
Software Exploitation of Traditional Interfaces for Modern
Technologies

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Christian Hakert

Dortmund

2024

Tag der mündlichen Prüfung: 18. Juli 2024
Dekan / Dekanin: Prof. Dr.-Ing. Gernot A. Fink
Gutachter / Gutachterinnen: Prof. Dr.-Ing. Jian-Jia Chen

Prof. Dr.-Ing. Jeronimo Castrillon

Acknowledgments

In the first place, I would like to express my deep gratitude to my advisor (Doktorvater)
Prof. Jian-Jia Chen. Besides his great supervision during my studies, he was always
open for new and unconventional ideas. He always supported me in following my ideas,
motivated me to continue specific topics and supported bringing results to a publishable
status. Beyond this, I have to express my appreciation for his support in involving
me in the writing of new project proposals, which lead to two successfully accepted
research projects, which stem from topical areas of this dissertation. Furthermore, I
would like to thank my second examiner, Prof. Jeronimo Castrillon, to commit to review
my dissertation.

Next, I express my deep appreciation to my colleagues, who collaborated with me
for my studies and co-authored my published papers. Most important, I would like to
thank my colleague Kuan-Hsun Chen for accompanying me during my entire study and
working on many topics with me. I further would like to thank my other colleagues,
who collaborated with me throughout my different studies. From the DAES group of
the LS12 at TU Dortmund University, these are Nils Hölscher, Mario Günzel, Georg
von der Brüggen and Daniel Biebert. From the CES group from KIT, these are Lars
Bauer, Paul Genssler and Prof. Jörg Henkel. Beyond my colleagues, my studies
have been supported by different research projects. These include the DFG project
OneMemory(405422836), the DFG special priority program 2377(460954224) and the
DFG project MemoryDiplomat(502384507). I would like to express special appreciation
to the collaborators of the OneMemory project in Taiwan. Furthermore, I have to express
my deep gratitude to my non-scientific colleagues and to the people who collaborated
with me in teaching and administration. Without their help and support, I would not
have been able to conduct my studies in the way I did. Special appreciation goes to the
secretary of the LS12, namely Claudia Graute.

Finally, but nevertheless important, I would like to express my deepest gratitude to
my family and friends for their unbreakable support. Especially, I would like to thank
my parents for making my academic career so far possible at all and never stopped in
supporting me on my way. I further want to express my appreciation to all of my friends
for supporting me all along.

i

Abstract

Modern computer Technologies are skyrocketing to spheres, which frequently seemed
unimaginable years ago. Quantum effect petabyte-sized storage devices or deep cache
hierarchies, acting within nanoseconds, make only a few examples. At the same time,
interfaces to communicate with such technologies are settled and remain largely un-
affected by the technology development. While loading and storing a word to a given
memory address was the standard interface to communicate with memory devices in
very early stages of computer systems, it still features a similar shape nowadays. Unsur-
prisingly, modern computing technologies come with increasing demand of management,
such as lifetime management for NON-VOLATILE MEMORY (NVM) or prefetching and
eviction strategies for cache hierarchies. Leaving this management to the hardware
solely provides a limited design space and space for optimization. Consequently, soft-
ware has to find ways, which allow an either direct or indirect management of the
technologies over the traditional interfaces.

This dissertation picks up this need and studies selected modern technologies and
their need for management. Methods are presented in this thesis, which systematically
exploit existing traditional interfaces in order to provide extended functionalities for
the management of modern technologies. The exploitations in this thesis are solely
conducted on a software level and do not require any actions in the available hardware.
In a first part, memory technologies are picked up as a target technology. In greater
detail, NON-VOLATILE MEMORY (NVM) is studied. This thesis discusses the lifetime
issue of these technologies and the resulting need for wear-leveling. Various approaches
are introduced, which allow different forms of wear-leveling on different levels of the
software. This ranges from wear-leveling procedures inside the operating system and
the system software towards direct application integration to extend the memory lifetime.
Apart from the lifetime issue, the latency and energy property of a specific type of
emerging memory, namely RACETRACK MEMORY (RTM), is considered. Dedicated to
the application of RANDOM FOREST (RF) models, the access properties are optimized
in the application level directly.

In the last part of this thesis, the focus is moved from memories to arithemtic
compuation. RANDOM FOREST (RF) models are kept as a target application and their
execution on modern computation technologies is considered. The usage of floating-
point numbers is put to a major focus and the memory behavior of floating-point numbers
is optimized. By proposing alternative computation schemes for floating-point numbers,
which are entirely realized in software and leave the hardware untouched, significant
performance improvement is gained.

iii

Publications

The topical contributions of this thesis are published for major parts in the form of
peer-reviewed articles in journals and conferences. The following publications form the
topical contributions of this thesis:

[HCC22a] C. Hakert, K.-H. Chen, and J.-J. Chen. “FLInt: Exploiting Floating Point En-
abled Integer Arithmetic for Efficient Random Forest Inference”. In: arXiv preprint
arXiv:2209.04181 (2022) (Cited on pages 16, 148).

[HCC22b] C. Hakert, K.-H. Chen, and J.-J. Chen. “Immediate Split Trees: Immediate Encod-
ing of Floating Point Split Values in RandomForests”. In: European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (2022) (Cited on pages 16, 136).

[HCC24] C. Hakert, K.-H. Chen, and J.-J. Chen. “FLInt: Exploiting Floating Point Enabled
Integer Arithmetic for Efficient Random Forest Inference”. In: Design, Automation
and Test in Europe Conference (2024) (Cited on page 148).

[HCK+20] C. Hakert, K.-H. Chen, S. Kuenzer, S. Santhanam, S.-H. Chen, Y.-H. Chang,
F. Huici, and J.-J. Chen. “Splitn Trace NVM: Leveraging Library OSes for Se-
mantic Memory Tracing”. In: 9th Non-Volatile Memory Systems and Applications
Symposium (NVMSA). 2020 (Cited on pages 16, 41, 71).

[HCS+21] C. Hakert, K.-H. Chen, H. Schirmeier, L. Bauer, P. R. Genssler, G. von der Brüggen,
H. Amrouch, J. Henkel, and J.-J. Chen. “Software-Managed Read and Write Wear-
Leveling for Non-Volatile Main Memory”. In: ACM Transactions on Embedded
Computing Systems Special Issue on Memory and Storage Systems for Embedded
and IoT Applications. 2021 (Cited on pages 16, 58).

[HKC+21a] C. Hakert, A. A. Khan, K.-H. Chen, F. Hameed, J. Castrillon, and J.-J. Chen.
“BLOwing Trees to the Ground: Layout Optimization of Decision Trees on Racetrack
Memory”. In: 58th ACM/IEEE Design Automation Conference (DAC), accepted.
2021 (Cited on pages 16, 104).

[HKC+21b] C. Hakert, R. Kühn, K.-H. Chen, J.-J. Chen, and J. Teubner. “OCTO+: Optimized
Checkpointing of B+Trees for Non-Volatile Main Memory Wear-Leveling”. In: The
10th IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA).
IEEE, 2021 (Cited on pages 16, 90).

[HKC+22] C. Hakert, A. A. Khan, K.-H. Chen, F. Hameed, J. Castrillon, and J.-J. Chen.
“ROLLED: Racetrack Memory Optimized Linear Layout and Efficient Decompo-
sition of Decision Trees”. In: IEEE Transactions on Computers (2022) (Cited on
pages 16, 116).

[HYC+19] C. Hakert, M. Yayla, K.-H. Chen, G. v. d. Brüggen, J.-J. Chen, S. Buschjäger,
K. Morik, P. R. Genssler, L. Bauer, H. Amrouch, and J. Henkel. “Stack Usage
Analysis for Efficient Wear Leveling in Non-Volatile Main Memory Systems”. In: 1st
ACM/IEEE Workshop on Machine Learning for CAD (MLCAD). Alberta, Canada,
2019 (Cited on pages 16, 83).

v

Contents

1 Introduction 1
1.1 Exploiting Traditional Interfaces . 3

1.1.1 Relevance to the Research Community 4
1.1.2 Interface Exploitation for NON-VOLATILE MEMORY (NVM) Lifetime 5
1.1.3 Interface Exploitation for RACETRACK MEMORY (RTM) Properties 6
1.1.4 Interface Exploitation for Immediate Arithmetic 6

1.2 Contribution of this Work . 7
1.2.1 Application Transparent NVM Wear-Leveling 8
1.2.2 Application Cooperative NVM Wear-Leveling 9
1.2.3 Memory Optimization for Random Forests 11
1.2.4 CPU Optimization for Random Forests 13

1.3 Organization of the Thesis . 15
1.4 Author’s Contribution to this Thesis . 15

2 Background and Related Work 17
2.1 Technological Background . 18

2.1.1 Disruptive Memory Technologies 18
2.1.2 Memory Hierarchies . 23
2.1.3 Computer Arithmetic . 25
2.1.4 RANDOM FOREST (RF) Ensembles 26

2.2 Related Work . 28
2.2.1 NVM Wear-Leveling . 28
2.2.2 RTM Optimization . 32
2.2.3 RF Performance Optimization 33

3 System Model 35
3.1 Non-Volatile Memory Model . 36

3.1.1 Technical Overview . 36
3.1.2 Wear-Out Model . 38
3.1.3 Iterative Memory Writes . 39
3.1.4 Hybrid Memories . 40
3.1.5 Simulation Setup . 41
3.1.6 Latency Model for RACETRACK MEMORY (RTM) 43

3.2 Random Forest Execution Model . 44
3.2.1 Probabilistic Execution Model 45
3.2.2 Implementation . 46
3.2.3 Arithmetic Considerations . 48
3.2.4 Performance Consideration . 48
3.2.5 Tooling . 49

vii

viii Contents

3.3 CPU Model . 50
3.3.1 Memory Hierarchy . 50
3.3.2 Floating-Point Arithmetic . 51

4 Application-Transparent NVM Wear-Leveling 53
4.1 Modern Technologies and Traditional Interfaces 54
4.2 Overview . 55

4.2.1 Wear-Leveling Decisions . 55
4.2.2 Wear-Leveling Actions . 56
4.2.3 Wear-Leveling Flow . 57

4.3 Software-Managed Read and Write Wear-Leveling 57
4.3.1 Scope . 58
4.3.2 Problem Analysis and Statement 58
4.3.3 Coarse-Grained Wear-Leveling 59
4.3.4 Fine-Grained Wear-Leveling 63
4.3.5 Evaluation . 66
4.3.6 Wrap-Up . 70

4.4 Semantic Memory Tracing . 70
4.4.1 Scope . 71
4.4.2 Problem Analysis and Statement 71
4.4.3 Modular Analysis . 72
4.4.4 Case Study . 74
4.4.5 Wrap-Up . 78

4.5 Concluding Interface Exploitation . 78

5 Application-Cooperative NVM Wear-Leveling 79
5.1 Modern Technologies and Traditional Interfaces 80
5.2 Overview . 80

5.2.1 Application-Cooperative Decisions 81
5.2.2 Application-Cooperative Actions 82

5.3 Stack Usage Analysis and Wear-Leveling Hints 82
5.3.1 Scope . 83
5.3.2 Problem Analysis and Statement 83
5.3.3 Stack Usage Analysis . 84
5.3.4 Stack Wear-Leveling Overhead Optimization 85
5.3.5 Evaluation . 86
5.3.6 Wrap-Up . 89

5.4 B+-Tree Checkpoint Wear-Leveling . 90
5.4.1 Scope . 90
5.4.2 Problem Analysis and Statement 91
5.4.3 B+-Tree Organization . 92
5.4.4 OCTO+ Algorithm . 92
5.4.5 Evaluation . 95

Contents ix

5.4.6 Wrap-Up . 98
5.5 Concluding Software-Based Wear-Leveling 98

6 Memory Optimization for Random Forests 101
6.1 Modern Technologies and Traditional Interfaces 102
6.2 Overview . 103
6.3 Unified Layout Optimization of DECISION TREEs (DTs) on Racetrack

Memory . 104
6.3.1 Scope . 104
6.3.2 Problem Analysis and Statement 105
6.3.3 BLOwing Trees . 106
6.3.4 Evaluation . 112
6.3.5 Wrap-Up . 115

6.4 Decomposed Layout Optimization of DTs on Racetrack Memory . . . 115
6.4.1 Scope . 116
6.4.2 Problem Analysis and Statement 116
6.4.3 Decomposed Tree Optimization 118
6.4.4 Evaluation . 124
6.4.5 Wrap-Up . 129

6.5 Concluding Memory Optimization of Random Forests 130

7 CPU Optimization for Random Forests 131
7.1 Modern Technologies and Traditional Interfaces 132
7.2 Overview . 133

7.2.1 Numeric Formats . 133
7.2.2 Memory Encoding and Hierarchy 134

7.3 Immediate Encoding of Floating-Point Split Values 136
7.3.1 Scope . 136
7.3.2 Problem Analysis and Statement 136
7.3.3 Immediate Encoding . 140
7.3.4 Evaluation . 142
7.3.5 Wrap-Up . 147

7.4 FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for Efficient
Random Forest Inference . 148
7.4.1 Scope . 148
7.4.2 Problem Analysis and Statement 149
7.4.3 Providing Correct Floating-Point Comparisons with Integer and

Logic Arithemtic . 149
7.4.4 Evaluation . 157
7.4.5 Wrap-Up . 163

7.5 Concluding CPU Optimization for Random Forests 164

x Contents

8 Conclusion and Future Work 165
8.1 Conclusion . 166

8.1.1 Summary . 166
8.1.2 Outreach . 167

8.2 Future Work . 168

Acronyms 171

Bibliography 173

CHAPTER 1

Introduction

Contents
1.1 Exploiting Traditional Interfaces . 3

1.1.1 Relevance to the Research Community 4

1.1.2 Interface Exploitation for NON-VOLATILE MEMORY (NVM) Lifetime 5

1.1.3 Interface Exploitation for RACETRACK MEMORY (RTM) Properties 6

1.1.4 Interface Exploitation for Immediate Arithmetic 6

1.2 Contribution of this Work . 7

1.2.1 Application Transparent NVM Wear-Leveling 8

1.2.2 Application Cooperative NVM Wear-Leveling 9

1.2.3 Memory Optimization for Random Forests 11

1.2.4 CPU Optimization for Random Forests 13

1.3 Organization of the Thesis . 15

1.4 Author’s Contribution to this Thesis 15

1

2 Chapter 1. Introduction

“ We’re on the cusp of another Golden Age that will
significantly improve cost, performance, energy, and secu-
rity. [...] We’ve identified areas that are critical to this new
age: 1) Hardware/Software Co-Design for High-Level and
Domain-Specific Languages [...]

”John Hennessy and David Patterson [HP18]

Computer Science as a domain features multiple properties, which are unique to
this discipline. Two of these properties are 1) the rapid and disruptive development of
modern technologies [LR03] and 2) the extensive use of traditional abstractions in order
to allow managing the complexity of the evolving computer systems [CS07].

While tens of years ago, tape drives, spinning hard disks and megabyte-sized main
memory without deep cache hierarchies formed the standard of the memory subsystem
of a computer system, as of the time of this thesis, terabyte-sized, complex main memory
with hundreds of megabytes sized cache hierarchies, quantum effect storage devices
and mass data backup facilities in the form of SOLID STATE DRIVE (SSD) clusters are
a standard to computing applications. Active research interest promises disruptive
technology changes in a similar scope in the future. Integration densities, which would
have been considered impossible a few years ago, in memory and even in memory
material computing, even larger memory capacities and amounts of computing cores
are promising to show up within the next years. Also shifting the focus away from the de-
velopment in hardware technologies towards modern software technologies, disruptive
changes are visible over the recent years. While algorithmic research, complexity analy-
sis and the design of efficient problem-solving strategies belong together with computers
since their beginning of existence, other application types, such as resource-demanding
machine-learning estimators, error-tolerant algorithms and even complex management
schemes inside operating systems belong to the standard set of applications nowadays.

On the other hand, studying abstractions and the creation of interfaces of computing
systems, reveals a contrary development speed, compared to disrupting technologies.
Consider, for instance, the memory interface of computers. In the Von-Neumann
architecture, memory plays a central role to store code and data memory. Consequently,
INSTRUCTION SET ARCHITECTUREs (ISAs) formed a simple abstraction of memory
accesses years ago. They provide load and store instructions, which specify a memory
location to load from or store to. Modern computers offer still the same interface for
software to access the memory. On both sides of this interface, modern technologies are
applied by introducing further levels of abstractions. For instance, considering memory
hierarchies, memory accesses caused by the application are not redirected to the
memory device directly, but rather go through the various levels of caches upfront. Also,

1.1. Exploiting Traditional Interfaces 3

Modern Technologie
s

Traditional Interfaces

Figure 1.1: Development of Technologies and Interfaces

from the perspective of applications, neural networks are seldom implemented directly by
computing memory addresses and doing load and store operations to these addresses.
Instead, levels of abstraction are put on top of the basic software interface, which allow
implementation in object-oriented or scripting based languages. As highlighted in the
opening quote of this section, Hennessy and Patterson identify the co-design between
hardware and software innovations as one core challenge of the current “golden age”
[HP18].

From the previously mentioned aspects, it can be noted that the development of
modern technologies, including hardware and software development, is skyrocketing
into new spheres in the past and most probably also in the near future. The basic
interfaces, however, which connect modern technologies with each other and probably
also with not that modern technologies, keep crawling on the ground and remain largely
unaffected by the technological development. Bringing both worlds together remains as
an open challenge. It should be clarified, that this thesis does not focus on methods
against this uneven development, but rather studies the need to effectively make use of
the existing interfaces, in other words to exploit traditional interfaces in order to operate
modern technologies in computer systems.

1.1 Exploiting Traditional Interfaces

As the landscape of technology is massively large, this thesis does not aim to provide
universal solutions, but rather focuses on specific technologies and specific interfaces
and contributes methods for the explicit exploitation of the relevant interfaces. The
following illustration highlights the basic principle behind every contribution of this thesis
and can be found in a more specific version in the corresponding chapters.

4 Chapter 1. Introduction

Traditional Interface

Software Exploited Interface

Given that certain technologies are available, indicated by the illustration of a chip with
pins, traditional interfaces exist to use these technologies. In order to properly operate
the technologies, a broader interface is required. One way to provide such an extended
interface is to employ special software solutions, which exploit the existing interface and
on their own provide a broadened, software exploited interface. This then can be used
by target applications to operate the modern technology.

1.1.1 Relevance to the Research Community

As of the time of this thesis, research efforts are actively conducted explicitly into the
direction of software exploitation of interfaces for modern technologies. This thesis puts
a major focus on disruptive memory technologies and the required management to
operate them efficiently and effectively. In a more specific scope, this is a defined target
of the DFG (Deutsche Forschungsgemeinschaft) Project Design and Optimization of
Non-Volatile One-Memory Architecture (NVM-OMA)1. The concept behind this project
is to develop solutions for a unified memory landscape, consisting of NVM only, which is
one type of disruptive memory. This project aims to provide software based solutions
and hence enable the software management of NVMs. Beyond specific software man-
agement of NVMs, there is active research interest in disruptive memory technologies
itself. In the scope of a special priority program, the DFG conducts a number of research
projects to actively pursue research on disruptive memory. This program can be found
under the number SPP 23772. Specifically, the project Memory Diplomat3 is dedicated
to the development of extended technology interfaces. The core idea of this project is to
develop a central software instance, the so-called memory diplomat, which has knowl-
edge about applications and the hardware and can negotiate required management
strategies. The memory diplomat further contains extension and exploitation means

1https://gepris.dfg.de/gepris/projekt/405422836
2https://gepris.dfg.de/gepris/projekt/460954224
3https://gepris.dfg.de/gepris/projekt/502384507

https://gepris.dfg.de/gepris/projekt/405422836
https://gepris.dfg.de/gepris/projekt/460954224
https://gepris.dfg.de/gepris/projekt/502384507

1.1. Exploiting Traditional Interfaces 5

to manage the hardware. These extensions in this project are entirely achieved by a
central software instance. In consequence, the contributions from this thesis align with
the declared target of such existing research efforts.

1.1.2 Interface Exploitation for NVM Lifetime

Bringing a clearer focus to the technologies and topics, addressed by this thesis,
one relevant technology is NON-VOLATILE MEMORY (NVM). Although many different
hardware technologies behind NVM exist and also many special characteristics are
caused by these technologies, this thesis picks up a central issue, which is common
to many of these technologies, namely the lifetime issue. Due to technical properties
of different memory materials used for NVM, they can break after a comparably low
amount of memory accesses. Without active lifetime maintenance, the memory would
endure for a few months only. This is mainly caused by the fact that executing software
tends to use some memory portions more often than other portions. Hence, although
the total volume of accesses may not be very high, the intensively used memory portions
can break early. On the other hand, this behavior allows a significant extension of NVM
lifetime, when the memory accesses are well distributed. The process of achieving such
a distribution is called wear-leveling.

From the perspective of interfaces used for emerging NVM technologies, the basic
memory interface has to be considered as a baseline. In order to properly operate
the process of wear-leveling, two extensions to the interface should be considered: 1)
the possibility to determine current memory wear-out and 2) the possibility to redirect
memory accesses to other portions. Although it is not crucially necessary to know the
current state of the memory and how much lifetime is left per memory portion, it can
help to pursue a further optimized utilization of the memory. Extracting information
about the current memory aging over the traditional memory interface is not possible
due to its focus of loading and storing memory requests. If software aims to exploit this
interface and keep track of the memory lifetime internally, a straightforward approach is
to hook into memory accesses directly from a software level and maintain an internal
model of the aging of memory portions. Hooking into memory accesses by software is
challenging, since the default design of computers does not provide standard means to
achieve this. Consequently, appropriate solutions are required. Either a combination of
other available technologies and interfaces is used in order to achieve the required goal,
or the application is modified in order to hook into memory accesses. Both directions
are explored in this thesis.

The interface extensions of being able to redirect the target of memory accesses
can be approached from similar directions. Either, other existing means and interfaces
are combined in a creative way to redirect memory accesses, or the application is again
modified in order to achieve this. Both directions are explored, partially in an overlay
manner in this thesis. It should be noted that of course a large research community
explores possibilities to directly change the traditional memory interface in order to
achieve the management of NVM regarding their lifetime. Such approaches can usually

6 Chapter 1. Introduction

gain a high efficiency, especially when additional hardware controllers are introduced
into the system. This thesis, however, aims for another research direction and aims to
provide alternatives, namely the software exploitation of interfaces. Following both of
these research directions opens a larger design space for creation of future computing
systems.

1.1.3 Interface Exploitation for RTM Properties

One special type of NVM, which comes with unique shift properties, is RACETRACK

MEMORY (RTM) [BKF+20]. RTM is organized in a way, that memory contents are stored
at adjacent physical locations, but only one of the locations can be read or written. When
a specific element of the memory should be accessed, the memory positions have to
be moved towards the access port first. This operation is called shift. Naturally, shifts
take time and also cause an impact on the energy consumption of the memory. These
effects correlate to the distance of a shift. That is, the more memory positions have to
be skipped upfront to an access, the more latency and energy overhead is caused. The
previous position of the memory depends on the previous access. Hence, the latency
and energy consumption of RTM is access sequence dependent.

Towards interface extensions, the caused overhead for shift operations requires a
mechanism to be controlled by the running software. This can be achieved by offering
interface extensions to specify the location of memory elements, which essentially allows
gaining control over the memory access sequence. Broadening the traditional memory
interface towards such a behavior by software can be potentially achieved in applications
themselves. For example, applications can utilize data structures, which are constructed
by pointers between single elements of the data structure. This allows to change the
actual physical location of single data structure elements and keeping the view from the
application on the logical correctness of the data structure untouched. In this thesis,
tree-based data structures are considered as such a controllable data structure. In
addition to the action space of controlling the memory access sequence, a second
extension to the interface is required, i.e. an extension allowing to decide for a good
reordering of the memory access sequence. One possible approach is to formulate a
cost model for the cause latency and energy overhead. This cost model then can be
used as an objective function for optimization. Execution-specific behavior, i.e. knowing
which memory elements are accessed subsequently, are crucial to create such a cost
model. Since this thesis focuses on an application-specific interface extension, an
application-specific cost model is derived for DECISION TREE (DT) applications.

1.1.4 Interface Exploitation for Immediate Arithmetic

Beyond concrete NVM technologies, considering a generic concept of memory hierar-
chies and the efficient utilization of system caches, immediate arithmetic becomes an
interesting aspect. In modern memory hierarchies, instruction memory and data memory
can be separated in the high cache levels. That means, instruction memory accesses,

1.2. Contribution of this Work 7

i.e. accesses to encoded instructions target a different portion from the system cache
than data memory accesses. If applications now explicitly want to optimize their cache
behavior, controlling the amount of accessed to data and instruction memory can be
a desirable mechanism. Immediate encoding of constants, i.e. storing numeric values
directly in the immediate field of instructions offers a mechanism to move stored values
from data memory to instruction memory and vice versa. Traditional ISAs, however, only
offer such a possibility for integer numeric values.

With the rise of MACHINE LEARNING (ML) applications into various classes of
computing systems, spanning a range from embedded low-power systems up to higher
performance systems, also the need to intensive floating-point arithmetic arises in
these systems. If a target data set is provided with floating-point numeric values, the
MACHINE LEARNING (ML) model has to include floating-point arithmetic at a certain
level to properly reflect this data set. Consequently, ML models can be forced to rely
on intensive floating-point arithmetic. It is also a desirable target to optimize the cache
utilization of ML models, which can be assisted by the option for immediate encoding.
Consequently, in order to broaden the traditional interface for this case, immediate
encoding for floating-point arithmetic should be enabled. Achieving this in a software
extension of the interface is not entirely intuitive, since floating-point arithmetic is usually
hardware based. Hence, this thesis explicitly studies the comparison operation of
floating-points (e.g. ≥), which is the only operation required for DECISION TREE (DT)
models and ensembles and provides software based solutions to offer immediate
encoding.

1.2 Contribution of this Work

This thesis addresses the problem of software exploitation of traditional interfaces
for specific modern technologies and applications. For concrete cases, methods are
proposed, studied, and evaluated, which can offer an extended interface to allow an
effective operation of the considered technology. As highlighted before, these methods
do not aim to be universally applied or to dominate other solutions, but rather to provide
alternative options, which are based on a software exploitation of the interface. The first
two topical chapters of this thesis (Chapter 4 and Chapter 5) pick up the lifetime issue of
NVM. The basic extensions, which need to be added to the memory interface, follow the
purpose to handle lifetime issues. The third topical chapter (Chapter 6) picks up RTM
as a specific technology and discusses interface extensions for effective latency and
energy management of this memory technology. The last topical chapter (Chapter 7)
picks up the possibility for immediate encoding of numeric values and discusses an
interface extension, allowing immediate encoding for floating-point values.

8 Chapter 1. Introduction

1.2.1 Application Transparent NVM Wear-Leveling

The first type of NVM lifetime management, considered in this thesis is application
transparent wear-leveling (Chapter 4). In this scope, applications remain untouched and
the required steps for wear-leveling are conducted in a software-based manner outside
the applications. The suitable target, consequently, is the operating system and the
system software in order to realize wear-leveling functionality:

Load / Store / Memory Placement

NVM Lifetime Management

Wear-leveling requires two basic components: 1) extracting information about the
remaining lifetime of certain memory portions and 2) redirecting the physical target
location of memory accesses in order to level the utilization of lifetime across the entire
memory space.

Towards the component of extracting information, this thesis introduces two orthogo-
nal approaches. In the first approach, existing functionality of modern CPUs is creatively
reused. Performance counters, which can count certain hardware events, are used to
count the number of read and write accesses in the system. An interrupt mechanism is
used to trigger a system interrupt after a specified number of memory accesses. With
the help of memory access permissions in the MEMORY MANAGEMENT UNIT (MMU), the
target of the next memory access is recorded. This is achieved by forbidding access to
the entire memory, such that the subsequent access causes a memory access violation,
which delivers the violated address to the interrupt handler. Afterwards, the default
state is restored. In consequence, this method provides a sampled histogram of mem-
ory accesses, which serves as an estimation of the memory wear-out, caused by the
running software. Accumulating the histogram over time provides an estimation about
the remaining memory lifetime. In addition to this methodology, the thesis introduces
semantic enrichment of the collected information. The target application is deployed
to a modular unikernel, which allows extraction of the relation of the binary layout to
single components of the unikernel. This can then be used to enrich the previously
collected memory access information with knowledge about the unikernel component.

1.2. Contribution of this Work 9

Wear-leveling can then be targeted to specific components. The semantic enrichment
is achieved with a static tracing methods, which analyzes the binary memory layout
of the entire kernel instance and a dynamic tracing method, which checks the current
PROGRAM COUNTER (PC) during the execution of a memory access to determine the
corresponding component.

Towards the redirection of memory accesses, this thesis also introduces two or-
thogonal approaches. These two approaches operate on a different target granularity,
making them naturally combinable. For coarse granularities, MMU page tables are
modified in order to redirect memory accesses to the virtual address space to other
physical locations. By copying the data also to the corresponding new physical location,
application transparency is achieved. For fine granularities, the text and stack segments
of the running program are modified. Both are moved in fine-grained steps through the
memory and therefore the accesses to these segments are distributed across the physi-
cal memory space. Position-independent code ensures the application transparency for
the text segment. Stack pointer relative addressing ensures the application transparency
for the stack segment.

The combination of both components is also implemented in the form of an intuitive
wear-leveling algorithm in this thesis. It should be, however, noted that the design of
a wear-leveling strategy is not within the scope of this thesis. The focus of this work
is on providing methods in software to exploit the existing memory interface for wear-
leveling strategies. In short, the contributions for application-transparent wear-leveling
are summarized in the following:

Contributions: Applications Transparent NVM Wear-Leveling

• Online read and write approximation with performance counters and the MMU
in order to derive a statistically approximated trace of real read and write
accesses of the application during runtime.

• Coarse-grained aging-aware wear-leveling, utilizing the approximate read
and write trace to execute replacement operations with the virtual to physical
memory mapping of the MMU.

• Fine-grained non aging-aware wear-leveling, operating on the stack memory
for read and write accesses and on the text memory for read accesses.

• Static memory tracing, utilizing compiler information from a unikernel to map
the binary layout of the compiled unikernel to the single included libraries.

• Dynamic memory tracing to further provide a semantic association of memory
regions in the dynamically allocated memory segments to the corresponding
library of the unikernel.

1.2.2 Application Cooperative NVM Wear-Leveling

Based on the methods for application-transparent NVM wear-leveling, this thesis con-
tributes with design approaches towards application-cooperative wear-leveling. The

10 Chapter 1. Introduction

interface extension targets the same functionality, but the methods to achieve this shift
from the operating system and the system software into the application directly:

Load / Store / Memory Placement

NVM Lifetime Management

The advantage of achieving wear-leveling mechanisms in the application directly can
be efficiency and effectiveness. However, this comes with the cost of tailoring the
wear-leveling scheme specifically to a certain target application. This thesis follows two
approaches, an application-cooperative wear-leveling scheme, which is not directly tied
to any specific application, and the other approach specifically proposes a wear-leveling
scheme for B+ trees.

For the first approach of application-cooperative wear-leveling, without targeting
specific applications, the focus is put on the stack memory. Stack memory, due to its
usage for intermediate data, can be a significant driver for memory wear-out. Conse-
quently, it is specifically focused. When deciding to move the target location of stack
memory in application-transparent wear-leveling schemes, a certain overhead is caused
for moving the relevant memory contents to a new position. This overhead can be not
only noticed in the form of a time overhead, but also in the form of a lifetime overhead,
since additional memory accesses are caused. Consequently, the amount of memory
to be moved when the stack position is relocated should be minimized. The proposed
method in this thesis employs a GENETIC ALGORITHM (GA) on offline-profiled stack
behavior of a target application in order to identify optimized parts in the application
code, to trigger a relocation of the stack memory. The determined relocation points are
then fed back into the application source code in the form of special annotation, which
notify the underlying operating system and the application transparent wear-leveling
subsystem to cause a stack relocation.

For the second approach for application-cooperative wear-leveling, this thesis pro-
poses a wear-leveling scheme, dedicated for B+ trees, which are used as an important
component of database management systems. The collection of information about the
memory usage and the impact on the lifetime of memory portions is directly performed

1.2. Contribution of this Work 11

in the tree operations themselves. Whenever the tree implementation touches a node,
an access histogram is updated and maintained to keep track of memory modifications.
In order to effectively utilize this histogram for wear-leveling, a checkpointing mechanism
is explored in this thesis, where an entire checkpoint of the tree is written from volatile
memory to NVM at the time of a checkpoint. The histogram is used to decide for a map-
ping of tree nodes to memory portions in the checkpoint. An efficient search algorithm
is directly integrated to provide a fast heuristic solution to optimize the mapping for the
checkpoint memory. In short, the contributions for application cooperative wear-leveling
can be summarized as follows:

Contributions: Application Cooperative NVM Wear-Leveling

• A ptrace-based stack analysis-framework for stack-size recording of single
instructions.

• A GENETIC ALGORITHM (GA) for finding instructions with low stack sizes.
• An annotation mechanism to trigger stack wear-leveling at specific instruc-

tions.
• A modified B+-tree implementation, which maintains modification information

within tree nodes, which are updated in a lightweight manner during updates
and inserts.

• A wear-leveling implementation, utilizing the collected modification information
during checkpoints to apply a wear optimized mapping.

1.2.3 Memory Optimization for Random Forests

The third topical chapter of this thesis (Chapter 6) shifts the focus from the common
property reduced lifetime for NVM memories towards a special type of NVM, namely
RACETRACK MEMORY (RTM). RTMs feature a unique property of an access-dependent
latency and energy consumption. The reason is that memory contents are stored in
adjacent positions, but read and write operations can only be performed at the position
of the access head. Contents, consequently need to be shifted to this access head upon
an access first. The introduced overhead for latency and energy should be minimized in
order to properly operate RTM memory. In the context of the exploitation of the memory
interface, this requires gaining explicit control over the shift behavior in RTM:

12 Chapter 1. Introduction

Load / Store / Memory Placement

RTM Shift Optimization for RANDOM FORESTs (RFs)

This interface exploitation requires two components: 1) the possibility to change locations
of memory elements in order to influence the shift cost for access to this memory element
and 2) the formulation of a cost model in order to apply an optimization algorithm. In
this thesis, these two exploitation are realized as an application-specific solution for
RANDOM FOREST (RF) ensembles.

In the application-specific context of RANDOM FOREST (RF) ensembles, mainly
focusing on the internal DTs, modifications of the memory positions of single elements
can be achieved straightforward. Towards this, the implementation as native trees is
considered, where DT nodes are realized as array elements and the child nodes are
indicated by an index to the node array. When a node is mapped to an arbitrary position
in the array, only the child pointers need to be adjusted accordingly. In this thesis, the
RTM optimized layouting is done during the implementation time of the ensemble; hence
the corresponding code can be generated directly.

The contribution of this chapter then focuses on deriving the cost model and the
optimization of the layout with respect to this cost model. Towards the cost model,
empirical branching probabilities are collected during the training time of the single
DTs. Since ML applications in general assume the test data to stem from a similar
distribution as the training data, the probabilities are considered to be accurate also
during productive use. Starting from the relative branching probabilities, an absolute
probability model is created, which indicates the probability to visit a node from its parent
node. Together with the shifting distance from the parent to the node, this forms a cost
model of the expected amount of shifts during inference of a DT. Leaving the position of
each node as the solution space, the cost model can be interpreted as an optimization
problem. This optimization problem can be formulated an instance of the quadratic
assignment problem or an instance of the optimal linear order problem, which is NP
hard and infeasible to be solved for larger DTs in tolerable time.

Due to the specific focus on DT models, a reduction of the problem complexity
is possible. The optimal linear ordering problem can be solved in O(n ⋅ logn) for
rooted tree models. The cost model for DTs on RTM is not exactly transferable to

1.2. Contribution of this Work 13

the rooted tree problem, but comes somewhat close. This thesis contributes a slightly
modified version of the fast optimization algorithm and contributes a formal proof about
the relation to the optimal solution. Towards this, two organization approaches are
proposed: 1) tree nodes are entirely stored at one RTM position and 2) tree nodes are
decomposed in three subcomponents and stored in individual clusters of the RTM. The
formal proof guarantees an upper bound of 4× for the unified organization and 12× for
the decomposed organization. Experimental evaluation even indicates that these upper
bounds are pessimistic in most cases. In short, the contributions can be summarized as
follows:

Contributions: Memory Optimization for Random Forests

• A formal cost model for shift overhead of racetrack memory in a unified and
decomposed organization with respect to a probabilistic execution model is
specified. This model is expressed as an INTEGER LINEAR PROGRAM (ILP),
which allows for deriving the optimal solution, if the required time is spent.

• A fast optimization algorithm, which reduces the problem of DT layouting in
RTM to an efficient solvable optimization problem. The algorithm is further
modified for the specific characteristics of the studied problem.

• A formal proof of the upper bound of 4× for the unified organization and 12×
for the decomposed organization for the fast optimization algorithm compared
to the optimal solution.

1.2.4 CPU Optimization for Random Forests

The last topical chapter of this thesis (Chapter 7) leaves the area of disruptive memory
technologies and puts a focus on the design of the memory subsystem itself. The
organization into memory hierarchies allows applications to optimize their memory
behavior for performance optimization in a given memory hierarchy. As described above,
distinguishing data and instruction memory can be an important knob to control the
behavior in caches, since they are distributed into instruction and data caches usually
in the highest cache levels. One way of gaining active control over this is to encode
numeric values either in data memory or in the immediate field of instructions directly.
For floating-point numerical values, this is not possible, consequently the software
exploitation to enable this is considered here:

14 Chapter 1. Introduction

Memory-Based Floating-Point Operations

Immediate Floating-Point Operations

In this thesis, again specific solutions for RF ensembles are considered since cache
optimization is a known desirable target for them. In addition, the arithmetic structure of
DTs is very simple, allowing for creative solutions. This thesis follows two approaches
in order to exploit existing immediate encoding to achieve immediate arithmetic for
floating-point values. Firstly, a generic method is discussed, which is not directly bound
to DTs. Secondly, a specific method is presented, which only enables the comparison
operation for immediate floating-point numbers in a more effective manner.

For the generic solution, the basic concept is to consider the binary representation
of a floating-point number as a bit vector, which can also be interpreted as an integer
number. This bit vector is then immediately encoded into a set of instructions. For in-
stance, in a 32-bit architecture, instructions naturally cannot have 32-bit wide immediate
fields. Therefore, a set of instructions is synthesized to load the 32-bit floating-point
bit vector into a register from immediate encoded portions of the bit vector. Afterward,
the integer register is copied bit by bit to a floating-point register without conversion,
such that the number is available for arbitrary floating-point arithmetic. In consequence,
only the load operation to a floating-point register, which would normally have to be
done from data memory, is replaced by corresponding immediate encoded operations.
This method has the advantage that afterward the number is present in a floating-point
register and can serve for any type of floating-point computation.

To provide a further optimized solution, a specific solution for the comparison
operation between floating-point values is contributed in this thesis. In order to omit
the conversion steps, required in the previous method, the relation between floating-
point numbers and the interpretation of their bit vector as two’s complement integer
numbers is investigated. A formal proof is contributed, which shows that, except a few
special cases, the floating-point and two’s complement interpretation of an arbitrary bit
vector is monotonic, hence comparison operations are equivalent in both interpretations.
Consequently, the bit vector representation can be treated as an integer value directly
and the comparison can be evaluated. The handling of the special cases, which break
the equivalence, can be simplified to simple logic operations, when one of the numbers

1.3. Organization of the Thesis 15

for comparison is known upfront. In DTs this is exactly the case, since the split value,
which is used for comparison of incoming data tuples, are fixed during training time.
Consequently, optimized implementations of the special case handling can be directly
synthesized during implementation time. In short, the contributions to enable immediate
based floating-point arithmetic can be summarized in the following overview:

Contributions: CPU Optimization for Random Forests

• The implementation of immediate encoded floating-point split values in the
text memory, shifting the pressure between data and text memory.

• FLInt: A two’s complement and logic operation based comparison operator
for floating-point numbers, where the correctness is formally proven.

• An efficient implementation of FLInt in RFs with if-else tree implementations,
where the special case handling is resolved offline during the implementation
time.

1.3 Organization of the Thesis

The rest of this thesis is structured as follows:

• Chapter 2 provides technological background about the relevant technologies
to this thesis. In addition, this chapter contains an overview about the relevant
related work to the contributions of this thesis.

• Chapter 3 provides further details about used technologies and methods. As-
sumptions, metrics and tools are clarified, which are relevant to the contributions.

• Chapter 4 contains the first chapter of topical contributions towards application
transparent NVM wear-leveling.

• Chapter 5 contains the second chapter of topical contributions towards application
cooperative NVM wear-leveling.

• Chapter 6 contains the third chapter of topical contributions towards memory
optimization of RFs.

• Chapter 7 contains the fourth chapter of topical contributions towards CPU opti-
mization of RFs.

• Chapter 8 concludes this thesis by giving an overview of a broader scope and of
future work.

This thesis has gray bars on the side of the text to indicate that the presented contribution
is a published work. The reference appears on the first page of the corresponding block
as a footnote.

1.4 Author’s Contribution to this Thesis

In accordance to §10 (2) of the Promotionsordnung der Fakultät für Informatik der
Technischen Universität Dortmund from 29.08.2011, this section provides an explanation

16 Chapter 1. Introduction

about the collaboration with other people on the contributions and the own contribution
of the author of this dissertation. The author of this dissertation is referred to by the
term “me” in the following.

Before giving a detailed explanation of the single contributions, all publications, which
are the basis for the presented contributions in this thesis, are conducted by me as the
first author. Implementations are done mainly by myself. The writing of the publications
is further done in major parts by me. The co-authors of the single publications mainly
assisted in discussions, providing alternative ideas and in formulation of single text
elements in the publications. Especially the review of the related work was done in tight
collaboration with the co-authors.

• The work about Software Managed Read and Write Wear-Leveling (published
in [HCS+21]) in Chapter 4 is implemented entirely by myself. Major parts of the
implementation stem from my master thesis. This includes the basic form of the
memory access estimation and the wear-leveling algorithm for write accesses.
The estimation of read accesses, the read wear-leveling and the special handling
of the text segment are contributed by me beyond the scope of my master thesis.
Evaluation and refinements were also added beyond the scope of the master
thesis. My co-author Kuan-Hsun Chen provided significant assistance for the
review of the related work. All co-authors provided significant assistance for the
writing of the publication and defining the presentation flow.

• The work about Semantic Memory Tracing (published in [HCK+20]) in Chapter 4
is conducted by myself. For realizing the presentational flow, my co-authors,
especially Felipe Huici provided major assistance.

• The work about Stack Usage Analysis and Wear-Leveling Hints (published in
[HYC+19]) in Chapter 5 is also conducted by myself. The co-authors assisted in
topical discussions and writing of the publication.

• The work about B+ Tree checkpointing (published in [HKC+21b]) in Chapter 4 is
realized by me together with the co-author Roland Kühn. We implemented the
method together, where I contributed the checkpointing implementation, the simu-
lation and the wear-out evaluation. Roland Kühn provided the implementations
specific to the B+ tree, especially the collection of modification information. The
writing of the publication is mainly shared between me and Roland Kühn. The
other co-authors assisted in writing and topical discussions.

• The work about Layout Optimization of DTs on RTM (published in [HKC+21a;
HKC+22]) in Chapter 6 was mainly conducted by me together with Asif Ali Khan.
While I contributed the implementation and the DT related work, he contributed
with the modeling of the RTM specific behavior. Especially the evaluation of the
energy consumption is contributed by him. Jian-Jia Chen further provided major
assistance in formalizing the proof.

• The work about immediate encoding for floating-point (published in [HCC22b;
HCC22a]) in Chapter 7 was mainly conducted by myself. The co-authors assisted
in topical discussion and in refining the presentation flow of the publication.

CHAPTER 2

Background and Related Work

Contents
2.1 Technological Background . 18

2.1.1 Disruptive Memory Technologies 18

2.1.2 Memory Hierarchies . 23

2.1.3 Computer Arithmetic . 25

2.1.4 RF Ensembles . 26

2.2 Related Work . 28

2.2.1 NVM Wear-Leveling . 28

2.2.2 RTM Optimization . 32

2.2.3 RF Performance Optimization . 33

17

18 Chapter 2. Background and Related Work

SRAM DRAM HDD NAND Flash STTM ReRAM PCM FeRAM
Cell size
(F2)

120 − 200 60 − 100 N/A 4 − 6 6 − 50 4 − 10 4 − 12 6 − 40

Write
Endurance

1016 > 1015 > 1015 104 − 105 1012 − 1015 108 − 1011 108 − 109 1014 − 1015

Read
Latency

≈ 0.2 − 2ns ≈ 10ns 3 − 5ms 10 − 35µs 2 − 35ns ≈ 10ns 20 − 60ns 20 − 80ns

Write
Latency

≈ 0.2 − 2ns ≈ 10ns 3 − 5ms 200 − 500µs 3 − 50ns ≈ 50ns 20 − 150ns 50 − 75ns

Leakage
Power

High Medium mechanical Low Low Low Low Low

Dynamic
Energy

Low Medium mechanical Low Low/High Low/High Medium/High Low/High

Maturity Mature Mature Mature Mature Test chips Test chips Test chips Manufactured

Table 2.1: NVM Characteristics [BRC+17]

2.1 Technological Background

This section aims to provide a background of various technologies, which are important
throughout this thesis. It should be noted, that this section does not target to pick up the
technological aspects, which are crucially relevant to the discussed methods in detail,
but rather provides a broad overview about the used technologies. The specific details,
which are relevant to the methods, are detailed in Chapter 3. Referring to the title of
this thesis, this chapter discusses the modern technologies. The specific relation to the
traditional interface is highlighted with the methods to exploit them by software.

There are basically two modern technology fields relevant to this thesis: One is
disruptive memory technologies, the other is memory and computation organization.
Especially the organization in memory hierarchies is relevant to this thesis. The third and
the fourth technical chapter (Chapter 6 and Chapter 7) intensively consider RANDOM

FOREST (RF) ensembles as a dedicated use case, consequently a broad overview of
random forests is provided in this section as well.

2.1.1 Disruptive Memory Technologies

The first three technical chapters of this thesis (Chapter 4, Chapter 5 and Chapter 6)
discuss problems and develop solutions for a software based management of specific
types of non-volatile memory through traditional memory interfaces. The actual name
giving property of the non-volatility thereby is not of central interest to this thesis. The
term NVM itself describes memory technologies, which do not lose their stored values
when being powered off. Indeed, hard disk drives, tape drives or flash storage block
devices belong to this category of memory. However, these storage technologies are
not the focus of this thesis. Instead, a focus is put to non-volatile storage class memory
or byte-addressable non-volatile main memory, i.e. NVM technologies which can be
used as a one by one replacement for main memory. A variety of such technologies
is disrupting the memory landscape, all facing slightly different technological aspects.
However, most NVM technologies utilize physical properties of materials to encode
stored values, which can induce a significant wear-out. Consequently, lifetime is an
issue, which is common to many disrupting NVM technologies. Table 2.1 summarizes

2.1. Technological Background 19

Bottom Electrode

Top Electrode

Cell Material

Thermal Insulation

H
ea

te
r

Figure 2.1: PCM Cell Design Example

technical properties of a few NVM technologies in comparison to classic DYNAMIC

RANDOM ACCESS MEMORY (DRAM) and STATIC RANDOM ACCESS MEMORY (SRAM),
but also HARD DISK DRIVEs (HDDs) and NAND flash memories. Although the detailed
information in this table can be considered a little outdated, the trend clearly shows a
significantly lower endurance for emerging NVM technologies (SPIN-TORQUE TRANS-
FER MAGNETORESISTIVE RAM (STTM), RESISTIVE RAM (ReRAM), PHASE CHANGE

MEMORY (PCM) and FERROELECTRIC RAM (FeRAM)). The latency and energy charac-
teristics, reveal good chances to be an adequate candidate to replace DRAM as main
memory. In order to give a better intuition, how storing memory values works in these
technologies, a few examples are provided in the following.

PHASE CHANGE MEMORY (PCM)

The explanations and illustrations about PCM are taken from [LW08; BRC+17]. The
basic concept of PCM is to use a dedicated material (e.g. chalcogenide alloy), which
can be transferred to a crystalline or amorphous state by controlled heating. Heating
the material up quickly to a high temperature and letting it cool down quickly again
achieves an amorphous state. Heating the material up slowly to a lower temperature and
keeping the temperature for a certain duration before cooling down leads to a crystalline
organization. From an electrical perspective, the crystalline state has a low electric
resistance, while the amorphous state has a high resistance. Taking this together, a
memory cell can be assembled: The material is deployed with a controllable heater and
proper thermal insulation. Utilizing a conductive heater, electrodes can be connected
to two sides of the material, which allow measuring the resistance. Programming the
cell is achieved by heating the material either to the crystalline or amorphous state.
Reading the cell is achieved by measuring the cell resistance. An exemplary cell design
is depicted in Figure 2.1. It should be noted that the state of the cell material is not

20 Chapter 2. Background and Related Work

Bit Line

Plate Line

Word Line

Figure 2.2: DRAM Cell Design Example [GMS+21]

binary, but continuous between crystalline and amorphous. This allows, on the one
hand, the design of multi-level cell memory and on the other hand efficient programming
of the cells with iterative writes, where the cell state is changed in incremental steps
until the target state is achieved. This omits the need for a full programming procedure
partially. However, the continuous cell state also comes with a downside. Resulting
from a natural operation temperature of the memory device, the amorphous state is
meta stable and may crystallize over time. This results in a limited retention time for the
amorphous state. The less crystallized the material is, the longer the encoded value
can be stored. Consequently, the time and effort invested in the programming of the
amorphous state results in a longer retention time. This opens a possible trade-off
between programming effort and retention.

FERROELECTRIC RAM (FeRAM)

In comparison to the previously presented PCM, FERROELECTRIC RAM (FeRAM)
features a design, which is very close to classic DRAM. One possible design of a DRAM
device is the 1T1C architecture, where one transistor and one capacitor is used to form
a single memory cell [GMS+21]. Such a dram cell could be realized as illustrated in
Figure 2.2. The basic concept behind this architecture is to store the memory value as
a charge in the capacitor and activate the specific cell with the transistor. For DRAM,
the charge in the capacitor is volatile due to leakage and hence the architecture forms a
volatile memory.

