log(1/𝑥𝑝) (charged) 1 5
d18-x01-y01 Charged multiplicity 2 10
d19-x01-y01 Mean charged multiplicity 150 750
d25-x01-y01 𝜋± spectrum 1 1
d26-x01-y01 𝐾± spectrum 1 1
d29-x01-y01 𝜋0 spectrum 1 1
d30-x01-y01 𝜂 spectrum 1 1
d31-x01-y01 𝜂′ spectrum 1 1
d32-x01-y01 𝐾0 spectrum 1 1
d33-x01-y01 Λ0 spectrum 1 1
d34-x01-y01 Ξ− spectrum 1 1
d35-x01-y01 Σ± (1385) spectrum 1 1
d36-x01-y01 Ξ0 (1530) spectrum 1 1
d37-x01-y01 𝜌 spectrum 1 1
d38-x01-y01 𝜔(782) spectrum 1 1
d39-x01-y01 𝐾∗0 (892) spectrum 1 1
d40-x01-y01 𝜙 spectrum 1 1
d43-x01-y01 𝐾∗± (892) spectrum 1 1

ALEPH_2001_S4656318 [18]
d01-x01-y01 𝑏 quark fragmentation function 𝑓 (𝑥weak

𝐵
) 7 35

d07-x01-y01 Mean of 𝑏 quark fragmentation function 𝑓 (𝑥weak
𝐵

) 3 15
JADE_OPAL_2000_S4300807 [19]

d26-x01-y01 2-jet Durham diff. rate 2 10
d26-x01-y02 3-jet Durham diff. rate 2 10
d26-x01-y03 4-jet Durham diff. rate 2 10
d26-x01-y04 5-jet Durham diff. rate 2 10
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Table 9. Lists of Rivet analyses and bins used in the tuning including their descriptions imported from
Rivet as well as two different weighting schemes used for different tunes, part II [20].

Rivet analysis and bin code Description Weight scheme
𝑤1 𝑤2

PDG_HADRON_MULTIPLICITIES [20]
d01-x01-y03 Multiplicity of 𝜋+ 10 0
d02-x01-y03 —"— 𝜋0 10 0
d03-x01-y03 —"— 𝐾+ 10 0
d04-x01-y03 —"— 𝐾0 10 0
d05-x01-y03 —"— 𝜂 10 0
d06-x01-y03 —"— 𝜂′(958) 10 0
d07-x01-y03 —"— 𝐷+ 10 0
d08-x01-y03 —"— 𝐷0 10 0
d09-x01-y03 —"— 𝐷+

𝑠 10 0
d10-x01-y01 —"— 𝐵+, 𝐵0

𝑑
10 0

d11-x01-y01 —"— 𝐵+
𝑢 10 0

d12-x01-y01 —"— 𝐵0
𝑠 10 0

d13-x01-y03 —"— 𝑓0(980) 10 0
d14-x01-y01 —"— 𝑎+0 (980) 10 0
d15-x01-y03 —"— 𝜌0(770) 10 0
d16-x01-y01 —"— 𝜌+(770) 10 0
d17-x01-y02 —"— 𝜔(782) 10 0
d18-x01-y03 —"— 𝐾∗+(892) 10 0
d19-x01-y03 —"— 𝐾∗0(892) 10 0
d20-x01-y03 —"— 𝜙(1020) 10 0
d21-x01-y03 —"— 𝐷∗+(2010) 10 0
d23-x01-y02 —"— 𝐷∗+

𝑠 (2112) 10 0
d24-x01-y01 —"— 𝐵∗ 10 0
d25-x01-y02 —"— 𝐽/𝜓(1𝑆) 10 0
d26-x01-y01 —"— 𝜓(2𝑆) 10 0
d27-x01-y01 —"— Υ(1𝑆) 10 0
d28-x01-y01 —"— 𝑓1(1285) 10 0
d29-x01-y01 —"— 𝑓1(1420) 10 0
d30-x01-y01 —"— 𝜒𝑐1(3510) 10 0
d31-x01-y03 —"— 𝑓2(1270) 10 0
d32-x01-y01 —"— 𝑓 ′2 (1525) 10 0
d34-x01-y02 —"— 𝐾∗0