The basic concept of FeRAM is highly similar to a DRAM cell, just that the capacitor
is replaced by a ferroelectric capacitor (Figure 2.3) [ETA14]. The ferroelectric material in
the capacitor does not store a charge, but can be permanently polarized by an electric
field. Hence, applying an electric field in the capacitor can store memory information in
the polarization. Applying a sense pulse to the capacitor results in a different voltage
depending on weather the polarization is linear or reverse. This can be measured and
the stored value can be read out. In comparison to PCM, this leads to a specific behavior

2.1. Technological Background 21

Bit Line

Plate Line

Word Line

Figure 2.3: FeRAM Cell Design Example [ETA14]

of FeRAM, namely the read destructiveness. The sensing process of FeRAM forces
a charge flow through the capacitor. If the polarization is reversal, a higher voltage
appears at the bit line. This process, however, reverses the polarization of the capacitor,
destroying the stored value. If the stored value should be kept, this makes a rewriting
of the stored value after reading the memory cell unavoidable. Consequently, every
read operation in FeRAM requires a subsequent write operation. Despite possible
effects on the latency and energy characteristics, this affects the memory lifetime, when
the maximal amount of possible write operations to the memory is limited. Classically,
memory wear-out would be only expected for write operations, because only this
operation impacts the cell state. FeRAM, however, also features read-destructiveness
as well.

SPIN-TORQUE TRANSFER MAGNETORESISTIVE RAM (STTM)

Beyond material crystallization and ferroelectric charging, there exist further material
properties, which can be used to permanently encode a stored memory value in a non-
volatile fashion. One example for this is SPIN-TORQUE TRANSFER MAGNETORESISTIVE

RAM (STTM) [BSH+17]. In this technology, a material is used, which can store a spin
polarization. In addition to the storage layer, which can be programmed, a cell contains
a fixed layer with constant spin polarization as a reference layer. A current flow through
the spin polarized fixed layer creates a spin polarized current flow. If the free storage
layer is polarized parallel, another electrical resistance is caused as if the free layer
is polarized antiparallel. This enables reading out the stored value. Programming the
cell is consequently done with an according programming current. If a parallel spin
polarization in the free layer should be achieved, a current flow through the fixed layer
into the free layer is realized. The current flow is spin polarized in the fixed layer and
achieves a parallel spin polarization in the free layer. If an antiparallel spin polarization
should be achieved, an inverse programming current is applied, which goes through the
free layer first and through the fixed layer afterwards. The current consists of a mix of

22 Chapter 2. Background and Related Work

Free Layer Fixed Layer Free Layer Fixed Layer

Figure 2.4: Schematic STTM Cell Overview

parallel and antiparallel spin polarized electrons to the fixed layer. The parallel polarized
electrons can easily pass the fixed layer, while the antiparallel polarized electrons gather
in the free layer. This achieves an antiparallel polarization of the free layer. A schematic
overview of the STTM cell and the two write operations is illustrated in Figure 2.4.
The current flow is indicated by two arrows, where each of them illustrates one spin
polarization. It can be seen, that the fixed layer filters for one polarization and rejects
the other one, which can lead to an according polarization of the free layer.

Beyond PCM, FeRAM and STTM, there are several other non-volatile memory tech-
nologies. Usually, the memory value is encoded in certain physical properties, which
induces a possibly limited lifetime. However, except measurable factors, such as lifetime,
energy consumption, density, unit cost and the latency, integrateability is also discussed
as an argument. Producing the memory devices imposes its own challenges, espe-
cially integrating the process into COMPLEMENTARY METAL-OXIDE-SEMICONDUCTOR

(CMOS) production. Consequently, compatibility with CMOS production can be another
argument.

RACETRACK MEMORY (RTM)

This thesis, despite the aforementioned memory technologies, picks up another specific
NVM technology, namely RACETRACK MEMORY (RTM). Basically, two types of cells
could be distinguished for RTMs: Domain walls or skyrmions [BKF+20]. The special
property of these cells is that charges can be transferred to adjacent cells, which allows
the assembly of a nanowire of cells, where contents can be shifted across the positions
in the wire. This further allows to place an access port only at one position of the wire
and therefore reduce the complexity of the memory device. Access to the memory then
requires a shift of the memory content towards the access port first. This results in
a shift dependent access latency and energy consumption. The detailed implications
on this model are discussed in Chapter 3. Although the question of domain walls vs.
skyrmions opens interesting design choices, it is out of the scope of this thesis. The
main focus of this thesis lies on the common shift property. Concrete experimental
evaluation is conducted for domain wall RTM.

2.1. Technological Background 23

Main Memory

L3 Cache

L2 Cache

L1 I CacheL1 D Cache

Data Accesses Instruction Accesses

Figure 2.5: Memory Hierarchy Illustration

2.1.2 Memory Hierarchies

The basic explanations about the hierarchical organization of memory are taken from
the text book [PH17]. This basic book also serves as an excellent source for further
details. In the development of computer history, at a certain point memory could not
simply be further scaled up to adequate sizes, while maintaining low memory access
latencies. Larger memories are way more complex in their device design, which makes
it infeasible to realize them with low access latencies. Also, the energy consumption for
a large and fast memory would be infeasible. However, large and fast memories are well
feasible with adequate energy consumption. Consequently, the straight-forward idea
is to combine large, slow, but energy efficient memories with small and fast memories.
Ideally, this combination is done in a way, that the application experiences a virtually
large and fast memory. The key aspect, which is crucial to provide this illusion, is the
local memory access behavior of applications. Applications tend to access a small
working set of memory frequently. If memory management can achieve to store this
working set in the small and fast memory, and exchange this working set on a behavior
change of the application, the illusion of a large and fast memory works out.

The illusion of a large and fast memory is created by a hierarchical organization of
different types of memory, as illustrated in Figure 2.5. Small and fast memories go to
the top, large and slow memories to the bottom. Usually, the lowest layer is the main
memory, storing all contents. All levels above are caches. A memory access always
targets the uppermost level of the hierarchy. Only if the requested content is not found
there, the next lower level is requested. This implies, that each level stores a subset
of memory contents from the level underneath. Such a memory hierarchy could, in
theory, be built with arbitrary amounts of levels, in current systems, four layers can be
commonly found for high performance systems, whilst two or three layers for embedded
processors. The management of which content to store in which level is another aspect,
which requires intelligent design. For most systems, the upper levels of the memory
hierarchy are organized as write back caches. That is, they keep a copy the value,

24 Chapter 2. Background and Related Work

stored underneath, and do not propagate modifications to this value until the stored
value needs to be evicted to gain some free space. This is advantageous, since, as
long as the content is stored in a certain level, only the latencies of this level apply
to accesses to that specific value. The eviction strategy, i.e. deciding which contents
should not be stored any longer in a cache, when no space is left, essentially determines
the policy of which contents are stored in the cache. Even though the details of eviction
strategies in modern systems are usually not published by the manufacturers, some
form of age-based eviction is usually applied. This means, that contents, which have
not been accessed for a certain time, are more likely to be candidates for eviction.

This structure forms the most basic principle of a memory hierarchy. There are many
more aspects to the management of the caches in the memory hierarchy, such as spec-
ulative prefetching or cache coherence across different CPU cores, which are largely
out of the scope of this thesis. One interesting aspect, which is of certain importance to
this thesis, is that many systems employ separate instruction and data caches at the
upper levels of the memory hierarchy. This, up to a certain degree, contradicts the von
Neumann concept, because data and instruction memory is separated. Especially when
optimizing applications to efficiently perform with cache capacities and cache eviction,
instruction and data memory should be distinguished for the higher levels of cache.

Memory Wall(s)

The basic problem, mitigated by the memory hierarchy, as mentioned before, is the
so-called memory wall. Historically, the speed of the CPU increased faster than the
memory speed, which left the memory behind and essentially left the memory as a
bottleneck. One could call this also a latency wall. Although cache hierarchies seem
to solve this problem by employing small and fast memories, the latency wall is only
traded in exchange to a capacity wall. As long as the local working set of an application
is small enough, memory hierarchies can be fast. However, if the working set of the
application grows too large, memory hierarchies also reach their limits. The later in this
thesis studied RANDOM FOREST (RF) application is a typical application, which can
exceed the cache capacity in the local working set.

There exist further technologies, which aim to mitigate the capacity wall, namely
HIGH BANDWIDTH MEMORY (HBM). However, this technology again basically exchanges
the capacity wall to an energy wall, since energy consumption and heat production of
HIGH BANDWIDTH MEMORYs (HBMs) can exceed feasible application in many systems.
NVMs may promise to further mitigate the energy wall while maintaining extreme fast
access latencies. Then, however, the energy wall is exchanged to a lifetime wall, which
can limit the applicability of the NVM technology. Concluding from this, the problem
of the memory speed cannot be solved unconditionally. Instead, properties can be
exchanged to other disadvantages, which may be better suited for certain applications.
This, however, requires explicit support and management of the different memory
technologies, which is realized in a software exploited manner in this thesis.

2.1. Technological Background 25

Memory Technologies Across the Hierarchy

The aforementioned concept of a hierarchical organization of different memory types
opens a design space to place various memory technologies, including NVM technolo-
gies, at different levels of the hierarchy in a native way. Some technologies may be better
or worse suited for different levels. In a traditional system with volatile memory, DRAM is
usually used for the main memory and the lower cache layers. The upper cache layers
are realized in SRAM, which can achieve way faster access latencies. Existing systems
mostly employ NVM as the main memory. One example for this is the Intel Optane
Storage technology, which can be used as a replacement for the DRAM main memory
[PGG19]. Another example are the FeRAM based integrated microcontrollers , e.g. the
MSP430FR5994 from Texas Instruments. This system integrates FeRAM as well as
a main memory. Furthermore, a combination of NVM and volatile memories could be
considered, where for instance the main memory is a NVM and the upper cache levels
are realized as volatile memories.

2.1.3 Computer Arithmetic

Chapter 7 focuses on arithmetical computation in the CPU and partially the impact on
the memory subsystem. In order to provide an abstract background explanation, the
arithmetical computations in RISC-V CPUs are picked up here as a simple example
[WA17]. Although Chapter 7 focuses on X86 and ARMv8 CPUs, the principles behind
the design of the arithmetic instructions are transferable. It should be noted that CPU
instructions do not always follow the same scheme, but rather different format templates
for different purposes exist. For instance, in RISC-V, base instructions can be either
encoded in the R, I, S or U format. These formats encode different requirements
for different types of instructions. For instance, the R format can encode two source
registers and no immediate field, while the I format can encode only one source register
and one immediate field. In RISC-V, the I format can encode a 12 bit immediate field,
which allows appropriate instructions to directly store a constant value of up to 12 bits in
the instruction itself.

RISC-V instructions which exploit this format are usually indicated with a trailing I
in the instruction name, e.g. the ADDI, ANDI, ORI or XORI instruction. Comparing, for
instance the ADDI to the ADD instruction, the ADD instruction takes two source registers
and stores the computed value in the destination register. The ADDI instruction takes
one source register, adds the immediate value and stores the result in the destination
register.

Unlike RISC-V, ARMv8 and X86 also apply immediate encoding to control flow
instructions. That means, conditional branches, which are realized as a pair of a
compare instruction and a branch instruction, can compare one register to an immediate
field and do the branch accordingly. This again allows a trade-off between loading a
comparison value from memory or directly store it inside the instruction in the instruction
memory. It should be noted that the limitation, that the immediate field has only 12

26 Chapter 2. Background and Related Work

bits, only allows immediate encoding of numbers, not exceeding this length. If a larger
number should be encoded as an immediate constant, it is unavoidable to load the
number in extra steps.

While the processing of integer numbers (including comparisons for greater or less
relations and conditional branches) allows the aforementioned trade-off of immediate
encoding or memory encoding, floating-point numbers do not allow this trade-off. While
integer numbers can be easily cropped down to 12 bits, since the uppermost bits are only
sign extended, floating-point numbers employ discrete fields of a sign bit, an exponent
number and a mantissa, which cannot be simply cropped to an arbitrary amount of
bits. Consequently, neither RISC-V, nor ARMv8 or X86 provide any means to encode
floating-point numbers in immediate fields. Consequently, the trade-off between memory
and immediate encoding of constants is not available for floating-point numbers.

2.1.4 RF Ensembles

Chapter 6 and Chapter 7 study RF ensembles as a premier specific application. Ex-
ecution and tooling of RFs and a brief overview about the general working principle
is given here. The basic explanations are adopted from [Bre01] and [BFO+]. RFs are
machine-learning models, which are either trained for a classification or regression
purpose on a given dataset. In order to provide intuition, consider a very simple data-set.
The data-set has two features and one prediction column. The data-set simulates a
collection of recordings, which restaurant on the campus a virtual work group visited.
The features are the current weekday and the existence of fries in the student lunch
plan. The prediction is the visited restaurant:

Weekday Fries? Restaurant
Monday yes Mensa
Tuesday yes Mensa

Wednesday no Mensa
Thursday no Galerie

Friday yes Food Fakultät
Monday yes Mensa
Tuesday yes Mensa

Wednesday no Mensa
Thursday yes Mensa

Friday yes Food Fakultät

...
Monday yes Mensa
Tuesday yes Mensa

Wednesday no Mensa
Thursday yes Mensa

Friday yes Food Fakultät
Monday yes Mensa
Tuesday no Galerie

Wednesday yes Mensa
Thursday no Galerie

Friday no Food Fakultät

Table 2.2: Demonstration Training Datset

If now a random forest should be trained to predict the decision of the virtual work
group, which restaurant to visit, the training process has to be reduced to training of
single DTs first. This could be done, for instance, by random sampling the data-set and
train each one DT on a subset. For simplicity, only a single DT should be trained on the

2.1. Technological Background 27

entire given data set. If multiple DTs exist in an ensemble, the prediction of the single
trees is usually combined by, e.g. a majority vote for classification problems. If only a
single tree exists, the prediction of this tree is directly applied. The training of a single
tree is achieved by recursively splitting the data set into partitions, which can be well
distinguished by a threshold value of a feature. To determine such a well-suited split
criterion, impurity metrics can be used. The impurity is basically an indicator for the mix
of prediction classes in a data partition. If the impurity is high, many classes are mixed
in a partition. If the impurity is low, the partition is very pure and only contains a small
amount of prediction classes. One example for an impurity metric is the gini impurity,
which is computed according to the following equation [BFO+]:

J∑
j=1p(j) ⋅ (1 − p(j)) (2.1)

In this equation, J is the number of classes in the analyzed data partition and p(j)
is the relative frequency of the appearance of this class in the data partition. The
CLASSIFICATION AND REGRESSION TREES (CART) training algorithm [BFO+] basically
tries different split criterions by either doing full explorative search or random sampling
and determines the impurity score of the resulting partitions. The split with the lowest
impurity in the resulting partitions is then taken as the applied split. In this example, a
split with a high reduction in impurity would be to filter the weekday by Friday and not
Friday. For the outcome of true, the resulting partition has only one class and therefore
minimal impurity.

Consequently, the root node of the decision is formed by the criterion Weekday ==
Friday. The training further continues the recursively on two data sets, one where
the weekday is Friday and one where the weekday is not Friday. The data set with
the weekday set to Friday only contains one prediction class, namely Food Fakultät.
Therefore, no further splitting is needed, because the impurity cannot be further lowered.
This is a stop criterion, which leads to the creation of a leaf node. This leaf node predicts
the outcome Food Fakultät. The other data partition, is further analyzed for possible
good splits. Splitting the remaining data set by the weekday to be Wednesday or not
Wednesday also results in one entirely pure partition. The remaining data partition than
can be split on the feature of the existence of fries and results in two entirely pure data
partitions. This then forms the final DT (Figure 2.6). In the illustration, split nodes are
green, and leaf nodes are blue. If the ensemble had been created with multiple decision
trees, the process would be similar for the single trees. The predictions of the single
trees would be combined by, for instance, a majority vote. It should be noted that in this
example, for the purpose of intuitive illustration, equality split criteria are applied to the
features. If a general data set is given, however, features are numerically encoded and
the split criterion normally is done by a ≤ operation with the threshold value.

28 Chapter 2. Background and Related Work

Weekday
==

Friday

Weekday
==

Wednesday

Food
Fakultät

Fries
==
yes

Mensa

Galeire Mensa

no yes

no yes

no yes

Figure 2.6: Demo DT

2.2 Related Work

On an abstract level, the methods detailed in this thesis can be roughly categorized
in two categories: 1) NVM management and 2) RF performance optimization. The
management of NVM needs to be further divided into common wear-leveling and special
optimization of the properties of RTM. All of these fields experience active research
interest, which makes capturing the state-of-the art difficult. This section aims to provide
a comprehensive overview about research efforts in the related work.

2.2.1 NVM Wear-Leveling

Over the last decades, several approaches for in-memory wear-leveling for NVM are
proposed. Independent of the exact design principle, the target of memory accesses
is changed during the process of wear-leveling, in order to achieve a more lifetime-
friendly memory access scheme in consequence. The decision, which memory access
is redirected to which memory location, is usually based on certain strategies. These
strategies can be roughly categorized in aging aware strategies, i.e. management
strategies which take the current memory aging, or an estimation of the current aging
into account and non aging-aware strategies. [LSX+19; DZH+11; LWW+13; HDW+16;
AXY+14; SNM+15; CHK+12; FZB+10; ZZY+09; GWD+19] can be considered to be
aging aware. The detailed design principle behind these works spans a wide space.
Approaches like [LSX+19; SNM+15] propose wear resistant memory allocation schemes,
where the allocated portions of memory are placed to different memory locations,
depending on the current wear-out. The information about the memory usage can be

2.2. Related Work 29

partially extracted from the allocation requests itself. This forms a less invasive method,
since the majority of wear management happens inside the memory allocation. Other
approaches, which target a management of memory wear more close to the hardware
[AXY+14; CHK+12; FZB+10; ZZY+09] employ various schemes of hardware controllers
to redirect memory accesses on the basis of certain sized memory blocks. Also, the
management, which block to choose as a target for a relocation spans a wide space.
Most of the methods, however, have in common that frequent memory accesses target
less worn-out physical memory locations in order to distribute the wear, caused by these
accesses. Many approaches consider the number of memory accesses as a central
indicator for the memory aging. However, [DZH+11; HDW+16] consider the wear-rate,
i.e. the frequency of memory accesses as an indicator as well. Memory is assumed to
wear-out more from accesses with a short time in between than from accesses with a
large time distance.

A counterpart to the previously mentioned aging-aware approaches is formed by
non aging-aware approaches, where neither the precise memory age, nor an estimated
memory age is taken into account for the making of wear-leveling decisions. Towards
this, randomized approaches [QKF+09; FZB+10; ZZY+09] apply wear-leveling in a
circular or randomized manner. Memory accesses are redirected to adjacent memory
locations in a circular fashion over time, essentially spreading the memory wear-out
across the memory space. Non aging-aware and aging-aware wear-leveling can be
combined to achieve a randomized wear-leveling on fine granularities inside of memory
blocks, while an aging-aware approach is used to target these coarse-grained memory
blocks. Towards, this different approaches in the literature target different granularities
for the memory management. It varies from single bits [CL09; ZSY+14] over cache-lines
[QKF+09; ZZY+09] for fine-grained approaches to memory pages [FZB+10; AXY+14;
SNM+15; CHK+12; GWD+19] or even bigger memory segments [ZZY+09; ZL09] for
coarse-grained approaches.

Memory Tracing

One of the core functionalities for aging-aware wear-leveling algorithms is the tracing
of memory accesses in order to model and estimate the current memory wear-out.
Work in the literature proposes many ways to analyze the memory access behavior
of computer applications. Capturing of memory accesses is proposed to be done on
various levels. Bao et al. propose HMTT [BCR+08], which is a hardware based memory
simulator that uses an FPGA between the processor and the memory DIMM to snoop
all memory accesses. A less invasive method is provided by the combination of the
gem5 full-system simulator [BBB+11] and the non-volatile memory simulator NVMain2.0
[PZX15]; this setup simulates an entire system, including CPU, memory and peripherals.
The simulator then allows users to trace all memory accesses. Nethercote et al. propose
Valgrind [NS07], which is a method that hooks in at the application level and requires
code instrumentation such that every memory access can be traced out.

30 Chapter 2. Background and Related Work

The aforementioned mechanisms are subsequently used to analyze applications
memory behavior. Jiang et al. focus on a memory analysis of computing frameworks
(e.g. Hadoop) by investigating hardware characteristics (e.g. cache behavior) [JZH+14].
They employ Intel’s VTune Amplifier [Amp19] to collect architectural metrics, but also
conduct their analysis on the HMTT platform to acquire the full memory trace. Nalli
et al. present a benchmark suite with various applications [NHH+17], using the gem5
simulator to analyze memory traces and to investigate the memory behavior of these
applications. Byma et al. perform an analysis of the usage of heap allocated memory
[BL18] by instrumenting the code, similarly as Valgrind [NS07] does. Consequently, they
analyze the memory behavior of their application based on these data.

Software Based Wear-Leveling

Studying the problem of wear-leveling towards the scope of this thesis, software exploita-
tion of existing hardware for wear-leveling is of a special interest. Gogte et al. propose a
software-only coarse-grained wear-leveling approach by using a sampled approximation
of the write distribution [GWD+19]. They make use of advanced debugging capabilities,
i.e. Intel Processor Event Based Sampling (PEBS), which allows them to sample the
write requests from the CPU. These debugging capabilities, however, can rarely be
found in embedded systems and resource-constrained hardware.

All other mentioned aging-aware approaches rely on the current write-count informa-
tion of the memory. Most approaches introduce specialized hardware into the memory
controller to collect the write-count information, which is not available in commonly
available systems and might be hard to realize. Dong et al. [DZH+11] use an offline
recorded memory trace to estimate the write distribution, which limits the approach to a
subset of well-known applications only.

Stack Memory Wear-Leveling

Specialization in the process of wear-leveling can help to derive efficient and tailored
methods. Stack memory is a desirable candidate for specifically optimized solutions,
since a high volume of memory accesses targets the stack memory. In addition, the
patterns of accesses to the stack memory are indirectly controlled by the management
of stack memory from the compiler. This offers opportunities for software-based wear-
leveling to specifically end efficiently target stack memory. Specific software-based
wear-leveling approaches consider specialized solutions for the stack memory in their
work, i.e., a memory allocation is performed for the stack of each function call [LSX+19;
LHC+14]. They also mitigate the caused overhead for stack wear-leveling by only
hooking in the wear-leveling algorithm for new memory requests. Thus, copying of old
content is omitted. However, these approaches rely on the application’s corporation to,
for instance, perform a sufficient amount of function calls.

2.2. Related Work 31

Read Wear-Leveling

As most memory technologies only wear out from write accesses, many proposed
methods in the related work also only target write accesses to the memory as a premier
target for the wear-out analysis. However, FeRAM as a produced and market-ready
technology features also read wear-out. There are no dedicated algorithms or methods
for read wear-leveling in read-destructive NVMs. However, hardware-based approaches
that are not aging-aware or that directly decide based on the wear of each cell are
compatible with read-destructive memories by default. If the wear is estimated from
the write count, it could be also estimated from the read and write count together.
This implies that hardware-software interplay algorithms can obtain the accurate wear
estimation by extending the hardware to count read accesses as well. As long as generic
mechanisms (e.g. virtual-memory page remapping) are used [AXY+14; CHK+12], the
modifications to the algorithms are minimal. When in contrast specific mechanisms
(e.g. heap allocation or stack allocation) are used for wear-leveling [LHC+14; SNM+15;
LSX+19], then read wear-leveling cannot be integrated easily. Thus, another special
mechanism for read wear-leveling is required in those cases. Also, for algorithms
that ship with their own write approximation [HMH20; GWD+19], a specialized read
approximation has to be added.

Database-Specific NVM Management

Application specific NVM management can offer a huge potential for effective and
efficient management. Especially when the application can be highly customized, NVM
management can be directly integrated into the application implementation. Parts
of database management systems, in this context, offer such a highly customizable
application. The use of NVM for indexes in databases is extensively studied in the last
years. However, most work is dedicated to exploit features such as byte addressability.
The problem of higher latency compared to DRAM, especially during writes, is thereby
addressed by many researchers in this effort, leading to new index structures that mainly
try to avoid unnecessary writes to NVM. Many of these approaches attempt to reduce
data movement within leaf nodes. Some of them allow unsorted leaf nodes and maintain
additional helper structures to improve the performance of search operations [CJ15;
YWW+15; OLN+16]. Other approaches enhance search operations by dividing leaf
nodes in cacheline-sized chunks that are sorted internally, even if the node itself is not
sorted [WC20]. Still other approaches allow unsorted inserts into leaf nodes, whilst the
nodes are sorted occasionally [ALM+18].

While writing to NVM is identified as a critical problem in almost all the approaches
mentioned above, the focus is primarily on reduced write performance rather than
wear-leveling. Chi et al. [CLX15] propose a cost model for B+ trees in their work that
estimates wear out of nodes, but they do not focus on wear-leveling.

32 Chapter 2. Background and Related Work

2.2.2 RTM Optimization

One special type of NVM is RTM, which is picked up as a premier target in the second
half of this thesis. For RTM, the issue of lifetime management is less interesting as
for other types of memory, RTM, however, comes with a unique property, requiring
dedicated management. RTM features access-dependent latency and energy con-
sumption, which opens a wide range for optimization. A rich body of research explores
the efficient employment of RTM at various levels in the memory hierarchy for numer-
ous application domains and system setups. In this context, optimization techniques
for RTM are proposed to facilitate their adoption in the register file [Ato15; MXM+16;
MWZ+14], scratchpads [KHB+19; KRH+19; MZS+15], caches [XAM+16; VKS+16;
XLM+15; ZSZ+15a; SBW+16; MIG14; SBJ+14], network-on-chip [KXM+15], off-chip
memory [HSS+16], and solid state drives [PYL+14]. Therefore, RTM can be fitted in all
levels of the memory hierarchy, making it a promising candidate for universal memory.

To provide performance, area, and energy benefits, various optimizations are pro-
posed in the literature at cell-level [SBW+16], circuit-level [MIG14], layout-level [SBJ+14;
ZSZ+15a; MIG15], and cross-level [SZL+15]. RTM’s leakage power and capacity
advantages give it a competitive edge over existing memory technologies, but the expen-
sive shift operations present a daunting challenge. In this context, various techniques
for RTM shift cost reduction are proposed, such as runtime data swapping [SWL13;
VKS+16; SBW+16], data compression [RRV+15; XLM+15], preshifting [CPA+19; Ato15],
access port management [VKS+16; SBW+16], intelligent instruction [MJK+19], and data
placement [KHB+19; CSZ+16]. For data placement, Chen et al. in [CSZ+16] present a
heuristic appending data objects according to the adjacency information sequentially.
Khan et al. in [KHB+19] formulate the data placement problem with an integer linear
programming and further propose the ShiftsReduce heuristic to enhance the previous
heuristic by introducing a tie-breaking scheme and a two-directional objects grouping
mechanism assuming a single access port RTMs.

It is shown that domain-specific approaches not only guarantee better performance
and energy consumption but also enable better predictability of the runtime [KRH+19]. In
fact, the studied data placement problem can be treated as an instance of the quadratic
assignment problem (QAP), which was introduced in 1957 [KB57], considering the
problem of allocating a set of facilities to a set of locations. When the facilities are all
in a line (like the locations within in a DBC), such a special case is named the linear
ordering/arrangement problem [BÇP+98]. Suppose that the number of vertices is m

and the length of an edge is defined as the linear distance between the vertices involved.
For undirected trees, Shiloach proposes an O(m2.2) algorithm [Shi79]. For directed
trees, Adolphson and Hu in [AH73] present an algorithm to derive an optimal placement
in O(m logm).

The imperfection in the fabrication technologies and fluctuation in the current density
required for the shift operation may cause pinning faults and position errors in RTMs.
Many position error detection and correction schemes are proposed to guard RTMs
against such errors and improve their reliability [ZSZ+15b; OJR+19; VMS+17].

2.2. Related Work 33

2.2.3 RF Performance Optimization

The second part of this thesis discusses efficient execution of RFs on modern tech-
nologies. Despite RTM, performance considerations for other system properties are
being made. Towards modern hardware technologies, several techniques are proposed
in the literature to speed up the execution of inference for tree-based ensembles. For
binary search trees, Kim et al. in [KCS+10] present an optimized realization by using
vectorization units on X86, considering the register sizes, cache sizes, and page sizes
specifically. However, such a technique requires a specific support from the underlying
architectures. The concept of vectoring the tree structures is also applied to the context
of ranking models in [LPN+16], which enhances the QuickScorer algorithm for gradient
boosted trees [LNO+15; DLN+16]. Ye et al. in [YZZ+18] further improve the scalability
of such vectorization methods by encoding the node representation to compact the
memory footprint. These techniques decompose the tree-ensembles into different data
structures based on the feature values, which is especially effective for large ensembles
of smaller trees. Without executing trees one by one, however, the target applications
are mainly limited to batch-processing. Hummingbird is proposed to compile decision
trees into a small set of tensor operations and batch tensors for each tree together for
tree inference [NSY+20].

Architecture-aware implementations for decision trees start from [VMG+12], which
optimizes the implementations of decision trees on different architectures, i.e., CPUs,
FPGAs, and GPUs. By fixing the tree-depth, Prenger et al. in [PCM+13] further show an
effective pipelining approach over these computing units, based on the CATE algorithm
during training. However, the impact of cache misses is not taken into account. The
two common implementations for decision trees, i.e., native trees and if-else trees, are
first distinguished in [ALD13], which provides the first attempt to increase data locality
for native trees. By leveraging the probability model of accessing nodes during tree
inference in [BM18], Buschjäger et al. in [BCC+18] propose several optimizations for
memory layout over different tree implementations to improve the memory locality and
show the potential speed-ups can be up to 2-4x over different architectures. Chen et al.
enhance this method further by compiler-based binary size estimation [CSH+22].

RF Floating-Point Arithmetic

Considering floating-point arithmetic and the relation to two’s complement integer arith-
metic, several starting points can be found in the literature. It is reported that some
CPUs internally use the same hardware unit for floating-point and integer comparisons
with a few additions for the floating-point computation [Bra]. Furthermore, there are
explicit considerations about the binary floating-point format regarding accuracy and
efficient programming [DDR95; Bli97].

CHAPTER 3

System Model

Contents
3.1 Non-Volatile Memory Model . 36

3.1.1 Technical Overview . 36

3.1.2 Wear-Out Model . 38

3.1.3 Iterative Memory Writes . 39

3.1.4 Hybrid Memories . 40

3.1.5 Simulation Setup . 41

3.1.6 Latency Model for RACETRACK MEMORY (RTM) 43

3.2 Random Forest Execution Model . 44

3.2.1 Probabilistic Execution Model . 45

3.2.2 Implementation . 46

3.2.3 Arithmetic Considerations . 48

3.2.4 Performance Consideration . 48

3.2.5 Tooling . 49

3.3 CPU Model . 50

3.3.1 Memory Hierarchy . 50

3.3.2 Floating-Point Arithmetic . 51

35

36 Chapter 3. System Model

3.1 Non-Volatile Memory Model

The term NON-VOLATILE MEMORY (NVM) covers a large variety of memory technologies
and memory architectures. This section gives a general overview about the technologies,
which belong to this term and are relevant to this thesis, and introduces the relevant key
aspects.

3.1.1 Technical Overview

The term NVM itself refers to memories, that persist their value over a longer time, when
the memory is powered off. This also includes, for instance, hard disks or tape drives.
However, this thesis studies a more specialized subclass, which is non-volatile main
memories or storage class memories. This, in fact, refers to memory technologies, which
are non-volatile, but also byte-addressable and usable as a main memory technology.
In this technology class, hard disks are for instance not included since they are block
based and not byte addressable.

In the current state of the art, several technologies are proposed and discussed
for the use as non-volatile main memory. Examples for such technologies are PHASE

CHANGE MEMORY (PCM) [LW08; BRC+17], RESISTIVE RAM (ReRAM) [BRC+17], FER-
ROELECTRIC RAM (FeRAM) [GMS+21], SPIN-TORQUE TRANSFER MAGNETORESISTIVE

RAM (STTM) [BSH+17] or RACETRACK MEMORY (RTM) [BKF+20]. In comparison
to classic DRAM, all these technologies make use of physical properties of a certain
material in order to store data in a persistent manner. While DRAM stores the data in
an electric field in a capacitor, which is volatile due to electric leakage, PCM for instance
encodes information by bringing a material into a crystalline or amorphous state, which
impacts the electric resistivity of the material. Another example is STTM, where infor-
mation is encoded by spin polarizing a free layer. This is achieved by applying a spin
polarized current to this layer. This spin polarization again causes a different electric
resistivity when a read current is applied. It has to be noted that NVM technologies
similarly face leakage or drift effects, which change the encoded value of memory cells
when they are not written for a certain time. However, while a value in DRAM can lose
the encoded information within a time range of seconds, for most NVM technologies
information persists for the time range of years when contents are not overwritten.
It should be further noted that the aforementioned technologies usually only refer to
a conceptual realization of the memory cell technology itself. The realization of the
memory device, i.e. how to organize single cells to a full memory device, is another
question which can take another huge impact of the performance characteristics of the
memories.

When discussing NVM technologies the following characteristics are important to
consider and are explained in the following:

• Endurance: Since the information in NVM is encoded by almost permanent
physical changes of a material, way higher stress on the material is caused in
comparison to DRAM. This results in a limited lifetime of memory cells for many

3.1. Non-Volatile Memory Model 37

technologies. The lifetime of DRAM cells is limited but usually in such a large
scale that the lifetime of DRAM is practically considered as infinite. For many NVM
technologies, the lifetime of cells is limited in such a scale, that realistic workloads
can destroy memory cells within a few years or even shorter periods [BRC+17].
In this thesis, the term of endurance is used to refer to the lifetime of the memory
cells in a certain technology. Under a certain assumption that every access
causes the same physical stress on a cell, the endurance can be expressed as
a number of accesses the cell can endure before being destroyed. Although
endurance may be measurable in experiments for certain memory technologies,
the endurance should not be considered as a hard boundary. Effects, such as
processing variation, can impact the endurance and even cause slight differences
in the endurance within one memory chip [ZJZ+14]. Hence, when the endurance
of memory cells in general is limited, the system should manage to cause in total
a low number of access to each memory cell in order to prevent failing of single
cells.

• Lifetime: Directly related to the term of endurance, the lifetime of a memory
chip can be discussed. The endurance is a central driver for the lifetime, since
this effect causes single memory cells to become unusable. However, it strongly
depends on the chip architecture and management strategies how the total lifetime
of a chip can be modeled. If, for instance, a chip, a driver, an operating system
or an application implements tolerance mechanisms to detect failing cells and
exclude these from usage, the lifetime of a chip can go beyond the failing of the
first cell.

• Retention: As previously explained, also NVM is affected by leakage or drift
effects, which cause the values stored in a cell to change over time when no
further write operation is applied to the cell. The time, a value can be expected
to be available in a memory cell is referred to as the retention time. As already
mentioned, the retention time for NVM is usually considered ranging in the scope
of years while for DRAM it is at most a few seconds. For some NVM technologies,
retention time is not necessarily fixed or determined by the technology. In PCM,
for instance, the length of the write pulse determines also the retention time of
the written value. This basically can offer a trade-off between retention time
and time/energy/endurance consumption for write operations. It is also worth
mentioning that the drift effects are asymmetric for most technologies. In detail, a
written value of 1 may drift towards 0 over time, but a 0 is always persistent1.

• Density: Density refers to the potential realization of memory devices, i.e. the
integration density. Many NVM technologies promise to achieve a high integration
density, allowing low unit cost with large capacities. Although market ready devices
with NVM are not very popular for large capacities at the moment, the possible
density opens discussions for the omission of larger capacity storage beyond the
NVM main memory at all.

1The state of 1 and 0 is only a logic interpretation of the cell state, it can also be flipped.

38 Chapter 3. System Model

• Latency: Although the materials used for NVM technologies usually do not
feature special properties impacting the required time to read them out and write
them, several concepts for NVM have a certain effect on the access latency. As
mentioned before, retention may be controlled by application of different length
write pulses. This essentially also impacts the write latency of the corresponding
operation. Furthermore, RTM as a special technology features varying latencies
based on the state of the memory, since memory contents are organized in a
nanowire with a central access port. Furthermore, the chip design could include
various buffers which also can cause a non-uniform access latency.

3.1.2 Wear-Out Model

All methods presented in this thesis in regard to the lifetime of NVM study basic ap-
proaches to use traditional memory interfaces to execute required wear-leveling oper-
ations in a software-driven manner. Consequently, a generic model for the memory
lifetime and the wear-out is chosen. Naturally, other methods can be deployed which
operate on other assumptions as the ones made in this thesis and further improve the
lifetime. This thesis, however, aims to make as generic assumptions as possible and
provide a generic basic solution to the lifetime issue in a software-based manner by
exploiting traditional interfaces.

The amount of write operations a cell can endure is limited in a scale of 108 op-
erations for some technologies [BRC+17]. Assuming that software writes a certain
memory portion only once every second, this memory portion would be worn out after≈ 3 years. If the software applies more frequent writes, the cells are destroyed even
faster. In this thesis, no additional error detection mechanisms are considered, thus
the entire memory becomes unusable once the first cell wears-out. This potentially
limits the lifetime of NVM equipped systems to a few years or even less. This points
out the urgent need for wear-leveling in such systems, i.e. the process of distributing
write operations to all memory cells approximately equally in order to reach a drastically
improved system lifetime.

Before precisely defining wear-out measures, NVM technologies further have to
be distinguished in write-destructive and read-destructive memories. For some tech-
nologies, the read operation does not impact the cell value and therefore causes no or
a neglectable impact to the cell endurance. For other technologies, such as FeRAM,
the read operation entirely drains the memory cell, which makes a subsequent write
operation mandatory in order to keep the stored value [Phi96]. This essentially makes
read operations destructive as well, since each read operation results in a write op-
eration. For wear-leveling in a hardware-aware fashion this may require no special
care, because the corresponding write operation becomes visible in the hardware level,
for wear-leveling on the software level, in contrast, it requires employing wear-leveling
means for logical read and write accesses.

Laying out the basics about the wear-out assumptions allows to subsequently
formalize the memory wear-out. This thesis distinguishes between read-destructive and

3.1. Non-Volatile Memory Model 39

write-destructive NVM. For write-destructive memories, write accesses are assumed
to wear-out their targeted memory cells equally. For read-destructive memories, read
and write accesses are assumed to wear-out their targeted memory cells equally. This
thesis does not make assumptions about absolute lifetimes of NVM technologies and
hence evaluates wear-out in a relative manner. Under the assumption that the memory
becomes unusable once the first cell wears out, the idealized way of achieving maximal
memory lifetime is to shuffle all memory accesses of the program such that all memory
cells face the same amount of accesses, i.e. the mean amount of accesses. Comparing
this value to the most heavily-stressed cell (practically determining the lifetime of the
device) results in a relative measure of how good in terms of lifetime achievement a
certain memory usage is. This value is further referred to as achieved endurance (AE):

AE = mean_access_count
max_access_count

(3.1)

Low values of the achieved endurance motivate the use of wear-leveling methods,
which modify software in a way such that the distribution of memory accesses is
modified towards better endurance achievement. Given the memory access distribution
without wear-leveling as a baseline, the relative effect of wear-leveling methods can be
determined by comparing both values of achieved endurance, which is referred to as
endurance improvement (EI) in the following:

EI = AEanalyzed

AEbaseline
(3.2)

Although the EI provides a relative measure of how well memory wear-out is distributed,
it does not compare the absolute stress in the memory. For instance, after wear-leveling
the AE could be 4× better distributed, but also cause 4× the absolute stress on the
memory, effectively gaining no benefit. In order to include this consideration, the absolute
overhead (percentage of the additional total number of destructive accesses), denoted
as OV , is included, resulting in the measure of lifetime improvement (LI):

LI = EI

OV + 1
(3.3)

It should be noted that this overhead measure does not directly relate to additional
execution time overheads. Such overheads, however, can be measured separately and
do not impact the considerations about relative memory lifetime.

3.1.3 Iterative Memory Writes

Section 3.1.2 defines wear-out measures based on the term of write accesses, or
in addition read accesses for read-destructive memories. In the simplest form of a
realization, write accesses to the memory are triggered directly by the CPU in the
form of a store operation to the memory. The possibility of layers of caches between
the CPU and the NVM is not further discussed in this thesis, since this is not often

40 Chapter 3. System Model

present in the considered target class of embedded systems. However, whenever a
store request reaches the NVM, there are two possible ways to realize the execution:
1) blind application of a write pulse to the memory and 2) iterative sense and update
procedures. The first version requires less overhead and can be realized in a simple
manner. Independent of the previously stored memory content, memory cells are
overwritten. For the wear-out model, CPU store requests can be considered as NVM
writes.

For iterative sense and update procedures [QFJ+; ZZY+09], in contrast, the stored
memory cell value is iteratively sensed, and smaller update pulses are applied to the
NVM cell. This implies, that whenever the CPU requests a store operation with the
same content as already stored, no write operation to the memory cell occurs and no
wear-out is caused. In this thesis, SINGLE LEVEL CELL (SLC) memories are considered,
i.e., every bit in the memory space is stored in a separate memory cell. Under this
assumption, NVM write accesses can be extracted from the CPU store requests by
knowing the previously stored content: A cell requires a write operation, whenever the
stored bit in the cell has to be flipped. It is furthermore assumed that memory cells
face the same wear-out from set and reset operations, i.e., bit flips from 1 to 0 and 0 to
1. In consequence, the memory wear-out then is determined by the total sum of flips
per memory bit. The metrics in Section 3.1.2 can be applied to CPU write requests for
non-iterative memories, as well as to the sum of bit flips for iterative memories. In this
thesis, these metrics are denoted as LIiterative,EIiterative and so on.

3.1.4 Hybrid Memories

When it comes to the realization of systems with NVM, one possibility in addition to
realizing the entire main memory with NVM is to equip the system with multiple types of
memory. For instance, NVM and volatile memory can be realized side by side. It could,
however, also be considered to equip a system with different NVM types, e.g. different
technologies or different realizations with different latencies. Such hybrid memory
systems can offer different properties that can potentially be exploited by the software
towards the ideal combination of memories.

From a technical perspective, the simplest realization of hybrid memories is to map
the different memory types to different addresses in the physical address space. Exam-
ples for such systems are the FeRAM based microcontrollers from Texas Instruments,
which are equipped with FeRAM and SRAM, and the Optane DC Persistent Memory
technology from Intel [IYZ+19], which can be applied together with DRAM in a system.
If software should not gain control over the hybrid memory architecture, concepts like
using one type of memory as a cache for another type of memory can be realized as
well. When systems with NVM and volatile memory are available, and can be exclusively
accessed by the software, one strategy that can be employed is checkpointing. With
this strategy, a working copy in the volatile memory would be modified and regularly
written to the NVM to ensure persistence.

3.1. Non-Volatile Memory Model 41

3.1.5 Simulation Setup

In order to analyze the aforementioned information about memory wear-out, the knowl-
edge about the amount of accesses to single memory locations (i.e. memory cells)
is crucial. As this information is not available in a normal computer during usual ex-
ecution, several techniques exist to derive such information. Such techniques range
from code instrumentation, over special tracing hardware up to full system simulations
(Section 2.2.1). In this thesis, full system simulation is used as the main source for
collecting memory access information. For all presented methods in this thesis, a
modified framework is used for the full system simulations, which is detailed as follows:

As a basis for the simulation framework, the full system simulator gem5 [BBB+11] is
used in combination with the NVM simulator NVMain2.0 [PZX15]. Gem5 is configured
to simulate an ARMv8 64-bit CPU with according peripheral units. The simulated CPU
implementation of gem5 is chosen as the DerivO3 CPU with pipelining and out-of-order
execution. The machine is chosen as the VExpress_GEM5_V2 machine. NVMain2.0
is integrated into the implementation of gem5, such that memory requests to the main
memory are forwarded to NVMain2.0 as a memory device. NVMain2.0 then simulates
NVM-specific properties and produces memory access traces of the performed memory
requests. These traces can be used to extract the sum of write requests, as well
as to extract the sum of flips per bit. Hence, the trace can be used in a lightweight
post-processing manner in order to determine the memory wear-out for non-iterative
memories and for iterative memories.

Gem5 is configured to run in the full system simulation mode, i.e. it simulates
a bare metal system without any operating system or library support. Hence, the
simulation setup delivers this component as well. Basically, there are two exchangeable
components, which can be used as part of the operating system layer, which is booted
bare metal in gem5:

1. A bare metal custom runtime system, which is an extreme lightweight software
layer, only including required boot code and simple device driver implementations.
This runtime system is used in [HCY+20].

2. The library based unikernel unikraft [KSV+19b], which is a configurable bare metal
operating system, shipping with many standard components, such as standard
libraries or file system implementations. The advantage of the unikernel is that
these components can be selected or deselected during compilation and hence,
a custom binary image can be created. Unikraft is ported to support gem5
and NVMain2.0 and provided as a modified version with the simulation setup in
[HCK+20].

Figure 3.1 gives an overview of the simulation setup, including the various components
and the interplay between the layers. In the place of the runtime system, either the bare
metal lightweight runtime system can be used or the modified instance of unikraft can
be used.

published work: [HCY+20]

42 Chapter 3. System Model

Linux Host System

Gem5 / NVMain2.0

Runtime System

Application system services

memory accesses

hardware initialization

memory trace

Figure 3.1: Overview of the Simulation Setup

Isolation

Using the simulation setup, described before, could execute an application and derive
a memory trace from the application together with the runtime system, which can be
directly used to compute wear-out measures. In many scenarios, however, it is of
particular interest to investigate the behavior of a single application, e.g. a specific
benchmark application only, without the interaction from the runtime system. In order
to accommodate for this, two isolation mechanisms are integrated into the simulation
setup, which separate the memory space of the application from the runtime system,
such that the memory behavior of the application can be analyzed in separation. The
first isolation mechanism is spatial isolation during linking. In greater detail, the build
process is modified in such a way, that the text, data and bss segment of the application
relevant code are placed to separate memory locations. Providing the boundaries of
these allocated segments, they can be clearly identified in the memory trace2. This
spatial isolation does not provide isolation for the stack segment, since the stack is used
by function calls., which can be deeply nested and interleaved, when the application
makes calls to components of the runtime system. To accommodate for this, interrupt
isolation is provided in the simulation setup by executing the runtime system on a higher
privileged execution level of the CPU than the application. The ARMv8 CPU supports
an automatic change of when jumping privilege levels. Calls to the runtime system
consequently have to be capsuled in hardware assisted system calls. In consequence,
functions from the runtime system use another stack region than functions from the
application. If the boundaries for both stack regions are known again at analysis time,
the memory trace can be filtered accordingly to achieve fully isolated analysis of the
application. Figure 3.2 illustrates a memory layout, which can be derived after applying
both isolation mechanisms. Since also the available memory space for the stack is
allocated by the linker, all segment boundaries are known at compile time. After the
simulations are executed, a memory access trace can be derived by NVMain2.0 and
filtered by the corresponding segment boundaries. This then allows for separate and

2It should be noted that the memory trace from NVMain2.0 denotes physical memory locations, while
the linked addresses are virtual addresses, which can be translated by the MMU. In order for the isolation
to work, the MMU needs to apply an identity mapping or the mapping needs to be known at analysis time.

3.1. Non-Volatile Memory Model 43

runtime system text
runtime system data

runtime system stack

application text
application data

application stack

Figure 3.2: Exemplary Memory Layout for Isolation

isolated analysis of a specific application or even of single memory segments of a single
application.

Based on the derived memory access information from this setup, post-processing
can be used to simulate various aspects of NVM. For instance, in order to study the
impact on the lifetime of iterative write scheme memories, bit flips between the old and
new content in the memory can be determined. For the analysis of hybrid memory
systems, the traces can be split at specific address boundaries and used in different
post-processing steps.

3.1.6 Latency Model for RACETRACK MEMORY (RTM)

As highlighted in Section 3.1.1, in addition to the lifetime properties, also the access
latency of NVMs can have a significantly different shape than classical DRAM. Especially
RTM features a specific access-dependent latency model, which is briefly introduced in
this subsection. RTM is a magnetic tunnel junction memory type, where single bits are
physically stored in the form of magnetic orientation in small regions [BKF+20]. Multiple
of these regions are organized in a track, which forms a magnetic nanowire. Each track
is equipped with an access port, which can read or write an aligned magnetic region. In
order to access an arbitrary region within the track, the magnetic charges need to be
shifted first, such that the region to be accessed is aligned with the port. This shifting is
achieved by applying a shift pulse at one end of the track. Since the track remains at
the position, the distance to shift always depends on the previous access to this track.
The induced latency for shifting is proportional to the shift distance.

In order to ease the organization of the memory device, multiple tracks are grouped
together, such that the same shift pulse is applied to the entire group. The regions at a
certain position in this group then form a memory word, which is shifted to and accessed
at once. Such a group of tracks is referred to as a DOMAIN BLOCK CLUSTER (DBC).
The DOMAIN BLOCK CLUSTERs (DBCs) are organized similarly as in classical memory
devices to enable random access. Figure 3.3 Illustrates the organization of a single
DBC with an illustrative word size of 4 bits. It can be seen that the access port and the
shift pulse are unified per DBC such that the single tracks always form a memory word
at the aligned regions. Consequently, the latency model should be considered for single
DBC. A consecutive number of memory words (depending on the length of the tracks) is
considered to be stored in a single DBC, Accesses within this consecutive region cause

44 Chapter 3. System Model

1

1

1

0

0

0

0

1

0

1

1 0

1

0

0

1

0

1

0

1

1

1 0

1

1

0

1

0

1

0

0

0

1 0

1

1

1

1

1

1

1

0

1

1

shift pulse

access port

Figure 3.3: RTM DBC Organization

a latency, which is proportional to the distance to the previous accessed word within this
DBC.

3.2 Random Forest Execution Model

The second part of this thesis focuses specifically on RANDOM FOREST (RF) execution
and the impact to the memory subsystem and to the CPU. Consequently, low level
realizations are considered, where the impact on the hardware is controllable. A basic
introduction to RFs and their hardware-aware implementation is given.

RFs are machine-learning models, i.e. estimator models, which can be used for
classification and regression problems. RFs are a collection of DECISION TREEs (DTs),
where every single tree derives a prediction value for a given input feature vector X.
Depending on the exact realization of the RF, the results from the single DTs are
combined to form global prediction. In the case of classification problems, a majority
vote of the predicted classes from the single trees is a basic choice, in the case of
regression problems the arithmetic mean can be a basic choice [Bre01]. The exact way
of construction of the RF and the inner DTs is a matter of training. The basic training
algorithm goes back to the CART algorithm (Classification and Regression Trees) from
Breimann et al. [BFO+]. In this algorithm, the training data set is recursively split into
two halves, by defining a threshold value on one element of the feature vector. This
split then forms a DT node, which checks that specific feature index against the defined

3.2. Random Forest Execution Model 45

threshold. Recursive continuation of this process on the resulting halves of the data
set until a stop criterion forms the final tree. The prediction value is delivered by leaf
nodes, which are determined as, for instance, the majority vote or arithmetic mean,
of the remaining data set elements for the leaf node. Within a RF, all trees may be
trained with the same training data set or with a certain strategy to only train on subsets.
However, details of training are not relevant to neither this section, nor this thesis and
no deeper explanation is provided.

After a DT is trained, it results in a logical model, which describes the inference rule
from the given input feature vector to a prediction. This model can be described in a
simple model, where X is the input feature vector and Y is the corresponding prediction
value. A DT then consists of a set of m nodes {n0, n1, ..., nm−1}, where n0 is the root
node of a tree. Each node n is associated with a feature index FI(n), a split value
S(n), a left child index LC(n) and a right child index RC(n). Leaf nodes are further
associated with a prediction value P (n). The inference then follows a sequence of
nodes ni0 , ni1 , ..., nip , where i0 = 0 is the root node and ip is the only leaf node in the
sequence. The inference follows the following rule:

ix+1 = { LC(nix) X[FI(nxi)] ≤ S(nix)
RC(nix) else

(3.4)

Basically, every node checks a certain item of the feature vector against a threshold
and either follows the path to the left or right subtree. When a leaf node is reached,
Y = P (nip) is the prediction value of the DT. This logical tree structure can be derived
by training frameworks, such as scikit-learn [KK16]. Such tools deliver the tree structure
either in an internal representation or allow an export to, for instance, a JSON object.
Although means exist to execute a tree in such a format, efficient execution requires an
implementation of the derived logical model as a follow-up step.

3.2.1 Probabilistic Execution Model

In order to optimize implementations of DTs for efficient execution on a target hardware,
a deeper investigation of the execution structure is beneficial. If, for instance, the
utilization of limited sized caches is to be optimized, it is beneficial to know which parts
of the tree are accessed more often. This information can be derived by considering a
probabilistic model on the tree execution. This probabilistic model is constructed entirely
on the training data set at training time, such that it is available at the implementation
time to serve as a basis for hardware aware optimization.

During training of a DT, the data set is recursively split in two halves by defining
a threshold (split value) on a feature index and assign the data set elements to one
set with a feature value at the corresponding index less or equal to the split value, and
another set with a feature value larger than the split value. The choice of the split
criterion does not intend to derive two equal-sized subsets, but rather minimize an
impurity metric, such that prediction classes of the remaining subsets become purer
and deliver a more precise prediction. As a consequence, the remaining subsets for the

46 Chapter 3. System Model

left and right subtree can have different sizes. Assuming that the training data set is a
representative sample of the data distribution, the sizes of these two subsets reflect the
probability of data elements to belong to the right or left subtree. Normalizing these sizes,
consequently leads to a relative node access probability prob(nx), which describes
the relative probability of a node nx to be visited from its parent node. The relative
probability of the root node prob(n0) = 1 is always 100%. The relative probabilities of all
leaf nodes summed up must also result in a sum of 100%.

3.2.2 Implementation

For a subsequent implementation of DTs after training, many versions can be con-
sidered. As this thesis discusses hardware optimization in the following, the focus is
drawn to implementations which allow to gain control over certain hardware aspects.
Consequently, this thesis focuses on realizations of RFs and DTs in C/C++, which allows
explicit control over certain hardware aspects. While the combination of single DTs into
a RF can be done pretty straightforward (implementing a majority vote or an arithmetic
mean results in a simple loop in C/C++), the implementation of a single DT can be
done in two basic versions: native trees and if-else trees [ALD13]. These versions are
referred in the literature sometimes with different terms, e.g. struct and codegen.

Native Trees

For native trees, the basic concept is to encode tree nodes as memory objects and link
the tree nodes by pointers or indices to their child nodes. A tree node can become a C
struct in this version, where all instances of nodes are stored in a large array. The left
and right child nodes then can be referred to by an index within the array. The inference
of the tree can be done in a simple loop, updating a running index through the tree.

1 struct Tree_Node {
2 bool isLeaf;
3 unsigned int prediction;
4 unsigned char feature;
5 int split;
6 unsigned char leftChild;
7 unsigned char rightChild;
8 };

Listing 3.1: Native Tree Node Struct Example

An example for the definition of a node struct is given in Listing 3.1. It should be noted
that the data types have to be chosen carefully. For instance, the definition of the left
and right child pointers as unsigned chars is only possible when the entire tree has not
more than 256 nodes.

3.2. Random Forest Execution Model 47

1 while(!tree[i]. isLeaf) {
2 if (pX[tree[i]. feature] <= tree[i]. split){
3 i = tree[i]. leftChild;
4 } else {
5 i = tree[i]. rightChild;
6 }
7 }
8 return tree[i]. prediction;

Listing 3.2: Native Tree Node Loop Example

The loop for executing the tree consequently can be realized similarly to the example
illustrated in Listing 3.2. For the realization of native trees, it should be noted that the
tree is mainly encoded in data memory. The instruction memory is constant and not
related to the tree shape. In addition, the realization of the tree structure by left and
right child indices allows an arbitrary reordering of nodes within the array. Basically, any
mapping of nodes to memory locations is realizable, as long as the child indices are set
correctly.

If-Else Trees

The realization of if-else trees is the counterpart to the realization of native trees. In
contrast to native trees, if-else trees encode the entire tree in instruction memory and
ideally make no use of data memory at all. This is achieved by unrolling the shape of
the tree into nested if-else statements. Every node checks a feature index against a
threshold, which can be realized in a single if statement. Depending on the outcome,
either the left or the right subtree is further executed. Hence, the corresponding code of
the left and right subtrees can be placed in the if and in the else blocks, respectively.
Whenever a leaf node is reached, a simple return statement with the corresponding
prediction value stops the tree inference and delivers the prediction value.

1 if(pX[49] <= 0){
2 if(pX[27] <= 0){
3 if(pX[62] <= 2365){
4 if(pX[39] <= 0){
5 if(pX[38] <= 0){
6 return 0;
7 } else {
8 return 0;
9 }

10 ...

Listing 3.3: If-Else Tree Example

Listing 3.3 provides an excerpt from an example if-else tree.
Comparing this implementation to native trees, it can be noted that the freedom of

placement of nodes is strongly limited. While native trees allow an arbitrary placement of

48 Chapter 3. System Model

nodes in memory due to the usage of pointers, child nodes in if-else trees must always
be placed in the if block or else block of their corresponding parent node. Although
an arbitrary placement within the instruction memory could be achieved by introducing
additional branch instructions (e.g. goto instructions in C/C++), this also introduces an
additional overhead. Without introducing additional overheads, the only freedom of
placement can be achieved by swapping the if and the else block of a node. Consider
the statement if(c) A else B, where c is the condition to test, A is the left subtree
implementation and B the right subtree implementation, an equivalent realization is
achieved by if(!c) B else A. Although this does not allow arbitrary placement of
nodes in the instruction memory, it offers a certain degree of freedom of placement
during implementation.

3.2.3 Arithmetic Considerations

Since this thesis discusses optimization for the arithmetic computations in RFs, the basic
operations for native and if-else trees are summarized shortly. The arithmetic operations
to compute the final outcome of the ensemble after deriving the results of the single trees
is neglected in this thesis, since this is a comparably short part of the execution of the
ensemble and furthermore depends on the values used in the data set. Both realizations,
i.e. native trees and if-else trees, require basic address arithmetic in order to perform
branches, load array elements or maintain the running index. This is usually designed as
standard integer arithmetic, more specifically as additions, multiplications and bit shifts
of integer numbers. It should be noted that these operations are entirely independent of
the data types used for the feature vector or the output, since they are only required for
the tree structure. Specific for the used data in the tree is only the comparison operation,
which compares the feature element against the split value. Consequently, only the
comparison operation needs to be realized specific for the data types of the data set
during inference. Comparison is a rather simple operation and consequently does not
impose strong constraints on the underlying computation platform.

3.2.4 Performance Consideration

Comparing the performance of if-else trees and native trees is a non-obvious task.
It has to be noted, that due to the different usage of instruction and data memory,
both implementations can perform significantly different on certain target systems. For
classic desktop computers, if-else trees are reported to perform significantly faster
than native trees [CSH+22]. There are two factors, which can have a major impact
on the execution time and may serve as an explanation towards this observation: 1)
if-else trees require less assembly instructions per node and 2) if-else trees benefit from
specific optimizations for code execution. An if statement, like in Listing 3.3, translates
basically into four assembly instructions. First, the feature value at the specific index is
loaded from memory. Second, the split value is loaded to a register. Third, a comparison
instruction compares both loaded values. Fourth, a branch instruction finalizes the if

3.2. Random Forest Execution Model 49

statement. It should be noted that certain ISAs may allow combining certain steps in
one special instruction. Comparing this to the if statement in Listing 3.2, at least the
same amount of instructions is needed for the if statement. In addition, the maintenance
of the running index i is required. On top of that, overheads for the loop execution are
introduced. In consequence, visiting a single node in a native tree requires significantly
more assembly instructions than visiting a single node in an if-else tree. As an additional
factor, if-else trees may benefit better from code performance optimization techniques,
such as branch prediction, speculative execution, out-of-order execution and speculative
prefetching than native trees.

Even though if-else trees are reported to perform faster on desktop class systems
and there exist certain factors to this performance gap, if-else trees should not be
considered as a superior implementation in general. The larger freedom of node
placement in native trees allows accounting for special hardware characteristics. In
addition, both implementations utilize instruction memory and data memory to a different
degree. Depending on concurrently running software in the system, a better balance
between the usage of instruction and data memory may be achieved by using either on
or the other implementation.

3.2.5 Tooling

As described before, generating, implementing and execution hardware-aware realiza-
tions of random forests requires a couple of steps. The summary of this process is
illustrated in Figure 3.4. The utilized tools for the generation process of random forests
are summarized in a tool frame, called arch-forest [CSH+22]. The UCI machine-learning
repository serves as a source of comparable benchmark data sets [AN07]. To achieve
representative evaluation, the hyperparameters, such as the maximal depth for trees
and the number of trees are usually varied in order to cover a wide range of interesting
sizes. The maximal depth is almost only varied between 1 and 50, because most data
sets anyway do not result in a depth of more than 50. The number of trees is also varied
in a range between 1 and 50. For certain experiments, only single trees are studied,
since there may be no impact on forest implementations.

The code generation, after deriving the logical tree model, is the module which
allows the implementation of strategies to be analyzed. In this module, the entire
forest model and the training data set is known and can serve for optimization. The
code generator can transform the model to an arbitrary implementation. This includes
standard implementations like native or if-else trees in C or C++, but also direct assembly
implementations. After the code generation, compilation and execution achieves real
execution of the random forest model. Utilizing tools like perf allows gathering runtime
statistics of the execution, which forms a basis for evaluation results.

50 Chapter 3. System Model

Data Set UCI Repository

Scikit-Learn
Hyperparameters: maximal depth,
number trees, ...

Logical Forest Model:
JSON, ...

Code Generator
Hardware-Aware Implementation:
C/C++, Assembly

CompilerExecution / Perf

arch-forest

Figure 3.4: Tooling Overview for Random Forest Generation

3.3 CPU Model

Modern CPUs feature many properties due to their integration of complex technologies.
Technical details about these technologies are for large parts not published by the
manufacturers. Prefetching and eviction strategies of the caches, for instance, are
rarely available in detail for off the shelf CPUs. Hence, this thesis makes some basic
assumptions about the execution and the path of memory accesses inside of CPUs,
which is valid for many existing CPUs.

3.3.1 Memory Hierarchy

In this thesis, CPUs are assumed to be equipped with memory hierarchies, i.e. with
different levels of caches. It is assumed, that memory accesses target the cache levels
in ascending order, until the requested value is found in a cache. For instance, a memory
request targets the Level-1 cache first and continues with the Level 2 cache, if the value
is not stored in the Level-1 cache. It is assumed that cache levels increase in capacity
and decrease in speed. When a requested memory content is not found at the target
cache level, it assumed to be loaded into the corresponding cache and persist there,
until eviction. For the eviction strategy, it is assumed that a temporal component is

3.3. CPU Model 51

considered, i.e. that values which have not been accessed for a longer time are more
likely to be evicted than values which have been accessed a short time ago. In total,
this forms a cache behavior, that benefits temporal local memory accesses.

For the prefetching strategy of the CPU caches, it is assumed that a certain form
of spatial locality is favored. This means, that memory accesses to locations close by
the previous accesses are more likely to be hit by prefetching than memory accesses
more far away. Furthermore, caches are assumed to be split into instruction and data
caches at least on the highest cache level. Accesses to the instruction memory target a
different set of cache memory than accesses to data memory.

3.3.2 Floating-Point Arithmetic

Although the hardware internal handling of floating-point numbers may be different for
different CPUs, the programming model has certain properties in common, which are
assumed in this thesis. It is assumed that CPUs provide a dedicated set of registers,
which is used for floating-point computation. These registers may be also used for
vector instructions or other specialized arithmetic, however, the important property is
that general purpose registers are not commonly used for floating-point computations.
In order to use the floating-point registers efficiently, it is assumed that a set of floating-
point instructions exist, which perform operations directly on these registers. It is
also assumed that there are instructions to transfer from general purpose registers to
floating-point registers and vice versa.

CHAPTER 4

Application-Transparent NVM
Wear-Leveling

Contents
4.1 Modern Technologies and Traditional Interfaces 54

4.2 Overview . 55

4.2.1 Wear-Leveling Decisions . 55

4.2.2 Wear-Leveling Actions . 56

4.2.3 Wear-Leveling Flow . 57

4.3 Software-Managed Read and Write Wear-Leveling 57

4.3.1 Scope . 58

4.3.2 Problem Analysis and Statement 58

4.3.3 Coarse-Grained Wear-Leveling 59

4.3.4 Fine-Grained Wear-Leveling . 63

4.3.5 Evaluation . 66

4.3.6 Wrap-Up . 70

4.4 Semantic Memory Tracing . 70

4.4.1 Scope . 71

4.4.2 Problem Analysis and Statement 71

4.4.3 Modular Analysis . 72

4.4.4 Case Study . 74

4.4.5 Wrap-Up . 78

4.5 Concluding Interface Exploitation . 78

53

54 Chapter 4. Application-Transparent NVM Wear-Leveling

4.1 Modern Technologies and Traditional Interfaces

Studying memory technologies leads to a very limited picture of the traditional memory
interface. The only well established interface to communicate with main memory is
the existence of load and store instructions. Naturally following from this, software can
arbitrarily control the placement of memory contents across the address space. The
traditional memory interface is illustrated in the following.

Load / Store / Memory Placement

There exist many attempts to extend this traditional interface, for instance by adding
software prefetching instructions to gain control over cache hierarchies, interfaces to
report NUMA architectures, or even multiple versions of load and store instructions,
which should result in different hardware operations [Kle05]. However, such proposals
are either experimental or only available in a few systems and cannot be considered as
a well established traditional interface.

With the limitation to only load and store instructions and arbitrary placements in the
traditional memory interface, non-functional properties of the memory, such as latencies,
lifetimes or other technological impacts cannot be transferred or accounted for. Hence, it
is a major goal to find methods and means to exploit the existing interface to account for
such technologies. Emerging memory technologies, especially in the field of NVM, bring
in a couple of non-functional properties. One of the most interesting properties is the
limited memory lifetime. While DRAM or SRAM can be considered to have a practically
infinite memory lifetime [BRC+17], some other technologies have a highly limited lifetime,
which can make the memory unusable within very short time periods, if no counter
means are employed. It should be expected, that such technologies, however, will be
integrated into systems with a traditional memory interface of only allowing store and
load accesses.

Consequently, the question to be studied in the following chapter is how a memory
lifetime management can be realized with the limited means of the traditional memory
interface. In other words, the question is studied, which software components have to
be added as an exploitation of the traditional memory interface to account for limited
lifetime memory. This chapter studies a centralized approach, where a central software
instance is employed in the operating system, which internally manages the states of

4.2. Overview 55

the NVM. This broadens the interface towards lifetime management:

Load / Store / Memory Placement

NVM Lifetime Management

The central software instance is realized by maintaining an internal lifetime surrogate
model. Appropriate actions are submitted to the memory by changing memory locations
of accesses through the traditional memory interface. The interface exploitation by a
central instance makes the approach application transparent.

4.2 Overview

The task of wear-leveling for NVM is crucial to the ultimate lifetime of a system, since a
system can become unusable once the first memory location is worn out. The process
of wear-leveling can be further divided into the process of making a wear-leveling
decision, including considerations about current aging and memory accesses, and
performing a wear-leveling action. This chapter investigates approaches to perform both
of these actions software-based, but transparent to the application, i.e. not requiring any
corporation from the application. Hence, generally the binary image of an application is
sufficient to work on top of these approaches. No source code from the application is
required for wear-leveling. This section gives a summarized overview about possible
approaches to software based application transparent wear-leveling decision-making
and wear-leveling actions.

4.2.1 Wear-Leveling Decisions

For the process of making wear-leveling decisions, two general concepts could be
considered in an application transparent manner: 1) aging-aware and 2) non aging-
aware. While the former would try to estimate the current age of certain memory
regions and make decisions for necessary wear-leveling actions accordingly, the latter
would perform more general wear-leveling decisions, which independent of the current

56 Chapter 4. Application-Transparent NVM Wear-Leveling

aging of memory would lead to a more wear-leveled result. While for the latter version
schemes like rotational replacement of memory locations or random memory location
replacement can be promising, the estimation of memory aging on a software basis
is a complex task. Realization as a software based solution, while being application
transparent, requires the memory age estimation to take place within the operating
system / runtime environment. In this chapter, a method for memory age estimation
with the use of commonly available hardware components is presented. In addition, a
method is presented, which interacts with the operating systems libraries, in order to
achieve a more precise memory age estimation, separated by subcomponents of the
application and the operating system.

Another alternative to memory age estimation in the running software is offline
profiling of the target application. Tools like Valgrind [NS07] can be used to derive an
instrumented binary, generating an approximate trace of memory accesses. Although
such methods are fast and require low effort, the memory trace is only approximate and
may only cover a subset of the possible memory access patterns. Nevertheless, memory
age estimation in the running software also can only derive an approximate memory
trace, the current memory access pattern of the application is always approximated.
This ensures that the approximation is not drifting apart from the real memory trace over
time.

Regardless of aging-aware or non aging-aware wear-leveling, decisions for wear-
leveling have to be made at a certain point. A wear-leveling decision includes a logic
memory region, which has to be physically relocated to another location. In the case
of aging-ware wear-leveling, the target of a decision could be, for instance, chosen
because the current physical location a some memory region is already more heavily
worn out than other locations. For non aging-aware wear-leveling, locations could be,
for instance, targeted randomly or in a repetitive circular manner.

4.2.2 Wear-Leveling Actions

Once a wear-leveling decision is made, i.e. a logic memory region is triggered to be
relocated to another physical position, a proper action has to be performed. Making
wear-leveling actions includes two crucially important aspects: 1) the choice of the target
memory location and 2) the technical realization of the relocation in an application trans-
parent manner. The choice of the target memory location can be ideally combined with
the principle of the wear-leveling decision. Aging-aware wear-leveling, for instance, can
choose the least worn out memory location as a target, random based non aging-aware
wear-leveling could choose a random location as a target or rotational wear-leveling
could choose also the target in a rotational manner. When it comes to the technical
realization of the relocation of a logic memory region to another physical location, soft-
ware based solutions quickly reach a limit when trying to main application transparency.
Thus, this chapter presents a method, where commonly available hardware support
is used for the relocation. This is realized by the virtual to physical memory mapping
of the MMU, which is based on the granularity of memory pages, usually set to 4kb.

4.3. Software-Managed Read and Write Wear-Leveling 57

A
pp

lic
at

io
n

Monitoring Runtime Status

Wear-Leveling Decision

trigger

Wear-Leveling ActionR
em

ap
pi

ng

Figure 4.1: Schematic Overview of Application Transparent Wear-Leveling

Since this rather coarse granularity limits the effectiveness of wear-leveling for particular
memory regions, an additional entirely software based scheme is developed, which only
operates on the stack memory. Since the stack memory, by convention, is always used
relative to the location of the stack pointer, the physical location of contents on the stack
can be modified in an application transparent manner by setting the stack pointer to a
different location.

4.2.3 Wear-Leveling Flow

In order to round up the overview of required basic steps for application transparent
wear-leveling, this subsection summarizes the general flow of wear-leveling, including
the process of making wear-leveling decisions and executing wear-leveling actions.
Figure 4.1 gives an overview about the general flow of application transparent wear-
leveling. The initiating component for every wear-leveling process is a combination of a
monitoring module and a capture of some runtime status. In the case of aging-aware
wear-leveleing, the monitoring has to track the age, i.e. the number of accesses, for
certain memory regions and maintain an age distribution in the runtime status. In
the case of non aging-aware wear-leveling, the monitoring could be, for instance, a
monitoring module for system time in order to maintain frequent wear-leveling. The
runtime status in that case could be offsets for rotational wear-leveling, random seeds,
passed system time or other. Upon a certain condition, e.g. if a certain memory region
becomes too old or if a timer expires, the monitoring triggers a wear-leveling decision to
be made. This decision can include the current runtime status. The decision results in
a wear-leveling action, which again can include the runtime status The wear-leveling
action then is executed with the help of a remapping technique, which directly influences
the execution of the application in a transparent manner.

4.3 Software-Managed Read and Write Wear-Leveling

This section presents methods for entirely software based read and write wear-leveling in
detail. Hence, the methods can be used to increase the lifetime of write destructive, read

58 Chapter 4. Application-Transparent NVM Wear-Leveling

destructive or write and read destructive NVM, according to which parts of the method
are applied. Furthermore, the methods include all required modules for wear-leveling,
as described before: monitoring, keeping of a runtime status, wear-leveling decisions,
wear-leveling actions and remapping techniques. Parts of the method are aging-aware,
parts are non aging-aware. All methods are implemented as a library component in the
library based unikernel unikraft [KSV+19a]. This allows execution and evaluation with
the aforementioned simulation setup (Section 3.1.5).

4.3.1 Scope

The work presented in this section covers an entire implementation of software based
wear-leveling for a commonly available system. This includes methods and implementa-
tions for the following points:

• Online read and write approximation with performance counters and the MMU in
order to derive a statistically approximated trace of real read and write accesses
of the application during runtime.

• Coarse-grained aging-aware wear-leveling, utilizing the approximate read and
write trace to execute replacement operations with the virtual to physical memory
mapping of the MMU.

• Fine-grained non aging-aware wear-leveling, operating on the stack memory for
read and write accesses and on the text memory for read accesses by relying on
conventions for stack and text in order to perform remapping of memory locations
in an application transparent manner.

4.3.2 Problem Analysis and Statement

In order to analyse the requirement for wear-leveling in general, specifically within the
different memory segments of a program (i.e. stack, text, data and bss), a set of bench-
mark applications is chosen first and analyzed for the memory access patterns without
any modification of the application. The exact memory traces of these applications
are derived by a previously developed simulation framework [HCY+20], including the
full system simulator gem5 [BBB+11] and the NVM simulator NVMain 2.0 [PZX15]. It
should be noted that these exact traces are only used to analyze the memory accesses
of the application and the impact on the memory lifetime, but cannot be used as an
input for any wear-leveling method, since a specific simulation environment is required
to gather them. As a subset of illustrative applications, this work considers six small
benchmark programs, which are taken from the MiBench suite [GRE+01] and from the
nvm simulation setup [HCY+20]:

• dijkstra from MiBench applies the dijkstra algorithm to a graph, given as input.
This benchmark uses an internal queue in the data segment to manage the steps
of the algorithm.

published work: [HCS+21]

4.3. Software-Managed Read and Write Wear-Leveling 59

• lesolve from the nvm simulation setup applies the Gaussian elimination algorithm
on a set of linear equations. The input data is directly modified in place to derive
the solution.

• sha from MiBench features the SHA-1 has calculation of input data.
• qsort from the nvm simulation setup implements quicksort in a recursive manner.

This causes intensive use of the stack segment.
• qijndael from MiBench computes encryption of input data based on the rijndael

algorithm.
• crc32 from MiBench computes crc checksums of input data.

Due to the high time consumption of full system simulations, the benchmark applications
are chosen to be simple test applications, such that simulations are feasible within
several hours. However, the benchmarks are chosen to represent applications with
different memory usage patterns to analyze the behavior and the effect on memory
lifetime of such different patterns.

As mentioned before, the impact of applications on the lifetime of write destructive
and read destructive memories is studied. Since FeRAM, as a target read destructive
memory, causes the wear out by succeeding read operations with a mandatory write
operation, write and read accesses are considered as destructive for read destructive
memories. Hence, the impact on the memory lifetime is analyzed for 1) write accesses
only, considering the case of write destructive memories and 2) write and read accesses
together, considering the case of read destructive memories. The results of the simulated
memory trace of the 6 benchmark applications for write accesses and read and write
accesses are accordingly illustrated in Figure 4.2 and Figure 4.3.

The results, presented in these figures allow two problem statements: 1) Different re-
gions of the memory face largely different access frequencies and thus wear-out. Some
regions, for instance, are not accessed at all, other regions are accessed intensively. 2)
Some portions of the memory face a comparably high peak in the access frequency. For
the case of write accesses only, these peaks are often found in the stack segment, for
read and write accesses additionally in the text segment. In order to apply wear-leveling,
both problems should be tackled.

In order to handle both problems in an application transparent manner, two methods
are developed: 1) a generic coarse-grained wear-leveling, handling the regions with
different access frequencies on a coarse granularity and achieve global wear-leveling.
2) specific fine-grained wear-leveling, targeting the text and stack segment to reduce
the comparably high peaks. Since this specialized solutions only operate locally on the
text and stack, both methods need to be applied in combination.

4.3.3 Coarse-Grained Wear-Leveling

The problem statement (Section 4.3.2) points out the need for generic global coarse-
grained wear-leveling and specialized local fine-grained wear-leveling. This section
provides a detailed explanation of a realization of application transparent software based

60 Chapter 4. Application-Transparent NVM Wear-Leveling
1E

0
1E

2
1E

4
1E

6
1E

8

232 kB

dijkstra

main memory

#a
cc

es
se

s
(w

)

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

lesolve

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

364 kB

sha

main memory

text data stack text data stack text data stack

1E
0

1E
2

1E
4

1E
6

1E
8

180 kB

qsort

main memory

#a
cc

es
se

s
(w

)

1E
0

1E
2

1E
4

1E
6

1E
8

428 kB

rijndael

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

crc32

main memory

text data stack text data stack text data stack

Figure 4.2: Benchmark baseline memory traces (write accesses)

aging-aware coarse-grained wear-leveling. Within this method, the current memory age
is estimated with the help of configurable memory access permissions and performance
counters for memory accesses. The wear-leveling actions are realized by a custom
pagetable in the MMU, allowing to exchange the physical memory location of virtual
memory addresses, which are used by the application.

Memory Age Estimation

Estimating the current aging of memory regions would intuitively require some hardware
support to track memory ages or at least count the frequency of accesses. Within the
hereby proposed method, however, no dedicated hardware support is required and
memory age estimation is still realized in an application transparent manner. This is real-
ized by two components: Performance counters for memory accesses and configurable
memory access permissions.

First, a sampling of memory accesses is realized by configuring a performance
counter to count write accesses and another performance counter to count read ac-
cesses. Both performance counters are configured to cause an interrupt (trap) on an
overflow. By setting the performance counter value manually to the maximal value
(232 − 1 for 32 bit performance counters) minus a configurable number after each over-

4.3. Software-Managed Read and Write Wear-Leveling 61

1E
0

1E
2

1E
4

1E
6

1E
8

232 kB

dijkstra

main memory

#a
cc

es
se

s
(r

+w
)

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

lesolve

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

364 kB

sha

main memory

text data stack text data stack text data stack

1E
0

1E
2

1E
4

1E
6

1E
8

180 kB

qsort

main memory

#a
cc

es
se

s
(r

+w
)

1E
0

1E
2

1E
4

1E
6

1E
8

428 kB

rijndael

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

crc32

main memory

text data stack text data stack text data stack

Figure 4.3: Benchmark baseline memory traces (write and read accesses)

flow, interrupts are caused whenever exactly the configured amount of write respectively
read accesses happened. This provides the chance to realize statistical sampling after
a configurable amount of read and write accesses each. The rate of the sampling
further can be configured for write and read accesses separately, since two distinct
performance counters are used. In the following, the sampling rate for write accesses is
denoted as Cwrite

sample and Cread
sample for read accesses, respectively.

Second, whenever an interrupt of the performance counter overflow happens, the
target address of the subsequent write or read access (depending on which counter
overflowed) is captured, providing one sample of the real memory access distribution.
Sine the performance does not necessarily cause synchronous interrupts, it cannot be
assumed that the PROGRAM COUNTER (PC) points to the instruction, which caused
the overflow. Hence, an additional trapping mechanism is implemented. Whenever
the performance counter overflow interrupt is caused, the memory permissions of the
traced memory are set to read only or not accessible, depending on weather the write
or read counter overflowed. Consequently, the subsequent write, respectively read
instruction causes a memory access violation trap, which provides the causing address
to the trap handler. The trap handler resets the memory permissions to the original state
and continues execution. In consequence, the target address of the sampled access is

62 Chapter 4. Application-Transparent NVM Wear-Leveling

recorded and a full sample of the write or read distribution is recorded. This process
builds an approximate memory trace over time.

As mentioned above, the mechanism to capture the target of the subsequent read
access has to set the memory permissions to restrict all accesses. In consequence,
also write accesses cause a violation and call the corresponding trap handler. In this
case, memory permissions have to be restored to the original state as well, since the
write operation has to complete. In order to still capture the next read access, the
instruction after the write access is replaced with a breakpoint instruction, where the
corresponding breakpoint handler sets the memory access permissions again to not
accessible. This process is repeated until a read access is reached. Afterwards normal
execution continues. It should be further noted that this mechanism cannot be used to
capture an approximate memory trace of the text segment, since every instruction fetch
causes a read access to this segment.

The described realization of estimating memory accesses results in an approximate
memory access trace for read and write accesses. The samples from this trace are
used to build a histogram on a configurable granularity, revealing the approximate
wear-out of the observed memory regions. This histogram builds a basis for aging-
aware wear-leveling decisions. The rate of the read access sampling Cread

sample may be
configured to another value as the rate for the write access sampling Cwrite

sample. In order to
accommodate for this, the histogram weights the access with the fraction of the sampling
rates in order to approximate the real memory wear-out.

Wear-Leveling Decisions

Based on the approximated memory ages, wear-leveling decisions are deferred. Within
this method, a straightforward scheme is realized, where hot logical memory regions
are identified and physically relocated to cold memory regions. Repeating this process
frequently realizes incremental wear-leveling, where all physical memory regions are
similarly worn out over time. This concept further does not require persisting any
aging state of the memory, since the wear-leveling is incremental at any time. The
identification of hot logical memory regions and cold physical memory regions is based
on the approximated memory ages. Whenever a configurable amount of nreloc samples
is added to one logical memory region, this region is considered as hot. The physical
region with the lowest value in the approximated access histogram is considered as the
most cold region.

Upon ever sampled added to the histogram, the condition of a hot logical memory
region is checked. If this condition is true, a wear-leveling action is triggered. The
wear-leveling decision includes the exchange of the physical locations of the identified
hot logical memory region and the coldest physical region. In order to quickly identify
the coldest memory region in the histogram, physical regions are stored together with
their estimated age in a sorted red black tree, which allows fast search for the smallest
element and easy insertion of an updated region.

4.3. Software-Managed Read and Write Wear-Leveling 63

Once the pair of physical memory regions (and hence also their mapped logical
memory regions) is decided to be exchanged, a two-step process is applied to perform
the exchange in an application transparent manner. With the help of the MMU, the
mapping of virtual memory pages for the two physical memory pages is exchanged.
In addition, the content is copied from one page to the other and vice versa. In
consequence, the application sees the same content at a virtual page, but the physical
location is exchanged. Using this process, the granularity of memory regions is set to
the size of memory pages, managed by the MMU, in the implemented case 4 kB. It
should be noted that the histogram of estimated memory ages is not updated every time
a sample of the access distribution is recorded. Instead, a temporary histogram of virtual
memory regions and their number of recorded samples is maintained, which is used to
easily decide for hot memory regions. Whenever a wear-leveling action is triggered, the
value of this virtual memory region is reset to 0 in the temporary histogram. The stored
value in the red-black tree (for the physical regions) is updated by 1 upon a wear-leveling
action. Hence, the red-black tree is only updated upon a wear-leveling action and only
stores a scaled histogram of the approximated age distribution for physical memory
regions.

4.3.4 Fine-Grained Wear-Leveling

Section 4.3.2 points out the need for global coarse-grained and local fine-grained
wear-leveling. While Section 4.3.3 provides an approach for application transparent
coarse-grained global wear-leveling, this section focuses on local fine-grained wear-
leveling for the stack and the text segment, as the most dense access hotspots are
experimentally found in these regions. Stack and text memory are suitable candidates
for application transparent wear-leveling, since their usage is not strictly determined
and rather follows certain conventions during runtime. Stack memory is managed with
the contents of the STACK POINTER, text memory is managed with the content of the
PROGRAM COUNTER. Accordingly, memory contents can be physically relocated in an
application transparent manner, when the STACK POINTER (SP) or PC are adjusted as
well.

Although the movement of the stack and text segment in general can be realized in
an application transparent manner, arbitrary relocation is not possible. The segments are
used by the application relative to the value of the PC and SP. This implies that the entire
text and stack segment has to be accessible in the virtual memory space at positions
relative to these pointers. In consequence, arbitrary relocation on fine granularities of
memory regions is not possible. The wear-leveling method presented here therefore
applies a circular non-aging aware relocation of the text and stack segment. In greater
detail, the entire stack and text segment is moved by a small offset to another position
regularly. The according adjustment of the PC and SP allows the application to still
access the correct memory contents. In order to limit the relocation of the stack and
heap in a bounded region, circular movement of these regions is realized. Memory
contents are regularly relocated towards higher memory addresses. When the end of

64 Chapter 4. Application-Transparent NVM Wear-Leveling

t0 t1 t2 t3

Figure 4.4: The physical memory pages (each on the left) and the main and shadow
virtual memory map (each on the right) during the movement steps. The
colored blocks contain the allocated and used memory; the red color indi-
cates that this block already performed the wraparound.

the bounded region is reached, the relocation starts from the beginning of that region
again. In order to realize this in an application transparent manner, a method, called
shadow memory in the following, is implemented.

To realize shadow memory, a region of physical memory is mapped consecutively two
times to the virtual address space with the help of the MMU. Accordingly, when accesses
overshoot the upper bound of the first virtual map, they automatically target the bottom
of the physical memory region again. Thus, the text and stack region can be relocated
towards higher memory addresses and any content that leaves the upper boundary is
automatically wrapped around to the beginning of the region again. Accesses from the
application, which add a certain offset to the PC or SP also automatically target the
wrapped around physical memory. Once the relocated memory region entirely leaves
the first virtual map, the PC or respectively the SP is reset to the beginning of the first
virtual map, which already contains the correct contents. This process is illustrated in
Figure 4.4. It can be seen that although physically the memory is wrapped around to the
beginning of the region again, the virtual shadow mapping always ensure consecutive
accessibility of the memory. It is worth noticing that this method relies on the virtual
to physical memory mapping of the MMU and the text and stack regions have to be
rounded up to the size of multiple memory pages.

The previous description may suppose that application transparent relocation of
stack and text memory can be straightforward achieved by setting the PC or SP to
the corresponding address. However, the process requires special care of further
circumstances, which stem from the targeted hardware. Hence, the following explanation
relates to the specific implementation on the ARMv8 test system.

In order to relocate the stack, the relocation of the SP and the memory contents
of the stack by the same offset is straight forward realized. For all kinds of accesses,
relative to the SP this is also sufficient. Memory addresses relative to the stack, however,
may be computed by the software and stored in memory, for instance to be passed to
a function as an argument. For these materialized pointers to the stack memory, the
adjustment of the SP has no effect and the movement of the stack memory causes errors

4.3. Software-Managed Read and Write Wear-Leveling 65

accordingly. To accommodate for this effect, several mechanisms could be considered.
An intuitive solution would be to scan the stack, data and bss segment for values, which
could be a pointer to the stack memory and adjust these values accordingly. This,
however, would cause errors when memory content by coincidence has a value, which
could be a pointer to the stack. Therefore, the implementation ships with a MMU based
pointer consistency mechanism, which eliminates the risk of accidental value changes
on the cost of requiring a MMU and massive availability of virtual memory space. The
basic concept is to not only adjust the SP by a small offset but by the entire size of
the stack region in addition (assuming the stack region is the size of multiple memory
pages) and adjust the virtual memory map in such a way that the newly targeted virtual
memory pages point to the same physical memory as the previously used memory
pages. Subsequently, the memory map for the previously used virtual memory pages
is invalidated such that any access to a beforehand materialized address results in
a memory trap. The trap handler consequently adjusts the register, which holds the
materialized address to the new virtual memory region and fixes the relocation offset
accordingly. It should be noted that this does not take an effect on materialized stack
addresses in the memory and cause a trap again every time such an address is loaded
to a register and used. It should be further noticed that to eliminate the risk of any
overlap in the virtual memory space, unused virtual memory pages have to be used
every time. This practically limits the lifetime of this method. However, assuming a 48
bit address space, 2.8 ⋅ 1011 memory pages are available. Configuring the fine-grained
wear-leveling to e.g. one relocation per second with a stack region of 8 virtual memory
pages, the virtual memory space would suffice for 136 years.

Relocating the text segment is realized in a very similar manner. For the implemented
case of ARMv8, the text is used for parts only relative to the current PC, for other
parts like function calls, addresses are also materialized to memory. The provided
implementation compiles the target code as a POSITION INDEPENDENT CODE (PIC) in
order to make sure that addressing is performed in a PC relative mode. This introduces
two data structures to the compiled code: The GLOBAL OFFSET TABLE (GOT) for data
objects and the PROCEDURE LINKAGE TABLE (PLT) for function addresses, which both
materialize absolute addresses. Both these data structures are adjusted accordingly
when the text segment is relocated. The data structures itself are addressed PC relative.
The PC relative addressing for that purpose in ARMv8 is in greater detail only PC
relative for a coarse granularity. The compiler introduces adrp instructions to compute
addresses relative to the current 4 KB page of the PC. Since the offset within pages
is not PC relative, the developed implementation keeps the GOT and PLT at static
addresses and excludes them from relocation. The only problem remaining is that when
an instruction is relocated across the boundary of a 4KB pages, the adrp mechanism
delivers a wrongly computed address. This is fixed by rewriting adrp instructions
during relocation and adjusting the immediate offset in the instruction. In addition, the
same address consistency mechanism as explained before is used in order to protect
against materialized instruction addresses for instance in the form of function pointers.

66 Chapter 4. Application-Transparent NVM Wear-Leveling

Whenever the PC is set to an invalidated virtual memory region a trap is caused and the
PC is adjusted to the correct address, including the adjusted offset.

4.3.5 Evaluation

Designing software based wear-leveling for NVM is described as the realization of
coarse-grained and fine-grained wear-leveling beforehand. In this section, both ap-
proaches are experimentally evaluated by executing the real implementation in the
simulation setup, recording memory traces, illustrating these and computing the mea-
surement means according to the wear-out model. As test applications, the initially used
benchmark applications are used again. Configuring the parameters for the described
wear-leveling methods is done by experimental tests and deciding for a trade-off between
caused overhead and gained memory lifetime. This results in setting the sampling rate
for the coarse-grained estimation of write accesses to Cwrite

sample = 2000, the sampling rate
for the estimation of read accesses to Cread

sample = 12000 and the trigger for wear-leveling
decisions nreloc = 64. For the fine-grained wear-leveling, the distance of a relocation in
every step is 64 bytes, since the memory subsystem is assumed to always write and
read a full 64 byte line and cause equal wear-out for all bytes within. The action for
fine-grained wear-leveling is triggered together with every action of the coarse-grained
wear-leveling, i.e. on the rate of nreloc = 64.

The illustrative results of the memory traces after applying the corresponding coarse-
grained wear-leveling for write accesses only (write destructive case) and write and
read accesses (read-destructive case) can be found in Figure 4.5 and Figure 4.6. The
corresponding illustrations for the application of coarse-grained and fine-grained wear-
leveling can be found in Figure 4.7 and Figure 4.8. In addition to the illustration of the
resulting memory access distribution, the measures according to the wear-out model
are computed and summarized for all investigated cases in Table 4.1. Investigating
the provided evaluation results, several observations can be made. Generally, the
observations can be distinguished between read-destructive and write destructive
memories and coarse-grained and coarse-grained plus fine-grained wear-leveling.

Coarse-Grained Wear-Leveling

From the graphical illustration of the memory traces, it can be observed that the aging-
aware design principle of the coarse-grained wear-leveling generally works out and
distributes memory page sized blocks in such a way that all physical blocks face similar
access distribution. This works out for the write-destructive and read-destructive case.
Although the initial situation of a few dense peaks in the memory access distribution
is relaxed a bit, dense peaks still can be found within every memory page (forming
a repeating pattern across the memory space). This observation supports the initial
design principle that global coarse-grained wear-leveling is required to distribute stress
to memory regions and local fine-grained wear-leveling is required to flatten peaks within
small memory regions. Also investigating the analytical LI results for the coarse-grained

4.3. Software-Managed Read and Write Wear-Leveling 67

1E
0

1E
2

1E
4

1E
6

1E
8

232 kB

dijkstra

main memory

#a
cc

es
se

s
(w

)

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

lesolve

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

364 kB

sha

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

180 kB

qsort

main memory

#a
cc

es
se

s
(w

)

1E
0

1E
2

1E
4

1E
6

1E
8

428 kB

rijndael

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

crc32

main memory

Figure 4.5: Coarse-Grained Wear-Leveling (write accesses)

1E
0

1E
2

1E
4

1E
6

1E
8

232 kB

dijkstra

main memory

#a
cc

es
se

s
(r

+w
)

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

lesolve

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

364 kB

sha

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

180 kB

qsort

main memory

#a
cc

es
se

s
(r

+w
)

1E
0

1E
2

1E
4

1E
6

1E
8

428 kB

rijndael

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

crc32

main memory

Figure 4.6: Coarse-Grained Wear-Leveling (write and read accesses)

68 Chapter 4. Application-Transparent NVM Wear-Leveling
1E

0
1E

2
1E

4
1E

6
1E

8

232 kB

dijkstra

main memory

#a
cc

es
se

s
(w

)

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

lesolve

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

364 kB

sha

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

180 kB

qsort

main memory

#a
cc

es
se

s
(w

)

1E
0

1E
2

1E
4

1E
6

1E
8

428 kB

rijndael

main memory
1E

0
1E

2
1E

4
1E

6
1E

8
76 kB

crc32

main memory

Figure 4.7: Fine-Grained Wear-Leveling (write accesses)

1E
0

1E
2

1E
4

1E
6

1E
8

232 kB

dijkstra

main memory

#a
cc

es
se

s
(r

+w
)

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

lesolve

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

364 kB

sha

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

180 kB

qsort

main memory

#a
cc

es
se

s
(r

+w
)

1E
0

1E
2

1E
4

1E
6

1E
8

428 kB

rijndael

main memory

1E
0

1E
2

1E
4

1E
6

1E
8

76 kB

crc32

main memory

Figure 4.8: Fine-Grained Wear-Leveling (write and read accesses)

wear-leveling conveys a similar conclusion. The lifetime, considering caused overheads,
is extended by reasonable factors of ≈ 10× for some test applications and even up to≈ 40× for the sha benchmark. Although such an improvement can already help to extend

4.3. Software-Managed Read and Write Wear-Leveling 69

Application /
Configuration

AE EI LI

dijkstra
-baseline[w] 0.00048

-baseline[r+w] 0.00110

-coarse-
grained [w]

0.01349 28.1042 27.8912

-coarse-
grained [r+w]

0.03283 29.8455 29.5888

-fine-grained
[w]

0.01385 28.8542 28.2420

-fine-grained
[r+w]

0.04527 41.1545 35.6377

lesolve
-baseline[w] 0.00189

-baseline[r+w] 0.00183

-coarse-
grained [w]

0.01712 9.0582 8.9899

-coarse-
grained [r+w]

0.02132 11.6503 11.5302

-fine-grained
[w]

0.82097 434.3757 189.2855

-fine-grained
[r+w]

0.67184 367.1257 194.7539

sha
-baseline[w] 0.00028

-baseline[r+w] .00033

-coarse-
grained [w]

0.01182 42.2143 41.8878

-coarse-
grained [r+w]

0.01796 54.4242 53.8633

-fine-grained
[w]

0.42223 1507.9643 955.6642

-fine-grained
[r+w]

0.22706 688.0606 418.8788

Application /
Configuration

AE EI LI

qsort
-baseline[w] 0.01609

-baseline[r+w] 0.00599

-coarse-
grained [w]

0.12174 7.5662 7.5097

-coarse-
grained [r+w]

0.02292 3.8264 3.7901

-fine-grained
[w]

0.44067 27.3878 23.0112

-fine-grained
[r+w]

0.19900 33.2220 27.9929

rijndael
-baseline[w] 0.00035

-baseline[r+w] 0.00082

-coarse-
grained [w]

0.00123 3.5143 3.4978

-coarse-
grained [r+w]

0.00610 7.4390 7.3514

-fine-grained
[w]

0.00088 2.5025 2.3027

-fine-grained
[r+w]

0.01431 17.4564 5.1970

crc32
-baseline[w] 0.00087

-baseline[r+w] 0.00200

-coarse-
grained [w]

0.01117 12.8396 12.7390

-coarse-
grained [r+w]

0.02316 11.5798 11.4619

-fine-grained
[w]

0.70932 815.3117 798.0718

-fine-grained
[r+w]

0.02764 13.8225 13.0103

Table 4.1: Memory Lifetime Indicators

the system lifetime from a few weeks to several years and may make the application of
NVM feasible in certain cases, the graphical illustration reveals that still improvement
potential is existent when relaxing the local peaks.

Fine-Grained Wear-Leveling

Figure 4.7 and Figure 4.8 provide a graphical illustration for the fine-grained wear-
leveling results for specific memory traces. Especially with a focus on the observable
shortcomings of the coarse-grained wear-leveling, it can be observed, that local peaks
are further relaxed by fine-grained wear-leveling. This supports the initial design principle
of executing fine-grained wear-leveling as an addition to aging-aware coarse-grained
wear-leveling for intra page wear-leveling. For both cases of write destructive and read
destructive memories, it can be observed that most benchmark applications do not
feature significant uneven peaks after the employment of the fine-grained wear-leveling.
An exception to this is formed by the dijkstra benchmark. This benchmark makes
heavy use of the data segment for internal management, resulting in uneven peaks

70 Chapter 4. Application-Transparent NVM Wear-Leveling

inside this segment. Since the fine-grained wear-leveling only covers the stack segment
for the case of write destructive memories and the stack and text segment for read
destructive memories, peaks in the data segment cannot be reduced. As a general
trend, the resulting memory trace for read-destructive memories is less even than for
write destructive memories. This stems from the fact that while the write destructive
fine-grained wear-leveling can move the entire stack in memory, the read destructive
fine-grained wear-leveling can only relocate the code parts of the text segment as has
to maintain the absolute position of the GOT and PLT. As the benchmarks naturally
make use of these data structure during execution, dense peaks are still caused and
not wear-leveled to these data structures.

Investigating the analytical LI results for fine-grained wear-leveling (Table 4.1),
reasonable improvements in comparison to the coarse-grained wear-leveling can be ob-
served for most benchmarks. For the sha benchmark, an absolute lifetime improvement
of almost 1000× can be observed. It has to be noted that the fine-grained wear-leveling
causes generally a larger overhead than the coarse-grained wear-leveling, which is
why the EI and LI indicators have a larger difference for the case of fine-grained
wear-leveling. Considering the gained improvement in lifetime, however, it can make a
reasonable trade-off to invest such larger overheads for the gain in memory lifetime.

4.3.6 Wrap-Up

This section details methods for entirely software based read and write wear-leveling
in an application transparent manner. This includes an aging-aware coarse-grained
memory page based wear-leveling, which largely works similar for the case of read
and write destructive memories. In addition and to compensate the shortcomings of
such coarse-grained wear-leveling, specific extensions for fine-grained stack and text
wear-leveling are integrated. The experimental results show largely improved memory
lifetimes when coarse-grained and fine-grained wear-leveling is employed. However, a
few memory regions cannot be targeted by the presented methods and case suboptimal
memory wear-leveling.

4.4 Semantic Memory Tracing

The previous part of this chapter discusses application transparent wear-leveling on
an entirely software based implementation. Orthogonal to this, this sections discusses
the aspect of memory tracing in greater detail. For the overview of the wear-leveling
process, memory tracing can potentially impact the aspect of monitoring and of making
wear-leveling decisions. As a special focus of this section, semantic memory tracing is
performed. This means that the application is logically decomposed into certain units,
which are then logically isolated in memory, such that the process of wear-leveling could
be executed separately, for instance with different configurations, for the application
units. A crucial component to this method is formed by the library based unikernel

4.4. Semantic Memory Tracing 71

unikraft [KSV+19a], hence all the following methods are imlemented and tested in the
environment of unikraft.

4.4.1 Scope

The work in this section covers two central methods for semantic memory tracing. Both
methods are built on top of the full system simulation setup and the unikernel unikraft.
The results of this work are methodological, i.e. they are not directly integrated into the
software based wear-leveling framework. The methods in this section are intended to aid
development of specific applications and to find and configure according wear-leveling
and memory management schemes for these applications. To provide an intuition for
the usability, a case study on an exemplary application is appended. The two central
methods in this work cover:

• Static memory tracing: In this method, compiler information from unikraft is used
to map the binary layout of the compiled unikernel to the single libraries, which
are used for the compilation of the unikraft instance. This method is limited to the
statically allocated memory segments (dara, bss and text). Advantageous to this
approach is that the analysis can be performed offline and results on a simple
map of memory addresses to components of the unikernel.

• Dynamic memory tracing: In order to further provide a semantic association
of memory regions in the dynamically allocated memory segments (heap and
stack) to the corresponding library, dynamic analysis is implemented based on
the program counter information. As a part of this, the simulation framework
is extended to output the current program counter to the memory trace. This
information in combination with the static memory trace of the text segment then
allows to form a clear association of every memory access (including accesses to
the stack and to the heap) to the executing library of the access.