2 (1430) 10 0
d35-x01-y01 —"— 𝐵∗∗ 10 0
d36-x01-y01 —"— 𝐷+

𝑠1 10 0
d37-x01-y01 —"— 𝐷+

𝑠2 10 0
d38-x01-y03 —"— 𝑝 10 0
d39-x01-y03 —"— Λ 10 0
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Table 10. Lists of Rivet analyses and bins used in the tuning including their descriptions imported from
Rivet as well as two different weighting schemes used for different tunes, part III [5].
Rivet analysis and bin code Description Weight scheme

𝑤1 𝑤2

PDG_HADRON_MULTIPLICITIES [20]
d40-x01-y02 —"— Σ0 10 0
d41-x01-y01 —"— Σ− 10 0
d42-x01-y01 —"— Σ+ 10 0
d43-x01-y01 —"— Σ± 10 0
d44-x01-y03 —"— Ξ− 10 0
d45-x01-y02 —"— Δ++(1232) 10 0
d46-x01-y03 —"— Σ− (1385) 10 0
d47-x01-y03 —"— Σ+(1385) 10 0
d48-x01-y03 —"— Σ±(1385) 10 0
d49-x01-y02 —"— Ξ0(1530) 10 0
d50-x01-y03 —"— Ω− 10 0
d51-x01-y03 —"— Λ+

𝑐 10 0
d52-x01-y01 —"— Λ0

𝑏
10 0

d54-x01-y02 —"— Λ(1520) 10 0
DELPHI_1996_S3430090 [5]

d01-x01-y01 In-plane 𝑝⊥ w.r.t. thrust axes 1 5
d02-x01-y01 Out-of-plane 𝑝⊥ w.r.t. thrust axes 1 5
d03-x01-y01 In-plane 𝑝⊥ w.r.t. sphericity axes 1 5
d04-x01-y01 Out-of-plane 𝑝⊥ w.r.t. sphericity axes 1 5
d07-x01-y01 Scaled momentum, 𝑥𝑝 = |𝑝 |/|𝑝beam | 1 5
d08-x01-y01 Log of scaled momentum, log(1/𝑥𝑝) 1 5
d09-x01-y01 Mean out-of-plane 𝑝⊥ w.r.t. thrust axes vs. 𝑥𝑝 1 5
d10-x01-y01 Mean 𝑝⊥ vs. 𝑥𝑝 1 5
d11-x01-y01 1 − Thrust 1 5
d12-x01-y01 Thrust major, 𝑀 1 5
d13-x01-y01 Thrust minor, 𝑚 2 10
d14-x01-y01 Oblateness = 𝑀 − 𝑚 1 5
d15-x01-y01 Sphericity, 𝑆 1 5
d16-x01-y01 Aplanarity, 𝐴 2 10
d17-x01-y01 Planarity, 𝑃 1 5
d18-x01-y01 𝐶 parameter 1 5
d19-x01-y01 𝐷 parameter 1 5
d33-x01-y01 Energy-energy correlation, EEC 1 5
d35-x01-y01 Mean charged multiplicity 150 750
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C Studies of the weights impact

Figure 12. Distribution of 𝑝-values for tuned and nominal MC samples for the Herwig7-H7 tune with
weighting scheme one (two top distributions) and two (two bottom distributions). Each observable contributes
one 𝑝-value toward the histogram. The bottom figures show a subrange 𝑝 > 10−4 of the distributions in a
logarithmic scale.