4.4.2 Problem Analysis and Statement

Performing memory tracing with full system simulations results in a memory trace,
which delivers detailed information about single memory accesses during the execution.
Although this information can be arbitrarily detailed, they are collected on a system
level, i.e. they usually have no strong relation to the executed software architecture.
When wear-leveling should be conducted system-wide for the entire software, this can
be considered as sufficient. When, however, wear-leveling should not be conducted
uniformly, further semantic memory tracing is needed. This can become necessary
when, for instance, wear-leveling is anyway configured on a fine granularity for single
libraries of a unikernel and the libraries have a largely different demand for wear-leveling.
In such a scenario, the semantic memory analysis can be used to come up with a
suitable wear-leveling configuration for all libraries. Another scenario, which could be

published work: [HCK+20]

72 Chapter 4. Application-Transparent NVM Wear-Leveling

considered, is the presence of a heterogeneous memory architecture, where memory
portions with different lifetime characteristics and hence different demand for wear-
leveling are present. In such a scenario, a possible strategy would be to map the
memory of single libraries to the corresponding memory type, to match the memory
access characteristics from the library with the demands of the memory. Semantic
memory tracing in this case can deliver the important information about the memory
behavior of the single libraries.

Motivated by the examples above, the problem of semantic memory tracing is stated
to provide a semantic association of memory accesses in the full system trace to the
causing software component. Since the semantic memory tracing is implemented in
a unikernel, the granularity of software components is chosen to be single libraries of
the unikernel. This can be considered as an application transparent method, since no
modifications are made to the libraries or the applications within the unikernel. The
semantic memory tracing is entirely realized in the unikernel internals and the memory
simulation.

4.4.3 Modular Analysis

The semantic memory tracing itself is realized by hooking into the compilation process
of unikernel. The compilation process is separated by libraries, where all source files
of a library are first compiled to separate object files and partially linked afterwards to
a single binary file of the library. All the pre linked library files are linked to a single
binary file of the unikernel in a final step. This file is further post processed in order to
derive an executable memory image. It has to be noticed, that the final linking step to a
single binary file merges the memory segments of the libraries together. For instance,
all compiled code from all libraries is merged to a single text segment. In consequence,
investigating the memory segment boundaries of the compiled unikernel does not reveal
any further semantic information.

Static Memory Tracing

Executing the compiled unikernel on the full system simulation delivers a memory
access trace from the address space of the unikernel. It may be possible to identify if a
memory access is within a specific memory segment, but not from which library it was
caused, since all libraries are merged within the memory segments. To overcome this,
debug symbols are utilized for static memory tracing. During compilation and linking, the
compiler enriches the output files with debug symbols, which identify single variables,
functions or even basic blocks of functions in the compiled output. These symbols are
unique within the unikernel, since they are used also for the final linking. The working
principle of the static memory tracing consequently is to scan the final unikernel image
for all existent debug symbols and their corresponding memory addresses in the linked
binary and match each debug symbol to the pre linked binary files of the single libraries.
For each symbol, one originating library is identified by this method. This results in a

4.4. Semantic Memory Tracing 73

te
xt

da
ta

,s
ta

ck
,h

ea
p,

...

lib1

lib2

lib3

lib4

memory trace

program counter address content

⋮ ⋮ ⋮
compare

write distribution per library

Figure 4.9: Dynamic Memory Trace Analysis

debug symbol to library map. Together with the memory locations of the debug symbols
in the final memory image, a memory library map is derived. This map can be then
associated with the simulator output and provides the semantic information about the
memory ownership of a library for every single memory access. It has to be noted,
that memory ownership does not necessarily mean that also the implementation of this
library is causing the memory access. It may happen that a library passes a pointer to
some portion of owned memory to another library, which then performs accesses to this
portion of memory.

Dynamic Memory Tracing

As mentioned above, the static memory tracing can provide semantic information
about memory ownership, but not about the executing library of a memory access.
Furthermore, the static memory tracing can only operate on memory segments, which
are allocated during compile team. Hence, the stack and heap segment cannot be
targeted by static memory tracing. To account for these two missing features, dynamic
memory tracing is implemented as an additional module. The working principle of
dynamic memory tracing is illustrated in Figure 4.9. The executing library of memory
access can be identified by the memory ownership of the currently executed instructions,
i.e. of the portion of the text segment. This information can be derived from static
memory analysis, since the text segment is statically allocated and debug symbols are
added for basic blocks and at least for functions. The currently executed instruction can
be derived by investigating the PC. Consequently, the full system simulator is modified
in order to append an additional entry of the current PC for each single memory access.
When deriving the semantic memory trace, the PC is compared with the memory to
library map of the text segment and the causing library of the access is identified. The
resulting memory trace from the simulation then can be further divided into single library
memory traces and used for potential separated wear-out analysis.

When comparing static and dynamic memory analysis, it should be noted that
static memory analysis identifies memory ownership, while dynamic memory analysis

74 Chapter 4. Application-Transparent NVM Wear-Leveling

identifies the runtime executor of memory accesses. While only dynamic memory tracing
can target the analysis of dynamically allocated memory segments, static and dynamic
analysis can be executed together for statically allocated memory segments. When, for
instance, a memory mapping of libraries to a heterogeneous memory landscape should
be decided, the results from static memory tracing can serve as an important input.
When the configuration of software based wear-leveling schemes is to be decided for
different libraries, the behavioral information of the dynamic memory tracing can deliver
better insights.

4.4.4 Case Study

In order to provide an illustrative example of how the decomposition into single libraries of
an application can be performed, a typical database use case is considered in this case
study as the application. In greater detail, a sqlite3 database [New04] implementation
is compiled into unikraft together with required dependencies (libc and pthreads). In
addition, the storage layer is realized with a virtual main memory file system. It is worth
noticing that all these implementations are provided in the unikraft source repositories
as electable components. As the workload for the database implementation, the TPC-H
queries Q1 and Q6 [Cou08] are executed on a scaled lineitem table of 500 rows. The
limitation to the scaled data set is due to the massive time consumption of the full system
simulation. The mentioned application and workload is executed on the full system
simulation setup and the memory traces are processed by static and dynamic memory
tracing. This results in per library memory traces, which are graphically illustrated in the
following. In addition, analytic measure are conducted on the semantically separated
memory traces. Determining the achieved endurance (AE) of single libraries provides
an intuition of how effective wear-leveling could be performed for different libraries and
for which library the effort for wear-leveling may pay out best.

Static Memory Tracing

Figure 4.10 provides a graphical illustration of the semantically enriched results for the
static memory tracing. The graphs basically show the full system simulation output,
i.e. increasing memory addresses on the x-axis and the amount of write accesses1

to the specific memory locations on the y-axis. The black line in the plots illustrates
the simulation result, i.e. the amount of write accesses per memory byte. The colorful
background illustrates the result from static memory tracing, i.e. which portion of the
presented data and bss segment belongs to which library.

Investigating the displayed results, it can be observed that the application (app)
itself has no present memory in the data and bss segment. This stems from the fact
that the app is only coordinating calls to the sqlite implementation in this scenario

1The evaluation for this method is entirely conducted for the case of write destructive memories. It
should be noted that the methods are fully transferable to read destructive memories without further
limitations.

4.4. Semantic Memory Tracing 75

1E
0

1E
2

1E
4

TPC-H Q1 data / bss

main memory

w
rit

e
co

un
t

56 kB

libsqlite
libvfscore

libnewlibc

libsqlite

libgem5

libvfscore

libnewlibc

libsqlite

app

libsqlite

libpthread

libvfscore

libgem5

libnewlibc

1E
0

1E
2

1E
4

TPC-H Q6 data / bss

main memory

w
rit

e
co

un
t

56 kB

libsqlite
libvfscore

libnewlibc

libsqlite

libgem5

libvfscore

libnewlibc

libsqlite

app

libsqlite

libpthread

libvfscore

libgem5

libnewlibc

Figure 4.10: Data / BSS Section for TPC-H Q1 and Q6

and has no large memory demand. It can be further observed, that the library for the
sqlite implementation (libsqlite) and the library for the virtual file system (libvfscore)
feature the majority of memory accesses. While the sqlite implementation faces more
uneven and densely peaked memory accesses and hence may require a certain fine-
grained wear-leveling, the file system implementation faces evenly distributed memory
accesses across the allocated memory space and hence may only require a lightweight
coarse-grained wear-leveling.

Dynamic Memory Tracing

As previously discussed, the results for static memory tracing only reveal the memory
ownership, but do not guarantee that the owning library is also responsible for the
accesses. In addition, dynamically allocated segments (stack and heap) cannot be
semantically enriched. Figure 4.11 illustrates the derived results for dynamic memory
tracing for the stack segment2. Again, the x-axis denotes memory space, while the

2The analysis can work without any modifications for a heap segment as well. However, the used
configuration of unikraft and of the libraries do not include any dynamic memory management and thus no
heap segment

76 Chapter 4. Application-Transparent NVM Wear-Leveling

1E
0

1E
2

1E
4

1E
6

TPC-H Q1 stack

stack memory

w
rit

e
co

un
t

16 kB

app

libsqlite

libpthread

libvfscore

libgem5

libnewlibc

1E
0

1E
2

1E
4

1E
6

TPC-H Q6 stack

stack memory

w
rit

e
co

un
t

16 kB

app

libsqlite

libpthread

libvfscore

libgem5

libnewlibc

Figure 4.11: Stack Section for TPC-H Q1 and Q6

y-axis indicates the amount of write accesses per memory location (byte). In contrast
to static memory tracing, where the memory space can be segmented by the owning
libraries, each library has another trace across the memory space, which is indicated by
different color lines in the plots.

Investigating the presented results, it can be observed that most of the libraries
operate on overlapping segments of the stack memory. This stems from the basic usage
principle of stack memory: Function calls allocate reverse order growing parts of the
stack. When the call is done and another function is called, the same parts of the stack
can be allocated by another function from another library. Bridging the gap to analyzing
the possible demand of wear-leveling, it can be again observed that some libraries
(i.e. libsqlite) face a closely uniform memory wear-out and hence could be equipped
with lightweight coarse-grained stack wear-leveling, while other libraries (i.e. libpthread)
induce dense peak usage of small portions of the stack segment and cause the demand
for fine-grained stack wear-leveling. It is worth noticing, and somewhat counterintuitive,
that the analysis reveals two different wear-leveling demands for the data / bss and stack
segment of the sqlite implementation.

As mentioned before, the dynamic analysis is not limited to be applied on dynamically
allocated memory segments and can reveal a relation between memory ownership and
memory usage when being applied to static allocated memory segments. Figure 4.12
illustrates the corresponding results for the dynamic analysis of the data and bss
segment. It can be observed, that most of the libraries have a strong similarity between

4.4. Semantic Memory Tracing 77

1E
0

1E
2

1E
4

TPC-H Q1 data / bss

stack memory

w
rit

e
co

un
t

56 kB

app

libsqlite

libpthread

libvfscore

libgem5

libnewlibc

1E
0

1E
2

1E
4

TPC-H Q6 data / bss

stack memory

w
rit

e
co

un
t

56 kB

app

libsqlite

libpthread

libvfscore

libgem5

libnewlibc

Figure 4.12: Dynamic Data / BSS Section for TPC-H Q1 and Q6

app libsqlite libpthread libvfscore libgem5 libnewlibc

Q1

stack 2.44% 7.80% 1.53% 2.74% 1.87% 1.89%
data 1.17% 0.69% 0.62% 0.79% 1.27% 0.47%
Q6

stack 2.53% 7.47% 1.52% 2.73% 1.85% 1.90%
data 1.17% 0.69% 0.62% 0.79% 1.27% 0.40%

Table 4.2: achieved endurance after dynamic analysis

memory ownership and memory usage, few memory portions, however, are intensively
used by other libraries. The largest difference can be observed for the virtual file system,
where a majority of the owned memory is accessed by the c library implementation
(libnewlibc).

In addition to the graphical illustration, as mentioned above, analytic measures can
be conducted on the semantically separated memory traces. For the case of dynamic
memory analysis and the measure of the achieved endurance (AE), this is performed,
and the results are shown in Table 4.2. The table shows the computed AE values for
each library each for the stack and data segment for the two cases of the TPC-H Q1 and
Q6 workload. The calculation of the AE is done across the entire data / stack segment
and not limited to the owned memory regions. As the achieved endurance provides an

78 Chapter 4. Application-Transparent NVM Wear-Leveling

intuition of how far lifetime of NVM can be extended by proper wear-leveling, it can be
observed that libpthread reveals the highest optimization potential for the stack memory,
while libnewlibc reveals the highest optimization potential for the data memory. The
data also support the finding mentioned before, that libsqlite uses the stack memory
way more evenly than the data memory. The collection of these findings can assist in
the proper configuration and application of wear-leveling methods in order to apply an
efficient, yet effective wear-leveling scheme.

4.4.5 Wrap-Up

Semantic memory tracing, as presented in this section, is an orthogonal extension for
wear-leveling in NVM systems. It does not provide any wear-leveling methodology, but
rather a semantically enriched view on the memory behavior of the application together
with the required OPERATING SYSTEM (OS) components. To achieve this, debugging
information of the compiler in the build process of the unikernel unikraft are used to
map memory locations to owning libraries in static memory tracing. In order to also
account for dynamically allocated memory segments and to not only focus on memory
ownership, but also on the causing software components of memory accesses, dynamic
memory tracing is implemented by considering the PC for every single memory access
additionally. An illustrative use case highlights how the semantic memory tracing could
be used on a typical database workload in order to derive an efficient, yet effective wear-
leveling scheme, which is dedicated to the individual demands of the single libraries.

4.5 Concluding Interface Exploitation

Towards exploitation of the traditional memory interface, this chapter introduces the
concept of a central software instance in the operating system, which provides additional
interface functionality to enable lifetime maintenance of NVM. The central software
instance keeps an internal incremental representation of memory age, which allows
the making of wear-leveling decisions. The appropriate decisions are executed by
modifying the locations of future memory accesses in an aging aware manner. By
only exploiting this traditional interface by this software instance, the functionality of
lifetime management for NVM can be provided. On the cost of requiring a set of available
hardware features (performance monitoring and MMU), this approach can realize lifetime
management without any corporation from the application. Even the source code of the
application is not necessarily required.

CHAPTER 5

Application-Cooperative NVM
Wear-Leveling

Contents
5.1 Modern Technologies and Traditional Interfaces 80

5.2 Overview . 80

5.2.1 Application-Cooperative Decisions 81

5.2.2 Application-Cooperative Actions 82

5.3 Stack Usage Analysis and Wear-Leveling Hints 82

5.3.1 Scope . 83

5.3.2 Problem Analysis and Statement 83

5.3.3 Stack Usage Analysis . 84

5.3.4 Stack Wear-Leveling Overhead Optimization 85

5.3.5 Evaluation . 86

5.3.6 Wrap-Up . 89

5.4 B+-Tree Checkpoint Wear-Leveling 90

5.4.1 Scope . 90

5.4.2 Problem Analysis and Statement 91

5.4.3 B+-Tree Organization . 92

5.4.4 OCTO+ Algorithm . 92

5.4.5 Evaluation . 95

5.4.6 Wrap-Up . 98

5.5 Concluding Software-Based Wear-Leveling 98

79

80 Chapter 5. Application-Cooperative NVM Wear-Leveling

5.1 Modern Technologies and Traditional Interfaces

While the previous chapter introduces methodology to enable memory lifetime manage-
ment through the traditional memory interface in an application transparent manner by
employing a centralized software instance, this chapter aims for conceptually the same
interface exploitation, but with an entirely different approach:

Load / Store / Memory Placement

NVM Lifetime Management

Instead of employing a centralized software instance, applications are directly modified
in the following and the management of the memory lifetime is performed directly
within application operations. Partially, this can omit the maintenance of an internal
aging model, since the application operations directly contribute to partially incremental
wear-leveling. Although this approach differs largely from the previously presented
centrally-managed technique, both offer a possibility to software exploitation of the
traditional memory interface for NVM lifetime maintenance. In addition, both methods
can be applied jointly in an adequate situation.

5.2 Overview

The general process of wear-leveling, including the required division into corresponding
decisions and actions is introduced in Chapter 4. In addition to the general concept,
the chapter introduces application transparent wear-leveling mechanisms in a software-
based manner, i.e. which require no special cooperation from the executed application.
This makes the implementation of complex wear-leveling mechanisms unavoidable,
which employ means for the making of wear-leveling decision and actions, without
any knowledge of the application. To overcome the need for such complex, resource
consuming mechanisms, in case the application is well known, the source code is
available, and it can be modified, application cooperative wear-leveling schemes can
be considered, which include the application into the wear-leveling process. Generally,

5.2. Overview 81

Memory

WL Subsystem

Application

OS
app transparent

app cooperative

Figure 5.1: Application Cooperative Wear-Leveling Principle

the rough categorization of wear-leveling decisions and wear-leveling actions can be
kept for this. This can be imagined as two directions of cooperation of the application:
When the application provides information about memory usage, this realizes applica-
tion cooperative wear-leveling decisions. When the application receives instructions
to change memory locations or change the memory usage of certain locations, the
application realizes wear-leveling actions. The concept of application cooperative versus
application transparent wear-leveling is illustrated in Figure 5.1. While for application
transparent wear-leveling, the wear-leveling system has to estimate the memory usage
of the application with the help of the OS, application cooperative wear-leveling allows
the application to directly interact with the wear-leveling system in order to perform
decisions and actions.

5.2.1 Application-Cooperative Decisions

The crucial aspect of application cooperative wear-leveling decisions is the exploitation
of domain specific knowledge about the application. Wear-leveling decisions should be
made in a way, such that the allover wear-out of memory is reduced, and the total lifetime
is extended. It is further of strong interest to keep overheads low due to efficient making
of wear-leveling decisions. The latter goal makes the usage of aging-aware wear-leveling
highly interesting, which requires knowledge about the memory usage of the application
to a certain degree. In case of application transparent wear-leveling, this knowledge
has to be gathered in a very general way, e.g. as presented in Section 4.3. This
however, requires unavoidable large overheads. Similar information can be gathered
in a highly efficient way directly from the application. Consider the example of a tree
based data structure, which forms the major part of an application and where tree
nodes are allocated in main memory. While application transparent wear-leveling only
sees bare memory and can build an access histogram on the global memory space, all
tree inference implementations could be easily modified in such a way that for every
access a histogram for the specific node is updated. This then can form a global access
histogram for the tree. Not only can such a way of gathering memory access information

82 Chapter 5. Application-Cooperative NVM Wear-Leveling

be more precise, but more efficient, since accesses can be directly captured and do not
need to be sampled, e.g. with the help of interrupts.

In addition to bare efficiency of information collection due to application cooper-
ative wear-leveling decisions, domain specific information can further allow making
wear-leveling decisions based on knowledge, which is not available in an application
transparent manner. Considering the tree based data structure example again, the
application knows the semantics of the tree structure well. E.g. when a single node is
accessed, the application can know that a future memory access will target one of the
child nodes. The application could further provide a probabilistic model of the access
frequency distribution of child nodes. This can be used by the wear-leveling subsystem
to form a global probabilistic model and anticipate memory wear-out directly with the
application of wear-leveling actions, following the probabilistic mode.

5.2.2 Application-Cooperative Actions

Similarly to application cooperative wear-leveling decisions, also the performed actions
of the war-leveling subsystem can be assisted in an application cooperative manner.
The process of wear-leveling actions usually aims to alter the target of memory access
operations, such that the usage and hence the wear-out can be evenly distributed
across the memory space. These actions are triggered based on the corresponding
wear-leveling decisions. In an application transparent manner, wear-leveling actions
have to use hardware assisted features, like MMU page mapping, or have to hook into
compiler managed structures, like the text or stack management. This comes with
natural limitations, e.g. the page granularity of the MMU and with possibly induced high
overheads. For instance, relocation of the stack or text memory require a large overhead
and sophisticated management to maintain the semantic correctness.

In an application cooperative manner, memory is managed often directly by the
application. Considering again the example of a tree based data structure, the nodes
are allocated in memory and linked with pointers. Changing the location of a node in
memory only requires a lightweight operation of a pointer update. Furthermore, the
granularity of such operations can be significantly finer compared to e.g. MMU operations.
Even though the application may not manage all the allocated memory in a way that
allows such lightweight application cooperative memory relocation, the application can
further assist the application transparent principles from the wear-leveling subsystem.
Providing information about unused or invalid memory can reduce the overhead for
MMU relocation. Providing hints before calling of long-lasting functions can reduce
overheads for stack based relocation.

5.3 Stack Usage Analysis and Wear-Leveling Hints

This section introduces an extension to application transparent wear-leveling (Sec-
tion 4.3). In greater detail, the approach for fine-grained stack wear-leveling is refined.

5.3. Stack Usage Analysis and Wear-Leveling Hints 83

The method in this section aims to reduce the spent overhead by triggering copies of
the stack to other memory locations whenever the stack is small. The retrieval of this
information makes the method application cooperative. The source code is modified in
order to notify the wear-leveling system when the stack is small, such that synchronous
wear-leveling actions can be triggered. However, in order to provide a method, which
does not depend on heavy domain specific knowledge, i.e. knowing the exact stack sizes,
machine-learning models are also used to predict the stack usage of an application in a
not invasive way.

5.3.1 Scope

This section covers implemented methods for systematic analysis of the stack size
of an application. The stack sizes are determined by employing a special analysis
framework, based on self-hosted debugging capabilities of the hardware and the OS.
This framework determines the current size of the stack for a given instruction in the
application over repetitive executions. This framework forms part of the fitness function
of a GA, which determines instructions for the low overhead triggering of wear-leveling
actions for the stack. These instructions are then enriched with annotations and inserted
into the application source code and compiled again. In short, the method covers
following elements:

• A ptrace based stack analysis framework for stack size recording of single instruc-
tions

• A GA for finding instructions with low stack sizes
• An annotation mechanism to trigger stack wear-leveling at specific instructions

5.3.2 Problem Analysis and Statement

Software based wear-leveling for stack memory can become a resource intensive task,
since due to the usage semantics of stack memory, the entire actively used stack region
has to be relocated to a new consistent memory locations. Especially due to the need
of fine-grained wear-leveling, copying of the active stack region becomes necessary.
In consequence, the overhead for such wear-leveling operations is strongly coupled
with the size of the active stack region. Depending on the structure of the application,
the number and depth of function calls and the use of local stack memory, applications
can feature highly varying sizes of active stack memory during their execution. For
the objective of minimizing overheads for stack wear-leveling, it is favorable to perform
wear-leveling actions on the stack at points during the execution, when the stack size is
small. In order to surpass overheads for runtime monitoring of the stack, such points
during execution should be determined in advance. In addition, when the analysis is
performed offline, complex analysis methods can be used to configure the wear-leveling

published work: [HYC+19]

84 Chapter 5. Application-Cooperative NVM Wear-Leveling

mechanism to the determined stack sizes in order to provide a trade-off between
wear-leveling quality and caused overheads.

Consequently, the problem is stated twofold: 1) the problem is to analyze the stack
usage of an application in an offline manner, such that the stack size at specific points
during the execution can be predicted. As points during execution, instructions of the
application are used. 2) the problem is to determine instructions in the application,
where the stack size is predictably small, such that wear-leveling actions should be
ideally triggered synchronous to the execution of these instructions.

5.3.3 Stack Usage Analysis

As motivated above, determining the stack size at a certain point (i.e. instruction of
a program) is one core problem to be solved. Hence, the input to this problem is a
target program and one instruction of the program. The output of the desired analysis
component is the stack size (cumulative or average) at the different executions of
the target instruction. This section details the implementation of such an analysis
component, which is based on the linux API ptrace [Man19]. By utilizing this library,
target programs can be executed in a native linux environment, which allows the use
of powerful and highly parallelized hardware. If, for instance, the target system is an
embedded system with a single ARMv8 core, the ptrace based analysis can be run on a
many core ARMv8 server CPU and deliver fast results for the subsequent optimization.

Ptrace Based Analysis

The linux API ptrace [Man19] provides means to debug user level applications. As one
part of the API, registers and memory can be read and modified at any point during
the execution of the target program. In addition, the program can be interrupted at
specific events, in order to perform memory or register reads and modifications at these
events. As common debuggers, ptrace supports a single step mode, where the target
application is interrupted after every single instruction and the analysis tool could read
registers. In addition, the use of debug instructions is supported. In order to use this
mechanism, a debug instruction must be present in the binary code segment of the
target application and be executed. The execution of this breakpoint causes an interrupt
of the target application and the invocation of the analysis tool. Since ptrace allows
modifications of the memory of the target application, breakpoints can be inserted by
replacing an arbitrary instruction of the target application. Whenever the breakpoint
is executed, it has to be replaced with the original instruction and the PC has to be
reverted to the previous instruction.

In the context of the stack size analysis, it is desired to analyze the stack size at the
moment of a specific instruction being executed. Consequently, overheads can be saved
by using breakpoint instructions instead of single step debugging. Additionally, stack
modifications are deterministic with the instruction stream and not affected by pipelin-
ing or out of order execution effects. Consequently, the interrupts due to breakpoint

5.3. Stack Usage Analysis and Wear-Leveling Hints 85

CPU

x0, x1, x2,
...

sp , pc

machine
registers,

...

Linux

App

E

Result

stack size,

#calls,

time-
points of

calls

Figure 5.2: Ptrace based analysis framework for instruction evaluation

instructions and the modifications of the code segment in order to introduce breakpoint
instructions do not affect the stack usage, since the execution of breakpoint instructions
does not modify the stack.

Analysis Module

The definition of the studied problem states a program and an instruction of interest as
the input to the analysis module. As the output, the stack size during the execution of
the specific instruction is desired. The stack size can be determined by reading the SP
register at the execution of the instruction and subtract the base address of the stack
from the value. The value of the SP is read by employing the breakpoint mechanism
of ptrace, as described before. The analyzed instruction is replaced by a breakpoint
instruction. When this breakpoint is executed, the SP register is read and the stack
size is calculated and stored. Subsequently, the breakpoint instruction is replaced by
the original instruction and the PC is reverted. The execution continues in single step
mode for exactly one instruction. Afterwards the target instruction is again replaced by a
breakpoint instruction and the execution continues normally. This process continues
until the target program terminates or a specified timeout is reached. The analysis
module the returns the cumulative stack size, the number of calls of the instruction
and the time-points of the calls of the instruction as a result. This analysis workflow is
illustrated in Figure 5.2.

5.3.4 Stack Wear-Leveling Overhead Optimization

The second part of the problem statement is to find instructions in the target application,
which promise to reduce the overhead for stack wear-leveling, when wear-leveling
actions are triggered synchronous to these instructions. Consequently, instructions with
a predictably small stack size should be used as a premier target. However, in order
to maintain the wear-leveling quality, it has to be ensured that wear-leveling actions
are executed with a certain target frequency. This frequency is denoted as fwl in the

86 Chapter 5. Application-Cooperative NVM Wear-Leveling

following, where a value of fwl = 1000, for instance, means that in average after the
execution of 1000 instructions a wear-leveling action should be performed. Consequently,
the objective is to find a set of instructions, which feature a minimal stack size and are
called in average with a frequency of fwl. This is pursued by employing a GA with
domain specific post-processing steps. The population is formed by set of assembly
instruction from the target program P = {a0, a1, ..., an}, which are initially random
sampled and limited to the population size n. The fitness value for each population
element is computed as the average stack size, derived from the stack size analysis
module (Section 5.3.3). In a first step after evaluating the fitness, an elitism strategy
is applied and k the best instructions are kept in the population. Subsequently, the
population is further pruned by eliminating instructions, which are called too frequent
within fwl. The analysis module delivers the time points of the execution of the analyzed
instructions. Whenever one instruction is called within fwl instructions, other instructions,
which are called within the same fwl are removed, unless they are the only instruction
being called within another fwl. Mutations are performed by adding random bounded
offsets to population items, recombination are achieved by selecting the arithmetic mean
instruction address between two random population items. For recombined and mutated
population elements, a sanity check ensures that the address is a valid instruction
address of the target program. Mutation and recombination is omitted for the final
iteration of the GA.

5.3.5 Evaluation

In order to empirically evaluate the effectiveness of the presented stack wear-leveling
optimization, two aspects have to be considered. First, an empiric case study on
benchmark applications is conducted, where the stack usage is analyzed over time.
This reveals the potential for overhead optimization. Second, wear-leveling together
with the overhead optimization is evaluated end to end, and the caused overhead is
recorded. This studies the overall effectiveness of the presented approach.

Stack Usage Analysis

A slightly modified version of the stack analysis module (Section 5.3.3) is used in the
following to obtain the stack size during the execution of benchmark applications. Rather
than obtaining the cumulative stack size across various calls of a single instruction,
the stack size at every executed instruction is recorded. Even if the same instruction
is executed multiple times, this results in two data points in the result. Hence, the
result forms a mapping f ∶ N0 → N0, which maps points in time during execution (i.e.
the instruction cycle) to the current stack size. This analysis is conducted for a set of
benchmark applications, which are taken for parts from the MiBench suite [GRE+01] and
for other parts are self written implementations of various algorithms. The resulting stack
size distribution for a subset of the benchmark applications is illustrated in Figure 5.3.
Generally, the observed stack usage distribution can be described as three sub patterns:

5.3. Stack Usage Analysis and Wear-Leveling Hints 87

0 1E6 2E6 3E6 4E6 5E6 6E6 7E6

0
10

20
30

40
50

60
bitcount

instruction

st
ac

k
si

ze
(b

yt
e)

0 2E4 4E4 6E4 8E4 1E5

40
60

80
10

0
12

0

dijkstra

instruction

0 5E4 1E5 1.5E5 2E5 2.5E5 3E5

0
20

0
40

0
60

0
80

0
10

00
12

00

jpeg

instruction

st
ac

k
si

ze
(b

yt
e)

0 1E4 2E4 3E4 4E4 5E4

20
0

40
0

60
0

80
0

pfor

instruction

Figure 5.3: Exemplary stack usage analysis

1. Constant: As can be exemplary seen in the bitcount benchmark in Figure 5.3,
the size of the used stack does not change significantly over the execution of the
majority of the application and thus can be described as constant.

2. Periodic: For some applications, as for instance the pfor benchmark in Figure 5.3,
the changes of the used stack size are periodic throughout the execution of the
application. This can be caused by periodic invocations of the same or similar
parts of the code.

3. Irregular: When the stack usage over time is neither constant, nor periodic, it can
be described as irregular. In Figure 5.3, the dijkstra benchmark features such a
pattern, since the stack usage changes with a varying frequency.

Since some benchmark applications do not feature one of the aforementioned patterns
during the entire execution, categorizing benchmark applications to these classes is
not obvious. The dijkstra benchmark, for instance, features constant stack usage as
first, then changes to irregular usage. Considering, however, the major present class in
each benchmark, the categorization in Table 5.1 can be made. In this table, the number
in the braces behind the benchmark denotes the maximum change in the used stack
during the benchmark execution. Generally, it can be said that benchmark applications
with constant stack usage patterns are not likely to be a good candidate for overhead
optimization of stack wear-leveling. Although the recorded data for the classification
is just an artificial run and the stack usage may differ in reality, no meaningful points
during the execution can be determined, which are promising to reduce the overhead.

88 Chapter 5. Application-Cooperative NVM Wear-Leveling

Constant: Bitcount (0), Susan (10224), Jpeg (1072), Patricia (240),
CRC32 (1072), Blowfish (304)

Periodic: Basicmath (688), Stringsearch (64), Adapcm (112)
Pfor (752), Sha (176), FFT (176)

Irregular: Dijkstra (688)

Table 5.1: Categorization of 13 embedded applications

In contrast, benchmark applications with periodic or irregular usage patterns offer the
potential for overhead optimization by triggering stack wear-leveling actions exactly
when the stack is small. For applications with periodic usage patterns, this can be likely
achieved by triggering stack wear-leveling actions synchronous to a few instructions,
which are executed periodically. This helps to keep the overhead for triggering the wear-
leveling actions small. For applications with irregular patterns, wear-leveling actions may
need to be triggered synchronous to multiple instructions in order to ensure wear-leveling
at low stack sizes on the desired target frequency. This potentially causes a larger
overhead for ensuring the synchronous wear-leveling actions. Regardless of periodic or
irregular stack usage patterns, the maximal difference in the stack usage can further
help to assess the optimization potential. Considering two examples of benchmarks
with periodic stack usage, pfor promises to achieve a higher overhead reduction than
stringsearch.

Stack Wear-Leveling Overhead Optimization

As highlighted before, several benchmark applications promise to allow a reduction of
the overhead for stack wear-leveling due to not constant usage of stack memory during
execution. The method described in Section 5.3.4 allows to determine instructions,
which should be used to synchronously trigger wear-leveling actions to target this
overhead reduction. In order to provide an end to end evaluation, the results from
the GA are fed beck to the benchmark application in the form of a relocation hint. A
relocation hint is a small set of instructions, which is inserted into the source code of
the benchmark application at the specific instruction, which is determined by the GA
for low overhead stack wear-leveling. The relocation hint triggers the wear-leveling
subsystem and allows it to trigger a stack wear-leveling action, if this fits to the desired
target frequency fwl. The instructions of the relocation hint maintain the stack size after
completion, hence, introducing relocation hints does not impact the stack usage of the
benchmark application. It should be noted, that for analysis and determination of the
relocation hint, the linux ptrace based framework (Section 5.3.3) is used. For evaluation,
assessment of the end to end overheads and wear-leveling quality, the relocation hints
are deployed to the wear-leveling subsystem from Section 4.3.4 and simulated in the
setup from Section 3.1.5.

5.3. Stack Usage Analysis and Wear-Leveling Hints 89

10
00

15
00

20
00

25
00

pfor

w
rit

e
co

un
t

stack

wear-leveling without hints
wear-leveling with hints

Figure 5.4: Memory write access distribution

As the target application for evaluation, the pfor benchmark is chosen. This bench-
mark implements the PFOR compression algorithm [ZHN+06]. The benchmark runs
decompression in a stream-like manner and applied subsequent aggregation of the
decompressed results. In order to analyze optimal points for stack wear-leveling, the GA
from Section 5.3.4 is configured with a population size of n = 200, an elitism strategy
of k = 100 and a target frequency of fwl = 10000. The boundary for random mutations
is set to 50 instructions in either positive or negative direction. Deploying stack wear-
leveling without any overhead optimization purely timer driven, an overhead in terms
of write accesses of 9.96% is caused. Introducing the predetermined relocation hints
reduces the cause overhead to 1.41%, which is a reduction of 85.83%. In addition to
the reduction of overhead, the wear-leveling quality should also be checked. Figure 5.4
shows the amount of write accesses across the stack without any optimized overhead
(green) and with optimized overhead due to relocation hints(blue). It can be observed
that the write distribution does not cause higher peaks after the optimization of overhead,
which indicates that the wear-leveling quality is not negatively impacted by the overhead
optimization. Contrarily, the amount of write accesses are reduced for most parts of the
stack due to the overhead optimization, which further extends the memory lifetime.

5.3.6 Wrap-Up

Wear-Leveling on the stack memory can achieve significant lifetime extensions of NVM
due to the reduction of heavy memory access peaks. However, the caused overhead
can be immense, since in order to maintain the access semantics, the entire used
stack memory has to be relocated to a new position in memory. Investigating the stack
usage over time of certain benchmark applications, it can be observed that the stack
memory does not allocate the same amount of memory during the execution and hence,
several moments during execution are more optimal for stack wear-leveling actions,
than others. The work presented in this section details a framework to conduct such
a stack size analysis on an offline fashion. The analysis can be massively parallelized

90 Chapter 5. Application-Cooperative NVM Wear-Leveling

and be executed in linux host systems. Based on this analysis, an optimization process,
including a specialized GA is invoked, which determines instructions in a benchmark
application, which should be used as a synchronous trigger for stack wear-leveling
actions. Including the resulting wear-leveling hints to an end to end evaluation show
to reduce the overhead for stack wear-leveling by 85% and not negatively impact the
wear-leveling result.

5.4 B+-Tree Checkpoint Wear-Leveling

In this section, an example of a deeply integrated application cooperative wear-leveling
scheme is discussed. While Section 5.3 introduces a scheme, which is application
cooperative but also generally applicable to arbitrary applications, this section focuses
on a specific application and provides wear-leveling means, which are dedicated to this
specific application. By exploiting the specific structure of the application, an extremely
low overhead wear-leveling scheme can be realized. In this approach, B+-trees [Bay72]
are considered on a hybrid memory system, which regularly performs checkpoints
between the volatile and non-volatile memory. The wear-leveling scheme operates
integrated into this checkpointing mechanism.

5.4.1 Scope

This section details a wear-leveling method for B+-trees, running on a hybrid memory
system. In detail, the database system, including instances of B+-trees is assumed to
operate on volatile memory, as for instance DRAM without specific endurance consider-
ations. In order to ensure persistency and aid robustness, a write back like scheme is
employed, where the latest modified version of the B+-tree is copied to the NVM in the
form of a checkpoint. Although the database system can operate such a strategy on arbi-
trary data structures, B+-trees as a central indexing structure in many database systems
are studied as a highly important case here. The checkpointing of a B+-tree basically
copies tree nodes to NVM blocks. Since the tree nodes may not be stored continuously
in the volatile memory, a mapping of volatile memory locations to non-volatile memory
locations is applied. This mapping can be realized as a simple mapping table between
B+-tree blocks and NVM locations. Wear-leveling can be realized with extremely low
overhead by altering this mapping table between two checkpoints in an aging-aware
manner. In order to make realize such aging-aware modifications, a modified B+-tree im-
plementation is realized, which tracks modified regions of tree nodes on insert and
update operations. Considering the accumulated modification information on the NVM
side allows assessing the current aging of NVM regions. Taking the local modification
information of a tree node into account allows to find an optimized mapping of tree
nodes to memory locations, which reduces the total memory wear-out. This approach

published work: [HKC+21b]

5.4. B+-Tree Checkpoint Wear-Leveling 91

is implemented and evaluated in this work. In short, the implementation covers the
following aspects:

• A modified B+-tree implementation, which maintains a modification information
within tree nodes, which is updated in a lightweight manner during updates and
inserts.

• A wear-leveling implementation, utilizing the collected modification information
during checkpoints to apply a wear optimized mapping.

5.4.2 Problem Analysis and Statement

Considering a hybrid memory system, where a database system executes a B+-tree in
volatile memory and regularly checkpoints the tree to NVM, the problem of wear-leveling
NVM in order to extend the system lifetime focuses on the checkpoint operation. In this
context, a pair of coupled states needs to be distinguished: 1) memory contents in the
volatile memory can be either modified or unmodified, 2) physical locations on the NVM
can be older / more worn out or younger / less worn out. When writing a checkpoint
from volatile memory to NVM, unmodified memory contents likely will not impact the age
of a NVM location under the assumption of an iterative memory update scheme. Writing
modified memory contents, in contrast, likely ages the NVM due to the required changes
of stored memory contents. The information about modified contents of the volatile
memory is collected by tracking tree update and insert operations in the following. The
aging of the NVM is tracked by accumulating the amount of updated memory contents
written at a checkpoint.

The realization of wear-leveling considered in the following operates by employing a
mapping between tree nodes in volatile memory and in NVM. Without any weaer-leveling
actions, this mapping is constant during the entire execution and tree nodes are always
checkpointed to the same memory location. When a wear-leveling action of a change to
the mapping is applied, the corresponding mapping is applied within the next checkpoint.
The mapping itself can be stored as a simple table, in the form of a metadata block
of the B+-tree. This block can be considered as every other data block of the tree for
checkpointing and wear-leveling. Only when restoring a checkpoint of the tree from
NVM to volatile memory, the offset of the mapping table needs to be stored at a central
location.

Although modifications of the mapping table open a space for wear-leveling opera-
tions to improve the memory wear-out, a modification of the mapping table potentially
causes a high overhead in terms of memory lifetime. With a modification of the mapping
table, tree nodes will be stored at NVM locations in the next checkpoint, which previously
contained different memory contents. Thus, potentially a high amount of changed
information needs to be written, which wears out the memory. Hence, the problem of
wear-leveling in this context is stated to modify the mapping of checkpoints carefully in
an age extending manner, without causes excessive age overheads.

92 Chapter 5. Application-Cooperative NVM Wear-Leveling

Node

p0 p1 . . .k0 . . . knHeader NMM

Figure 5.5: Layout of a B+-tree node

5.4.3 B+-Tree Organization

Since the collection of information about modifications in B+-tree nodes is a crucial
component for the checkpoint wear-leveling, the layout and organization of the B+-
tree nodes is discussed here. From a logic perspective, B+-trees are tree data structures,
where every node can have multiple child nodes. Although this number must not be
constant within the tree, an implementation with fixed sizes is often easier and more
efficient in terms of memory overhead. Hence, for this method, a B+-tree with fixed
node sizes is considered. Each node then stores two central components: 1) an array
of keys and 2) an array of pointers. In these arrays, the pointer at index i belongs to the
key at index i. While executing the tree, the lookup or insert key is compared to the key
array and the child node is visited, which is pointed to by the corresponding pointer. In
order to provide a fully working implementation, some additional information needs to
be stored in each node, including the fill level and the information weather this node is a
leaf or inner node. This additional information is stored in a header part of each tree
node.

In order to gain control over the memory layout, the tree is implemented in C.
The nodes are stored as packed memory arrays, such that the memory layout of tree
nodes results in a scheme, illustrated in Figure 5.5. The header, the key array and
the pointer array are stored in contiguous memory locations. When a modification
operation happens to the tree, as for instance an insert operation, the key array, the
pointer array and parts of the header may be modified. Since the key array is stored in
a sorted manner and a newly inserted key must be inserted in a sorted manner as well,
larger parts of these memory portions may be modified. Hence, the collection of the
information about node modifications is directly integrated into the tree implementation.
On this level, the information about modified parts of the key and pointer array and of
the header can be collected with a low overhead. The tree implementation then stores
a node modification map, indicated by nmm in Figure 5.5. This map is a binary vector
where a 1 encodes that a portion of the node is modified and a 0 indicates unmodified,
respectively. Since the node modification map is only relevant to the volatile version of
the tree node and is further evaluated for the wear-leveling algorithm, it is omitted while
storing checkpoints of the tree nodes.

5.4.4 OCTO+ Algorithm

As mentioned above, the process of wear-leveling in the context of the introduced setup
is to map B+-tree nodes to NVM locations for their checkpoint in an aging aware manner.

5.4. B+-Tree Checkpoint Wear-Leveling 93

B
+ tr

ee
no

de
s

...

...

N
V

M
bl

oc
ks

11110011

1

11110000

00001111

2

Figure 5.6: OCTO+ tree based algorithm

Towards this, the OCTO+ algorithm (Optimized Checkpointing for B+-Trees) aims to
achieve two objectives: 1) intra block wear-leveling, where the distribution of modified
and unmodified memory portions within every single node is matched to a corresponding
NVM block, such that the block is uniformly aged and 2) inter block wear-leveling where
the total age of all NVM blocks is uniformly leveled.

Write Information Collection

The basic principle of the collection of modification information is already explained in
Section 5.4.3. After every checkpoint, the node modification map or node modification
map (nmm) is reset to all 0. Read operations result in no modification of this map.
The nmm is a fixed length bit vector, where every bit indicates modifications to the
corresponding equi-sized memory region of the tree node. Insert and update operations
may flip the corresponding modification bit of the header to 1, if the header is modified.
Further, the corresponding bits of the key and pointer arrays are set to 1 for the modified
parts. If modifications occur to a certain part of the tree node, where the corresponding
modification bit is already set to 1 no further action is taken. Double modifications are
not explicitly reflected, since in between two checkpoints the number of modifications to
the volatile memory version of the tree is irrelevant.

The size of the node modification map, and thus the granularity, can be chosen
arbitrarily between the full node size (every bit in the nmm would represent one bit
of the node then) down to a single bit, representing the entire node. Choosing the
right granularity opens a trade-off between preciseness of the collected information and
overheads for storing and maintaining the nmm. For this work, the size of the nmm
is chosen as 8 bit for two reasons. First, the mask forms a single byte, which can be
efficiently packed into the header data structure of the node implementation. Second,
the aging of the NVM is estimated by accumulating the nmms of the checkpointed
nodes to a certain NVM location. By using 8 bit counters for this accumulation, the age
estimation every tree node sized NVM block can be stored within 64 bit, which is the
usual word width of a CPU. Once a single of these counters overflows, all counters are
divided by 2, which maintains the relative order of the aging.

94 Chapter 5. Application-Cooperative NVM Wear-Leveling

Remapping Decisions

With the aforementioned procedure of maintaining the nmm on modifications and
maintaining the accumulated value on checkpoints as the NVM age, each checkpoint
allows identifying the need for wear-leveling actions and to perform these. The general
process of making these decisions is illustrated in Figure 5.6. This process is executed
in advance to every checkpoint to potentially update the mapping table. In a first step,
blocks in the NVM are identified, which require wear-leveling actions. This is done by
computing the average of the accumulated counters within each block and check if the
maximum counter value exceed the average by a configurable threshold. Next, the
accumulated counters are reduced to an 8 bit bit mask, where a value of 1 indicates
that the counter exceeds the average value of the block. The blocks are then further
inserted into a binary tree, evaluating the determined bit mask bit by bit in each layer. In
consequence, the released NVM blocks are inserted into one of 256 lists, where the
determined bit mask is the index of the list.

In the next step, the B+-tree nodes, which were mapped to the released NVM blocks
are shuffled to new blocks by inverting the current nmm and looking the mapping tree
up for a suitable NVM block. In detail, of the nmm has a 1 at index i, the node has
modifications at this piece of memory and potentially causes wear-out at this location.
Due to the inversion, the tree node is ideally mapped to an NVM block, which has a 0 in
the bit mask at index i, meaning that the counter for this memory location was less than
the average, i.e. the block is relatively young at this position. Ideally, this process maps
B+-tree nodes in an aging-aware manner to NVM locations. It also has to be considered
that a perfectly matching NVM block does not exist for a tree node. To accommodate
for this, the mapping tree maintains counters in every node of the available unmapped
NVM blocks under this node. If then the ideal mapping would choose to visit the right
child node, for instance, but no blocks are left under the right child, the left child is taken
instead. It should also be noted that this process performs intra block wear-leveling only,
i.e. the relative age between NVM blocks is not considered at all.

In order to extend the algorithm for inter block wear-leveling, the absolute values
of the accumulated age counters for all NVM blocks are further compared at every
checkpoint. For every node, the maximum value is determined. The youngest and
the oldest block, according to this maximal value, are then further swapped in their
mapped B+-tree node when the maximal and minimal age differ more than a configurable
threshold. It should be noted that all the computations for the intra and inter block wear-
leveling can be done in a single scan of the NVM blocks. Inserting NVM blocks and tree
nodes into the mapping tree has a constant time complexity of 8 steps for each block /
node.

Although the algorithm, presented in this section, aims to perform wear-leveling
on a rather fine granularity within B+-tree nodes, the practical granularity is limited
by a meaningful chosen size for the nmm. Although such as granularity suffices for
wear-leveling, a special case of non-uniform memory usage happens within data words.
Consider, for instance, an integer numeric value stored in a 64 bit variable, but only

5.4. B+-Tree Checkpoint Wear-Leveling 95

storing value between 0 and 255. One byte of the word would face heavy wear-out,
while all others do not face any wear-out at all. To overcome this, the OCTO+ algorithm
implements a byte offset strategy for the checkpoint of tree nodes. Each node is stored
with a constant byte offset between 0 and 7, which is statically determined by the node
ID. This achieves a more uniform wear-out of the memory within words.

5.4.5 Evaluation

In order to evaluate the effectiveness of the OCTO+ algorithm, an exemplary B+-tree is
implemented together with the wear-leveling algorithm in the full system wear-out
simulation framework (Section 3.1.5).The configurable node size of the B+-tree is
chosen to 1024 bytes to offer a compromise between a reasonable fan out of the
tree and precise granularity of write information collection. The tree is constructed by
inserting three different data sets into the tree to simulate different usage scenarios:

1. Linear: This data set contains data in monotonic order, which simulates the
scenario of presorted data. This results in a tree with many half filled nodes, since
old nodes are likely not modified again during insertion.

2. Random: This data set contains random insertion keys, which likely modifies
nodes in the tree in a uniform manner during insertion.

3. YCSB: This data set contains data from the Yahoo cloud serving benchmark
[CST+10].

For all the data sets, keys and values are chosen as 8 byte values. To further simulate
different usage characteristics for the various datasets, the dataset elements are split
into three different setups each: 100% inserts / 0% lookups, 75% inserts / 25% lookups
and 50% inserts / 50% lookups. For each experiment, the operations are mixed, such
that modifications of the tree happen during the entire execution of the experiment.
The datasets are not used entirely, but rather the total number of operations is fixed
to make the experiments more comparable. The total number of operations is set to
20000 operations to simulate small trees and to 50000 operations to simulate big trees.
The checkpoints are then performed after each 50 operations for the small trees (400
checkpoints in total) and after each 100 operations for the big trees (500 checkpoints in
total).

To apply a mapping from tree nodes to NVM blocks, 5 different strategies are applied
for comparison:

• Static: This strategy always employs the same mapping (e.g. an identity mapping)
and leaves it unchanged. This strategy is used as a baseline to compare other
strategies to.

• OCTO+: This is the implementation of the algorithm discussed before, including
intra and inter block wear-leveling.

• AA: This is only the inter block wear-leveling (aging aware) part from the OCTO+
algorithm.

96 Chapter 5. Application-Cooperative NVM Wear-Leveling

• RANDOM: This strategy decides an entirely randomized new mapping on every
checkpoint.

• RING: This strategy moves every blocked to the next NVM block at every check-
point with a wrap around semantics, such that the tree nodes move around the
NVM in a ring like fashion during the checkpoints.

With the help of initial experiments, the threshold for aging divergence within blocks,
which triggers a tree node to be mapped to a new NVM block in the OCTO+ algorithm,
is set to 15. The threshold for the age difference to swap the oldest and the youngest
block is set to 5.

Metrics

In order to evaluate the resulting improvement in terms of memory wear-out, the lifetime
improvement metric LIiterative is utilized (Section 3.1.2) in adoption to iterative write
scheme memories. In this metric the resulting memory lifetime, under the assumption
that the memory becomes unusable once the first cell wears out, is compared to a
baseline execution and related to the caused overheads. This leads to a factor of
how much the memory lifetime is improvement with the studied wear-leveling scheme.
Although this metric suffices to analyze the lifetime improvement in isolation, it does not
reveal any insights on how well the B+-tree with the wear-leveling scheme is integratable
into a larger system. In a larger system, multiple applications may be executed and
checkpointed. A global wear-leveling scheme may consider all NVM blocks from different
applications together and achieve wear-leveling by shuffling these blocks within check-
points. Hence, it should be also studied how well such global wear-leveling schemes
can profit from the analyzed B+-tree implementation. Towards this, the definition of
wear-leveling potential WLP is introduced. This metric determines the maximal memory
wear-out in fixed size NVM blocks and computes the mean of these ages:

WLP (g) =mean(max
x∈[0,g](age(x)), ..., max

x∈[(m−1)⋅g,n](age(x))) (5.1)

In this equation, n denotes the total number of bits in the NVM, g denotes the granularity
of NVM blocks to be investigates and m = n

g the number of blocks. The age of a bit
refers to the total amount of bit flips. For this evaluation, the granularity is considered to
be g = 4096 ⋅ 8, i.e. the usual size of virtual memory pages. This is motivated by the fact
that software based global wear-leveling schemes may utilize the MMU to perform global
wear-leveling. Comparing the WLP from an analyzed configuration with a baseline
configuration leads to an improvement factor of the WLP .

Results

For the previously discussed evaluation settings and metrics, the results are summarized
in Figure 5.7. The upper two graphs illustrate the lifetime improvement (left) and the
wear-leveling potential (right) for the small B+-trees, while the lower two graphs illustrate

5.4. B+-Tree Checkpoint Wear-Leveling 97

OCTO+ AA RANDOM RING

11

2
.2
1

2
.2
1

2
.2
1

2
.2
1

0
.1
5

0
.1
5

0
.0
8

0
.0
8

2
.2
1

2
.2
1

2
.2
1

2
.2
1

0
.1
6

0
.1
6

0
.0
8

0
.0
8

3
.1
0

3
.1
0

3
.1
0

3
.1
0

0
.1
5

0
.1
5

0
.0
8

0
.0
8

1
.6
9

1
.6
9

1
.1
7

1
.1
7

0
.4
9

0
.4
9

0
.2
7

0
.2
7

1
.6
4

1
.6
4

1
.0
0

1
.0
0

0
.4
9

0
.4
9

0
.2
4

0
.2
4

1
.6
5

1
.6
5

1
.3
4

1
.3
4

0
.5
3

0
.5
3

0
.2
5

0
.2
5

1
.2
4

1
.2
4

1
.1
6

1
.1
6

0
.4
0

0
.4
0

0
.2
7

0
.2
7

1
.1
3

1
.1
3

1
.1
4

1
.1
4

0
.3
4

0
.3
4

0
.2
3

0
.2
3

0
.9
5

0
.9
5

1
.0
2

1
.0
2

0
.2
8

0
.2
8

0
.1
8

0
.1
8

100/0 linear 75/25 linear 50/50 linear

100/0 random 75/25 random 50/50 random

100/0 ycsb 75/25 ycsb 50/50 ycsb

Small: Lifetime Improvement (LI)

OCTO+ AA RANDOM RING

11

1
.1
2

1
.1
2

1
.1
2

1
.1
2

0
.0
3

0
.0
3

0
.0
2

0
.0
2

1
.1
0

1
.1
0

1
.1
0

1
.1
0

0
.0
3

0
.0
3

0
.0
2

0
.0
2

1
.0
8

1
.0
8

1
.0
8

1
.0
8

0
.0
2

0
.0
2

0
.0
1

0
.0
1

1
.4
2

1
.4
2

1
.0
2

1
.0
2

0
.3
1

0
.3
1

0
.0
4

0
.0
4

1
.3
8

1
.3
8

1
.0
2

1
.0
2

0
.3
1

0
.3
1

0
.0
4

0
.0
4

1
.2
7

1
.2
7

1
.0
4

1
.0
4

0
.3
1

0
.3
1

0
.0
4

0
.0
4

1
.2
8

1
.2
8

1
.0
5

1
.0
5

0
.3
6

0
.3
6

0
.0
6

0
.0
6

1
.1
8

1
.1
8

1
.0
4

1
.0
4

0
.3
5

0
.3
5

0
.0
4

0
.0
4

0
.9
4

0
.9
4

1
.0
2

1
.0
2

0
.2
2

0
.2
2

0
.0
2

0
.0
2

100/0 linear 75/25 linear 50/50 linear

100/0 random 75/25 random 50/50 random

100/0 ycsb 75/25 ycsb 50/50 ycsb

Small: Wear-Leveling Potential (WLP)

OCTO+ AA

11

1
.4
1

1
.4
1

1
.5
0

1
.5
0

1
.7
3

1
.7
3

1
.1
9

1
.1
9

1
.5
7

1
.5
7

1
.1
2

1
.1
2

1
.7
1

1
.7
1

1
.0
8

1
.0
8

1
.3
3

1
.3
3

1
.0
7

1
.0
71
.2
0

1
.2
0

1
.0
9

1
.0
9

1
.0
8

1
.0
8

1
.0
5

1
.0
5

50/50 linear

100/0 random

75/25 random

50/50 random

100/0 ycsb

75/25 ycsb

50/50 ycsb

Big: Lifetime Improvement (LI)

OCTO+ AA

11

1
.0
4

1
.0
4

1
.0
5

1
.0
5

1
.4
6

1
.4
6

1
.0
2

1
.0
2

1
.3
7

1
.3
7

1
.0
2

1
.0
2

1
.2
8

1
.2
8

1
.0
1

1
.0
1

1
.2
5

1
.2
5

1
.0
2

1
.0
2

1
.0
9

1
.0
9

1
.0
3

1
.0
3

0
.8
5

0
.8
5

1
.0
2

1
.0
2

50/50 linear

100/0 random

75/25 random

50/50 random

100/0 ycsb

75/25 ycsb

50/50 ycsb

Big: Wear-Leveling Potential (WLP)

Figure 5.7: Wear-Leveling Improvement

the results for the big trees, respectively. The data sets, which are used to create the
tree are indicated by color (green denotes the linear data set, red the random data
set and blue the ycsb data set). The insert / lookup configurations are indicated by
shading of the respective color. The analyzed wear-leveling configurations are indicated
in blocks on the x-axis. For the big trees, the Random, and Ring strategies are omitted,
since they already highlight a bad performance for the small trees and are hence not
feasible to be considered as a viable strategy. Further, due to massive memory and
time consumption for the simulation, only the 50% insert scenario is evaluated for the
linear data set for big trees.

Investigating the shown results, it can be seen that the Random and Ring strategy
lead to a consequent reduction in lifetime and wear-leveling potential in the setting of the
small trees for all data sets. This suggests the conclusion that the initial problem state-
ment, that wear-leveling actions have to be performed carefully, has high significance.
Random and Ring are both blindly applied strategies, without any careful considerations

98 Chapter 5. Application-Cooperative NVM Wear-Leveling

about caused overheads and gained improvements. This leads to a decrease in the
memory lifetime by at least 50% in most cases, even up to massive decrease in lifetime
and wear-leveling potential of more than 90%. On the other side, the carefully designed
wear-leveling algorithms (OCTO+ and AA) can improve the memory lifetime and the
wear-leveling potential in all cases except for the ycsb benchmark with 50% inserts.
This further suggests the conclusion that a careful design of wear-leveling can help to
gain improvements in terms of memory lifetime. It can be further observed that for the
random data set the OCTO+ algorithm can achieve better results than the AA algorithm,
i.e. additional intra block wear-leveling pays out in this scenario. While many results
range around an improvement of ≈ 50% in terms of memory lifetime, an improvement of
up to 200%, i.e. a factor of 3× can be achieved for the linear data set with 50% inserts
and lookups.

5.4.6 Wrap-Up

This section illustrates a wear-leveling scheme for B+-trees on a hybrid NVM system,
where the wear-leveling is performed in the form of a remapping of memory locations for
each checkpoint. The initial problem statement suggests that such remapping decisions
have to be performed carefully, because the inherent overheads can easily degrade
the memory lifetime. An algorithm, called OCTO+ is introduced, which aims to perform
such careful wear-leveling operations. This algorithm aims for intra blocks and inter
block wear-leveling. Considering only the part of the inter block wear-leveling, the
strategy is called AA (Aging Aware) in this section. An experimental comparison of blind
wear-leveling strategies (Random and Ring) reveals that the memory lifetime indeed
is degraded by up to 98% with such a not careful strategy. The OCTO+ algorithm,
in contrast can achieve a significant lifetime improvement of up to 3×, depending on
the studied data set. In addition to this pure lifetime improvement, also the potential
for possible cross application system-wide wear-leveling schemes is improved by the
OCTO+ algorithm. It has to be noted, however, that the presented algorithm here is
an application specific scheme for B+-trees, which heavily bases on the fact that the
memory access information collection can be precisely and easily integrated into the
tree implementation. When such methods are applied to other applications, a similar
scheme for information collection has to be designed.

5.5 Concluding Software-Based Wear-Leveling

The previous two chapters introduce concepts for software-based NVM wear-leveling.
It is the major goal of these concepts to broaden the traditional memory interface
of only load ans store accesses in a way that extends the lifetime of memories with
limited lifetime. This is mainly achieved by following a model of iterative wear-leveling,
i.e. altering the software in such a way that an even usage of all memory cells is targeted

5.5. Concluding Software-Based Wear-Leveling 99

at any time. This approach has the key advantage that the internal state does not need
to be persisted or complex model of the NVM needs to be maintained.

Even memory usage is achieved in an application transparent manner as a compo-
nent of the executing operating system (Chapter 4). The MMU and the usage principles
of the stack memory are used to change the target of memory accesses in a transpar-
ent way to the application. The even memory usage is achieved by tracking memory
accesses with the help of performance monitoring hardware and applying simple wear-
leveling strategies. Summing this method up, the traditional memory interface of loads
and stores is broadened by information collection with the help of performance monitor-
ing and by memory behavior changes with the help of the MMU. These two technologies
are well established and traditioned and can be found in a variety of computer systems.

Chapter 5 further introduces methods to achieve wear-leveling in an application
cooperative manner. For this, the need for performance monitoring and also the need
for MMU based remapping is removed. This is achieved by investigating the internals of
the running software and altering as one approach the stack memory usage and hook
into a checkpointing algorithm as a second approach. The usage of stack memory by a
C/C++ compiler is as well a well established and traditioned technology, which is used
to broaden the memory interface for the sake of wear-leveling. Checkpointing between
volatile memory and NVM may not be as traditioned and well established as the usage
of stack memory, but the concept of checkpointing is very generic and widely used in
the scope of certain applications, e.g. databases. Hence, for this specific case, it is also
used to broaden the memory interface.

CHAPTER 6

Memory Optimization for Random
Forests

Contents
6.1 Modern Technologies and Traditional Interfaces 102

6.2 Overview . 103

6.3 Unified Layout Optimization of DTs on Racetrack Memory 104

6.3.1 Scope . 104

6.3.2 Problem Analysis and Statement 105

6.3.3 BLOwing Trees . 106

6.3.4 Evaluation . 112

6.3.5 Wrap-Up . 115

6.4 Decomposed Layout Optimization of DTs on Racetrack Memory . 115

6.4.1 Scope . 116

6.4.2 Problem Analysis and Statement 116

6.4.3 Decomposed Tree Optimization 118

6.4.4 Evaluation . 124

6.4.5 Wrap-Up . 129

6.5 Concluding Memory Optimization of Random Forests 130

101

102 Chapter 6. Memory Optimization for Random Forests

6.1 Modern Technologies and Traditional Interfaces

Although the previously studied traditional memory interface of load and store ac-
cesses and controllable memory placement cannot achieve direct specific hardware
management, it opens a wide design space for software exploitation for many use
cases. Towards the application to other technologies, two main observations can be
summarized from the previous chapters: First, the introduced work towards application
transparent wear-leveling shows that a central management agent can overcome the
shortcoming of the traditioned interface and provide a broadened interface towards wear-
leveling, where the guessing about application behavior can be omitted. Second, the
work on application cooperative wear-leveling shows that certain applications are well
suited to efficiently integrate effective wear-leveling schemes directly into the application.
Summarizing the interface extensions, required for wear-leveling, a memory access
distribution is the most crucial part, which has to be captured and utilized. Providing
means for capturing and utilizing memory access distributions, as presented before,
broadens the traditional memory interface to a degree that lifetime management for
modern memory technologies can be achieved by exploiting the traditional memory
interface.

This chapter of this thesis picks up the same traditional hardware interface for mem-
ory accesses:

Load / Store / Memory Placement

In the following, technologies are considered, where capturing a simple memory access
distribution is not sufficient for a proper operation of the technology. Consequently,
interfaces have to be further broadened. The major focus in this chapter is put to
RACETRACK MEMORY (RTM), which is an emerging memory technology. Despite other
technical characteristics, which are not further studied in this thesis, RTM features an
access dependent shift latency, i.e. the latency and hence the energy consumption of a
memory access depends on the previous memory access. In order to efficiently operate
RTM, software should lay out memory contents in such a way that memory access,
which follow each other, target RTM friendly memory locations. Towards this, not only a
memory access distribution, but a conditional memory access distribution is required,
i.e. the probability of a memory location to be accessed, given that another memory
location was accessed beforehand. Intuitively, such a conditional distribution can be

6.2. Overview 103

captured in a straight forwards extension of the previously introduced methods as an
empirical model and can serve for optimization. Considering existing methods towards
this, such an approach also exists with compiler support [KHB+19]. The problem with
this intuitive approach, however, is the large complexity. In an empirical model, every
memory location could be accessed after every other location with a certain probability,
which makes optimization of memory locations extremely challenging.

Consequently, a conditional empirical memory access distribution with a drastically
reduced complexity is required. This chapter aims to provide such a model by exploiting
application specific knowledge about the used data structures, i.e. tree data structures.
In tree based structures, the parent relation clearly limits the possible combinations
of subsequent memory accesses. The information about this reduced model is sub-
sequently fed into a dedicated optimization interface for RTM. Ultimately, this allows a
latency optimized operation of RTM by a software based extension of the traditional
memory interface of placing memory contents at dedicated addresses and issuing load
and store accesses:

Load / Store / Memory Placement

RTM Shift Optimization for RFs

6.2 Overview

The previous chapters of this thesis mainly focus on the lifetime issue of NVM and means
to extend the lifetime by broadening the traditional memory interface. Lifetime, however,
is not the only property, that comes with NVM in a significant different manner than in
traditional memories. Latencies and access time behavior can also feature significant
different structures than for classic random access memories. This chapter enlightens
this aspect with a dedicated focus on the latency structures of RACETRACK MEMORY

(RTM). Section 3.1.6 gives an overview of the latency structure of RTMs. These
memories induce an access dependent latency model due to their inner realization.

104 Chapter 6. Memory Optimization for Random Forests

In greater detail, the latency of a single memory access depends on the previous
accesses and is not constant. Although generic optimization frameworks for RTM exist
[KHB+19], the complexity of the latency optimization problem is extremely high, making
optimal solutions infeasible in many situations. One chance to overcome this, is to
develop specialized solutions for dedicated applications, such that the complexity of the
optimization problem can be drastically reduced. In this section, the target application
of RANDOM FOREST (RF) is studied. RFs, when deployed after training, allow building
a probabilistic model of the distribution of visited memory locations during inference.
It should be noted that such a model always is constructed on the training data and
therefore must not entirely describe the test data. However, a basic principle of ML is
that training and test data come from a similar distribution, such that probabilistic models
should ideally hold for training and test data similarly. The probabilistic model of the
memory accesses of RFs can be used to model the corresponding memory latencies in
RTM, as explained in detail in Section 3.2. The degree of freedom when deploying RFs
to hardware then allow for optimization of the allover latency.

6.3 Unified Layout Optimization of DTs on Racetrack Memory

As discussed above, random forest and decision tree implementations allow for a variety
of modifications, which also allow hardware aware implementations. Especially the step
of transforming a given model to a hardware-aware implementation allows considering
hardware specific characteristics and account for these in a hardware optimized layout.
In this section, such a hardware optimized implementation is discussed for the case of
RTM (Section 3.1.6). Due to their inner structure, RTMs have a memory access latency,
which is dependent on the previous access. The previous access within decision tree
inference is deterministically defined by the tree structure itself. Following a probabilistic
model of the tree, most probable accesses are optimized in such a way, that the allover
memory access latency is minimized.

6.3.1 Scope

This work presents, as mentioned before, memory access latency optimization for
decision trees on RTM. The specific property of memory access latencies depending
on the previous accesses stems from the organization of RTM into DBCs. These DBCs
organize memory cells in a nanowire with the need to shift them towards an access
head before accessing, requiring a shift length dependent latency. The usual size of
these DBCs allows to place one DT at most. Consequently, RFs are not specifically
considered in this work, since the latency optimization is applied to every single DT
within the ensemble. As the optimization provide optimized memory access latency for
RTM, native trees are considered in this work. Native trees allow an arbitrary placement
of tree nodes in the data memory, hence allow for arbitrary encountering for RTM related

published work: [HKC+21a]

6.3. Unified Layout Optimization of DTs on Racetrack Memory 105

access latencies. Basically, the studied problem in this work boils down to a formalizable
optimization problem, i.e. finding the layout in data memory for a native tree, which
minimizes the RTM induced latency with respect to an empirical probabilistic model.
Since solving this problem optimally is highly time-consuming, this work introduces a
fast optimization strategy. It is proven, that the fast optimization strategy in this section
has an upper bound of 4× compared to the optimal solution, i.e. achieves a result at
most with 4× the latency as the optimal solution. Experimental evaluation shows that
the fast optimization performs even better, even close to the optimal solution in most
cases. In short, the following points are covered in this work:

• A formal cost model for shift overhead of racetrack memory with respect to a
probabilistic execution model is specified. This model is expressed as an ILP,
which allows for deriving the optimal solution, if the required time is spent.

• A fast optimization algorithm, which reduces the problem of DT layouting in RTM
to an efficient solvable optimization problem. The algorithm is further modified for
the specific characteristics of the studied problem.

• A formal proof of the upper bound of 4× for the fast optimization algorithm com-
pared to the optimal solution.

6.3.2 Problem Analysis and Statement

Before elaborating the actual problem formulation, the scope of the target system has to
be clarified first. As motivated, this work aims to optimize access latencies in RTM for
DTs. Hence, a system equipped with RTM is considered as the target system. Due to
the specific access properties of RTM, not the entire system memory may be mapped
to the RTM, hence a hybrid memory system is considered, where RTM is available as a
form of scratchpad memory, which can be mapped to the target memory, which should
be stored in RTM. The other type of memory in the system can be e.g. realized with
SRAM. If such a system, for instance, serves as an on the edge inference device with a
limited energy budget, storing the DT in RTM is desired due to the non-volatility and the
corresponding energy saving. Improving the access latency of the model inference then
further reduces the energy consumption and can help to reduce maintenance cycles
when such a device, for instance, serves as a battery powered embedded sensor node.
In order to enable such a system architecture, no further caches are assumed to be
applied with the RTM, i.e. all memory accesses from the CPU to that specific region
directly lead to access within the RTM.

The deployed RF including the inner DTs follows exactly the same structure and
logical model as described before. Furthermore, the realization of native trees is
considered for this specific case. In native trees, each node can be stored at an arbitrary
index within the node array, since the logical tree structure is realized by left and right
child pointers, which only need to be set correctly. In consequence, for a DT with m − 1

nodes N = {n0, n1, ..., nm−1}, an arbitrary bijective mapping I ∶ N → {0, 1, ...,m − 1} of
tree nodes to array positions can be realized. It is assumed that a single node of the
DT can be stored in one memory word. Referring to the system model (Section 6.3),

106 Chapter 6. Memory Optimization for Random Forests

the cost for access latency and the relative energy consumption for shifting racetrack
memory is linearly related to the length of the shift. Hence, shifting a single RTM DBC
from position i to position j is assumed to cause an abstract cost of ∣i−j∣ in the following.
When one DT is mapped to a single DBC, accessing node nb directly after na with
an applied mapping I causes the cost ∣I(nb) − I(na)∣. Minimizing this abstract cost
minimizes the access latency and the corresponding energy overhead.

The organization of RTM in DBCs leads to the aforementioned abstract cost model
within a single DBC. Accesses to different DBCs can be considered individually, since
they are realized in an architecture, which enables random access to DBCs without
varying costs. A typical length of a DBC is up to 64 positions. If only a single DT is
stored in such a DBC, at least a maximal depth of 5 can be realized. Larger trees
could be split into sub trees of depth of 5 and handled as individual trees. Hence, the
methods presented in the following assume one DT to be mapped within a single DBC
exclusively.

Effectively, the studied problem in this section can be formulated as finding an
optimal mapping I for a single DT, exclusively mapped to a single RTM DBC, minimizing
the abstract cost model. Solving this problem directly derives a strategy for larger
trees and RFs by splitting into subtrees and employing multiple instances as a RF.
Consequently, the following only discusses the case of single DTs with a maximal
depth of 5. In order to tackle the studied problem, a precise cost model is formulated
first. Due to the high time consumption of minizing the cost model straight forward, a
fast optimization algorithm is derived by reducing the cost model to an instance of the
Optimal Linear Ordering (O.L.O) problem, which can be efficiently solved the special
case of rooted trees. Since the cost model does not exactly describe a rooted tree, the
derived solution is not necessarily optimal. Therefore, an upper bound to the optimal
solution is derived with a formal proof.

6.3.3 BLOwing Trees

As introduced, the first step towards latency and energy optimization of DTs on RTM
is to derive a precise cost model, which serves as a target for optimization. This cost
model includes the abstract cost model on RTM as explained before, as well as the
probabilistic model of DT inference. From the training data, the probability of each node
nx to be visited from its parent node prob(nx) is determined by counting the samples
to be assigned to that specific node during training. Although this distribution must
not exactly be valid for the test data set, it is assumed that the distributions are similar.
Hence, the probabilistic model serves as an optimization target here. The relative
probability of a node to be visited is between 0 and 1, hence an absolute probability of
a node nx to be visited within the tree across a sufficient amount of inferences can be
stated as absprob(nx) = Πnz∈{path(nx)}prob(nx), where path(nx) describes a set of
nodes, which contains all nodes on the path from the root node n0 towards the specific
node nx in the order of their appearance in the path. Every node within the tree nx

forms the root of a subtree, which contains a set of leaf nodes leafs(nx) ⊆ Nl, where

6.3. Unified Layout Optimization of DTs on Racetrack Memory 107

Nl is the set of all leaf nodes of the tree. Then ∀ny ∈ leafs(nx) ∶ nx ∈ path(ny). This
further helps to define a relation of the absolute probabilities:

Definition 1. For a given node nx ∈ N , the sum of probabilities of its direct children
must always be 1. The absolute probability of nx then by definition can be expressed as

absprob(nx) = ∑
ny∈leafs(nx)

absprob(ny) (6.1)

Considering the execution of the DT during inference, nodes are allover visited on
their absolute probability. Hence, across the entire tree, the abstract cost for shifting the
RTM DBC for inference under a node mapping I can be stated as the cost for shifting
from a parent node to the node, weighted with the absolute probability (Equation ((6.2))):

Cdown = ∑
nx∈N∖{n0}

absprob(nx) ⋅ ∣I(nx) − I(P (nx))∣ (6.2)

Since not only a single inference is executed, the cost for shifting the RTM DBC back to
the root node has to be accounted for as well. This only happens when a leaf nodes
was accessed before, hence this cost can be described in Equation ((6.3)).

Cup = ∑
nx∈Nl

absprob(nx) ⋅ ∣I(nx) − I(n0)∣ (6.3)

This consequently leads to the overall cost model for DT inference on RTM in Equa-
tion ((6.4)).

Ctotal = Cdown +Cup (6.4)

Finding a mapping of nodes to memory positions, wich minimizes Ctotal is considered
to be a minimal mapping I∗. As mentioned before, this problem is an instance of the
Optimal Linear Ordering (O.L.O.) problem [AH73; BÇP+98; DPS02]. The O.L.O. problem
in general is to map the nodes of a graph G to slots, where all slots are in a row and
adjacent slots are one unit apart, such that the total sum of arc weights multiplied
with the distance between the nodes, connected by the arc, is minimal. The O.L.O.
(or also called Optimal Linear Arrangement) problem is an instance of the Quadratic
Assignment problem and is NP-complete [GJ79]. As a special case, the O.L.O. problem
for rooted trees with the root node on the leftmost position (i.e. only optimizing Cdown)
can be optimally solved in time complexity O(m logm) [AH73]. However, reducing the
problem formulation in Equation ((6.4)) does not form a rooted tree, but rather a cyclic
graph due to arcs from leaf nodes to the root node. Hence, applying the algorithm from
Adolphson and Hu [AH73], leads to a mapping, which must not be I∗, but rather a
suboptimal mapping, only minimizing Equation ((6.2)) as part of the total cost model.
Furthermore, the algorithm limits the solution to trees with the root node mapped to
the left most position, which can be considered as a further limitation compared to the
optimal mapping. The mapping, derived by the fast algorithm from Adolphson and Hu,

is denoted as
←Ð
I∗ in the following.

108 Chapter 6. Memory Optimization for Random Forests

The following discusses the relation between the optimal mapping for the studied
problem, which requires a long time to be found and the suboptimal mapping, derived
by the algorithm from Adolphson and Hu. The two limitations, namely the limitation to
rooted trees and the condition that the root node is mapped to the left most position,
are analyzed and their effect on the total cost is formally upper bounded in the following.
This requires the introduction of certain terminology for different mappings and their
resulting cost in Table 6.1.

Placement Explanation
I arbitrary mapping
I∗ optimal mapping which optimizes Ctotal,

resulting in the total cost C∗opt
I∗↓ optimal mapping which optimizes Cdown

only, resulting in the optimal down cost
C∗↓down←Ð

I arbitrary mapping with the root on the
left←Ð

I∗ optimal mapping with the root on the left

and with expected down cost
←Ð
C∗down

Table 6.1: Placement Notation

Suppose that C∗opt is the minimally expected cost Ctotal of the optimal placement I∗
of the DT. The following shows how to derive a suboptimal mapping, which causes at
most 4 times the cost of C∗opt. A path, defined as path(nℓ), from the root node n0 to a
leaf node nℓ ∈ Nl in a placement I is monotonically increasing if I(nx) > I(P (nx)) for
every node nx in path(nℓ) ∖ {n0}. Contrarily, such a path is monotonically decreasing
if I(nx) < I(P (nx)) for every node nx in path(nℓ) ∖ {n0}.
Definition 2. A placement I is defined as unidirectional if all paths in the given DT are
monotonically increasing in this placement.

Definition 3. A placement I is defined as bidirectional if every path in the DT is either
monotonically increasing or monotonically decreasing.

Lemma 1. Let I∗↓ be a mapping which only minimizes Cdown, resulting in C∗↓down, and
ignores Cup. Then,

C∗↓down ≤ C∗opt (6.5)

Proof. This comes from the definition as certain terms in the objective function are
removed, and all terms are positive.

Next, a property is restated, which comes from Adolphson and Hu [AH73]. It regards
the optimization of I∗↓ when the root has to be put on the leftmost position.

6.3. Unified Layout Optimization of DTs on Racetrack Memory 109

Lemma 2 (Page 410 in [AH73]). (restated) There exists an optimal unidirectional

placement
←Ð
I∗ for the O.L.O. problem when the input is a rooted tree, i.e.,

←Ð
C∗down = C∗↓down,

under the constraint that the root is on the leftmost position.

Deriving a unidirectional or bidirectional placement induces the special property that
optimizing Cdown implicitly optimizes Cup, which is shown by the following lemma.

Lemma 3. If a placement I is unidirectional or bidirectional, Cdown = Cup.

Proof. Cdown = Cup has to be shown. Since I is known to be unidirectional or bidi-
rectional, it is also known that a leaf node nx ∈ Nl is always the rightmost node or
the leftmost node within its path path(nx) if the path is monotonically increasing or
decreasing, respectively. It is further known that following the path from parents to their
children must always be a movement monotonically to the right or monotonically to the
left. Therefore, it can be followed that the distance from the root to a leaf node is equal
to the sum of all distances on the path:

∀ny ∈ Nl ∶ ∣I(ny) − I(n0)∣ = ∑
nz∈path(ny)∖n0

∣I(nz) − I(P (nz))∣ (6.6)

This leads to:

Cup = ∑

ny∈Nl

⎛

⎝

absprob(ny) ⋅ ∑

nz∈path(ny)∖{n0}
∣I(nz) − I(P (nz))∣

⎞

⎠

(6.7)

The summation is reorganized with respect to each node nx ∈ N by using the following
observation: if nz is in path(ny), then ny is in leaves(nz). That is, a node nx ∈ N
contributes to Equation ((6.7)) exactly ∣I(nx) − I(P (nx))∣ ⋅∑ny∈leaves(nx) absprob(ny).
Therefore,

Cup = ∑

nx∈N∖{n0}
⎛

⎝

∣I(nx) − I(P (nx))∣ ⋅ ∑

ny∈leaves(nx)
absprob(ny)

⎞

⎠

(6.8)

Applying Definition 1 leads to Equation ((6.9)):

Cup = ∑
nx∈N∖{n0}

(∣I(nx) − I(P (nx))∣ ⋅ absprob(nx) = Cdown (6.9)

In the following, the relation between a mapping I and a mapping
←Ð
I which puts the

root on the leftmost position is highlighted.

Lemma 4. Any placement I can be converted into a placement
←Ð
I which places the

root on the leftmost position by increasing the expected cost of
←Ð
C down with at most a

factor of 2: ←Ð
C down ≤ 2 ⋅Cdown (6.10)

Proof. Suppose that the root of the DT is assigned at position r in the placement I.
Due space limitation, only the proof of the case that m − r ≥ r is presented, as the other
case is symmetric. The placement is replaced as follows:

110 Chapter 6. Memory Optimization for Random Forests

• reassign every node in position r + i in I to r + 2 ⋅ i for i = 1,2, . . . , r.
• reassign every node in position r + i in I to 2 ⋅ r + i for i = r + 1, r + 2, . . . ,m.
• reassign every node in position r − i in I to r + 2 ⋅ i − 1 for i = 1,2, . . . , r.

After that, every node is then shifted by r positions towards the left and the root of the
decision tree is on the leftmost position, i.e., 0.

For notation brevity, P (nx) is denoted as nz for the rest of this proof. According to
the above reassignment,

←Ð
I (nx) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 ⋅ (r − I(nx)) − 1 I(nx) < r
2 ⋅ (I(nx) − r) r ≤ I(nx) ≤ 2r
I(nx) 2r < I(nx),

(6.11)

which also holds in the same manner for
←Ð
I (nz). Four cases for different conditions of

I(nz) and I(nx) based on Equation ((6.11)) are analyzed to prove

∣←ÐI (nx) −←ÐI (nz)∣ ≤ 2∣I(nx) − I(nz)∣. (6.12)

Case 1: I(nz) ≤ 2r and I(nx) ≤ 2r: The following scenarios are considered:

• Case 1a: I(nx) and I(nz) are both ≥ r: Then,∣←ÐI (nx) −←ÐI (nz)∣ = 2∣I(nx) − I(nz)∣, i.e., Equation ((6.12)) holds.
• Case 1b: I(nx) and I(nz) are both < r: Then,∣←ÐI (nx) −←ÐI (nz)∣ = 2∣I(nx) − I(nz)∣, i.e., Equation ((6.12)) holds.
• Case 1c: one of I(nx) and I(nz) is < r and the other is ≥ r: Suppose for the first

subcase that I(nx) > I(nz). Then, ∣←ÐI (nx)−←ÐI (nz)∣ = 2⋅(I(nx)−r)−2(r−I(nz))+
1 < 2⋅(I(nx)−r)−2(r−I(nz))+4(r−I(nz)) = 2⋅(I(nx)−I(nz)) = 2∣I(nx)−I(nz)∣,
where < is due to the assumption that I(nz) < r and I(nz) is an integer, i.e.,
1 ≤ r − I(nz). The other case that I(nz) > I(nx) is symmetric. Therefore, the
condition in Equation ((6.12)) remains to hold.

Case 2: I(nz) > 2r and I(nx) > 2r: In this case, the reassignment does not change their
positions, i.e.,

←Ð
I (nz) = 2r+(I(nz)−2r) = I(nz) and

←Ð
I (nx) = 2r+(I(nx)−2r) = I(nx).

As a result, ∣←ÐI (nx) −←ÐI (nz)∣ = ∣I(nx) − I(nz)∣, and Equation ((6.12)) holds.

Case 3: I(nz) > 2r and I(nx) ≤ 2r: When I(nx) ≥ r, ∣←ÐI (nx) −←ÐI (nz)∣ = I(nz) −
2∣I(nx) − r∣ = I(nz) − 2I(nx) + 2r ≤ 2 ⋅ ∣I(nz) − I(nx)∣ holds. When I(nx) < r,∣←ÐI (nx) − ←ÐI (nz)∣ = I(nz) − 2r + 2I(nx) + 1 < I(nz) − 2r + 2I(nx) + 4r − 4I(nx) =
I(nz)+ 2r − 2I(nx) ≤ 2 ⋅ ∣I(nz)− I(nx)∣ holds, where < above is due to the assumption
that I(nz) < r and hence r − I(nz) ≥ 1. Therefore, Equation ((6.12)) holds.
Case 4: I(nz) ≤ 2r and I(nx) > 2r: This is the symmetric case of Case 3.

As a result, Equation ((6.12)) holds for all cases and the lemma is proved.

6.3. Unified Layout Optimization of DTs on Racetrack Memory 111

Suppose that
←Ð
I∗ is an optimal unidirectional mapping of the rooted tree (with the

root on the leftmost position) and optimizes the cost Cdown, resulting in the minimal

cost
←Ð
C∗down. Further suppose that I∗↓ is an optimal mapping which optimizes Cdown,

resulting in C∗↓down. The following corollary can be concluded:

Corollary 1. ←Ð
C∗down ≤ 2 ⋅C∗↓down (6.13)

Proof. I∗↓ is an unconstrained placement that achieves the optimal C∗↓down. By Lemma 2,

it is known that
←Ð
I∗ is an optimal placement for the cost

←Ð
C∗down under the condition

that the root is on the leftmost position. Therefore, C∗↓down is a lower bound of any
solution when the root is on the leftmost position. By Lemma 4, I∗↓ can be converted
into a placement

←Ð
I , in which the root is put to the leftmost position, with a cost up to←Ð

C down ≤ 2 ⋅C∗↓down. Therefore,
←Ð
I ∗, as the optimal placement under the root constraint,

must not cause a higher cost
←Ð
C∗down than

←Ð
C down.

Combining the previous lemmas and the corollary leads to an assessment of the
relation of the total cost between an optimal mapping and an optimal unidirectional
mapping with the root on the left most position:

Theorem 1. An optimal unidirectional placement has an approximation factor of 4 of the
studied problem.

Proof. Based on Lemma 3, we know that the expected cost, denoted as
←Ð
C∗total, of

the optimal unidirectional placement for the decision tree (including the down- and

up-parts) is exactly 2 ⋅←ÐC∗down. Therefore, together with Corollary 1 and Lemma (6.5),
the conclusion can be reached.

←Ð
C∗total = 2 ⋅←ÐC∗down ≤ 4 ⋅C∗↓down ≤ 4 ⋅C∗opt.

In order to set the previous proof into a context of application, it is shown how
to derive an optimal unidirectional solution that minimizes

←Ð
C∗down efficiently. Adolph-

son and Hu [AH73] proposed an algorithm to optimally solve this case. Specifically,
according to [AH73], the O.L.O. problem for rooted trees with the root mapped to the
leftmost slot is to find an optimal allowable linear ordering of tree nodes. An allowable
linear ordering in their terminology means that if node np = P (nx) is the parent of
node nx, it has to be left of nx in the ordering. The algorithm from Adolphson and Hu
always derives an optimal allowable linear ordering to minimize the O.L.O. problem in
O(m logm) time complexity.

Deriving a mapping by the algorithm from Adolphson and Hu at most causes 4× the
cost compared to the optimal solution for our placement problem. The algorithm from
Adolphson and Hu has the main drawback that it places the root node to the leftmost

112 Chapter 6. Memory Optimization for Random Forests

n0

left subtree right subtree

n0
←Ð
I∗ of left subtree ∪ right subtree

Adolhpson and Hu’s placement

n0rev(
←Ð
I∗ of left subtree)

←Ð
I∗ of right subtree

B.L.O. placement

Figure 6.1: Suboptimal Placement Correction

slot in any solution, which is not optimal when the cost for going back from leaves to
the root between inferences is considered. Consequently, this section introduces a
final algorithm, which computes a Bidirectional Linear Ordering (B.L.O.). This algorithm
maps the two subtrees underneath the root by the algorithm from Adolphson and Hu,
which derives a mapping IL for the left subtree and a mapping IR for the right subtree.
Both mappings cause an expected cost which is at least 2 shifts less than the total
expected cost of the entire tree since one node, and therefore a shift at least by one slot,
is missing on every path to a leaf and back to the root. Then, the final B.L.O. mapping is
formed by placing I◇ = {reverse(IL),0, IR}. In this mapping two shifts are then added
again to every path into and out of the right and left subtree, thus C◇total ≤ Ctotal.

Considering the exemplary decision tree in Figure 6.1, each access would start at
the leftmost position in the first placement, target a leaf within the rest of the mapping
and shift back to the leftmost position. In the second mapping, as long as leaves from
the left and right subtree are accessed on a similar ratio, the expected shifting distance
is divided by a factor of 2. The reverse ordering can be done in O(m), the placement of
the root is performed with constant time overhead. Therefore, the time complexity of
B.L.O. is O(m logm).
6.3.4 Evaluation

In order to compare Bidirectional Linear Ordering (B.L.O.) to the state-of-the-art generic
RTM frameworks (i.e., ShiftsReduce [KHB+19] and Chen et al. [CSZ+16]), the previously
introduced summarized tool frame for C/C++ realizations of random forests is used
[CSH+22]. 8 typical machine-learning classification datasets are selected from the UCI
Machine-Learning Repository [AN07] and [LeC98]: adult, bank, magic, mnist, satlog,
sensorless-drive, spambase and wine-quality. For each data set, 75% of the data is
used for training and 25% is used for testing.

To derive different sized trees, the maximum depth of the trees is limited, e.g., DT1
means that the tree has 2 levels and DT3 means that the tree has 4 levels. After the

6.3. Unified Layout Optimization of DTs on Racetrack Memory 113

1×
0.8×
0.6×
0.4×
0.2×

DT1

ad
ul

t

●∗◇

ba
nk

●∗◇×

m
ag

ic

●∗◇

×
m

ni
st

●∗◇
sa

tlo
g

●∗◇
se

ns
or

le
ss

-d
riv

e

●∗◇×

sp
am

ba
se

●∗◇
w

in
e-

qu
al

ity

●∗◇
×

DT3

ad
ul

t

●∗◇
×

ba
nk

●∗◇×

m
ag

ic

●
∗
◇

×
m

ni
st

●

∗

◇
sa

tlo
g

●∗◇
×

se
ns

or
le

ss
-d

riv
e

●
∗
◇

sp
am

ba
se

●∗◇
×

w
in

e-
qu

al
ity

●∗◇

×

DT4

ad
ul

t

●
∗
◇

×
ba

nk

●∗◇
×

m
ag

ic

●∗◇

×
m

ni
st

●∗◇
sa

tlo
g

●∗◇
×

se
ns

or
le

ss
-d

riv
e

●
∗
◇

×

sp
am

ba
se

●∗◇
×

w
in

e-
qu

al
ity

●∗◇
×

DT5

ad
ul

t
●

∗
◇

×

ba
nk

●

∗
◇

×

m
ag

ic

●
∗◇×

m
ni

st

●∗◇
×

sa
tlo

g

●∗◇
×

se
ns

or
le

ss
-d

riv
e

●

∗
◇
×

sp
am

ba
se

●
∗◇×

w
in

e-
qu

al
ity

●∗◇
×

DT10

ad
ul

t

●
∗×

ba
nk

●∗

◇

×

m
ag

ic

●∗◇
×

m
ni

st

●∗×

sa
tlo

g

●∗×

se
ns

or
le

ss
-d

riv
e

●∗

◇

×

sp
am

ba
se

●
∗×

w
in

e-
qu

al
ity

●∗

◇

×

DT15

ad
ul

t

●∗×

ba
nk

●
∗×

m
ag

ic

●∗×

m
ni

st

●∗×

sa
tlo

g

●∗×

se
ns

or
le

ss
-d

riv
e

●
∗×

sp
am

ba
se

●∗
×

w
in

e-
qu

al
ity

●∗
×

DT20

ad
ul

t

●
∗×

ba
nk

●∗
×

m
ag

ic

●∗×

m
ni

st

●

∗×

sa
tlo

g

●∗×

se
ns

or
le

ss
-d

riv
e

●
∗×

sp
am

ba
se

●∗×

w
in

e-
qu

al
ity

●∗
×

Naive placement ● B.L.O. ∗ ShiftsReduce ◇ MIP × Chen et al.

Figure 6.2: Comparison of Total Shifts During Inference

trees are generated, the node probabilities are profiled on the training data, delivering
the probabilistic model. Furthermore, the data points from the test data are inferred
on the trees and generate a node access trace, which provides the node access
paths on a logic level. Subsequently, the trees are mapped to a memory layout with
the compared approaches and the node access traces are replayed to derive the
total amount of required racetrack shifts under the assumption that the entire tree is
placed in a single DBC. Although this already allows a quantitative comparison of the
placement approaches, the energy consumption and total runtime on a realistic model
is further computed, derived from the various memory mappings. For the runtime,
the per-access and per-shift latencies in Table 6.2 are used and lead to the overall
runtime. Given the amount of RTM accesses naccesses and the total amount of shifts
in between nshifts, the total runtime is runtime = ℓR ⋅ naccesses + ℓS ⋅ nshifts. The
total energy consumption is derived from read and shift dependent dynamic energy
consumption and from the runtime dependent static energy consumption (leakage):
energy = eR ⋅ naccesses + eS ⋅ nshifts + p ⋅ runtime, where the parameters can be found
in Table 6.2.

Ports/track, tracks/DBC, domains/track 1, 80, 64
Leakage power [mW] p 36.2

Write / Read / Shift energy [pJ] eW /eR/eS 106.8 / 62.8 / 51.8
Write / Read / Shift latency [ns] ℓW /ℓR/ℓS 1.79 / 1.35 / 1.42

Table 6.2: RTM Parameters Values for a 128KiB SPM

114 Chapter 6. Memory Optimization for Random Forests

As previously mentioned, only the racetrack shifts are investigated, which are caused
when inferring data points on the decision trees. Since it is assumed that for the target
system, the decision trees are mapped to isolated scratchpad memory, the memory
accesses to the decision trees are not disrupted by any operating system interaction. The
overall energy consumption and latency, however, still strongly depend on the parallel
running applications and the underlying system software. This could be investigated by
further full system simulation, which is out of the scope of this evaluation.

Result Discussion

Figure 6.2 depicts the experimental results for the reduction of the total amount of
shifts by the different placement approaches. All results indicate the relative amount
of racetrack shifts compared to a naive placement, which is derived by traversing the
tree in breath-first order while placing the nodes consecutive in memory as they are
traversed. Despite applying the proposed B.L.O. algorithm, ShiftsReduce [KHB+19]
and Chen et al. [CSZ+16], the mapping problem is also formulated as a mixed integer
program (MIP), which optimizes Equation ((6.4)). This MIP is implemented in the Gurobi
optimizer [Bix07] and a time limitation of three hours per dataset and tree configuration
is set. For all datasets, the MIP converges to the optimal solution only for DT1 and DT3.
For all other cases, the result is based on the Gurobi heuristic. Results which are worse
than 1.2× of the naive placement are not included.

Investigating the illustrated results, it can be observed that for the cases where the
MIP finds an optimal mapping (for DT1 and DT3), B.L.O. achieves the same or only
marginally worse results than the optimum. This supports the heuristic design principle
of B.L.O. Furthermore it can be observed that B.L.O. achieves the best reduction in
shifts for most of the investigated cases. Considering the mean improvement over all
evaluated datasets and trees, B.L.O. reduces the amount of required shifts by 65.9%

compared to the naive placement. ShiftsReduce reduces the required amount of shifts
by 55.6%. This implies that B.L.O. further improves the amount of required shifts by
18.7% upon ShiftsReduce.

It should be noted that deciding the placement based on the profiled probabilities
from the training dataset does not necessarily result in the expected cost for the test
dataset, when both datasets are too different. Hence, the required amount of shifts when
the training dataset is inferred on the decision tree is determined, after the mapping is
decided on the profiled probabilities of the same dataset. The results report minimal
difference: B.L.O. on average reduces the required amount of shifts on the train dataset
by 66.1%, and ShiftsReduce reduces the required amount of shifts by 55.7%.

The reduction of the total amount of shifts is an indicator, which does not immedi-
ately reflect a realistic improvement in runtime or energy consumption. Therefore, the
improvement of the total runtime and energy consumption for the placement approaches
is computed. It is pointed our earlier, that in a realistic setup, larger decision trees are
split into smaller trees first and the placement heuristic is then executed on multiple DT5
sized trees. Therefore. the average runtime and energy consumption improvements

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 115

are presented for all DT5 experiments: B.L.O. improves the overall runtime by 71.9%

compared the naive placement, the total energy consumption by 71.3% respectively.
ShiftsReduce, in comparison, improves the overall runtime by 60.3% and the total energy
consumption by 59.8%. Thus, B.L.O. improves runtime and energy consumption by
19.2% compared to ShiftsReduce. Comparing this to the reduction of shifts for DT5 sized
trees only, B.L.O. reduces the required shifts by 74.7%, ShiftsReduce by 48.3%, thus
B.L.O. improves ShiftsReduce by 54.7%. This draws the conclusion that despite static
energy consumption and read latency having a non-negligible influence, the reduction
of the amount of racetrack shifts results in a significant improvement of the runtime and
energy consumption.

6.3.5 Wrap-Up

While the previous chapters of this thesis focus on the aspect of lifetime of NVM, this
chapter introduces the consideration of special latency and energy properties, especially
for RACETRACK MEMORY (RTM). In RTM, memory cells are organized in nanowires,
which share a single access head. Consequently, the wire needs to be shifted to the
corresponding position in order to read or write a memory cell. As this shifting consumes
time, linearly dependent on the shift distance, the memory access latency depends
on the previous access and hence the required shift distance. While there exist a few
generic frameworks to minimize the shift induced latency and also the inherent energy
consumption overhead, finding an optimal solution under general assumptions that
every memory location can be accessed at any time is not feasible within a considerable
amount of optimization time. In this chapter, a specific placement method for DECISION

TREEs (DTs) is presented, where the known order of memory accesses within the binary
tree (i.e. to always follow paths from the root to the leaf) is exploited to significantly
reduce the complexity of the optimization problem. Considering only parts of the
required memory accesses, an optimal solution can be found with a time complexity
of O(m logm). It is proved that finding this optimal solution for parts of the required
memory accesses derives a solution for all memory accesses, which has an upper
bound of 4× to the optimal solution. Experimental evaluation even highlights that the
proposed algorithm for finding a fast solution performs very close to the allover optimal
solution in most cases. The generic placement solutions for RTM are outperformed in
most cases.

6.4 Decomposed Layout Optimization of DTs on Racetrack
Memory

Section 6.3 discusses a layout method for DTs on RTM, where the access dependent
memory latency is minimized with respect to a probabilistic execution model of the tree.
In this method, two key assumptions define the scope: 1) it is assumed that trees can
be entirely placed in a single DBC. If a tree exceed the size of the DBC, the method

116 Chapter 6. Memory Optimization for Random Forests

can be transferred to subtrees with the DBC size. 2) it is assumed that a node of a tree
is stored entirely in one memory word within a DBC. Although this is feasible with, for
instance, 64-bit memory words, not every component of the node is required during
every execution. Consequently, splitting the tree nodes into components, storing them in
different DBCs and only shifting the required DBC can help to further reduce the allover
latency. Such an approach of decomposing tree nodes into various DBCs is discussed
in this section.

6.4.1 Scope

The method presented in this section builds a direct extension to the method presented
in Section 6.3. Hence, also the placement of DTs on RTM is discussed and the
optimization and relation to optimal solutions is discussed. In contrast to the previous
method, tree nodes are not assumed to be stored in one word within a DBC position,
but rather are considered to be split into three different DBCs. Since the discussed
trees here are binary trees, nodes can be split into their data elements, including feature
indices and split values, the left child pointer and the right child pointer. In this method,
each of these three is stored in one DBC. While the data value DBC still requires the
same amounts of RTM shifts as in the previous method, since nodes are accessed in
exactly the same sequence, only one of the left or the right child pointer is accessed
at the execution of a node. Hence, only one of the corresponding DBCs needs to be
shifted. This leads to a redefinition of the cost model, where the leftmost and rightmost
parent of a node (i.e. the previous node in the path, which accessed either the left or
right child pointer) is considered. This cost model is used to assess the efficient derived
placement solution from the O.L.O algorithm against the optimal solution. A formal
proof of an upper bound of 12× is provided. In addition to that, empirical experimental
evaluation provides intuition for the realistic performance of the proposed algorithm. In
short, these points are covered in this section:

• A redefined cost model for a decomposed organization of DTs into three RTM
DBCs. The cost model considers the leftmost and rightmost parent on a path to
assess the shift cost for the left and right child pointers independent of the data
elements of each node.

• A formal proof of an upper bound of 12× of the efficiently derived O.L.O solution
against the optimal solution.

• Experimental evaluation of the proposed B.L.O Decomposed algorithm.

6.4.2 Problem Analysis and Statement

The analyzed and studied problem in this section is basically described in Section 6.3.2.
The major difference is the considered cost model, which encounters the decomposed
organization of DTs into three DBCs, one for the data elements, such as split values and

published work: [HKC+22]

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 117

feature indices, one for the left child pointers and one for the right child pointers. This
model requires only a shift of either the right or left child pointer DBC during execution,
but not both. This forms another optimization objective, which is studied against the
O.L.O. algorithm in this section.

The decomposed approach in general is motivated by two major challenges in the
previously presented unified organization approach: (1) it requires very wide DBCs and
is less scalable (ii) leaf nodes that make ≈ 50% of the total number of tree nodes do not
need to store pointers for left and right child nodes. However, since the node information
in the unified approach is tightly coupled, storage can not be optimized. This leads to
storage wastage and yields suboptimal latency and energy consumption.