Figure 13. Distribution of 𝑝-values for tuned and nominal MC samples for the Herwig7-P8 tune with
weighting scheme one (two top distributions) and two (two bottom distributions). Each observable contributes
one 𝑝-value toward the histogram. The bottom figures show a subrange 𝑝 > 10−4 of the distributions in a
logarithmic scale.
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Figure 14. One and two dimensional marginalized posterior distributions for the Herwig7-H7 tune using
weighting scheme one (top) and two (bottom). See the caption on figure 3 for a detailed explanation.
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Figure 15. One and two dimensional marginalized posterior distributions for the Herwig7-P8 tune using
weighting scheme one (top) and two (bottom). See the caption on figure 3 for a detailed explanation.
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D Studies on the goodness of fit

The test samples, described in section 5 were used to study the approximation model. The performance
of the approximation model was evaluated using the residuals between the approximated values and
the analysis and test samples. The corresponding pulls for those residuals in the analysis samples
were calculated for each fitted bin as

𝑝analysis =
𝑓 ( ®𝜆) − 𝐷𝑀𝐶

𝜎𝑟
=
𝑓 ( ®𝜆) − 𝐷𝑀𝐶√︃
𝜎2
𝐷𝑀𝐶

− 𝜎2
𝑓

(D.1)

with the MCEG values 𝐷𝑀𝐶 , their uncertainties 𝜎𝐷𝑀𝐶
, the value of the approximation 𝑓 ( ®𝜆) and

the uncertainty of the approximation 𝜎2
𝑓

which was calculated by propagating the fit uncertainties
on the coefficients [38]. The calculations of pulls with the test samples take into account that the
uncertainties of 𝐷𝑀𝐶 and 𝑓 are uncorrelated, hereby

𝑝test =
𝑓 ( ®𝜆) − 𝐷𝑀𝐶

𝜎𝑟
=
𝑓 ( ®𝜆) − 𝐷𝑀𝐶√︃
𝜎2
𝐷𝑀𝐶

+ 𝜎2
𝑓

(D.2)

In both cases, in eq. D.1 and eq. D.2 it is possible for the uncertainty of the fit to become larger than
the uncertainty of the MCEG data points as the error propagation relies on a linear approximation of
the cubic model. Hence, data points with 𝜎2

𝑓
> 𝜎2

𝐷𝑀𝐶
were omitted from the pull distributions and

the behaviour of the approximation model for those points was studied on a case-by-case basis. The
𝑝test and 𝑝analysis follow normal distributions, although the 𝑝analysis distribution shows larger values
toward the tails. In addition, normal distributions were fitted to 𝑝analysis and 𝑝test, which resulted in
mean values of −0.008 and −0.003, respectively. The fitted standard deviations are 1.66 and 1.18.
The higher standard deviation and the larger tails of the 𝑝analysis distribution indicate that the fitted
approximation models do not always give a perfect description of the MCEG data, leading to larger
average residuals than expected from statistical fluctuations alone. While it is beneficial for further
tuning efforts to refine the description of the MCEG data, the approximation model suffices for the
study’s emphasis on presenting a new tuning method.

Apart from the checks described in section 5, additional studies were performed to ensure
that the approximation procedure works as expected. The 𝜒2

red = 𝜒2/𝑛dof values for each bin were
used to evaluate the performance of the approximation procedure. The distribution of 𝜒2

red for all
approximated observables with the Herwig7MCEG is given in figure 16. The distribution peaks at
the 𝜒2

red ≈ 1, with most of the entries having 𝜒2
red < 15. The tail of the distribution contains entries

from the presumably poorly approximated bins, however, the number of those entries is quite small,
which is a desirable property for the approximation procedure.

The 𝑝-values for the 𝜒2 tests for the test samples for the Herwig7MCEG are calculated and
are shown in figure 17. Both the 𝜒2

red and 𝑝-values indicate potential issues with the approximation
for certain bins, however, they do not provide a quantitative goodness of fit result. Hence, bins of
observables with low 𝑝-values and large 𝜒2

red values were further inspected manually using the test
samples, e.g. considering distributions similar to those shown in figure 1.

For most of those bins, the approximated values are compatible with the MC values if the
variances introduced by the choice of the default parameters are taken into account. However, due
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Figure 16. Distribution of 𝜒2
red for all the approximated observables and bins. Each bin of each observable

contributes one value to the distribution.

Figure 17. Calculated 𝑝-values for the 𝜒2 tests on the test samples evaluated for the Herwig7MCEG.

to the limited number of parameters used in the approximation it is not possible to reproduce the
MC samples exactly.
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