The DBC size is generally defined by two parameters, i.e., the number of (useful)
domains per track and the number of tracks per DBC. Increasing the number of domains
per track increases the capacity but at the cost of increased latency and increased
position-error rate [OJR+19]. Similarly, the number of tracks per DBC affects the number
of address bits, decoder’s size, and ultimately performance and energy consumption. For
a fixed size RTM, increasing the number of tracks per DBC reduces the number of DBCs
and requires fewer address bits. However, this comes at the cost of storage wastage and
increased energy consumption. Smaller width DBCs allow for storing different memory
objects in different parts of the RTM that can be accessed and controlled independently.
This also avoids wasting the RTM storage space.

This section proposes a decomposed approach to find a better solution to store DTs
in optimized width DBCs. Every tree node is split into three components: (1) the split
value/feature index, which is used to decide on an incoming data tuple to follow the tree
further to the left or right; (2) the left child pointer, and (3) the right child pointer. All
these three components are placed in separate DBCs at synchronized indices, leading
to one DBC for right child pointers, one for left child pointers, and one for split values and
feature indices. It should be noted here that all DBCs are assumed to have the same
width, such that they can be arbitrarily allocated to the split values or pointer values.
As the indices need to be synchronized (i.e. the right pointer of node nx has the same
index in the right pointer DBC as the left pointer in the left pointer DBC), the placement
I is modeled in the same manner as before. The central advantage of the decomposed
DTs is that the width of the DBCs is reduced, and the right pointer and left pointer DBCs
do not need to store leaf nodes which can result in a considerable reduction in the
memory footprint of the DTs (of ≈ 33%). From the programming perspective, only few
changes are required to access the decomposed organization during inference. In the
unified organization, every tree node is stored as one object in an array, thus access
to the three node elements require access at the corresponding array index and the
according offset within the object. For the decomposed organization, the three node
components are stored as three different objects in three arrays. Thus, the array index
for the current node stays the same, but instead of accessing different offsets within
one object, accesses for the same index in different arrays need to be performed. This
induces minor changes of the decision tree code.

118 Chapter 6. Memory Optimization for Random Forests

6.4.3 Decomposed Tree Optimization

Although the decomposition can be realized straightforwardly, it yields a different op-
timization objective. The DT inference causes a different cost in the decomposed
structure. Eventually, an optimal placement for a unified DT may not be optimal for
its corresponding decomposed tree. Therefore, the upper bound of the previously
introduced BLO algorithm (Section 6.3) needs to be revisited, respecting the modified
structure of an optimal placement. In order to formalize the decomposition, the following
notation is used:

Cdecomp
down /Cdecomp

up /
Cdecomp
total

denotes the cost for an unconstrained arbitrary place-
ment I to execute the tree in decomposed DBCs.

C∗decomp
down /C∗decomp

up /
Cdecomp∗total

denotes the cost in decomposed DBCs for an optimal
placement I∗decomp, which optimizes C∗decomp

total .

←Ð
C ∗decomp

down /←ÐC ∗decomp
up /←Ð

C ∗decomp
total

denotes the cost for an optimal placement
←Ð
I ∗ with

the root on the left most position, which is caused on
decomposed DBCs and optimizes

←Ð
C ∗down.

Table 6.3: Decomposition Notation

It should be noted here that the cost is considered as a number of shifts within
the DBCs. A DBC shift in RTM is different from the bit shifts, which are dependent on
the DBC width. Hereby, shifts are counted for the unified organization scenario with
the same weight as shifts for the decomposed organization scenario to make the cost
definitions comparable and relate them. However, when it comes to the realization of the
decomposed DBCs, every shift contributes 1

3 to the bit shifts and energy consumption
compared to a single shift in the unified DBC. Hence, if a placement results in 3× the
cost on decomposed DBCs as on unified DBCs, ultimately, the energy consumption
penalty is roughly the same in both cases.

For the rest of this section, the cost model for the decomposed approach is first
revisited and the objective is defined. Subsequently, the upper bound on the BLO
placement is analyzed.

During inference of the decomposed tree, the split value always has to be checked
first. Thus, the split value DBC has to be shifted to every node during inference and
therefore features the same cost for following the tree down (Cdecomp

split,down) and back to

the root (Cdecomp
split,up) as for the unified organization approach:

Cdecomp
split,down = ∑

nx∈N∖{n0}
absprob(nx) ⋅ ∣I(nx) − I(P (nx))∣ (6.14)

Cdecomp
split,up = ∑

nx∈Nl

absprob(nx) ⋅ ∣I(nx) − I(n0)∣ (6.15)

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 119

LP LP

Figure 6.3: Illustration of the left most parent of a node (2 exmaples)

For the right pointer and left pointer DBC, the decision to shift to a certain index depends
on the previous decision on the split value. Indeed, only the right pointer DBC or the left
pointer DBC needs to be shifted for any node, but never both. Constructing the cost for
this requires additional definitions. In the following, the left child of node nx is denoted
by LC(nx) and the right child by RC(nx), respectively:

Definition 4. path(nx, ny) = {ni1 , ni2 , ..., nim} is defined as a part of a root leaf path
where ni1 = nx and nim = ny and P (nix) = nix−1 or as the empty set if nx is neither a
direct, nor an indirect parent of ny.

Definition 5. isleft(nx) is defined for all nodes nx ∈ N ∖ {n0} as 1 if nx = LC(P (nx))
and as 0 for all other cases. isright(nx) is symmetrically defined for all nodes nx ∈
N ∖ {n0} as 1 if nx = RC(P (nx)) and as 0 for all other cases.

Definition 6. LP (nx) is defined as the leftmost parent of node nx for all nodes
nx ∈ N ∖ {n0}:∀ny ∈ path(LP (nx), nx)∖ {LP (nx)} ∶ LC(ny) /∈ path(LP (nx), nx)∧LC(LP (nx)) ∈
path(LP (nx), nx)
If such a node does not exist, LP (nx) = ε. In other words, the leftmost parent is the
closest node to nx on its path from the root, where the left child is taken (illustrated in
Figure 6.3).
RP (nx) is symmetrically defined as the rightmost parent of node nx for all nodes
nx ∈ N ∖ {n0}:∀ny ∈ path(RP (nx), nx)∖{RP (nx)} ∶ RC(ny) /∈ path(RP (nx), nx)∧RC(RP (nx)) ∈
path(RP (nx), nx)
If such a node does not exist, RP (nx) = ε.

These definitions imply that for all nodes ny ∈ path(LP (nx), nx) ∖ {LP (nx)} in
between a node nx and LP (nx), isleft(ny) = 0. This also holds symmetrically for the
RP definition. With the help of Definition 5 and Definition 6 every node within the tree
can be investigated and the shifting distance in the left pointer and right pointer DBC
can be computed if that specific node requires an inference of the right or left pointer
DBC. This leads to the cost for following the right and left pointer DBC down:

Cdecomp
lptr,down = ∑

nx∈N∖{n0}
absprob(nx) ⋅ isleft(nx)⋅

∣I(P (nx) − I(LP (P (nx))))∣ (6.16)

120 Chapter 6. Memory Optimization for Random Forests

Cdecomp
rptr,down = ∑

nx∈N∖{n0}
absprob(nx) ⋅ isright(nx)⋅

∣I(P (nx) − I(RP (P (nx))))∣ (6.17)

For simplicity, ∣x, ε∣ = 0 for an arbitrary number x. The cost for going up the tree between
two inferences is not necessarily the cost for shifting back to the root in the left pointer
and right pointer DBC. Instead, there is a set of nodes, which are candidates to be
accessed first in the right and left pointer DBCs, i.e. the nodes nx where LP (nx) = ε or
RP (nx) = ε, respectively. Thus, for computing the estimated cost, all these candidates
need to be considered with their respective absolute probabilities:

Cdecomp
lptr,up = ∑

nx∈Nl

absprob(nx) ⋅ ∑
nr ∶LP (nr)=ε

absprob(nr) ⋅ prob(LC(nr)) ⋅ ∣I(nr) − I(LP (nx))∣ (6.18)

Cdecomp
rptr,up = ∑

nx∈Nl

absprob(nx) ⋅ ∑
nr ∶RP (nr)=ε

absprob(nr) ⋅ prob(RC(nr)) ⋅ ∣I(nr) − I(RP (nx))∣ (6.19)

Combining these partial costs, the total cost can be deduced by adding all components:

Cdecomp
down = Cdecomp

split,down +Cdecomp
lptr,down +Cdecomp

rptr,down (6.20)

Cdecomp
up = Cdecomp

split,up +Cdecomp
lptr,up +Cdecomp

rptr,up (6.21)

Cdecomp
total = Cdecomp

down +Cdecomp
up (6.22)

Due to the revisited cost model, the considerations about an optimal decision tree
placement to the decomposed DBCs also need to be revisited. The following conducts
a proof about the relation of the placement solution produced by the O.L.O. algorithm to
the optimal solution. Throughout this, the relation between placements for the unified
organization approach, the cost they cause on the decomposed organization, and how
a placement for unified DBCs can be constructed from a placement for decomposed
DBCs is clarified. First, the relation between the cost Ctotal for an arbitrary placement I
on a unified DBC and the cost Cdecomp

total the exact placement causes on decomposed
DBCs has to be clarified. Intuitively, the cost for the unified DBC can be seen as the
cost for the DBC containing the split and feature values since this DBC has to access
every node. In the following, a restructuring of the cost model is considered:

Lemma 5.

Cdecomp
split,down = ∑

nl∈Nl

absprob(nl)⋅
∑

nx∈rlpath(nl)∖{n0}
∣I(nx) − I(P (nx))∣ (6.23)

Cdecomp
lptr,down = ∑

nl∈Nl

absprob(nl)⋅
∑

nx∈rlpath(nl)∖{n0}
isleft(nx) ⋅ ∣I(P (nx)) − I(LP (P (nx)))∣ (6.24)

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 121

Cdecomp
rptr,down = ∑

nl∈Nl

absprob(nl)⋅
∑

nx∈rlpath(nl)∖{n0}
isright(nx) ⋅ ∣I(P (nx)) − I(RP (P (nx)))∣ (6.25)

The cost for following the tree down in decomposed DBCs can be restructured as a per
path cost, which is weighted with the absolute probability of the leaf node on this root
leaf path.

Proof. From the definition of the tree structure, it is known that probabilities are
entirely inherited. Thus, summing up the absolute probabilities of all leaf nodes
underneath a certain node nx must result in the absolute probability of this node:
absprob(nx) = ∑

nl∈leafs(nx)absprob(nl). In Equation ((6.23)), each distance between

each node and the parent is weighted with exactly this sum of absolute probabilities
of underlying leafs, since for every leaf the entire root leaf path is considered. Conse-
quently, Equation ((6.23)) can be rewritten to Equation ((6.14)). The same principle can
be applied to Equation ((6.24)) (transforms to Equation ((6.16))) and to Equation ((6.25))
(transforms to Equation ((6.17))).

Lemma 6.
Cdecomp
lptr,down ≤ Cdecomp

split,down = Cdown (6.26)

Cdecomp
rptr,down ≤ Cdecomp

split,down = Cdown (6.27)

The summed cost for shifting down in decomposed DBCs in the left and right pointer
tree is smaller than the cost for shifting down in the split value DBC, which is equal to
the cost for shifting down in the unified DBC case.

Proof. Entire root leaf paths from the root to a leaf node are considered. According to
Lemma 5, each path contributes to the total cost with the shifts along the path and the
absolute leaf probability. From the definition of the cost function it is known that Cdown =
Cdecomp
split,down. Investigating the cost in the left and right pointer DBCs (Equation ((6.24))

and Equation ((6.25))) two cases need to be distinguished. As this consideration is
symmetric for Cdecomp

lptr,down and Cdecomp
rptr,down, only the left pointer case is discussed here.

Considering an arbitrary root leaf path from the root node to a leaf node rlpath(nl) ∖{n0} = {np0, np1, ..., npm}, it is know from the definition of isleft and LP that for
all positions i0, i1, ... on the path where isleft(npix) = 1, LP (P (npix)) = P (npix−1),
i.e. the leftmost parent LP of the parent is always the immediate previous parent
node which contributes to Equation ((6.24)). Further, ∣I(P (npx)) − I(LP (P (npx)))∣ ≤∑
npy∈path(npx,LP (npx))∖{npx,LP (pnx)} ∣I(npy)−I(P (npy))∣ since an arbitrary path between

two indices cannot be shorter than the direct path. If for a certain node nx on a path
P (nx) = LP (nx), isleft(nx) must be 1 by definition. This node then contributes the
same cost to Cdecomp

lptr,down as P (nx) contributes to Cdecomp
split,down on the specific path. If this

was the case for all nodes on a path, Cdecomp
lptr,down < Cdecomp

split,down because the shift to the
leaf node is not considered in the left pointer DBC. If, however, LP (nx) ≠ P (nx) on

122 Chapter 6. Memory Optimization for Random Forests

any path for any node, it is known from the definition of isleft already that all nodes
on the path in between nx and LP (nx) do not contribute to Cdecomp

lptr,down since isleft

must be 0. Thus, the contributed cost to Cdecomp
lptr,down for this specific node is at most the

contributed cost of this node and the omitted nodes (isleft = 0) to Cdecomp
split,down. In total,

Cdecomp
lptr,down ≤ Cdecomp

split,down and Cdecomp
rptr,down ≤ Cdecomp

split,down.

Lemma 7.
Cdecmp
down ≤ Cdecomp

total (6.28)

The cost for following the tree down in a decomposed placement is a part of the total
shifting cost (compare to Lemma 1).

Proof. Cdecomp
total is the sum of Cdecomp

down and Cdecomp
up , where Cdecomp

up itself is a sum of
non-negative terms.

Lemma 8.
Cdown ≤ Cdecomp

down (6.29)

The summed cost for shifting through the decomposed DBCs while following the tree
downwards is at least the cost of shifting through a tree on a unified DBC downwards
with the same placement.

Proof. From the definition of the cost function, it is known that Cdown = Cdecomp
split,down. It is

further known that Cdecomp
rptr,down and Cdecomp

lptr,down only consists of a sum of terms which are

either 0 or positive. According to Equation ((6.20)), Cdecomp
down is the sum of only these

three components. Thus, Cdown = Cdecomp
split,down ≤ Cdecomp

down .

Next, the cost relation of a linear allowable placement produced by OLO needs to
be considered. As reported by Adolphson and Hu, there is always a linear allowable
placement, which features the optimal cost Cdown under the constraint that the root is
placed to the leftmost position [AH73]. Thus, the cost of such an optimal linear allowable
placement is denoted in the following by

←Ð
C ∗...... .

Lemma 9. ←Ð
C ∗decomp

lptr,up ≤←ÐC ∗decomp
split,up =←ÐC ∗down (6.30)

←Ð
C ∗decomp

rptr,up ≤←ÐC ∗decomp
split,up =←ÐC ∗down (6.31)

The cost for shifting up in the left and right pointer DBCs in a linear allowable placement
can be upper bounded by the cost for shifting up in the split value DBC, which is the
same cost as shifting down in the unified DBC case.

Proof.
←Ð
C ∗decomp

split,up =←ÐC ∗up directly follows from the definition of the cost functions (Equa-

tion ((6.15)) and Equation ((6.2))).
←Ð
C ∗up = ←ÐC ∗down follows from Lemma 3. By investi-

gating Equation ((6.15)) and Equation ((6.18)) the outer sum is over the same (leaf)

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 123

nodes. In a linear allowable placement, n0 must have the left most position, fur-
ther I(LP (nx)) < I(nx) since LP is an indirect parent relation. Thus, all terms∣I(nr) − I(LP (nx))∣ ≤ ∣I((nx) − I(n0)∣. The nodes considered in the inner sum of
Equation ((6.18)), namely nr ∶ LP (nr) = ε, must form a single consecutive path of nodes
where always the right child is taken by definition. Each node on the path contributes a
certain portion of their absolute probability (absprob(nr) ⋅prob(LC(nr))), the remaining
part is inherited to the right child by definition, which then itself contributes a part of the
inherited probability. Thus, ∑

nr ∶LP (nr)=εabsprob(nr) ⋅ prob(LC(nr)) ≤ absprob(n0) = 1.

Consequently, the inner sum is a weighted average of upper bounded terms, thus the
entire sum can be upper bounded by ∣I((nx) − I(n0)∣. The case for the right pointer
DBC is symmetric.

Corollary 2. ←Ð
C ∗decomp

total ≤ 6 ⋅←ÐC ∗down = 3 ⋅←ÐC ∗total (6.32)

If a linear allowable placement is deployed to decomposed DBCs, the total cost for
shifting through the decomposed DBCs is at most 6× the cost of shifting the unified
DBC downwards.

Proof. Equation ((6.32)) follows from the definition of the cost model (Equation ((6.22)))
and Lemma 9, Lemma 6 and Lemma 3:

←Ð
C ∗decomp

lptr,down ≤ ←ÐC ∗down,
←Ð
C ∗decomp

rptr,up ≤ ←ÐC ∗up,←Ð
C ∗decomp

split,down =←ÐC ∗down,
←Ð
C ∗decomp

lptr,up ≤←ÐC ∗up =←ÐC ∗down,
←Ð
C ∗decomp

rptr,down ≤←ÐC ∗up =←ÐC ∗down,
←Ð
C ∗decomp

split,up =←Ð
C ∗up = ←ÐC ∗down. In total,

←Ð
C ∗decomp

total consists of 6 terms, which are all upper bounded by←Ð
C ∗down. Lemma 3 further leads to

←Ð
C ∗total = 2 ⋅←ÐC ∗down.

Combining the above considerations, the according upper bound can be constructed.

Theorem 2. ←Ð
C down ≤ 2 ⋅Cdecomp

total (6.33)

Any placement for decomposed trees can be transformed into a placement with the root
on the left most position, where the cost for following the tree downwards in a unified
DBC is at most 2× the cost for executing the entire tree on decomposed DBCs.

←Ð
C ∗decomp

total ≤ 12 ⋅C∗decomp
total (6.34)

An optimal linear allowable placement for shifting downwards in a unified DBC, as
obtained by OLO, is an upper bound of 12 of the optimal placement for decomposed
DBCs.

Proof. Equation ((6.33)) directly follows from Lemma 7,Lemma 8 and Lemma 4.
Equation ((6.34)) can be proven by contradiction. Suppose that the optimal linear

allowable placement for a unified DBC
←Ð
C ∗down would cause a cost

←Ð
C ∗decomp

total larger than
12× of the optimal placement for decomposed DBCs C∗decomp

total . According to Corollary 2,
it is known that the optimal placement must have at least a cost of 1

6 on the unified

124 Chapter 6. Memory Optimization for Random Forests

1×
0.8×
0.6×
0.4×
0.2×

DT1

ad
ul

t

●∗◇
×

ba
nk

●∗◇
×

m
ag

ic

●∗◇

m
ni

st

●∗◇

sa
tlo

g

●∗◇
×

se
ns

or
le

ss
-d

riv
e

●∗◇
×

sp
am

ba
se

●∗◇×
w

in
e-

qu
al

ity

●∗◇
×

DT3

ad
ul

t

●∗
◇

ba
nk

●
∗
◇

×
m

ag
ic

●∗◇

×
m

ni
st

●
∗
◇

sa
tlo

g

●
∗
◇

×
se

ns
or

le
ss

-d
riv

e

●

∗

◇

×
sp

am
ba

se

●∗◇
×

w
in

e-
qu

al
ity

●∗◇
×

DT4

ad
ul

t

●
∗
◇

×
ba

nk

●
∗
◇

×
m

ag
ic

●∗◇×
m

ni
st

●
∗◇
× sa

tlo
g

●∗◇

×
se

ns
or

le
ss

-d
riv

e

●∗◇
×

sp
am

ba
se

●∗◇
×

w
in

e-
qu

al
ity

●∗◇
×

DT5

ad
ul

t
●∗◇
×

ba
nk

●∗◇×
m

ag
ic

●∗◇×
m

ni
st

●∗
◇×

sa
tlo

g

●∗◇
×

se
ns

or
le

ss
-d

riv
e

●∗◇
×

sp
am

ba
se

●∗◇×

w
in

e-
qu

al
ity

●∗◇
×

DT10

ad
ul

t

●∗

◇

×

ba
nk

●∗

◇

×

m
ag

ic

●∗

◇

×

m
ni

st

●
∗

◇

×
sa

tlo
g

●∗
◇×

se
ns

or
le

ss
-d

riv
e

●

∗◇×

sp
am

ba
se

●∗
◇
×

w
in

e-
qu

al
ity

●∗
◇
×

DT15

ad
ul

t

●
∗
×

ba
nk

●∗×

m
ag

ic

●∗×

m
ni

st

●
∗×

sa
tlo

g

●
∗
◇×

se
ns

or
le

ss
-d

riv
e

●∗×

sp
am

ba
se

●∗

◇

×

w
in

e-
qu

al
ity

●∗
×

DT20

ad
ul

t

●∗×

ba
nk

m
ag

ic

●∗×

m
ni

st

●
∗×

sa
tlo

g

●
∗×

se
ns

or
le

ss
-d

riv
e

●∗×

sp
am

ba
se

●∗
×

w
in

e-
qu

al
ity

●∗
×

NaiveD ● BLOD ∗ ShiftsReduceD ◇ MIPD × ChenD

Figure 6.4: Comparison of Total Shifts During Inference on Decomposed Trees

DBC then, thus
←Ð
C ∗down > 12 ⋅ 16 ⋅C∗decomp

total ⇔←ÐC ∗down > 2 ⋅C∗decomp
total . It is further known

that according to Equation ((6.33)) a solution for the unified DBC with a cost less than
2 ⋅C∗decomp

total can be built, which contradicts the optimality of
←Ð
C ∗down.

The BLO heuristic (Section 6.3) can be applied to the decomposed organization
scenario without any limitation. The consideration that the BLO extension does not
introduce additional shifting cost, however, it does not remain valid for this scenario.
Potentially, the left or right pointer DBC can be shifted from a certain node within the
right subtree to another node within the left subtree, without loading the root and vice
versa. Thus, both nodes may be placed closer in the OLO placement as in the BLO
placement. However, the proof upper bounds the cost for going up and down in the left
and right pointer DBCs with the cost for the split value DBC, i.e. with the cost of starting
at the root and ending at a leaf in Lemma 9. Theorem 2 consequently takes this bound
in to determine the ultimate upper bound. Hence, under this worst-case scenario, e
upper bound of 12× is valid for BLO and OLO.

6.4.4 Evaluation

In addition to the proven upper bound of the BLO algorithm on the decomposed organi-
zation, this section presents experimental evaluation of the BLO algorithm and provides
a comparison to the state-of-the-art. The proven upper bound for BLO consequently
holds for the state-of-the-art methods, since these cannot achieve better performance
than the optimum. The relation between these approach in realistic scenarios, however,
is empirically studied in this section. First, the shifts’ reduction of different solutions is
discussed and then the impact of shifts reduction on the runtime and energy consump-

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 125

tion is shown. As a setup for the evaluation, the setup from Section 6.3.4 is used. To
provide a comparison between the unified and decomposed organization, the setup is
modified in order to account for the different organization approaches. This leads to the
comparison of the following versions:

• Naive / NaiveD: A baseline breadth-first order placement in which indices are
assigned to tree nodes layer-wise in increasing order. The placement is used for
the unified (Naive) and decomposed organization (NaiveD).

• ShiftsReduce / ShiftsReduceD: The state-of-the-art data placement algorithm from
[KHB+19]. We evaluate the heuristic on the unified organization (ShiftsReduce)
and the decomposed organization (ShiftsReduceD).

• Chen / ChenD.: The data placement algorithm from [CSZ+16], evaluated on the
unified organization (Chen) and the decomposed organization (ChenD).

• BLO / BLOD: Bidirectional linear ordering for unified trees. It is evaluated on the
unified and decomposed organization.

• MIP / MIPD: The mixed integer programming formulation of the cost model (Equa-
tion ((6.4)) for unified organization and Equation ((6.22)) for decomposed organi-
zation). The solver, in case it converges, returns the optimal tree placement.

The node access trace for all configurations are replayed to derive the total amount
of required racetrack shifts. For the decomposed trees, the performance and energy
numbers reported in this section consider all, i.e., the split value and pointers DBCs. In
addition to the pure amount of shifts, the runtime and energy consumption is modeled
for the unified and decomposed organization. The runtime per-access and per-shift
latencies and the energy consumption is provided in Table 6.4.

Ports per track, domains per track 1, 64
Tracks per DBC: unified, decomposed 96, 32

Leakage power [mW]: unified, decomposed p 36.2, 36.9
Write energy [pJ]: unified, decomposed eW 106.8, 40.7
Read energy [pJ]: unified, decomposed eR 62.8, 23.4
Shift energy [pJ]: unified, decomposed eS 51.8, 17.3
Write latency [ns]: unified, decomposed lW 1.79, 1.75
Read latency [ns]: unified, decomposed lR 1.35, 1.32
Shift latency [ns]: unified, decomposed lS 1.42, 1.39

Table 6.4: RTM parameters values for a 128KiB SPM considering a decomposed
organization

Figure 6.4 evaluates the reduction in terms of RTM shifts for the decomposed
organization approach. The MIP formulation is implemented in the Gurobi optimizer
[Bix07] and is given a time limit of 8 hours per dataset and per tree configuration. For
the DT1 and DT3 instances in all datasets, the MIP converges to the optimal solution. In
all other cases, the results are based on the Gurobi heuristic. Results which are worse
than 1.2× of the baseline are not illustrated in the figures.

126 Chapter 6. Memory Optimization for Random Forests

1×1×
1.6×
2.2×
3×

DT1

ad
ul

t

●∗◇×

ba
nk

●∗◇×

m
ag

ic

●∗◇×

m
ni

st

●∗◇×

sa
tlo

g

●∗◇×

se
ns

or
le

ss
-d

riv
e

●∗◇×

sp
am

ba
se

●∗◇×

w
in

e-
qu

al
ity

●∗◇×

DT3

ad
ul

t

●∗◇×

ba
nk

●∗◇×

m
ag

ic

●∗◇×
m

ni
st

●∗◇×
sa

tlo
g

●∗◇×
se

ns
or

le
ss

-d
riv

e

●∗◇×
sp

am
ba

se

●∗◇×
w

in
e-

qu
al

ity

●∗◇×

DT4

ad
ul

t
●∗◇×

ba
nk

●∗◇×
m

ag
ic

●∗◇×
m

ni
st

●∗◇×
sa

tlo
g

●∗◇×
se

ns
or

le
ss

-d
riv

e

●∗◇×
sp

am
ba

se

●∗◇×
w

in
e-

qu
al

ity

●∗◇×

DT5

ad
ul

t

●∗◇×

ba
nk

●∗◇×

m
ag

ic

●∗◇×

m
ni

st

●∗
◇×

sa
tlo

g

●∗◇×

se
ns

or
le

ss
-d

riv
e

●∗×

sp
am

ba
se

●∗◇×

w
in

e-
qu

al
ity

●∗◇×

DT10

ad
ul

t

●∗×

ba
nk

●∗×

m
ag

ic

●∗×

m
ni

st

●∗×

sa
tlo

g

●∗×

se
ns

or
le

ss
-d

riv
e

●∗×

sp
am

ba
se

●∗×

w
in

e-
qu

al
ity

●∗×

DT15

ad
ul

t

●

∗×

ba
nk

●∗×

m
ag

ic

●∗×

m
ni

st

●
∗×

sa
tlo

g

●∗×

se
ns

or
le

ss
-d

riv
e

●∗×

sp
am

ba
se

●∗×

w
in

e-
qu

al
ity

●∗×

DT20

ad
ul

t

●∗×

ba
nk

m
ag

ic

●∗×

m
ni

st

●∗×

sa
tlo

g

●∗×

se
ns

or
le

ss
-d

riv
e

●∗×

sp
am

ba
se

●∗×

w
in

e-
qu

al
ity

●∗×

Naive (unified) ● BLOD ∗ ShiftsReduce ◇ MIP × Chen

Figure 6.5: Increase of Total Shifts During Inference between Unified and Decomposed
Trees

A detailed analysis of the results shows that for the cases where the MIPD finds
an optimal placement (for DT1 and DT3), BLOD achieves the same or only marginally
worse results than the optimum. Compared to state-of-the-art solutions, it can be
observed that BLOD achieves the best reduction in shifts for most of the investigated
cases. The reduction of the total shifts does not directly imply a similar improvement in
runtime and energy consumption. To estimate the shifts reduction impact on the runtime
and energy consumption, a realistic setup as explained in Section 6.3.4 is considered.
Larger decision trees are first split into smaller trees, and the placement heuristic is then
executed on multiple trees of maximal depth of 5. Note that the assignment of these
smaller trees to different DBCs may affect the cost of the overall shift.

Unified vs. Decomposed DTs

Although the previous results report the performance of the BLOD algorithm on the
decomposed trees, the relation between the unified and decomposed layout remains
an open question, especially which of both realizations should be used for a concrete
system remains open. Equation ((6.32)) implies that any linear allowable placement
cannot cause more than 3× shifts on the decomposed DBCs as on the unified DBCs.
Under the ideal assumption that each single DBC in the decomposed setup only needs 1

3

of bit-lines and therefore also only yields 1
3 of the energy consumption, the decomposed

setup cannot be worse than the unified setup in no scenario. In reality, however,
constructing the decomposed setup may create additional static overheads or consume
additional resources (such as chip space or leakage power), which is only desirable if
the decomposed setup can significantly reduce the resource consumption.

In order to assess the resource savings when considering the decomposed setup,
the placement of all configurations is taken and the node access traces are replayed

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 127

DT1 DT3 DT4 DT5 Geomean

0.5

1

1.5

R
un

tim
e

(n
or

m
al

iz
ed

)

Naive NaiveD Chen ChenD ShiftsReduce
ShiftsReduceD BLO BLOD MLP MLPD

Figure 6.6: Runtime of different configurations for different tree size. The results are
average across all benchmarks.

on the unified and decomposed organizations. The relation of the total amount of
shifts for all configurations in the unified and decomposed approaches are computed.
Theoretically, the ratio between the unified shifts and the decomposed shifts must range
between 1× and 3×. This is evaluated, and the ratios are shown based on experimental
results in Figure 6.5. For trees with a maximum depth of 1 i.e., DT1, the decomposed
and unified approaches result in exactly the same amount of shifts in all placements.
This is because a DT1 has two levels, thus only a single node with pointers which is
mapped to the first location in a single DBC (unified) or multiple DBCs (decomposed).
Therefore, no shifts in the right and left pointer DBC are required. Note that it is assumed
that the access ports in all DBCs are initially aligned to the first position. For deeper
trees, the increase in shifts ratio shows similar trend for all placement approaches. For
the deepest trees considered in this evaluation, the number of shifts in the decomposed
trees can be as high as 2.59 for the BLO algorithm.

In the decomposed organization, the highest shift reduction is expected from sce-
narios where the pointer DBCs are rarely shifted. For DT1, the best case is achieved
because the left and right pointer DBCs do not need to be shifted at all. As the trees
get deeper, the probability of frequently accessing left and right pointers also increases.
Thus, for deeper trees the shifts reduction in the decomposed setup is reduced, which
can be seen in the reported results as well.

However, focusing on the realistic tree sizes of at most three or four layers, which
can be placed into a single DBC, the experimental data suggests that the amount of
shifts is increased by at most a factor of 2× when switching to the decomposed setup.
This is a considerable margin to leverage static overheads from the decomposition and
provide a reduction in the total resource consumption.

Runtime and Energy

BLO reduces the total runtime by 53.8% compared to the naive placement, as shown in
Figure 6.6. In comparison, for the same baseline, ShiftsReduce and BLOD reduce the
total runtime by 45.7% and 46.3%, which are 13.3% and 13.9% longer compared to the

128 Chapter 6. Memory Optimization for Random Forests

DT1 DT3 DT4 DT5 Geomean

0.4
0.6
0.8
1

E
ne

rg
y

co
ns

um
pt

io
n

(n
or

m
al

iz
ed

)

Naive NaiveD Chen ChenD ShiftsReduce
ShiftsReduceD BLO BLOD MLP MLPD

Figure 6.7: Energy consumption of different configurations for different tree size. The
results are average across all benchmarks.

BLO, respectively. Comparing this to the reduction of shifts for trees with maximum depth
of 5 only, BLOD reduces the required shifts by 85.1%, BLO by 77.5%, and ShiftsReduce
by 72.4%. Thus BLOD, compared to BLO and ShiftsReduce, further reduces the amount
by shifts by 9.8% and 17.5% respectively. This suggests that a reduction in shifts may
not necessarily result in the runtime reduction, or at least not with the same proportion.
When comparing Figure 6.2 and Figure 6.4 to Figure 6.6 and Figure 6.7, the different
scaling on the y-axis and that results are averaged across datasets for the latter figures
should be noted.

In the decomposed placement approach, the total runtime increases due to the
alignment time in the pointers DBCs. The split value DBC is checked first to determine
whether a pointer DBC needs to be accessed or not. Subsequently, depending on the
node access probabilities, a shift request may be sent to the left or the right pointer
DBC. The lazy shift approach in pointers DBCs improves the overall shift energy due
to the reduced amount of shifts. However, this negatively impacts the runtime due
to the shift penalty required to align the access port to the desired location if it is not
aligned with the split value DBC. To quantify the impact of the decomposed approach
on the runtime, it is compared with other methods, as presented in Figure 6.6. For the
same baseline (naiveD), BLOD has an average runtime overhead of 7.5% compared
to BLO. Consequently, BLOD also increases the leakage energy compared to BLO.
However, this deterioration in the leakage energy is offset by the reduction both in the
shift and access component of the energy (cf. Figure 6.8). Similarly, other decomposed
approaches (e.g., naiveD, MLPD) induces a runtime penalty compared to their unified
counterparts (e.g., naive, MLP).

BLOD achieves the most reduction in energy consumption compared to all other
approaches. This is because the total energy consumption of RTM is largely dependent
upon the number of bit shifts, which affect the shift energy and the runtime, which
determine the leakage energy. Figure 6.7 and Figure 6.8 show the overall energy
consumption and the energy breakdown of different placement approaches for the
unified and the decomposed DBCs normalized to the naive placement. Compared to

6.4. Decomposed Layout Optimization of DTs on Racetrack Memory 129

Naiv
e

Naiv
eD

Che
n

Che
nD

Shif
tsR

ed
uc

e

Shif
tsR

ed
uc

eD BLO
BLO

D
MLP

MLP
D

0.2
0.4
0.6
0.8
1

E
ne

rg
y

br
ea

kd
ow

n

Shifts Leakage Access

Figure 6.8: Energy consumption breakdown into shifts energy, leakage energy and
access energy for various configurations. BLOD records the lowest shift
and total energy consumption compared to all other configurations.

the naive solution, BLOD delivers a 61.7% reduction in the RTM energy consumption,
compared to 52.6% in BLO and 45.8% in ShiftsReduce for the same baseline.

Figure 6.8 highlights that the energy efficiency of BLOD compared to existing unified
approaches is achieved via a significant reduction in the energy consumed by the shift
operation and a slight reduction in the access energy. The leakage energy, compared
to the naive solution (NaiveD), is also reduced by 44.7%. The improvement in the shift
energy is due to reduced shift cost, while the reason for the leakage energy saving is
the reduced runtime (cf. Figure 6.6). Compared to the unified BLO solution, despite
an increase in the leakage energy by 16.2%, the decomposed approach consumes
17.3% less energy. Overall, for the naive baseline (Naive), BLOD on average achieves
(95.3%, 35%, 21.5%, 17.3%, 150%, 1.7%) more energy reduction compared to (Chen,
ShiftsReduce, MLP, BLO, naiveD, MLPD).

6.4.5 Wrap-Up

While the previous section (Section 6.3) discusses the optimization of the shifting cost of
a DECISION TREE (DT) in RACETRACK MEMORY (RTM) for a unified layout, this section
refines the basic organization assumption to allow a decomposed layout and revisits the
resulting optimization problem of the shifting cost. The decomposed layout refers to the
organization approach to store DT nodes in the RTM DBCs. While in the unified layout
an entire node is stored in one domain, requiring a particular shift of a single DBC, the
decomposed layout splits tree nodes into three components and stores them in three
different DBCs. This allows each of the DBCs to be shifted individually. The nodes are
split into a left child pointer component, a right child pointer component and a remaining
component, including the feature index and split value.

This section revisits the analysis of the previously presented BLO algorithm and
proofs the upper bound of 12× to the optimal solution in the decomposed organization

130 Chapter 6. Memory Optimization for Random Forests

approach. Assuming a generally reduced cost of 1
3 for shifts in the decomposed DBCs

due to the reduced required size of 1
3 , the decomposed layout cannot perform worse

than the unified layout, at least in the upper bound. Experimental evaluation shows that
the required overhead for shifts is realistically reduced for the decomposed layout when
compared to the unified layout.

6.5 Concluding Memory Optimization of Random Forests

In order to exploit the traditional memory interface for latency optimization for RTM in
a software centric manner, two components are of crucial importance: 1) a reduced
conditional memory access distribution, which can serve as a basis for computation
and 2) a memory location optimization strategy, taking the aforementioned model as an
input and derive an optimized memory mapping. Then, the memory mapping can be
employed through the traditional memory interlace. Achieving a significant reduction of
the conditional memory access distribution is achieved by the methods in this chapter
due to an application specific consideration of tree based data structures, i.e. DTs. The
focus on DTs further allows a direct collection of local empirical probabilities, due to
the inherent relation to a data set distribution. As an optimization strategy, the methods
in this chapter use an efficient placement algorithm, which is not optimally suited to
the case of RTM, but can be executed very fast. A formal proof guarantees an upper
bound on the outcome of this strategy, compared to an optimal mapping. The decided
optimized mapping is applied though an assignment of memory locations to data objects,
which is compatible to the traditional memory interface.

This chapter shows a possible way to exploit the possibility for data placement in
the traditional memory interface to achieve a latency optimization for a modern memory
technology, with an uncommon access dependent latency property. This exploitation is
achieved by only introducing adequate software components directly in the application
and into an optimizer.

CHAPTER 7

CPU Optimization for Random
Forests

Contents
7.1 Modern Technologies and Traditional Interfaces 132

7.2 Overview . 133

7.2.1 Numeric Formats . 133

7.2.2 Memory Encoding and Hierarchy 134

7.3 Immediate Encoding of Floating-Point Split Values 136

7.3.1 Scope . 136

7.3.2 Problem Analysis and Statement 136

7.3.3 Immediate Encoding . 140

7.3.4 Evaluation . 142

7.3.5 Wrap-Up . 147

7.4 FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference . 148

7.4.1 Scope . 148

7.4.2 Problem Analysis and Statement 149

7.4.3 Providing Correct Floating-Point Comparisons with Integer and
Logic Arithemtic . 149

7.4.4 Evaluation . 157

7.4.5 Wrap-Up . 163

7.5 Concluding CPU Optimization for Random Forests 164

131

132 Chapter 7. CPU Optimization for Random Forests

7.1 Modern Technologies and Traditional Interfaces

While the previous chapters of this thesis studies interface exploitation around the
traditional memory interface, enabling management for modern memory technologies,
this chapter focuses on another traditional memory interface, namely the execution of
floating-point operations in CPUs. The traditional interface for floating-point operations
is formed by CPU instructions, which process floating-point values in registers, which
may be general purpose or dedicated floating-point registers. The traditional way to fill
such a register with a value, is to perform a memory load:

Memory Based Floating-Point Operations

Comparing this to integer operations, it can be observed that the functionality of
immediate encoding for floating-point values is not provided. For immediately encoded
integer operations, the value is directly encoded in the CPU instruction itself. Consider,
for instance, an imaginary ISA, where registers are named r0, r1, ... and an ad-
dition instruction with an immediate constant exists: add r0, r1, #42. The constant
value 42 would be stored as a part of the encoded instruction in the instruction memory
directly, and hence allows immediate encoding. For floating-point values, such an option
is traditionally not available. Instead, a floating-point value of 42.0 would have to be
placed at a dedicated memory position, e.g. 0xAB00, and loaded for a floating-point
operation: load r2, 0xAB00; fadd r0, r1, r2. Although this does not cause any
functional disadvantage, the possible design of arithmetic operations is consequently
limited for floating-points in comparison to integers. Especially for low level optimization
for RFs, exploring large design spaces is of crucial interest. Consequently, this chapter
aims to exploit the traditional interface by software in order to provide immediate oper-
ation of floating-point values. To gain efficiency, the application domain is specifically
studied for RFs and specific solutions are derived:

7.2. Overview 133

Memory Based Floating-Point Operations

Immediate Floating-Point Operations

7.2 Overview

The previous chapter (Chapter 6) discusses the impact of RANDOM FOREST (RF))
inference on the memory subsystem, especially the optimization of the shifting cost in
RTM. The memory subsystem, however, is not the only subsystem specifically impacted
by RF execution and consequently offering potential for optimization. This chapter
focuses on the impacts of the CPU subsystem, specifically the arithmetic computation to
RF inference. Since the inference of RFs consists of repetitive execution of tree nodes,
optimizing the arithmetic operations of a single node can have a large impact on the
entire tree. While training of DTs and RFs requires a rather complex set of arithmetic
operations, inference is a very simple algorithm. The basic operation is the comparison
between the incoming feature value against a certain threshold and following the decision
whether the value is larger or smaller. Comparison, i.e. computing the ≤ relation, for
instance, is a rather simple operation, since the result is a single comparison bit and
not a numeric result, as for other arithmetic operations. Consequently, comparison
operations open a certain space for optimization. The techniques, which are presented
in this chapter, impact the computation of the comparison operation partially, as well
as the memory subsystem. Hence, the basic impact schemes are explained in the
following.

7.2.1 Numeric Formats

Numeric computation in CPUs can be roughly divided into integer and floating-point
computation. Even though integer computation itself covers number formats with various
bit widths, signed and unsignedness and probably further specialities, all these formats
can be efficiently combined into a single arithmetic unit by implementing a proper

134 Chapter 7. CPU Optimization for Random Forests

processing and interpretation of computation results, respecting the considered integer
format. Floating-point computations, in contrast require a largely different arithmetic
unit, since the algorithms to compute arithmetic operations are different from integer
operations. Consequently, CPUs implement floating-point units in a different hardware
unit than integer arithmetic. In addition, floating-point values itself cannot be directly
reinterpreted as integer values or vice versa. This leads to the realization of dedicated
floating-point registers in many CPUs, such that integer values and floating-point values
are stored and processed in different register sets.

This realization scheme can have at least two potential impacts on the execution
performance. First, CPUs may be more optimized for integer computations, such that, for
instance, a simple addition can take more time in average on a floating-point value than
on an integer value. Second, the handling of floating-point values in dedicated floating-
point registers can involve extra steps, as for instance copying values between integer
and floating-point registers when memory operations cannot directly load values to
floating-point registers. This can lead to negative performance impacts for floating-point
values as well.

When discussing RFs, the comparison operation should be considered as a premier
target. It is reported, that some CPUs, although implementing dedicated floating-point
units, use the integer unit to perform the comparison of floating-point numbers with a
dedicated post-processing [Bra]. This surpasses possible performance impacts due to
slow floating-point units for RFs largely. However, the dedicated handling of floating-point
registers remains as a possible cause for performance impacts. Hence, optimization
potential when surpassing the need for the use of floating-point units is existent.

It should be noted at this point that the decision whether a RF operates on integer
or floating-point data stems from the data source, which is used for inference. If the
input data is provided as floating-points, the RF is naturally trained with floating-point
comparison values. The RF can be transformed to use integers values instead, however,
a potential accuracy loss can be induced. In addition, this requires an additional
conversion step for the incoming data. Hence, this version is not considered in the
following. This chapter discusses methods for performance optimization when RFs have
to operate on floating-point data.

7.2.2 Memory Encoding and Hierarchy

Despite the direct effect from requiring different hardware units for floating-point compu-
tation, whether floating-point or integer values are used in a RF can have, among other
causes, indirect effects on the performance. In order to elaborate these effects, this
subsection gives a short overview on possible effects on the memory hierarchy. Due
to the wide presence of caches in memory subsystems of modern CPUs, the memory
access latency, i.e. the memory performance, cannot be assumed to be uniform for
the entire memory. Instead, memory accesses hitting the cache can be processed
significantly faster than other memory accesses. Knowing if a certain memory element
will be stored in a cache at a certain level is a complex question. For most CPUs, this

7.2. Overview 135

question even cannot be answered because details of the cache management are not
known usually. However, if the pressure on the cache is higher, i.e. the application
makes memory accesses to lots of different memory elements in a short time, chances
are lower that memory accesses will be cache hits. If, on the other side, the cache
pressure is low, i.e. the application only makes use of a few memory elements, chances
are higher that memory accesses will be cache hits. Despite the pure pressure on the
cache, the frequency of accesses to memory elements plays a major role for most CPUs.
In detail, the more often a memory element is accesses within a program, the higher
chances are that an access will be cache hit. Although this effect is not further studied
in this thesis, it should be noted that RFs offer a strong cache optimization potential
in this regard due to the probabilistic model, which can be exploited. [CSH+22] is a
contribution in this scope, which, however, is not further detailed in this thesis.

The organization of CPU caches is not only hierarchical, i.e. different levels of
caches, but also splits data and instruction memory for many CPUs at a certain level. In
detail, a separate data and instruction cache is present for many CPUs, usually in the first
cache level. In consequence, at least for this level, pressure on the instruction and data
memory can be considered separately. For instance, even though a program may use
many different data objects, instruction accesses can still be very likely cache hits when
only a few instructions are executed. Although management strategies of instruction and
data caches may be highly complex, leveling the pressure on the instruction and data
cache can be a good approach in order to optimize the performance of an application.
In the context of DTs in RFs, the pressure on instruction and data memory can be
directly analyzed. While for native trees (Listing 3.1 and Listing 3.2), a low pressure on
the instruction memory and a high pressure on the data memory is mandatory, if-else
trees (Listing 3.3) offer a certainly controllable trade-off. For if-else trees, the entire
tree is encoded in instruction, which suggests the intuition that only a high pressure
on instruction memory is caused. Comparison values, however, may be stored in data
memory and loaded during the execution, which creates pressure on the data memory.

In order to elaborate the option to store comparison values in the code itself or in
the data memory, immediate encoding of constants needs to be considered. The split
values are known during implementation time and hence known to the compiler as
constants. In order to compile the comparison, largely independent of the used ISA, two
options can be considered. First, comparison values can be stored in a memory array, a
load instruction is placed loading the value to a register and a comparison instruction
performs the actual comparison between two registers, when the incoming feature value
was loaded to another register. Second, if the ISA offers that option, the incoming
feature value can be loaded to a register, and an immediate comparison instruction is
used, which takes one register as an operand and an immediate bit field as a second
operand. It should be noted, that such immediate encoding of comparison values is
limited to a certain bit width less than the instruction width naturally. If larger data types
are used in the RF, multiple instructions may be needed for the immediate loading or
the values have to be stored in data memory. Due to the limited bit width, usually only
integer numbers are supported.

136 Chapter 7. CPU Optimization for Random Forests

7.3 Immediate Encoding of Floating-Point Split Values

As explained before, this thesis focuses on the specific impact of RF execution on the
number computation and memory subsystem. As a main focus, execution of floating-
point numbers in comparison to integer numbers is considered. This section assumes
RFs with floating-point split values to be given. The considered CPU architectures
(i.e. X86 and ARMv8) both cannot encode floating-point constants in immediate fields.
Consequently, the compiler places the floating-point constants in data memory and
loads them during execution as a normal memory load. This creates additional pressure
to the instruction caches, which potentially causes not optimal cache utilization. Hence,
in this section a method is presented, which forces the floating-point constants to be
stored in text memory by applying an immediate encoding scheme. Due to the more
balanced pressure on the caches, performance improvement is gained.

7.3.1 Scope

As mentioned before, this section introduces a method, which enables the encoding of
floating-point constants as immediate constants during the code generation if RFs. In
detail, neither the training, nor the logical output of ensemble, nor the logical structure
is modified. Only the way, single nodes of the inner DTs are translated into machine
code is modified, such that the constants for the split values are not stored in data
memory, but in text memory instead. In order to achieve this, the binary encoding of
floating-points, i.e the IEEE754-1985 [ECS85] is investigated. This standard determines
how floating-point numbers are encoded in, for instance, a 32 or 64 bit register. This
encoding, can be also stored as an integer variable. Loading this integer variable to a
register and performing a direct copy between a integer register and a floating-point
register without reinterpretation can then enable the usage of the floating-point value.
This method offers the possibility to encode the corresponding integer in an immediate
field of an instruction, i.e. in the text memory. In short, the following contributions are
presented in this section:

• An analysis of state-of-the-art RF optimization techniques with their impact on the
pressure on data and instruction caches.

• The implementation of immediate encoded floating-point split values in the text
memory, shifting the pressure between data and text memory.

• Experimental evaluation with a detailed comparison to the data and instruction
cache impact of state-of-the-art RF optimization techniques.

7.3.2 Problem Analysis and Statement

After training of a RF model (e.g. with scikit-learn [PVG+11]), the model is derived in
a logic representation (e.g. encoded in JSON). Executing this model without special

published work: [HCC22b]

7.3. Immediate Encoding of Floating-Point Split Values 137

operating system or library support requires a realization in a programming language
and compilation to machine code. The realization of DTs and RFs as if-else trees, as
introduced by [ALD13] intensively utilizes instruction caches during the execution, as the
entire tree structure is encoded in instructions itself. Only loading of the data point for
inference is mandatory from data memory and therefore uses data caches. Listing 7.1
depicts an example of the implementation of a single tree node as an if-else tree in C++.

1 if (pX [3] <= (float) 1.500000){
2 return 1;
3 } else { . . .

Listing 7.1: C++ node example

It can be seen that the loading of the data point (stored in pX) is an array access and
therefore a data memory access. The split value, which is used to decide in combination
with the data point if the left or right subtree should be further followed, is immediately
encoded in the source code, also the prediction value is immediately encoded with the
return statement. To illustrate the conversion to assembly code, the assembly code for
an X86 machine, produced by the gcc compiler in version 11.1.0 is investigated in the
following. Later, both, X86 and ARMv8 architectures are considered.

1 movss 0xe50(% r i p) ,%xmm9
2 comiss 0xc(% r d i) ,%xmm9
3 jmp 2fa0

Listing 7.2: Assembly node example

Listing 7.2 illustrates the relevant assembly code for the implementation of the node from
Listing 7.1. Line 1 is responsible for loading the split value, Line 2 loads the feature value
from the data point and performs the comparison to the split value. Line 3 then performs
the according jump. Counter intuitively to the C++ implementation, the split value is
not encoded as an immediate value, but rather leads to a data memory load within
the comiss (compare scalar ordered single-precision floating-point) instruction. Since
the X86 instruction set does not offer immediate values for floating-point instructions,
the compiler decides to place the split values at a central position in data memory
and translate the accesses to regular data loads1. It should be noted that the movss
instruction (which loads a floating-point number to a register) uses the immediate
encoding for the offset within main memory, but not for the floating-point constant itself.
In consequence, two out of the three relevant instructions for an if-else tree perform data
accesses and utilize the data cache. The motivational concept of intensively utilizing
instruction memory and caches for if-else trees does not hold all along.

To further illustrate the impact of this condition, a state-of-the-art implementation
of if-else trees from Chen et al. [CSH+22] is investigated. Specifically, two possible
implementations of the same logic model are studied in the following: 1) a naive
implementation of if-else trees, where every node in the logic tree structure becomes an

1This observation is not necessarily bounded to the X86 architecture, the ARMv8 architecture neither
does offer such a feature.

138 Chapter 7. CPU Optimization for Random Forests

0.5 1 1.5 2 2.5 3 3.5 4 4.5

⋅106
0

0.5

1

1.5

model size in byte

no
rm

al
iz

ed
ic

ac
he

m
is

se
s

instruction cache misses

0.5 1 1.5 2 2.5 3 3.5 4 4.5

⋅106
0

0.5

1

1.5

model size in byte

no
rm

al
iz

ed
dc

ac
he

m
is

se
s

data cache misses

0.5 1 1.5 2 2.5 3 3.5 4 4.5

⋅106
0

0.5

1

1.5

model size in byte

no
rm

al
iz

ed
ex

ec
ut

io
n

tim
e

execution time

Figure 7.1: Execution time, icache misses and dcache misses for if-else tree optimiza-
tion

if-else block and the left and right subtree is placed within the corresponding if or else
block. 2) the generated trees with the state-of-the-art optimization [CSH+22], where the
tree is reordered in regard to the branch probability within every node. This reordering
aims to optimize cache prefetching and minimize the amount of cache misses. A large
set of random forests is generated for data sets, which result in floating-point split values
for the naive and the optimized if-else tree implementation. As datasets, parts from the
UCI machine-learning repository [AN07] are chosen: the EEG Eye State Data Set (eye),
the Gas Sensor Array Drift Data Set (gas), the MAGIC Gamma Telescope Data Set
(magic), the Sensorless Drive Diagnosis Data Set (sensorless) and the Wine Quality
Data Set (wine), which are all classification data sets. All datasets are divided into 75%

7.3. Immediate Encoding of Floating-Point Split Values 139

training data and 25% test data. Hyperparameter tuning is not performed but rather the
maximal depth of the decision trees is tuned in order to derive different sized models.
These models are executed on a X86 server machine (2x AMD EPYC 7742, 32kB L1
i/dcache, 256GB RAM) and are compared with respect to their execution time, their
amount of misses in the level 1 instruction cache and the amount of misses on the level
1 data cache.

Figure 7.1 depicts the recorded results from the execution of the implementations
with the performance analysis tools for Linux (Perf). The results of the optimized imple-
mentation are normalized (applying the optimization method from Chen et al. [CSH+22])
to the naive implementation. Two knobs are tuned: The maximal depth of single trees
and the amount of trees within the ensemble. The resulting size of the model is based
on the measurement of the binary size of the implementation after the compilation,
which is illustrated along the x-axis. It should be noted that the binary size of the model
is only indirectly controlled by the maximal depth and the amount of trees, hence not for
every size on the x-axis also a model is generated. The optimized implementation is
considered, even if it may result in a different binary size, to the original binary size from
the naive implementation. Hence, even if optimizing the model increases the binary
size, the performance still is compared to the corresponding naive implementation of the
same tree structure. An increase in the binary size potentially causes a higher amount
of cache misses, which is then reported in the normalized data. The models are further
grouped in size groups (0kB-300kB, 300kB-600kB, ...) and the geometric mean of the
normalized improvements is computed. This value is the ultimately depicted in the figure.
The green bars with diagonal lines indicate the reduction in total execution time, the red
bars with horizontal lines indicate the reduction in L1 icache misses, and the blue bars
with vertical lines indicate the reduction in L1 dcache misses.

It can be observed that, although the optimization reduces the total execution time
and amount of icache misses for large models2, the amount of L1 dcache misses is not
reduced similarly. This stems from the fact that the if-else tree optimization proposed
by Chen et al. [CSH+22] only modifies the sequence of the source code in order to
reduce the amount of L1 icache misses. The placement and loading of the split values
is not considered and thus not handled in the optimization. When the dcache misses
can be reduced as well, a further reduction of the execution time can be possible.
Furthermore, loads can be released from the instruction memory, which may comfort
other applications within the system.

Observing this shortcoming in the existing optimization motivates the development of
a new optimization technique, which specifically focuses on the optimization of dcache
misses by handling the loading of the split values in a dedicated manner. One trivial
method is to round the floating-point split values to integer values and subsequently
encode them in the immediate field of the instructions itself, such that they do not need
to be loaded from data memory at all. This, however, potentially induces a loss in

2The optimization targets to optimize the memory layout, such that cache misses are reduced. Thus,
effects likely only can be observed when the model size exceeds the cache capacity, which is only for
larger models the case.

140 Chapter 7. CPU Optimization for Random Forests

accuracy due to the rounding of the split values. Alternatively, this section presents an
implementation, where the full floating-point split value can be encoded in the immediate
field of instructions and therefore also omits the need to load the split values from data
memory.

7.3.3 Immediate Encoding

As mentioned before, when it comes to the optimization of the cache behavior of if-else
implementations of DTs, both cache types, i.e. the instruction cache and the data cache,
need to be handled. In general, optimization methods profile the execution of the DT on
the training dataset and determine empirical branch probabilities. These probabilities
are used subsequently to shape the tree implementation in an optimized manner. When
the total model size exceeds the capacity of a cache, which likely happens for kilobyte
sized level 1 caches, cache misses cannot be avoided during execution of the tree.

Hence, the optimization target is to reduce the amount of cache misses in order
to improve the total execution time of the DTs. Such optimizations usually can exploit
two aspects: 1) the tree is shaped in a way that frequently accessed parts of the
decision tree are less likely evicted from the cache as in a naive implementation and
therefore do not cause cache misses on access, and 2) the tree is shaped in a way
that automatic prefetching of (spatial) local memory contents is utilized to load parts
of the tree into caches before they are accessed and thus omit cache misses at the
access time itself. To shape the tree itself, data memory and instruction memory needs
to be distinguished. Data memory is usually used to store variables and arrays. If a tree
implementation uses large arrays, changing the layout of the array allows shaping the
tree. Instruction memory is used to store the instruction sequence of the tree itself. If
the tree implementation uses many instructions, changing the sequence of instructions
allows shaping the tree regarding the behavior of instruction caches.

As motivated before, the naive implementation of an if-else tree in C++ uses data
memory to load both feature values and split values. Access to the feature values cannot
be omitted and hardly be optimized, since the input tuple is not created by the tree
implementation itself. Thus, data memory accesses to the feature values are compulsory.
In consequence, optimization of the data memory accesses for the split values is
challenging, since these accesses are necessarily interleaved with the accesses to
the feature values. Therefore, the implementation, illustrated in this section, alters the
loading of the split value from data memory to instruction memory. Subsequently, the
tree is shaped by ordering the instruction sequence with respect to the behavior in the
instruction cache.

Based on the arch-forest framework3, used in [CSH+22], a new code generator
module is implemented for the generation of the optimized if-else tree. The code
generator does not generate C or C++ code, but rather directly generates X86 or ARMv8
assembly code, which is embedded by inline assembly to the rest of the framework. In

3https://github.com/tudo-ls8/arch-forest

https://github.com/tudo-ls8/arch-forest

7.3. Immediate Encoding of Floating-Point Split Values 141

1 _ _ r t i t t _ l a b _ 2 7 _ 0 :
2 movss 12(%1) , %%xmm1
3 / / 0 x3fc00000=1 .5
4 mov $0x3fc00000 , %%eax
5 movd %%eax , %%xmm2
6 comiss %%xmm1, %%xmm2
7 jnb _ _ r t i t t _ l a b _ 2 9 _ 0

Listing 7.3: Optimized assembly implementation (X86)

1 "__rtitt_lab_27_0:"
2 ldr s1 , [%1 , 12]
3 / / 0 x3fc00000=1 .5
4 movz w2, #0x0000
5 movk w2, #0x3fc0 , lsl 16
6 fmov s2 , w2
7 fcmp s1 , s2
8 b.le _ _ r t i t t _ l a b _ 2 9 _ 0

Listing 7.4: Optimized assembly implementation (ARMv8)

order to explain the assembly implementation, the example node from Listing 7.1 is
illustrated in the following.

Listing 7.3 illustrates the output of our code generator for the example node. In line
2, similarly as in the compiler generated code, the feature value is loaded from data
memory, which cannot be omitted. Afterwards, the split value (1.5) is converted to IEEE-
754 32 bit representation in line 4 and loaded as a bit mask to a general purpose register4.
The movd instruction subsequently copies the register content without conversion to
a floating-point register and in line 6 and 7 the according comparison and jumps are
executed.

4The generator also supports double precision floating-points; the code is generated accordingly on
demand.

compiler based version

movss
0xe50(%rip),%xmm9
comiss
0xc(%rdi),%xmm9
jmp 2fa0

instruction mem. data mem.

optimized version

movss 12(%1),
%%xmm1
mov $0x3fc00000,
%%eax
movd %%eax, %%xmm2
comiss %%xmm1,
%%xmm2
jnb __rtitt_lab_29_0

instruction mem. data mem.

Figure 7.2: Optimized loading of constants from memory

142 Chapter 7. CPU Optimization for Random Forests

Listing 7.4 similarly depicts an example of the ARMv8 code, which is generated by
the code generator. The key difference is that ARMv8 does not offer pseudo instructions
to load 32 or 64 bit immediate values, thus these are decomposed into a set of movz
(move and zero contents before) and movk (move and keep contents) instructions with
according bit shifts. The fmov instruction in ARMv8 is the respective instruction to move
contents from a general purpose register to a floating-point register without conversion.

Figure 7.2 Illustrates the difference in memory accesses between the compiler
generated code and the explicit generated code for X86. All instructions, by default,
access instruction memory, since the instruction has to be loaded from instruction
memory. In the compiler generated version, two out of three instructions in addition
access data memory, in the optimized version only one out of five instructions additionally
accesses data memory. Despite moving the split value entirely to the instruction memory,
also the code sequence optimization is inherited from [CSH+22] in the code generator.
For every node, the relative probability to visit the left or right child is compared, and
the more probable child is placed as the subsequent instructions. The less probable
child hence is labeled and targeted by the jump / branch instruction. Implementation
wise, this requires a swap of the branch condition, since the branch must be taken either
on the ≤ or on the > condition. This is achieved by either generating a jnb (jump if not
below) / b.le (branch if less or equal) or a jb (jump if below) / b.gt (branch if greater
than) instruction.

In order to integrate the code generation in a generally applicable shape, all possible
combinations for data types within if-else trees are implemented in the code generator.
This includes various combinations of data types for the feature and for the split values,
since the comparison has to be realized accordingly. The code generator allows gener-
ating if-else trees for 32 and 64 bit floating-point split values, including the optimization
from [CSH+22], in assembly code and eliminates a large portion of data memory loads,
at the cost of few additional instructions, which are used to encode the data directly in
the immediate field. Thus, the data cache misses are likely reduced when employing
this implementation.

Beyond the concrete implementation, this method is applicable to other models and
structures as well. Floating-point constants are required for a large set of machine
learning models, e.g. neural networks or simple regression models. Such models are
usually trained by adjusting a set of constants (weights, parameters, etc.), which are then
incorporated for computation during inference. Since the computation is implemented as
code execution in a CPU based variant, constants can be similarly immediately encoded
and possibly allow a performance improvement of other models.

7.3.4 Evaluation

In order to evaluate the implementation of encoding the split values in the immediate
fields of integer instructions, this section focus on two central aspects: 1) the reduction
of data cache misses and 2) the effect of the reduction on the total execution time. For
the evaluation, the data sets from the UCI machine-learning repository [AN07] are again

7.3. Immediate Encoding of Floating-Point Split Values 143

CPU L1 icache L1 dcache Memory
X86 Server 2x AMD EPYC

7742
32 kB 32 kB 256 GB

DDR4
X86
Embedded

Intel Atom x5-
Z8350

32 kB 24 kB 2GB DDR3

ARMv8 Server 2x Cavium Thun-
der X2

32 kB 32 kB 256 GB
DDR4

ARMv8
Embedded

Amlogic S9052 32 kB 32 kB 2 GB DDR3

Table 7.1: Test system details

investigated: The EEG Eye State Data Set (eye), the Gas Sensor Array Drift Data Set
(gas), the MAGIC Gamma Telescope Data Set (magic), the Sensorless Drive Diagnosis
Data Set (sensorless) and the Wine Quality Data Set (wine). These data sets are all
classification data sets. The arch-forest framework is used together with the custom
code generator to generate ensembles of different amount of trees and tree sizes for
all data sets. Subsequently, three implementations for every tree are generated: 1) a
naive if-else tree implementation without any optimization, 2) the optimized if-else tree
implementation from Chen et al. [CSH+22] as the state of the art and 3) the assembly-
based implementation, as presented in Section 7.3.3. As test platforms, four different
systems are chosen, two server systems with X86 and ARMv8 architectures and two
embedded systems with X86 and ARMv8 architectures. The system details can be
found in Table 7.1. All generated ensembles are executed on all the systems and the
performance analysis tools for Linux (Perf) are used to record instruction cache misses,
data cache misses and the total execution time for every configuration. The model
size is determined in bytes after compilation to compare the different configurations
regarding their final size. The optimized implementations are considered for the binary
size of the naive implementation and size groups are built, which are used to compute
the geometric mean and present the results. Thus, even if the model size is increased by
the optimization, the normalized ratio still is depicted for the same logic model structure.

Figure 7.3 depicts the icache misses for the server systems, Figure 7.4 depicts
the dcache misses, and Figure 7.5 depicts the execution time, respectively. Figure 7.6
depicts the icache misses for the embedded systems and Figure 7.7 the dcache misses,
respectively. The normalized ratio between the optimized and the naive implementation
is computed again. Thus, a number larger than 1 indicates worse performance in
comparison to the naive implementation. Each figure includes results for the X86 archi-
tecture and for the ARMv8 architecture. Comparing the reduction for the optimization
from the state of the art and the encoding optimization leads to another, relative im-
provement, which is illustrated in Table 7.2. The #IMPROVED and #IMPROVED(> 900k)
values describe in how many of the tested models of the encoding optimization perform
better regarding instruction cache misses, data cache misses or execution time than

144 Chapter 7. CPU Optimization for Random Forests

0

0.5

1

1.5 Chen et al. (X86)
Immediate Encoding (X86)

1 2 3 4 5 6

⋅106
0

0.5

1

1.5

model size in byte

no
rm

al
iz

ed
ic

ac
he

m
is

se
s

Chen et al. (ARMv8)
Immediate Encoding (ARMv8)

Figure 7.3: Instruction cache misses of immediate encoded split values - server

0
0.5
1

1.5
2

Chen et al. (X86)
Immediate Encoding (X86)

1 2 3 4 5 6

⋅106
0

0.5
1

1.5
2

model size in byte

no
rm

al
iz

ed
dc

ac
he

m
is

se
s

Chen et al. (ARMv8)
Immediate Encoding (ARMv8)

Figure 7.4: Data cache misses of immediate encoded split values - server

the optimization from Chen et al. The latter value only considers models, which lead
to a binary size of more than 900kB. The improvement ratio is further computed by
1 − Immediate Split

Chen et al. . Hence, a number of +100% for the cache misses would mean that
the encoding optimization eliminates all cache misses, which are left after the optimiza-
tion from the state of the art. This improvement is computed for all data sets and the
geometric mean for models larger than 900kB and the peak value is reported in the
table.

Discussion

Generally, it can be observed that for rather small ensembles (up to ≈ 900kB) a
diminished performance can be observed for most configurations. If a small model
anyway can be held entirely in the level 1 cache, there is no requirement for any
optimization. The optimization, however, induces certain overheads by introducing
more instructions, which leads to an ultimate performance decrease. In consequence,
this draws the conclusion that the optimization should only be applied in meaningful
scenarios, where the ensemble size exceed the level 1 cache size and necessarily

7.3. Immediate Encoding of Floating-Point Split Values 145

0

0.5

1

1.5 Chen et al. (X86)
Immediate Encoding (X86)

1 2 3 4 5 6

⋅106
0

0.5

1

1.5

model size in byte

no
rm

al
iz

ed
ex

ec
ut

io
n

tim
e

Chen et al. (ARMv8)
Immediate Encoding (ARMv8)

Figure 7.5: Execution time of immediate encoded split values - server

X86 ARMv8
Server Embd. Server Embd.

Time
#IMPROVED 33.7% 09.6% 34.6% 06.1%

#IMPROVED(>900k) 80.9% 10.7% 68.3% 06.5%

GEOMEAN(>900k) +08.4% −16.4% +01.5% −17.8%
Peak +39.5% +36.7% +29.7% +38.7%
ICache
#IMPROVED 60.0% 33.7% 55.5% -
#IMPROVED(>900k) 95.2% 60.7% 76.9% -
GEOMEAN(>900k) +14.7% +00.3% +02.6% -
Peak +90.4% +26.8% +61.8% -
DCache
#IMPROVED 64.1% 76.8% 41.6% 37.5%

#IMPROVED(>900k) 84.5% 100.0% 39.4% 27.8%

GEOMEAN(>900k) +26.1% +96.1% −4.7% +4.6%
Peak +92.3% +99.8% +65.5% +87.7%

Table 7.2: Average and peak improvements compared to [CSH+22]5 for server and
embedded systems

produces cache misses. Therefore, a focus is put on these meaningful scenarios in the
following.

Focusing on the instruction cache misses only, it can be seen that for most configu-
rations with large model sizes the amount of icache misses is further decreased by the
proposed optimization, compared to the state of the art (on the X86 server system in
95% of the relevant cases in geomean by 14.7%). Considering the data cache misses,
considerable reductions can be observed for larger ensembles in comparison to the

5The geomean values in this table are computed for models only, which are larger than 900 kB.

146 Chapter 7. CPU Optimization for Random Forests

state of the art as well. For the X86 server, the amount of data cache misses for large
ensembles is even reduced in 84% of the relevant cases by up to ≈ 92% in peak. In
case of the ARMv8 server, a slighter reduction of dcache misses can be observed, up to≈ 65% in peak and even an increase of ≈ 4% in geomean for large ensembles. Focusing
on the embedded systems, similar behavior can be observed for the data cache, the
behavior for the icache misses contrarily differs6. Data cache misses are reduced by
up to ≈ 99% in peak and ≈ 96% in average for X86. Instruction cache misses, however,
are not significantly reduced on the X86 embedded system. For the ARMv8 embedded
system, the improvement of dcache misses as well is comparably lower to the X86
embedded system.

Despite reducing icache and dcache misses, the allover execution time of the
optimized implementation matters. In general, it can be observed that a high reduction
in dcache misses does not necessarily result in a high reduction in execution time.
For large ensemble sizes on the server machines, a consistent reduction of execution
time can be however observed for the proposed optimization. The majority of relevant
cases (more than 65%) yields an improvement in execution time on the X86 and ARMv8
servers. The improvement is up to ≈ 40% in peak for X86 and ARMv8, compared to the
state of the art. For small ensemble sizes, it can be observed that the execution time is
increased beyond the naive implementation with the optimized implementation. In these
cases, the additional overheads due to the immediate encoding cannot be leveraged
by the improvement. Investigating the embedded systems, the execution time can only
be improved for few cases (≈ 10% on the X86 and ≈ 6% on the ARMv8 system). In
geomean, the execution time is enlarged for the relevant cases, although the amount of
dcache misses is drastically reduced for X86. This suggests that dcache misses are not
the limiting factor for the execution in this scenario. Furthermore, this also implies that
the CPU architecture is an important factor to the intended reduction of dacache misses
with the encoding optimization.

Although the results reveal that the proposed optimization cannot improve per-
formance unconditionally, especially for small model sizes and embedded systems,
scenarios with a massive reduction of dcache misses and also a reduction of icache
misses can be reported. Such a reduction can be useful to comfort parallel running
applications. In several cases, the reduction of cache misses further directly relates to
reduction of total execution time. When generating implementations, various versions
can be profiled on the training data set, so the best implementation can be chosen.
Thus, for the cases where a worse result is achieved by immediate encoding, the im-
plementation of Chen et al. [CSH+22] can still be chosen. Similarly, for small models,
where the optimized implementation induces a high overhead, the native implementation
can be chosen.

6The ARMv8 system used does not allow tracking of icache misses with perf.

7.3. Immediate Encoding of Floating-Point Split Values 147

0.5 1 1.5 2 2.5 3 3.5 4 4.5

⋅106
0

0.5

1

1.5

model size in byteno
rm

al
iz

ed
ic

ac
he

m
is

se
s

Chen et al. (X86)
Immediate Encoding (X86)

Figure 7.6: Instruction cache misses of immediate encoded split values - embedded

0
0.5
1

1.5
2 Chen et al. (X86)

Immediate Encoding (X86)

1 2 3 4 5 6

⋅106
0
1
2
3
4

model size in byte

no
rm

al
iz

ed
dc

ac
he

m
is

se
s

Chen et al. (ARMv8)
Immediate Encoding (ARMv8)

Figure 7.7: Data cache misses of immediate encoded split values - embdedded

7.3.5 Wrap-Up

Tackling the impact of RANDOM FOREST (RF) execution on the memory subsystem,
especially the distribution of pressure on the instruction and data memory, this section
discusses a method to move the encoding of floating-point constants in RFs inference
to immediate field in the instruction memory, which is not possible by default. These
methods exploit the binary encoding of floating-points in an offline manner and transfer
them as integers, encoding the binary value of the floating-point, into the program
code. A direct conversion at runtime then makes the floating-point value available,
without loading it from data memory. Since such procedures are not supported by
default, the implementation of the RF is realized by direct assembly code generation.
Since only the way of loading the split value is modified, the optimization is orthogonal
to existing state-of-the-art performance optimization. Experimental evaluation shows
that the encoding optimization can reduce the amount of data cache misses by up
to 99% upon the state-of-the-art and can even lower the allover execution time by up
to 40% on server systems. It can be further concluded that the overheads, which
are introduced by the encoding optimization, can only be leveraged for model sizes,

148 Chapter 7. CPU Optimization for Random Forests

which exceed the size of the level 1 caches. Thus, the optimization should be only
applied in these cases. On embedded systems, the execution time is overall not
significantly lowered, although the amount of cache misses can be drastically reduced.
Hence, different aspects should also be explored. The implementation of the code
generation fully supports X86 and ARMv8 architectures with different width integer
and floating-point data types. The source code is available at https://github.com/
tu-dortmund-ls12-rt/arch-forest/tree/immediatesplittrees.

7.4 FLInt: Exploiting Floating-Point Enabled Integer Arith-
metic for Efficient Random Forest Inference

As mentioned in the opening of this chapter, the specific design of the comparison
operation in RFs can have a performance impact on the memory subsystem, as well
as on the way of numeric computation directly. The previous section discusses the
immediate encoding of split values, targeting the impact on the memory subsystem.
Although the way of storing and loading the floating numbers is modified in this method,
the constants are still available in a floating-point register afterward and the numeric
operation is a normal floating-point comparison. This does not take a direct impact on
the numeric computation.

Consequently, this section provides a rather drastic approach towards performance
optimization of the comparison operation. On the one hand, the previously presented
target of leveling the pressures on the instruction and data caches is maintained and
even improved. On the other hand, the need to use floating-point comparisons is omitted
at all, without a loss in accuracy. Hence, the floating-point unit is not further used, and
comparison operations only operate in the integer unit. This method comes on the cost
of being specific only for comparison operations.

7.4.1 Scope

In this section, the motivation of modifying the usage of floating-point operations in RF
execution is picked up from the previous section. While the previous sections modifies
the loading of floating-point values and allows arbitrary computation with the loaded
value, in this section a more drastic approach is introduced. The computation of the
comparison operation, i.e. computing ≤ between two floating-point numbers is modified
in a way, that it only uses integer and logic operations. This section provides a full proof,
this transformation delivers correct comparison results for all possible cases. In order to
achieve this, the relation between the binary encoding of floating-point numbers and the
encoding of integer numbers is deeply investigated. As the outcome of the proof, the
computation can only be correctly performed with a case distinction between positive and
negative numbers. Since this would be costly in terms of performance, a specific solution
for RF inference is introduced, where the case distinction can be done offline in the

published work: [HCC22a] and as an extended abstract in [HCC24]

https://github.com/tu-dortmund-ls12-rt/arch-forest/tree/immediatesplittrees
https://github.com/tu-dortmund-ls12-rt/arch-forest/tree/immediatesplittrees

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 149

implementation phase of the ensemble. The resulting operator can be applied directly
in C code without further overheads, i.e. a line like if(pX[3]<=(float)10.074347)
becomes if((*(((int*)(pX))+3))<=((int)(0x41213087))). In short, the following
contributions are presented in this section:

• FLInt: A two’s complement and logic operation based comparison operator for
floating-point numbers, where the correctness is formally proven.

• An efficient implementation of FLInt in RFs with if-else tree implementations,
where the special case handling is resolved offline during the implementation
time.

• Experimental evaluation on X86 and ARMv8 server and desktop class systems
to study the reduction of overall execution time when using FLInt instead of
floating-points.

7.4.2 Problem Analysis and Statement

In this section, the studied problem is to compute correct floating-point arithmetic in RFs
without the need for hardware floating-point support. By only using standard integer and
logic operations, this can 1) enable floating-point-based RFs on devices without floating-
point hardware and 2) eliminate the overheads to use the floating-point unit. Following
question is answered: How floating-point comparisons can be correctly computed based
on integer and logic operations? This problem is solved by specifically investigating
the binary floating-point format [ECS85] and consider the binary ordering in relation to
two’s complement signed integer interpretation [PH17]. While it is formally proven that
positive floating-point numbers are order preserving, the handling of negative numbers
and a few special cases requires dedicated handling. Such a handling is integrated into
a single operator, which is called FLInt.

7.4.3 Providing Correct Floating-Point Comparisons with Integer and
Logic Arithemtic

Floating-point arithmetic includes several operations, which are required to process
floating-point numbers. In this section, the comparison operation is only studied (i.e. ≥),
since this is the only operation needed during random forest inference. To eliminate the
use of hardware floating-point support or software float implementations, a comparison
operation by only using signed integer arithmetic and logic operations is realized. In this
section, the binary layout of floating-point numbers and two’s complement numbers is
presented, and the comparison operator between them is constructed. Every step is
formally proven and the correctness of the final operator is concluded.

Binary Floating-Point and Signed Integer Format

In order to illustrate the relation between the binary representation of floating-point
numbers and signed integer numbers, the state-of-the art formats is laid out in the

150 Chapter 7. CPU Optimization for Random Forests

following. Almost all computer systems nowadays use two’s complement [PH17] for
signed integer numbers and IEEE 754-1985 [ECS85] for single or double precision
floating-point numbers. Both formats support, among others, 32 bit and 64 bit types.
For the rest of this section, the floating-point and two’s complement format is defined
independent of the total bit length. 32 and 64-bit numbers in two’s complement and in
IEEE 754-1985 then can be interpreted as an instance of the defined format. Later in
this section, real implementation on common hardware is discussed, where 32 and 64
bit two’s complement and IEEE 754-1985 numbers are used.

Both formats, two’s complement and floating-point, define an interpretation of a fixed
length bit vector. Thus, an arbitrary bit vector can be either interpreted, among other
options, as a signed integer, an unsigned integer or a floating-point. Furthermore, the
binary representation of a floating-point number can be interpreted as a signed integer
and vice versa.

Definition 7. Let B ∈ {0,1}k be a k bit wide vector, then these bits can be interpreted
either as a floating-point or as signed integer number in two’s complement. FP ∶{0,1}k → Q denotes the floating-point interpretation FP (B) of B, SI ∶ {0,1}k → Z
denotes the signed integer (two’s complement) interpretation SI(B) of B and UI ∶{0,1}k → N denotes the unsigned integer interpretation UI(B) of B.

For the interpretation of signed and unsigned integers, every bit within the bit vector
is assigned a fixed value (2i). If the bit is set to 1, the value of the position is counted,
otherwise it is ignored. Negative numbers for the signed two’s complement format
always have the most significant bit (MSB) set to 1. The signed value is then interpreted
by assigning a negative value to the MSB and interpreting the other bits similar to the
unsigned format.

Definition 8. The two’s complement interpretation (signed integer) of a bit vector
B = (bk−1, ..., b0) is defined as

SI(B) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−1∑
i=0 bi ⋅ 2i bk−1 = 0

−2k−1 + k−2∑
i=0 bi ⋅ 2i bk−1 = 1 (7.1)

where the unsigned integer interpretation is the same as the two’s complement for
positive numbers:

UI(B) = k−1∑
i=0 bi ⋅ 2i (7.2)

One key advantage of this format is that the binary ordering (i.e. the interpretation
as an unsigned integer) is the same for negative and positive numbers. In addition, the
border between positive and negative numbers allows for unchanged arithmetic, when
the overflow bit is ignored. In detail, the representation of −1 in two’s complement is(1,1,1, ...) and the representation of 0 is (0,0,0, ...). When adding +1 to the repre-
sentation of −1 in unsigned arithmetic, all bits switch to 0 and an overflowing 1 goes

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 151

bk−1 bk−2 bk−3 ... b2 b1 b0

sign bit exponent mantissa

Figure 7.8: Illustration of the binary floating-point representation

to position k. Since the overflow can be safely ignored (which is intended in this case
[PH17]), the computation is correct.

The floating-point format differs from the binary representation of integers. In this
format, the binary representation is interpreted as three components: 1) a sign bit at the
position of the most significant bit (k − 1), 2) a biased exponent of j bit length where the
bias is 2j−1 − 1, and 3) a mantissa, filling the remaining bits, which is interpreted with an
implicit 1. Figure 7.8 illustrates the layout of these three components within the bit vector.
The interpretation of the floating-point format differs in large parts from the interpretation
of the two’s complement. While the sign bit is interpreted as a factor (× − 1 or ×1), the
mantissa is interpreted as a decimal number between 1 and 2, which is scaled by the
exponent.

Definition 9. The floating-point interpretation of a bit vector B = (bk−1, ..., b0) =(s, ej−1, ..., e0,mx−1, ...,m0) for j bit exponent and x bit mantissa is defined as

FP (B) = (−1)s ⋅ 2UI(ej−1,...,e0)−bias
⋅(1 + x−1∑

i=0 mi ⋅ 2−x+i) (7.3)

where the bias for the interpretation of the exponent is bias = 2j−1−1. It should be noted
that the commonly used IEEE 754-1985 format is exactly an instance of this format for
j = 8, x = 23 (single precision) and j = 11, x = 52 (double precision) [ECS85].

In addition to the normal interpretation of numbers (Definition 9), the floating-point for-
mat includes a few exceptional cases for special numbers. The special encoding for
positive and negative infinity and the encoding for not a number is not further discussed
in this section, since the usage of these numbers does not occur in random forests. If
positive or negative infinity should occur anyway, they are encoded as the smallest and
largest representable number and thus make no difference for comparison.

Since the normal interpretation cannot encode a 0 (due to the implicit 1 added to
the mantissa), the special encoding for the representation of 0.0 is all bits set to 0. In
addition, the format allows also the encoding of −0.0, when the sign bit is set to 1 and
all other bits are set to 0. In this section, it is assumed that −0.0 < 0.0, which differs
from the definition −0.0 = 0.0 of the IEEE 754-1985 standard7. As the mantissa is
always interpreted as a number between 1 and 2, the smallest representable absolute
value would be limited to 2−bias. To extend this, the floating-point format includes a
denormalized format, which is indicated by an exponent of all 0s. In this format, the

7
−0 can be the result of rounding a not representable negative number. Extending the presented method

to handle −0.0 equals to 0.0 is quite straightforward by including one additional scenario during code
generation.

152 Chapter 7. CPU Optimization for Random Forests

exponent is interpreted as −bias + 1 and the mantissa is interpreted without implicit 1
(i.e. as a number between 0 and 1). This essentially makes the representation of 0.0
also a valid denormalized number.

Ordering Between Floating-Points and Signed Integers

Now it is shown that the floating-point format (when the bit vector is interpreted as two’s
complement) preserves the order of numbers for positive numbers and inverses the
order for negative numbers. This is also illustrated in Figure 7.9, where the signed
integer values (respectively, corresponding floating-point values) of all combination of
32 bit vectors B are plotted on the x-axis (respectively, y-axis).

As the intention of this method is to evaluate the ≥ relation of floating-point numbers
in two’s complement arithmetic, the equality of numbers has to be considered first.

Lemma 10. Given two arbitrary bit vectors X,Y ∈ {0,1}k, then the floating-point inter-
pretation is the same for both numbers, if and only if also the signed integer representa-
tion in two’s complement and the bit vector itself is the same.

FP (X) = FP (Y)⇔X = Y ⇔ SI(X) = SI(Y) (7.4)

Proof. Both formats, floating-point and two’s complement, are bijective for the mapping
of the bit vector to a number8. The counted weight for the single bits is a power of
2 in floating-point and in two’s complement. Hence, the weight of one bit cannot be
constructed as a sum of other bits. Furthermore, numbers with a positive sign bit are
always positive in both formats, numbers with a negative sign bit are always negative in
both formats. Therefore, the bit vector of X and Y must be the same in both formats.

As already explained in the beginning of this section, the interpretation of signed
integer numbers uses the same binary ordering as the interpretation of unsigned integer
numbers for both, positive and negative numbers. The floating-point interpretation, in
contrast, uses the same encoding of the exponent and mantissa for both, positive and
negative numbers, and only distinguishes them by the sign bit. Therefore, the sign bit
of the floating-point format can be ignored in order to obtain the absolute value of a
floating-point number:

Definition 10. Given a bit vector B = (bk−1, ..., b0) = (s, ej−1, ..., e0,mx−1, ...,m0), the
absolute value of the floating-point interpretation for j bit exponent and x bit mantissa is
defined as

∣FP (B)∣ = 2UI(ej−1,...,e0)−bias ⋅ (1 + x−1∑
i=0 mi ⋅ 2−x+i) (7.5)

Since the two’s complement interpretation is order preserving for negative and
positive numbers, the absolute value of the floating-point interpretation follows the same
order:

8The definition of the floating-point format implies that −0 ≠ +0, which ensures bijectivity. To accommo-
date for the definition of −0 = +0 (as in IEEE 754-1985), this case would need to be excluded here and
added as a case distinction.

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 153

−2 −1 0 1 2

⋅109
−2
−1
0

1

2
⋅1038

signed integer value SI(B)flo
at

in
g-

po
in

tv
al

ue
F
P
(B)

Figure 7.9: Illustration of signed integer (x axis) and floating-point (y axis) space for all
combination of 32 bit vectors B

Lemma 11. Given two arbitrary bit vectors X,Y ∈ {0,1}k with the same sign bit
xk−1 = yk−1, the interpretation as the absolute value of the floating-point and as signed
integer numbers is strictly monotonically increasing:

∣FP (X)∣ > ∣FP (Y)∣⇔ SI(X) > SI(Y) (7.6)

Proof. Independent of the interpretation as two’s complement or as floating-point, the
bit vectors can be divided into the three sections of sign bit, exponent and mantissa
(Definition 9). Since the sign bits are the same, the numbers have to differ in either the
exponent and the mantissa bits according to Lemma 10. Consequently, two cases have
to be distinguished:

• Case 1: Both numbers have the same exponent: ⇒: Then both numbers are either in
normal or in denormalized floating-point format, thus the mantissa is either interpreted
with implicit one or without for both numbers in floating-point interpretation. Thus,

the term
x−1∑
i=0 mi ⋅ 2−x+i from Definition 10 must evaluate to a larger number for Y as

for X. In two’s complement the bits of the mantissa are evaluated the same, just
with another weight. From Definition 8, the mantissa bits contribute with the term
x−1∑
i=0 mi ⋅ 2i = 2x ⋅ x−1∑

i=0 mi ⋅ 2i−x to the total sum, thus with the same value as to the

floating-point format, weighted with a constant factor. Hence, this part of the sum also
has to evaluate to a larger number in two’s complement. Since the exponents are the
same and the sign bit is the same, the remaining part of the sum in Equation ((7.1))
is the same for X and Y . Consequently, X evaluates to a larger number in two’s
complement as Y . ⇐: For X to be larger than Y in two’s complement while the
exponent bits and the sign bit are the same, the part of the sum of the mantissa bits
must evaluate to a larger value for X, which also increases the interpretation of the
mantissa in floating-point interpretation, since the bits contribute with another constant
weight, as discussed before.

154 Chapter 7. CPU Optimization for Random Forests

• Case 2: The two numbers have different exponent bits: ⇒: X must have a larger
exponent than Y since the interpretation of the mantissa m ranges between 1 ≤m < 2.
If the exponent of X would be smaller than the exponent of Y , the factor, the exponent
contributes to Equation ((7.5)) would be at least smaller by a factor of 2. This could
only be compensated by the mantissa, if Y would be in denormalized format, which
leads to a contradiction, since the denormalized format is encoded by the smallest
possible exponent, hence X cannot have a smaller exponent. Consequently, for the
exponent of X to be larger, UI(ej−1, ..., e0) must evaluate to a larger number for
X. Thus, the same bits must evaluate to a larger number also in Equation ((7.1)).
According to Equation ((7.1)), the total contribution of the mantissa bits is smaller
than any contribution of an exponent bit (as the weight for every higher significant
bit is larger than the weight of all lower significant bits summed). Thus, X must also
evaluate to a larger number than Y in two’s complement. ⇐: If the exponent bits are
different, the part of the sum for the exponent bits in Equation ((7.1)) must be larger,
since the mantissa bits cannot compensate a smaller sum due to their lower total
weight. Then, the interpreted exponent in floating-point must be larger as well, which
cannot be compensated by the mantissa, as explained before.

Since the representation of 0 is covered by the denormalized format in floating-point, all
cases are considered.

Next, the cases for comparing two positive and two negative numbers have to be
distinguished.

Lemma 12. Given two arbitrary bit vectors X,Y ∈ {0,1}k with positive sign bit xk−1 =
yk−1 = 0, the interpretation as floating-point and as signed integer numbers is strictly
monotonically increasing:

FP (X) > FP (Y)⇔ SI(X) > SI(Y) (7.7)

Proof. When the sign bit of both numbers is 0, the term (−1)s in Definition 9 evaluates
to 1 and has no contribution. Then, the interpretation of the floating-point number is
exactly the same as in Definition 10. Thus Lemma 11 holds.

Lemma 13. Given two arbitrary bit vectors X,Y ∈ {0,1}k with negative sign bit
xk−1 = yk−1 = 1, the interpretation as floating-point and signed integer is monotoni-
cally decreasing:

FP (X) ≥ FP (Y)⇔ SI(X) ≤ SI(Y) (7.8)

Proof. When the sign bit of both numbers is 1, the term (−1)s in Definition 9 evalu-
ates to −1. Then, the interpretation of the floating-point number is exactly the same
as in Definition 10 with a constant factor of −1. Therefore, −1 ⋅ FP (X) = ∣FP (X)∣
and −1⋅FP (Y) = ∣FP (Y)∣ holds. Starting from Lemma 11, the following can be derived:

−1 ⋅ FP (X) > −1 ⋅ FP (Y)⇔ SI(X) > SI(Y) (7.9)

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 155

which can be transformed into

FP (X) < FP (Y)⇔ SI(X) > SI(Y) (7.10)

and further into
FP (X) ≥ FP (Y)⇔ SI(X) ≤ SI(Y) (7.11)

A comparison between two floating-point numbers can, in addition to the considered
cases, also operate on the mixed case of a positive and negative number. Since the
sign bit in floating-points at the position of the most significant bit also serves in two’s
complement as a sign bit, these cases are covered as well.

Lemma 14. Given two arbitrary bit vectors X,Y ∈ {0,1}k with different sign bits
xk−1 ≠ yk−1, the interpretation as floating-point and as signed integer numbers is strictly
monotonically increasing:

FP (X) > FP (Y)⇔ SI(X) > SI(Y) (7.12)

Proof. Negative numbers in floating-point are indicated by the sign bit set to 1, which
also indicates a negative number in two’s complement. Positive numbers in floating-
point are indicated by the sign bit set to 0, which also indicates a positive number in
two’s complement. Hence, numbers are interpreted as negative and positive similarly
in floating-point and in two’s complement. If one number is positive and the other is
negative, the interpreted absolute value is irrelevant.

Next, Lemma 10 can be used to extend Lemma 13:

Lemma 15. Given two arbitrary bit vectors X,Y ∈ {0,1}k with negative sign bit xk−1 =
yk−1 = 1, the interpretation as floating-point and as signed integer numbers is strictly
monotonically decreasing:

FP (X) > FP (Y)⇔ SI(X) < SI(Y) (7.13)

Proof. From Lemma 10 it is known that the interpretation as two’s complement can
only be the same if and only if the interpretation in floating-point is the same. Thus,
FP (X) = FP (Y) ⇐ SI(X) ≠ SI(Y) or FP (X) ≠ FP (Y) ⇒ SI(X) = SI(Y)
cannot happen. Thus, the equality cases can be excluded from Lemma 13.

Design of the FLInt Operator

Leveraging the previous lemmata, an evaluation of the ≥ relation for floating-point num-
bers can be constructed, which only evaluates the ≥ and the < (which is the logic
negation of ≥) relation of two’s complement signed integer numbers.

156 Chapter 7. CPU Optimization for Random Forests

Corollary 3. Given two arbitrary bit vectors X,Y ∈ {0,1}k, the ≥ relation can be
computed between the floating-point interpretation of these bit vectors, using only two’s
complement signed integer arithmetic when distinguishing two cases:

FP (X) ≥ FP (Y)
⇔⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SI(X) < SI(Y) if FP (X) < 0 ∧ FP (Y) < 0∧FP (X) ≠ FP (Y)
SI(X) ≥ SI(Y) otherwise

(7.14)

Proof. The first case (both numbers negative) is discussed in Lemma 15. It should be
noted that this only covers the case that both numbers are negative, but not equal. For
the case that the numbers are equal, either positive or negative, Lemma 10 shows that
the second case holds. Also, for the case that both numbers are positive, but not equal,
Lemma 12 shows that the second case holds. For the case that only one number is
positive, Lemma 14 shows that also the second case holds. Since the second case
consists of the latter three cases, all cases are covered. It should be also noted that
the condition, whether the first or second case is needed, also can be evaluated on the
signed integer representation, according to Lemma 14, Lemma 12 and Lemma 10. The
evaluation of the first and the second number is negative could also be done independent
of the format interpretation by only extracting the sign bits xk−1 and yk−1.

Theorem 3. Given two arbitrary bit vectors X,Y ∈ {0,1}k, the ≥ relation can be
computed between the floating-point interpretation of these bit vectors, using only two’s
complement signed integer arithmetic, with the following operation:

FP (X) ≥ FP (Y)
⇔
(SI(X) ≥ SI(Y))⊕
((SI(X) < 0 ∧ SI(Y) < 0 ∧ SI(X) ≠ SI(Y)) (7.15)

Here, the XOR function ⊕ is used to achieve negation in case the second input is
true. Let u = (SI(X) ≥ SI(Y)) and v = ((SI(X) < 0 ∧ SI(Y) < 0 ∧ SI(X) ≠ SI(Y)).
Applying XOR to the value u while the second input v is false, evaluates to the identity
function (u⊕ false = u), applying XOR to the value u while the second input v is true,
evaluates to the negation (u⊕ true = ¬u).

Proof. Since ¬(SI(X) ≥ SI(Y)) is SI(X) < SI(Y), it is known from Corollary 3
that only u needs to be computed and negated the result when the first case applies.
Hence, the condition is evaluated for the first or second case v based on signed integer
arithmetic, which delivers true when the condition holds and false when the condition
does not hold. In order to achieve negation in case the condition holds, the exclusive or
(XOR) function ⊕ is applied here.

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 157

Towards efficient computation: Previously, a method to perform floating-point compar-
isons by only using signed integer arithmetic and logic operations is presented. In many
CPU instructions sets (including X86 and ARMv8), there is no dedicated operation to
compute the < or ≠ relation. Instead, a comparison instruction needs to be called and a
subsequent conditional set or even a conditional branch is required. Hence, the method
from Theorem 3 would require in total four comparisons and conditional set or branch
instructions. Depending on the CPU architecture, it may be more efficient to check only
if SI(X) < 0 and exchange and invert X and Y :

Theorem 4. Given two arbitrary bit vectors X,Y ∈ {0,1}k where the positiveness of
FP (X) (equivalently SI(X)) is known a priori, the ≥ relation can be computed between
the floating-point interpretation of these bit vectors, using only two’s complement signed
integer arithmetic:

FP (X) ≥ FP (Y)
⇔
{ −1 ⋅ SI(Y) ≥ −1 ⋅ SI(X) if SI(X) < 0

SI(X) ≥ SI(Y) otherwise
(7.16)

Proof. Following Corollary 3, the second case is needed when X is positive. If X is
negative, the comparison SI(X) ≥ SI(Y) can be directly transformed to −1 ⋅ SI(X) ≤−1 ⋅ SI(Y)⇔ −1 ⋅ SI(Y) ≥ −1 ⋅ SI(X), which is then a comparison with at least one
positive operand, thus the second case from Corollary 3 applies again.

It should be noted that in Theorem 4 always one operand is ensured to be positive
for the comparison. Hence, the equivalence FP (X) ≥ FP (Y)⇔ SI(X) ≥ SI(Y) or
FP (X) ≥ FP (Y)⇔ −1 ⋅ SI(Y) ≥ −1 ⋅ SI(X) holds. This also implies that all other
relations (≤, >, <) hold in the same manner. Especially for integrating FLInt into program
code, this allows the usage of arbitrary comparison constructs.

7.4.4 Evaluation

Previously, a method how to eliminate floating-point operations entirely from random
forest inference is discussed. This method does not change the result of the model
at all. Although there may be unavoidable motivations to eliminate the use of floating-
points from a system (e.g. no presence of a hardware floating-point unit or high
energy consumption of the floating-point unit), a more general motivation is studied in
the following: the reduction of execution time. To comprehensively study the impact
on the allover performance in terms of execution time for random forests of using
FLInt, experiments are conducted on multiple data sets, machine classes and CPU
architectures in the following.

158 Chapter 7. CPU Optimization for Random Forests

Evaluation Setup

Scikit-learn is used to train multiple random forest configurations on a subset of data sets
from the UCI machine-learning repository [AN07]: The EEG Eye State Data Set (eye),
the Gas Sensor Array Drift Data Set (gas), the MAGIC Gamma Telescope Data Set
(magic), the Sensorless Drive Diagnosis Data Set (sensorless) and the Wine Quality
Data Set (wine). All these data sets contain floating-point values, thus scikit-learn
inherently creates floating-point split values for the trained random forests and decision
trees.

For every data set, random forests with {1,5,10,15,20,30,50,80,100} trees are
trained. For every random forest size, the maximal depth of all trees is limited to{1,5,10,15,20,30,50} layers. It should be noted that this is only a maximal depth, the
training may thus lead to smaller trees, which was not under control. Furthermore, no
tuning of hyperparameters is performed, instead scikit-learn is employed in the standard
configuration, since the optimal creation of random forests is out of scope. Consequently,
data sets are split into 75% training data and 25% test data and the execution time of
the random forests is measured only on the formerly unseen test data.

To evaluate the impact of the omission of the use of floating-point units on the
execution time, the random forests are executed on X86 and ARMv8 systems. The
target platforms differ from Table 7.1. For each architecture, a server class (S) (AMD
EPYC 7742 for X86 and Cavium ThunderX2 99xx for ARM) and a desktop class (D)
(Intel Core i7-10700 for X86 and Apple Silicon M1 for ARM) system is considered. All
systems run Linux without any underlying hypervisor or simulation system.

To compare the achievement in terms of execution time reduction, multiple implemen-
tations are considered for every random forest, including the state-of-the-art [CSH+22]:

1. A standard if-else tree, where tree nodes are straightforward translated into nested
if-else blocks and normal floating-point numbers are used

2. A cache-aware if-else tree implementation[CSH+22], called CAGS (cache-aware
grouping and swapping), where if-else blocks are cache-aware repositioned

3. The C implementation of the standard if-else tree with FLInt

4. An Implementation of CAGS with FLInt integrated

For the latter three implementations, the normalized execution time to the standard
implementation is computed, by which a fraction of the execution time of the naive
version is derived, which indicates the gained improvement. All configurations are
further grouped with the same maximal tree depth together and are presented by their
mean normalized execution time and the corresponding variance across all data-sets
and number of trees within the ensemble.

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 159

1 5 10 15 20 30 50

maximal tree depth

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
el

ap
se

d
tim

e

Normalized to naive implementation on X86 Server

Naive CAGS FLInt CAGS (FLInt)

1 5 10 15 20 30 50

maximal tree depth

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
el

ap
se

d
tim

e

Normalized to naive implementation on X86 Desktop

Naive CAGS FLInt CAGS (FLInt)

1 5 10 15 20 30 50

maximal tree depth

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
el

ap
se

d
tim

e

Normalized to naive implementation on ARM Server

Naive CAGS FLInt CAGS (FLInt)

1 5 10 15 20 30 50

maximal tree depth

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
el

ap
se

d
tim

e

Normalized to naive implementation on ARM Desktop

Naive CAGS FLInt CAGS (FLInt)

Figure 7.10: Normalized execution time for increasing maximal tree depth

Evaluation Results

The average (geometric mean) normalized execution time across all data sets and
ensemble sizes is illustrated for a specific maximal depth of the single trees in Figure 7.10
for all considered systems. The naive standard implementation is illustrated in light blue
with star tick marks as the baseline. The cache-aware implementation (CAGS) for if-else
trees from Chen et al. [CSH+22] is shown in dark blue with down arrow tick marks. The
FLInt results for standard trees are then depicted by a light green line with left arrow tick
marks. The CAGS implementation with integrated FLInts is depicted by a dark green
line and right arrow tick marks. While the x-axis depicts a growing maximal depth of
trees, the y-axis presents the fraction of execution time from the naive baseline version.
A value of e.g. 0.75 thus indicates 25% improvement in execution time. A value larger
than 1 consequently describes an increase of the execution time. Each point in the plots
is also associated with the computed variance across all data sets and ensemble sizes.

In addition to the graphical illustration, the average (geometric mean) normalized
execution time is provided in Table 7.3. The average over two sets is computed:
1) all tree configurations for all benchmarks for one implementation and 2) all tree
configurations where the maximal depth is limited to more than 20 for all benchmarks
for one implementation.
Results in general: From the presented results, several observations can be made.
First, it can be observed for almost all systems and configurations that the gained

160 Chapter 7. CPU Optimization for Random Forests

Table 7.3: Average (geometric mean) normalized execution time: (D ≥ 20): Average of
ensembles with a maximal tree depth of more than 20

X86 S X86 D ARMv8 S ARMv8 D
CAGS 0.88× 0.92× 0.85× 1.14×
CAGS (D ≥ 20) 0.83× 0.87× 0.79× 1.22×
FLInt 0.81× 0.83× 0.85× 0.77×
FLInt (D ≥ 20) 0.79× 0.83× 0.84× 0.74×
CAGS (FLInt) 0.71× 0.76× 0.72× 0.70×
CAGS (FLInt) (D ≥ 20) 0.66× 0.72× 0.66× 0.64×

execution time improvement varies much for small trees and reaches a more constant
value for deeper trees. For small trees, a normalized short time is spent for every
feature vector for executing the tree, which imposes a higher contribution of overheads
(e.g. creating of data structures and function calls). For higher maximal depths of the
trees, single trees do not reach the maximal depth at a certain point (when the data set
requires no further splitting to gain accuracy), hence trees can have a similar shape
for high maximal depths. Second, it can be observed that the FLInt implementation
improves the execution time for almost all evaluated cases for the standard tree, as well
as for the CAGS implementation.

Impact of compilation: Additional experiments with disabled compiler optimization,
which are only presented here partially (Figure 7.11), show that the assembly imple-
mentation causes a similar execution time for small trees as the naive version without
compiler optimization and does not degrade the performance much. It further shows
that the assembly implementation achieves a similar performance improvement for deep
trees over the naive version without compiler optimization, compared to the naive version
with compiler optimization. This suggests the conclusion, that compiler optimization
has more benfits for smaller trees. Compiler optimization cannot be performed on the
directly generated assembly code, while deeper trees are less affected by compiler
optimization. Considering the experiments with compiler optimization again, it can be
further observed that the assembly implementation of FLInt achieves a better reduction
in terms of execution time for large trees than the C implementation on all systems
except the ARM Desktop system. This supports our design principle that explicit control
over the value loading and interpretation can be gained by directly generating assembly
code.

Integration into CAGS: In order to assess the range of improvement in terms of
execution time with other state-of-the-art optimization approaches for decision trees
and evaluate how FLInt can work together with such optimizations, FLInt is compared
to CAGS from Chen et al. [CSH+22]. For all systems, except the ARM server system,
FLInt on its own achieves a similar or larger improvement as CAGS does. For smaller
trees, the improvement is even consequently larger. For all evaluated cases for large
trees and machines, FLInt achieves a higher reduction in terms of execution time by

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 161

1 5 10 15 20 30 50

maximal tree depth

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
el

ap
se

d
tim

e
Normalized to naive implementation on X86 Server-O0

Naive CAGS FLInt CAGS (FLInt)

Figure 7.11: Execution time improvement with disabled compiler optimization

at least ≈ 10% more than CAGS. For smaller trees, the assembly implementation
performs worse, which seemingly is caused by the missing compiler optimization. The C
implementation, however, consequently achieves a better execution time improvement.
For the ARMv8 based systems, two interesting observations can be made: 1) the
C-based implementation performs worse on the ARMv8 Server than CAGS, although
the assembly implementation performs better. 2) CAGS increases the execution time
in almost all cases for the ARMv8 Desktop system, while FLInt achieves consistent
improvement compared to the other systems.

Basically, FLInts can be also integrated into CAGS directly. The approach however,
explicitly considers instruction and data caches for the implementation. Since floating-
point constants are usually loaded from data memory, but encoded as immediate values
in FLInt and thus are loaded from instruction memory, the optimization algorithm has to
be redesigned to properly work together with FLInts. Ignoring this for a moment and
investigating the results of the straightforward integration of FLInt into CAGS, it can be
seen that the performance is improved significantly in almost all cases. Furthermore,
the improvement seems to be almost constant over different sized trees for almost
all systems. This suggests the conclusion that FLInt is an orthogonal optimization to

162 Chapter 7. CPU Optimization for Random Forests

1 5 10 15 20 30 50

maximal tree depth

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
el

ap
se

d
tim

e
Normalized to naive implementation on X86 Server

Naive FLInt C FLInt ASM

Figure 7.12: Normalized execution time for the assembly and C implementation

CAGS and optimizes another performance bottleneck, working well together with CAGS.
This furthermore suggests that even further performance improvement could be reached
by integrating the assembly based implementation of FLInt into CAGS.

Direct Assembly Implementation: The direct assembly implementation of FLInt is
motivated by eliminating language related overheads for the reinterpretation of floating-
point values. Therefore, the direct assembly based implementation of FLInt is also
compared with the C-based implementation of standard trees. It should be noted that
the assembly based implementation could also be combined with CAGS but requires
rewriting of the entire CAGS algorithm. Since this imposes methodological changes
in the algorithm itself, which open another design space, it is out scope. Figure 7.12
highlights the normalized execution time for the direct assembly implementation (orange
line with left arrow ticks) in relation to the C-based implementation (green line with
right arrow ticks) for the X86 server system. In the measured execution time, it can
be observed that although the assembly version performs worse for small tree sizes
due to the missing compiler optimization, it can outperform the C-based implementation
for larger trees. This is also consistent with the other tested systems (Table 7.4). This

7.4. FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for
Efficient Random Forest Inference 163

Table 7.4: Average normalized execution time for the assembly implementation:

X86 S X86 D ARMv8 S ARMv8 D
FLInt C 0.81× 0.83× 0.85× 0.77×
FLInt C (D ≥ 20) 0.79× 0.83× 0.84× 0.74×
FLInt ASM 0.89× 0.95× 0.83× 0.89×
FLInt ASM (D ≥ 20) 0.70× 0.75× 0.69× 0.72×

suggests the conclusion that the assembly implementation could gain even higher
performance improvements, when integrated for deep trees.

Overall, it can be observed that the integration of FLInts into random forests can
reduce the execution time in comparison to a naive implementation by up to ≈ 30%.
Integrating FLInts into other existing optimization methods, even reduces the execution
time by up to ≈ 35%. All these modifications do not impact the model output, nor
the accuracy. While it makes sense to utilize the C-based implementation for small
trees, the assembly based implementation can achieve higher performance gains for
deeper trees due to the explicit control over the value loading and interpretation. At the
implementation time, a simple threshold (e.g. D ≥ 20) on the maximal depth can decide
weather the C-based or the assembly-based implementation should be used.

7.4.5 Wrap-Up

This section picks up the previously discussed problem of missing support for immediate
encoding of floating-point constants (Section 7.3) and provides a more specialized
solution to the problem. The need of explicit floating-point computations is entirely
eliminated by providing a computationally correct evaluation of the comparison operation,
which only bases on integer arithmetic with a few logic extensions. This leads to
the design of the FLInt operator, where the computational correctness is formally
proven. Despite formal correctness, considerations about implementation effort and
implementation overheads are presented, and a version is proposed, which requires
an evaluation of numbers during implementation time and hence a reduced overhead
at runtime. Experimental evaluation of the various proposed versions is conducted on
X86 and ARMv8 test systems, which shows a possible performance improvement in
terms of execution time by up to ≈ 30% on its own. It should be clearly noted at this
point, that performance improvement is not the only positive outcome, but the ability to
deploy floating-point based RFs to hardware without floating-point support is provided
as well. Another insight from the evaluation is that the discussed method works largely
orthogonal to other optimization strategies and can gain a total improvement of up to≈ 35%. Although the implementation in this section is specific and can only be applied to
comparison operations of floating-point number and, in addition, can be only be efficiently
realized when one number is constantly known to be negative or positive upfront, the
integration can be achieved much more simple, compared to Section 7.3. The changes
can be realized by a one by one replacement of the C code. The entire implementation is
also published: https://github.com/tu-dortmund-ls12-rt/arch-forest/tree/
flintcomparison.

https://github. com/tu-dortmund-ls12-rt/arch-forest/tree/flintcomparison
https://github. com/tu-dortmund-ls12-rt/arch-forest/tree/flintcomparison

164 Chapter 7. CPU Optimization for Random Forests

7.5 Concluding CPU Optimization for Random Forests

This chapter is motivated by enabling the option for immediate floating-point operations,
allowing low level optimization of RFs. Traditional ISAs do not provide such an option and
require handing of floating pint values from memory. The possible impact on the memory
subsystem can be significant. Towards this, this chapter discusses two approaches, one
to reinterpret immediately loaded integer bits to a floating-point number and process
it accordingly, another to perform floating-point arithmetic directly on the reinterpreted
integer representation for the comparison operation in RFs. Both of these methods
are purely software based exploitation of existing ISA means, allowing the immediate
processing of floating-point values. The positive effect on the performance optimization
is studied in this chapter and significant performance improvements are shown.

CHAPTER 8

Conclusion and Future Work

Contents
8.1 Conclusion . 166

8.1.1 Summary . 166

8.1.2 Outreach . 167

8.2 Future Work . 168

165

166 Chapter 8. Conclusion and Future Work

8.1 Conclusion

This thesis, especially in the topical chapters (Chapter 4, Chapter 5, Chapter 6 and
Chapter 7), studies possibilities for the software exploitation of traditional interfaces
for modern technologies. This means, if a system is equipped with modern hardware
technologies, but the interfaces to communicate with these technologies remain on a
traditional level, creative solutions need to be applied to manage the applied technology
efficiently and effectively. Software exploitation, with software modifications employed
at various levels from the application to the system software, is one way to exploit
the existing interfaces and enrich them by newly exploited features. Although such
software exploited interface should not be considered as the only or superior solution to
operate modern technologies, they offer the possibility to operate them on traditional
interfaces.This gains large freedom in the design of systems and allows putting a focus
to other components. Consequently, allowing software exploited interfaces is crucial to
effective system design.

8.1.1 Summary

Since the software exploitation for modern technologies inherently comes with being
specific to these technologies, this thesis does not aim for general solutions, but rather
presents various approaches to software manage different modern technologies.

In Chapter 4, the lifetime property of NON-VOLATILE MEMORY (NVM) technologies
is managed by software wear-leveling. The information about the current memory
usage is collected by a sampling mechanism, which captures a histogram of memory
access frequencies. MEMORY MANAGEMENT UNIT (MMU) based transparent relocation,
together with transparent relocation on the stack memory and on the text memory, a
wear-leveling strategy is deployed, which can leverage massive shortcomings in the
memory usage, which would cause extremely low memory lifetimes, if not properly
managed. Furthermore, a specific focus is put to read-destructive memories, which
require a read wear-leveling solution. In order to not only provide effective, but also
efficient wear-leveling through the software exploited interface, a semantic memory
tracing is presented that allows a specific application of wear-leveling techniques to
memory regions, which can highly profit from wear-leveling.

While the presented method in Chapter 4 is realized in an application-transparent
manner inside the operating system and the system software, Chapter 5 shifts the
action space towards the application and presents application-cooperative wear-leveling
techniques. The wear-leveling of the stack segment can consume massive overheads
and allows a great potential to reduce overheads, when actions are performed at
suitable points. An analysis tool is presented, which can automatically determine such
smart points and deploy them back with the application implementation in order to
trigger efficient wear-leveling actions for the stack. In addition, a specific wear-leveling
mechanism for B+ trees is presented, where memory usage information is internally

8.1. Conclusion 167

collected during operations on the tree. This information then is used to determine a
lifetime optimized checkpoint layout to the NVM.

Chapter 6 keeps focusing on NVM technologies, but instead of limited lifetime, the
latency and energy properties of RACETRACK MEMORY (RTM) are considered. RANDOM

FOREST (RF) ensembles are studied as a specific application, which allows effective
software optimization for RTM. The layout of the single DECISION TREE (DT) models
with minimal latency and energy cost on RTM is an optimization problem, which is
infeasible to compute for larger models. This chapter shows a simple and fast algorithm,
where an upper bound to the optimal solution is formally proven. Two organization
approaches of the single DTs on RTM are distinguished.

Chapter 7, as the last topical chapter, focuses on CPU internal arithmetic and
the effect on the memory hierarchy. Two possible solutions of immediate encoding
of floating-point constants are presented, which allow gaining active control over the
distribution of data and instruction memories. One solution is kept generic and allows
all possible floating-point arithmetic operation, by loading the floating-point value to a
floating-point register from immediate encoded fields. The other solution allows only the
specific comparison operation but does not require any transformation or conversion of
data, which causes a very low overhead.

Throughout the entire thesis, experimental evaluation studies the effectiveness of the
presented methods. For all solutions, the results justify the application of the presented
software exploitation techniques in a way, that an improved usage of the considered
modern technology is achieved. This makes the presented methods considerable
candidates when designing a system with these modern technologies.

8.1.2 Outreach

When reading this thesis and observing how specific software solutions have to designed
and which creative and partially complex solutions need to be applied, one may ask a
question of how relevant software exploitation of traditional interface can be realistic. To
provide at least an intuition for the interest of the research community, it should be noted
that the author of this thesis participated actively and for major parts in two successful
accepted DFG project proposals in exactly the scope of software solutions for modern
technologies. One of these projects is the second phase of the Design and Optimization
of Non-Volatile One-Memory Architecture (NVM-OMA)1 project. In the second phase,
a specific focus is put to tailored solutions for dedicated NVM technologies. The parts
of the project, which are led by the research group in Dortmund, are almost entirely
software-based and provide creative solutions for different NVM technologies. The
second project is the Memory Diplomat2 project, in which a central software agent
negotiated between hardware management requirements and software needs. The core
idea of this project is to apply creative software-based management solutions in a most
efficient and effective way.

1https://gepris.dfg.de/gepris/projekt/405422836
2https://gepris.dfg.de/gepris/projekt/502384507

https://gepris.dfg.de/gepris/projekt/405422836
https://gepris.dfg.de/gepris/projekt/502384507

168 Chapter 8. Conclusion and Future Work

8.2 Future Work

Since the research results of this thesis for parts led to two accepted DFG projects,
parts of the direct future work naturally are embedded in the execution of these projects.
The further research for software management of NVM technologies should focus
on memory technologies with unique and special properties. Skyrmion memory, for
instance, leads to interesting properties due to the generation and storing of skyrmions.
This offers a large space for the design of memory devices, imposing characteristics on
the software, which need to be efficiently exploited. Beyond the specific focus on NVM
technologies, a broader focus on disruptive memory technologies is part of the future
work. In-memory computing and near-memory computing impose further interesting
properties to the software and the software-based management. Technologies like high
bandwidth memory further require active software-exploited management.

Out of the scope of the executing future research projects, another directions of
research, which partially stems from the results of this thesis and therefore forms a
straightforward future work, is the WORST-CASE EXECUTION TIME (WCET) analysis and
optimization of specific software applications. Modern technologies impose interesting
impacts on the WORST-CASE EXECUTION TIME (WCET) model. Especially when
focusing on certain applications, software exploitation can assist the analysis and even
the optimization of the WCET. A major focus for this are RF ensembles, as also widely
studied in this thesis. A starting point towards this is presented in a paper for deriving
WCET surrogate models for DT ensembles [HHC+23].

Beyond straightforward continuation of research directions, started by this thesis,
a broader exploration of the relation of traditional interfaces and modern technologies
forms a crucial part of the future work. Whenever modern technologies emerge, it must
be expected that they are operated on traditional interfaces. Consequently, the compo-
nents of a system have to be well-equipped to exploit these interfaces. While this thesis
and the direct future work focus mainly on modern memory technologies, other emerging
components have to be considered as well. One of these components is formed by
emerging computing facilities in systems. Vectorization, dedicated accelerators, and
computational memory belong to many computing systems nowadays. Especially for
dedicated accelerators, standard interfaces, such as memory mapped registers are
used. Equipping software with means to efficiently exploit such computation devices is
one direction to further study.

Apart from computation facilities, modern security technologies are another emerg-
ing field. Components, such as secure execution units, trusted code and encryption
devices are under active development. The integration of applications into this domain
is not straightforward. Especially for data-based methods, such as machine learning,
security guarantees can be of large interest. Despite the major functional property
of providing security aspects, efficiency can be considered as a second major target.
Optimizing the performance of emerging security technologies while keeping the security
guarantees forms a field of future research.

8.2. Future Work 169

Another aspect, which should be studied in future work, is computational disaggre-
gation, which can be considered as a crosscutting modern technology. Computational
jobs may not be executed on the machine, where they are created. In the simplest form,
they may be executed on another core, a coprocessor or on an accelerator. In a more
complex shape, the job may be sent over a communication network to another computa-
tion machine. Exploiting such disaggregated facilities from a software perspective can
open opportunities for efficient execution and optimization.

Acronyms

CART CLASSIFICATION AND REGRESSION TREES 27
CMOS COMPLEMENTARY METAL-OXIDE-

SEMICONDUCTOR 22

DBC DOMAIN BLOCK CLUSTER 43, 44, 104, 106, 107,
115–124, 126, 129, 130

DRAM DYNAMIC RANDOM ACCESS MEMORY 18–20,
25, 36, 37, 40, 43, 54, 90

DT DECISION TREE ix, 6, 7, 12–16, 26–28, 44–46,
101, 104–109, 111, 113, 115–119, 121, 123,
125, 127, 129, 130, 133, 135–137, 140, 167,
168

FeRAM FERROELECTRIC RAM 18–22, 25, 31, 36, 38,
40, 59

GA GENETIC ALGORITHM 10, 11, 83, 86, 88–90
GOT GLOBAL OFFSET TABLE 65, 70

HBM HIGH BANDWIDTH MEMORY 24
HDD HARD DISK DRIVE 18, 19

ILP INTEGER LINEAR PROGRAM 13, 105
ISA INSTRUCTION SET ARCHITECTURE 2, 7, 49, 132,

135, 164

ML MACHINE LEARNING 7, 12, 104
MMU MEMORY MANAGEMENT UNIT 8, 9, 56, 58, 60,

63–65, 78, 82, 96, 99, 166

NVM NON-VOLATILE MEMORY iii, vii, 1, 4–9, 11, 15,
17–19, 22, 24, 25, 28, 31, 32, 36–41, 43, 54,
55, 58, 66, 69, 78, 80, 89–96, 98, 99, 103, 115,
166–168

OS OPERATING SYSTEM 78, 81, 83

171

172 Acronyms

PC PROGRAM COUNTER 9, 61, 63–66, 73, 78, 84,
85

PCM PHASE CHANGE MEMORY 18–20, 22, 36, 37
PIC POSITION INDEPENDENT CODE 65
PLT PROCEDURE LINKAGE TABLE 65, 70

ReRAM RESISTIVE RAM 18, 19, 36
RF RANDOM FOREST iii, vii, 12, 14, 15, 17, 18, 24,

26, 28, 33, 44–46, 48, 104–106, 132–137, 147–
149, 163, 164, 167, 168

RTM RACETRACK MEMORY iii, vii, 1, 6, 7, 11–13, 16,
17, 22, 28, 32, 33, 35, 36, 38, 43, 44, 102–107,
112, 115–118, 125, 129, 130, 133, 167

SLC SINGLE LEVEL CELL 40
SP STACK POINTER 63–65, 85
SRAM STATIC RANDOM ACCESS MEMORY 18, 19, 25,

40, 54, 105
SSD SOLID STATE DRIVE 2
STTM SPIN-TORQUE TRANSFER MAGNETORESISTIVE

RAM 18, 19, 21, 22, 36

WCET WORST-CASE EXECUTION TIME 168

Bibliography

[AH73] D. Adolphson and T. C. Hu. “Optimal linear ordering”. In: SIAM Journal on Applied
Mathematics 25.3 (1973), pp. 403–423 (Cited on pages 32, 107 sqq., 111, 122).

[ALD13] N. Asadi, J. Lin, and A. P. De Vries. “Runtime optimizations for tree-based machine
learning models”. In: IEEE transactions on Knowledge and Data Engineering 26.9
(09/2013), pp. 2281–2292. ISSN: 1041-4347 (Cited on pages 33, 46, 137).

[ALM+18] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson. “BzTree: A
high-performance latch-free range index for non-volatile memory”. In: Proceedings
of the VLDB Endowment 11.5 (2018), pp. 553–565 (Cited on page 31).

[Amp19] I. V. Amplifier. Intel Vtune Amplifier. 2019 (Cited on page 30).

[AN07] A. Asuncion and D. Newman. UCI machine learning repository. 2007 (Cited on
pages 49, 112, 138, 142, 158).

[Ato15] E. Atoofian. “Reducing Shift Penalty in Domain Wall Memory Through Register
Locality”. In: Proceedings of the 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems. CASES ’15. Amsterdam, The
Netherlands, 2015, pp. 177–186. ISBN: 978-1-4673-8320-2 (Cited on page 32).

[AXY+14] H. Aghaei Khouzani, Y. Xue, C. Yang, and A. Pandurangi. “Prolonging PCM Lifetime
Through Energy-efficient, Segment-aware, and Wear-resistant Page Allocation”.
In: Proceedings of the 2014 International Symposium on Low Power Electronics
and Design. ISLPED ’14. La Jolla, California, USA: ACM, 2014, pp. 327–330. ISBN:
978-1-4503-2975-0. DOI: 10.1145/2627369.2627667. URL: http://doi.acm.
org/10.1145/2627369.2627667 (Cited on pages 28 sq., 31).

[Bay72] R. Bayer. “Symmetric binary B-Trees: Data structure and maintenance algorithms”.
In: Acta Informatica 1.4 (12/1972), pp. 290–306. ISSN: 1432-0525. DOI: 10.1007/
BF00289509. URL: https://doi.org/10.1007/BF00289509 (Cited on page 90).

[BBB+11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. “The Gem5 Simulator”. In: SIGARCH Comput. Archit. News
39.2 (08/2011), pp. 1–7. ISSN: 0163-5964. DOI: 10.1145/2024716.2024718. URL:
http://doi.acm.org/10.1145/2024716.2024718 (Cited on pages 29, 41, 58).

[BCC+18] S. Buschjäger, K.-H. Chen, J.-J. Chen, and K. Morik. “Realization of Random
Forest for Real-Time Evaluation through Tree Framing”. In: IEEE International
Conference on Data Mining (ICDM). 2018, pp. 19–28. DOI: 10.1109/ICDM.2018.
00017 (Cited on page 33).

[BÇP+98] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis. “The Quadratic Assign-
ment Problem”. In: Handbook of Combinatorial Optimization: Volume1–3. Ed. by
D.-Z. Du and P. M. Pardalos. 1998, pp. 1713–1809 (Cited on pages 32, 107).

[BCR+08] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song, and J. Xu. “HMTT: a
platform independent full-system memory trace monitoring system”. In: Proceed-
ings of the 2008 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems. SIGMETRICS ’08. Annapolis, MD, USA: ACM,
2008, pp. 229–240. ISBN: 978-1-60558-005-0. DOI: 10.1145/1375457.1375484.
URL: http://doi.acm.org/10.1145/1375457.1375484 (Cited on page 29).

173

https://doi.org/10.1145/2627369.2627667
http://doi.acm.org/10.1145/2627369.2627667
http://doi.acm.org/10.1145/2627369.2627667
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00289509
https://doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://doi.org/10.1109/ICDM.2018.00017
https://doi.org/10.1109/ICDM.2018.00017
https://doi.org/10.1145/1375457.1375484
http://doi.acm.org/10.1145/1375457.1375484

174 Bibliography

[BFO+] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. “Classification and
Regression Trees. 1984. Monterey, CA: Wadsworth & Brooks”. In: Cole Advanced
Books & Software Google Scholar () (Cited on pages 26 sq., 44).

[Bix07] B. Bixby. “The gurobi optimizer”. In: Transp. Re-search Part B (2007) (Cited on
pages 114, 125).

[BKF+20] R. Bläsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Castrillón, and S. S. P.
Parkin. “Magnetic Racetrack Memory: From Physics to the Cusp of Applications
Within a Decade”. In: Proceedings of the IEEE (2020) (Cited on pages 6, 22, 36,
43).

[BL18] S. Byma and J. R. Larus. “Detailed heap profiling”. In: Proceedings of the 2018
ACM SIGPLAN International Symposium on Memory Management. 2018, pp. 1–
13 (Cited on page 30).

[Bli97] J. F. Blinn. “Floating-point tricks”. In: IEEE Computer Graphics and Applications
17.4 (1997), pp. 80–84 (Cited on page 33).

[BM18] S. Buschjäger and K. Morik. “Decision Tree and Random Forest Implementations
for Fast Filtering of Sensor Data”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 65.1 (2018), pp. 209–222. ISSN: 1549-8328. DOI: 10.1109/TCSI.
2017.2710627 (Cited on page 33).

[Bra] J. Bramley. Condition Codes 4: Floating-point comparisons using VFP.
https://community.arm.com/arm-community-blogs/b/architectures-
and - processors - blog / posts / condition - codes - 4 - floating - point -
comparisons-using-vfp (Cited on pages 33, 134).

[BRC+17] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao. “Emerging NVM: A survey on
architectural integration and research challenges”. In: ACM Transactions on Design
Automation of Electronic Systems (TODAES) 23.2 (2017), pp. 1–32 (Cited on
pages 18 sq., 36 sqq., 54).

[Bre01] L. Breiman. “Random forests”. In: Machine learning 45 (2001), pp. 5–32 (Cited on
pages 26, 44).

[BSH+17] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam.
“Spintronics based random access memory: a review”. In: Materials Today 20.9
(2017), pp. 530–548 (Cited on pages 21, 36).

[CHK+12] C.-H. Chen, P.-C. Hsiu, T.-W. Kuo, C.-L. Yang, and C.-Y. M. Wang. “Age-based
PCM Wear Leveling with Nearly Zero Search Cost”. In: Proceedings of the 49th
Annual Design Automation Conference. DAC ’12. San Francisco, California: ACM,
2012, pp. 453–458. ISBN: 978-1-4503-1199-1. DOI: 10.1145/2228360.2228439.
URL: http://doi.acm.org/10.1145/2228360.2228439 (Cited on pages 28 sq.,
31).

[CJ15] S. Chen and Q. Jin. “Persistent B+-trees in Non-Volatile Main Memory”. In: Pro-
ceedings of the VLDB Endowment 8.7 (2015), pp. 786–797 (Cited on page 31).

[CL09] S. Cho and H. Lee. “Flip-N-Write: A Simple Deterministic Technique to Improve
PRAM Write Performance, Energy and Endurance”. In: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 42.
New York, New York: ACM, 2009, pp. 347–357. ISBN: 978-1-60558-798-1. DOI:
10.1145/1669112.1669157. URL: http://doi.acm.org/10.1145/1669112.
1669157 (Cited on page 29).

https://doi.org/10.1109/TCSI.2017.2710627
https://doi.org/10.1109/TCSI.2017.2710627
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/condition-codes-4-floating-point-comparisons-using-vfp
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/condition-codes-4-floating-point-comparisons-using-vfp
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/condition-codes-4-floating-point-comparisons-using-vfp
https://doi.org/10.1145/2228360.2228439
http://doi.acm.org/10.1145/2228360.2228439
https://doi.org/10.1145/1669112.1669157
http://doi.acm.org/10.1145/1669112.1669157
http://doi.acm.org/10.1145/1669112.1669157

Bibliography 175

[CLX15] P. Chi, W.-C. Lee, and Y. Xie. “Adapting B+-Tree for Emerging Nonvolatile Memory-
Based Main Memory”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 35.9 (2015), pp. 1461–1474 (Cited on page 31).

[Cou08] T. P. P. Council. “TPC-H benchmark specification”. In: Published at http://www. tcp.
org/hspec. html 21 (2008), pp. 592–603 (Cited on page 74).

[CPA+19] A. Colaso, P. Prieto, P. Abad, J. A. Gregorio, and V. Puente. “Architecting Race-
track Memory Preshift through Pattern-Based Prediction Mechanisms”. In: 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2019,
pp. 273–282. DOI: 10.1109/IPDPS.2019.00037 (Cited on page 32).

[CS07] T. Colburn and G. Shute. “Abstraction in computer science”. In: Minds and Ma-
chines 17 (2007), pp. 169–184 (Cited on page 2).

[CSH+22] K.-H. Chen, C. Su, C. Hakert, S. Buschjäger, C.-L. Lee, J.-K. Lee, K. Morik,
and J.-J. Chen. “Efficient Realization of Decision Trees for Real-Time Inference”.
In: ACM Trans. Embed. Comput. Syst. 21.6 (10/2022). ISSN: 1539-9087. DOI:
10.1145/3508019. URL: https://doi.org/10.1145/3508019 (Cited on
pages 33, 48 sq., 112, 135, 137–140, 142 sq., 145 sq., 158 sqq.).

[CST+10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. “Benchmark-
ing cloud serving systems with YCSB”. In: Proceedings of the 1st ACM symposium
on Cloud computing. 2010, pp. 143–154 (Cited on page 95).

[CSZ+16] X. Chen, E. H.-M. Sha, Q. Zhuge, C. J. Xue, W. Jiang, and Y. Wang. “Efficient Data
Placement for Improving Data Access Performance on Domain-Wall Memory”. In:
IEEE Trans. Very Large Scale Integr. Syst. (2016) (Cited on pages 32, 112, 114,
125).

[DDR95] J. W. Demmel, I. Dhillon, and H. Ren. “On the correctness of some bisection-like
parallel eigenvalue algorithms in floating point arithmetic”. In: Electronic Trans.
Num. Anal 3 (1995), pp. 116–140 (Cited on page 33).

[DLN+16] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and
R. Venturini. “Fast ranking with additive ensembles of oblivious and non-oblivious
regression trees”. In: ACM Transactions on Information Systems (2016). ISSN:
15582868 (Cited on page 33).

[DPS02] J. Díaz, J. Petit, and M. Serna. “A Survey of Graph Layout Problems”. In: ACM
Comput. Surv. 34.3 (09/2002), pp. 313–356. ISSN: 0360-0300. DOI: 10.1145/
568522.568523. URL: https://doi.org/10.1145/568522.568523 (Cited on
page 107).

[DZH+11] J. Dong, L. Zhang, Y. Han, Y. Wang, and X. Li. “Wear rate leveling: Lifetime en-
hancement of PRAM with endurance variation”. In: Proceedings of the 48th Design
Automation Conference. ACM. 2011, pp. 972–977 (Cited on pages 28 sqq.).

[ECS85] I. of Electrical, E. E. C. S. S. Committee, and D. Stevenson. “IEEE Standard for
Binary Floating-Point Arithmetic”. In: ANSI/IEEE Std 754-1985 (1985), pp. 1–20.
DOI: 10.1109/IEEESTD.1985.82928 (Cited on pages 136, 149 sqq.).

[ETA14] T. Eshita, T. Tamura, and Y. Arimoto. “Ferroelectric random access memory (FRAM)
devices”. In: Advances in non-volatile memory and storage technology. Elsevier,
2014, pp. 434–454 (Cited on pages 20 sq.).

https://doi.org/10.1109/IPDPS.2019.00037
https://doi.org/10.1145/3508019
https://doi.org/10.1145/3508019
https://doi.org/10.1145/568522.568523
https://doi.org/10.1145/568522.568523
https://doi.org/10.1145/568522.568523
https://doi.org/10.1109/IEEESTD.1985.82928

176 Bibliography

[FZB+10] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mossé. “Increas-
ing PCM Main Memory Lifetime”. In: Proceedings of the Conference on Design,
Automation and Test in Europe. DATE ’10. Dresden, Germany: European De-
sign and Automation Association, 2010, pp. 914–919. ISBN: 978-3-9810801-6-2.
URL: http://dl.acm.org/citation.cfm?id=1870926.1871147 (Cited on
pages 28 sq.).

[GJ79] M. R. Garey and D. S. Johnson. “Computers and intractability”. In: 1979 (Cited on
page 107).

[GMS+21] N. Gupta, A. Makosiej, H. Shrimali, A. Amara, A. Vladimirescu, and C. Anghel. “Tun-
nel FET negative-differential-resistance based 1T1C refresh-free-DRAM, 2T1C
SRAM and 3T1C CAM”. In: IEEE Transactions on Nanotechnology 20 (2021),
pp. 270–277 (Cited on pages 20, 36).

[GRE+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. “MiBench: A Free, Commercially Representative Embedded Benchmark
Suite”. In: Proceedings of the Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop. WWC ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 3–14. ISBN: 0-7803-7315-4. DOI: 10.1109/WWC.2001.15. URL:
https://doi.org/10.1109/WWC.2001.15 (Cited on pages 58, 86).

[GWD+19] V. Gogte, W. Wang, S. Diestelhorst, A. Kolli, P. M. Chen, S. Narayanasamy,
and T. F. Wenisch. “Software Wear Management for Persistent Memories”. In:
17th USENIX Conference on File and Storage Technologies (FAST 19). Boston,
MA: USENIX Association, 02/2019, pp. 45–63. ISBN: 978-1-939133-09-0. URL:
https://www.usenix.org/conference/fast19/presentation/gogte (Cited
on pages 28–31).

[HCC22a] C. Hakert, K.-H. Chen, and J.-J. Chen. “FLInt: Exploiting Floating Point En-
abled Integer Arithmetic for Efficient Random Forest Inference”. In: arXiv preprint
arXiv:2209.04181 (2022) (Cited on pages 16, 148).

[HCC22b] C. Hakert, K.-H. Chen, and J.-J. Chen. “Immediate Split Trees: Immediate Encod-
ing of Floating Point Split Values in RandomForests”. In: European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (2022) (Cited on pages 16, 136).

[HCC24] C. Hakert, K.-H. Chen, and J.-J. Chen. “FLInt: Exploiting Floating Point Enabled
Integer Arithmetic for Efficient Random Forest Inference”. In: Design, Automation
and Test in Europe Conference (2024) (Cited on page 148).

[HCK+20] C. Hakert, K.-H. Chen, S. Kuenzer, S. Santhanam, S.-H. Chen, Y.-H. Chang,
F. Huici, and J.-J. Chen. “Splitn Trace NVM: Leveraging Library OSes for Se-
mantic Memory Tracing”. In: 9th Non-Volatile Memory Systems and Applications
Symposium (NVMSA). 2020 (Cited on pages 16, 41, 71).

[HCS+21] C. Hakert, K.-H. Chen, H. Schirmeier, L. Bauer, P. R. Genssler, G. von der Brüggen,
H. Amrouch, J. Henkel, and J.-J. Chen. “Software-Managed Read and Write Wear-
Leveling for Non-Volatile Main Memory”. In: ACM Transactions on Embedded
Computing Systems Special Issue on Memory and Storage Systems for Embedded
and IoT Applications. 2021 (Cited on pages 16, 58).

http://dl.acm.org/citation.cfm?id=1870926.1871147
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/WWC.2001.15
https://www.usenix.org/conference/fast19/presentation/gogte

Bibliography 177

[HCY+20] C. Hakert, K.-H. Chen, M. Yayla, G. v. d. Brüggen, S. Bloemeke, and J.-J. Chen.
“Software-Based Memory Analysis Environments for In-Memory Wear-Leveling”.
In: 25th Asia and South Pacific Design Automation Conference ASP-DAC 2020,
Invited Paper. Beijing, China, 2020 (Cited on pages 41, 58).

[HDW+16] Y. Han, J. Dong, K. Weng, Y. Wang, and X. Li. “Enhanced Wear-Rate Leveling for
PRAM Lifetime Improvement Considering Process Variation”. In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 24.1 (01/2016), pp. 92–102.
ISSN: 1063-8210. DOI: 10.1109/TVLSI.2015.2395415 (Cited on pages 28 sq.).

[HHC+23] C. Hakert, N. Hölscher, K.-H. Chen, J. Reineke, and J.-J. Chen. “Fallen Leafs:
Towards WCET and ACET Performance Surrogate Models for Decision Trees”. In:
Workshop on OPtimization for Embedded and ReAl-time systems (OPERA). 2023
(Cited on page 168).

[HKC+21a] C. Hakert, A. A. Khan, K.-H. Chen, F. Hameed, J. Castrillon, and J.-J. Chen.
“BLOwing Trees to the Ground: Layout Optimization of Decision Trees on Racetrack
Memory”. In: 58th ACM/IEEE Design Automation Conference (DAC), accepted.
2021 (Cited on pages 16, 104).

[HKC+21b] C. Hakert, R. Kühn, K.-H. Chen, J.-J. Chen, and J. Teubner. “OCTO+: Optimized
Checkpointing of B+Trees for Non-Volatile Main Memory Wear-Leveling”. In: The
10th IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA).
IEEE, 2021 (Cited on pages 16, 90).

[HKC+22] C. Hakert, A. A. Khan, K.-H. Chen, F. Hameed, J. Castrillon, and J.-J. Chen.
“ROLLED: Racetrack Memory Optimized Linear Layout and Efficient Decompo-
sition of Decision Trees”. In: IEEE Transactions on Computers (2022) (Cited on
pages 16, 116).

[HMH20] K. Huang, Y. Mei, and L. Huang. “Quail: Using NVM write
monitor to enable transparent wear-leveling”. In: Journal of Sys-
tems Architecture 102 (2020), p. 101658. ISSN: 1383-7621. DOI:
https : / / doi . org / 10 . 1016 / j . sysarc . 2019 . 101658. URL: http :
//www.sciencedirect.com/science/article/pii/S1383762119304655
(Cited on page 31).

[HP18] J. Hennessy and D. Patterson. “A new golden age for computer architecture:
domain-specific hardware/software co-design, enhanced”. In: ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). 2018 (Cited
on pages 2 sq.).

[HSS+16] Q. Hu, G. Sun, J. Shu, and C. Zhang. “Exploring Main Memory Design Based on
Racetrack Memory Technology”. In: 2016 International Great Lakes Symposium
on VLSI (GLSVLSI). 05/2016, pp. 397–402 (Cited on page 32).

[HYC+19] C. Hakert, M. Yayla, K.-H. Chen, G. v. d. Brüggen, J.-J. Chen, S. Buschjäger,
K. Morik, P. R. Genssler, L. Bauer, H. Amrouch, and J. Henkel. “Stack Usage
Analysis for Efficient Wear Leveling in Non-Volatile Main Memory Systems”. In: 1st
ACM/IEEE Workshop on Machine Learning for CAD (MLCAD). Alberta, Canada,
2019 (Cited on pages 16, 83).

[IYZ+19] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang,
Y. Xu, S. R. Dulloor, et al. “Basic performance measurements of the intel optane
DC persistent memory module”. In: arXiv preprint arXiv:1903.05714 (2019) (Cited
on page 40).

https://doi.org/10.1109/TVLSI.2015.2395415
https://doi.org/https://doi.org/10.1016/j.sysarc.2019.101658
http://www.sciencedirect.com/science/article/pii/S1383762119304655
http://www.sciencedirect.com/science/article/pii/S1383762119304655

178 Bibliography

[JZH+14] T. Jiang, Q. Zhang, R. Hou, L. Chai, S. A. Mckee, Z. Jia, and N. Sun. “Understand-
ing the behavior of in-memory computing workloads”. In: 2014 IEEE International
Symposium on Workload Characterization (IISWC). IEEE. 2014, pp. 22–30 (Cited
on page 30).

[KB57] T. C. Koopmans and M. Beckmann. “Assignment Problems and the Location of
Economic Activities”. In: Econometrica 25.1 (1957), pp. 53–76. ISSN: 00129682,
14680262. URL: http://www.jstor.org/stable/1907742 (Cited on page 32).

[KCS+10] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen, T. Kaldewey, V. Lee, S.
Brandt, and P. Dubey. “FAST: Fast architecture sensitive tree search on mod-
ern CPUs and GPUs”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM. 2010 (Cited on page 33).

[KHB+19] A. A. Khan, F. Hameed, R. Bläsing, S. S. P. Parkin, and J. Castrillon. “ShiftsReduce:
Minimizing Shifts in Racetrack Memory 4.0”. In: ACM Transactions on Architecture
and Code Optimization 16.4 (12/2019). ISSN: 1544-3566. DOI: 10.1145/3372489.
URL: https://doi.org/10.1145/3372489 (Cited on pages 32, 103 sq., 112,
114, 125).

[KK16] O. Kramer and O. Kramer. “Scikit-learn”. In: Machine learning for evolution strate-
gies (2016), pp. 45–53 (Cited on page 45).

[Kle05] A. Kleen. “A numa api for linux”. In: Novel Inc (2005) (Cited on page 54).

[KRH+19] A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon. “Optimizing Tensor Contrac-
tions for Embedded Devices with Racetrack Memory Scratch-Pads”. In: Interna-
tional Conference on Languages, Compilers, and Tools for Embedded Systems.
LCTES 2019. 2019, pp. 5–18 (Cited on page 32).

[KSV+19a] S. Kuenzer, S. Santhanam, Y. Volchkov, F. Schmidt, F. Huici, J. Nider, M. Rapoport,
and C. Lupu. “Unleashing the Power of Unikernels with Unikraft”. In: Proceed-
ings of the 12th ACM International Conference on Systems and Storage. SYS-
TOR ’19. Haifa, Israel: Association for Computing Machinery, 2019, p. 195. ISBN:
9781450367493. DOI: 10.1145/3319647.3325856. URL: https://doi.org/10.
1145/3319647.3325856 (Cited on pages 58, 71).

[KSV+19b] S. Kuenzer, S. Santhanam, Y. Volchkov, F. Schmidt, F. Huici, J. Nider, M. Rapoport,
and C. Lupu. “Unleashing the power of unikernels with unikraft”. In: Proceedings of
the 12th ACM International Conference on Systems and Storage. 2019, pp. 195–
195 (Cited on page 41).

[KXM+15] D. Kline, H. Xu, R. Melhem, and A. K. Jones. “Domain-wall memory buffer for low-
energy NoCs”. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC). 2015, pp. 1–6. DOI: 10.1145/2744769.2744826 (Cited on page 32).

[LeC98] Y. LeCun. “The MNIST database of handwritten digits”. In: (1998) (Cited on
page 112).

[LHC+14] Q. Li, Y. He, Y. Chen, C. J. Xue, N. Jiang, and C. Xu. “A wear-leveling-aware dy-
namic stack for PCM memory in embedded systems”. In: 2014 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2014, pp. 1–4 (Cited on
pages 30 sq.).

http://www.jstor.org/stable/1907742
https://doi.org/10.1145/3372489
https://doi.org/10.1145/3372489
https://doi.org/10.1145/3319647.3325856
https://doi.org/10.1145/3319647.3325856
https://doi.org/10.1145/3319647.3325856
https://doi.org/10.1145/2744769.2744826

Bibliography 179

[LNO+15] C. Lucchese, F. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini.
“Quickscorer: A fast algorithm to rank documents with additive ensembles of
regression trees”. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM. 2015, pp. 73–82
(Cited on page 33).

[LPN+16] C. Lucchese, R. Perego, F. M. Nardini, N. Tonellotto, S. Orlando, and R. Ven-
turini. “Exploiting CPU SIMD extensions to speed-up document scoring with tree
ensembles”. In: SIGIR 2016 - Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2016. ISBN:
9781450342902. DOI: 10.1145/2911451.2914758 (Cited on page 33).

[LR03] K. Lyytinen and G. M. Rose. “The disruptive nature of information technology
innovations: the case of internet computing in systems development organizations”.
In: MIS quarterly (2003), pp. 557–596 (Cited on page 2).

[LSX+19] W. Li, Z. Shuai, C. J. Xue, M. Yuan, and Q. Li. “A Wear Leveling Aware Memory
Allocator for Both Stack and Heap Management in PCM-based Main Memory
Systems”. In: Proceedings of the 2019 Design, Automation & Test in Europe
(DATE). IEEE. 2019, pp. 228–233 (Cited on pages 28, 30 sq.).

[LW08] A. L. Lacaita and D. J. Wouters. “Phase-change memories”. In: Physica status
solidi (a) 205.10 (2008), pp. 2281–2297 (Cited on pages 19, 36).

[LWW+13] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha. “Curling-PCM:
Application-specific wear leveling for phase change memory based embedded
systems”. In: 2013 18th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE. 01/2013, pp. 279–284. DOI: 10.1109/ASPDAC.2013.6509609
(Cited on page 28).

[Man19] L. Man-Pages. ptrace(2) Linux Programmer’s Manual. 10/2019 (Cited on page 84).

[MIG14] S. Motaman, A. Iyengar, and S. Ghosh. “Synergistic Circuit and System De-
sign for Energy-efficient and Robust Domain Wall Caches”. In: Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and Design.
ISLPED ’14. 2014, pp. 195–200 (Cited on page 32).

[MIG15] S. Motaman, A. S. Iyengar, and S. Ghosh. “Domain Wall Memory-Layout, Circuit
and Synergistic Systems”. In: IEEE Transactions on Nanotechnology 14.2 (2015),
pp. 282–291. DOI: 10.1109/TNANO.2015.2391185 (Cited on page 32).

[MJK+19] J. Multanen, P. Jääskeläinen, A. A. Khan, F. Hameed, and J. Castrillon. “SHRIMP:
Efficient Instruction Delivery with Domain Wall Memory”. In: International Sym-
posium on Low Power Electronics and Design (ISLPED). 2019, pp. 1–6. DOI:
10.1109/ISLPED.2019.8824954 (Cited on page 32).

[MWZ+14] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li. “Exploration of GPGPU Register
File Architecture Using Domain-wall-shift-write Based Racetrack Memory”. In: Pro-
ceedings of the 51st Annual Design Automation Conference on Design Automation
Conference. 2014, 196:1–196:6 (Cited on page 32).

[MXM+16] M. Moeng, H. Xu, R. Melhem, and A. Jones. “ContextPreRF: Enhancing the
Performance and Energy of GPUs With Nonuniform Register Access”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 24 (2016), pp. 343–
347 (Cited on page 32).

https://doi.org/10.1145/2911451.2914758
https://doi.org/10.1109/ASPDAC.2013.6509609
https://doi.org/10.1109/TNANO.2015.2391185
https://doi.org/10.1109/ISLPED.2019.8824954

180 Bibliography

[MZS+15] H. Mao, C. Zhang, G. Sun, and J. Shu. “Exploring Data Placement in Racetrack
Memory Based Scratchpad Memory”. In: 2015 IEEE Non-Volatile Memory System
and Applications Symposium. 08/2015, pp. 1–5. DOI: 10.1109/NVMSA.2015.
7304358 (Cited on page 32).

[New04] C. Newman. SQLite (Developer’s Library). USA: Sams, 2004. ISBN: 067232685X
(Cited on page 74).

[NHH+17] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton. “An analysis of
persistent memory use with WHISPER”. In: ACM SIGPLAN Notices 52.4 (2017),
pp. 135–148 (Cited on page 30).

[NS07] N. Nethercote and J. Seward. “Valgrind: a framework for heavyweight dynamic
binary instrumentation”. In: ACM Sigplan notices 42.6 (2007), pp. 89–100 (Cited
on pages 29 sq., 56).

[NSY+20] S. Nakandala, K. Saur, G.-I. Yu, K. Karanasos, C. Curino, M. Weimer, and M.
Interlandi. “A Tensor Compiler for Unified Machine Learning Prediction Serving”.
In: Proceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation. 2020, pp. 899–917 (Cited on page 33).

[OJR+19] S. Ollivier, D. K. Jr., K. A. Roxy, R. G. Melhem, S. Bhanja, and A. K. Jones. “Lever-
aging Transverse Reads to Correct Alignment Faults in Domain Wall Memories”.
In: DSN. IEEE, 2019, pp. 375–387 (Cited on pages 32, 117).

[OLN+16] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. “FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory”. In:
Proceedings of the 2016 International Conference on Management of Data. 2016,
pp. 371–386 (Cited on page 31).

[PCM+13] R. Prenger, B. Chen, T. Marlatt, and D. Merl. Fast MAP Search for Compact
Additive Tree Ensembles (CATE). Tech. rep. Tech. rep., Lawrence Livermore
National Laboratory (LLNL), Livermore, CA, 2013 (Cited on page 33).

[PGG19] I. B. Peng, M. B. Gokhale, and E. W. Green. “System evaluation of the intel
optane byte-addressable nvm”. In: Proceedings of the International Symposium
on Memory Systems. 2019, pp. 304–315 (Cited on page 25).

[PH17] D. A. Patterson and J. L. Hennessy. Computer Organization and Design RISC-V
Edition: The Hardware Software Interface. 1st. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2017. ISBN: 0128122757 (Cited on pages 23, 149 sqq.).

[Phi96] E. M. Philofsky. “FRAM-the ultimate memory”. In: Proceedings of Nonvolatile
Memory Technology Conference. IEEE. 1996, pp. 99–104 (Cited on page 38).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning
in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830
(Cited on page 136).

[PYL+14] E. Park, S. Yoo, S. Lee, and H. Li. “Accelerating Graph Computation with Racetrack
Memory and Pointer-assisted Graph Representation”. In: 2014 Design, Automation
Test in Europe Conference Exhibition (DATE). 03/2014, pp. 1–4. DOI: 10.7873/
DATE.2014.172 (Cited on page 32).

https://doi.org/10.1109/NVMSA.2015.7304358
https://doi.org/10.1109/NVMSA.2015.7304358
https://doi.org/10.7873/DATE.2014.172
https://doi.org/10.7873/DATE.2014.172

Bibliography 181

[PZX15] M. Poremba, T. Zhang, and Y. Xie. “NVMain 2.0: A User-Friendly Memory Simu-
lator to Model (Non-)Volatile Memory Systems”. In: IEEE Computer Architecture
Letters 14.2 (07/2015), pp. 140–143. ISSN: 1556-6056. DOI: 10.1109/LCA.2015.
2402435 (Cited on pages 29, 41, 58).

[QFJ+] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Lastras. “PreSET:
Improving performance of phase change memories by exploiting asymmetry in
write times”. In: ACM SIGARCH Computer Architecture News () (Cited on page 40).

[QKF+09] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali.
“Enhancing lifetime and security of PCM-based main memory with start-gap
wear leveling”. In: 2009 42nd Annual IEEE/ACM international symposium on
microarchitecture (MICRO). IEEE. 12/2009, pp. 14–23. DOI: 10.1145/1669112.
1669117 (Cited on page 29).

[RRV+15] A. Ranjan, S. G. Ramasubramanian, R. Venkatesan, V. Pai, K. Roy, and A. Raghu-
nathan. “DyReCTape: A dynamically reconfigurable cache using domain wall
memory tapes”. In: 2015 Design, Automation Test in Europe Conference Exhi-
bition (DATE). 2015, pp. 181–186. DOI: 10.7873/DATE.2015.0838 (Cited on
page 32).

[SBJ+14] Z. Sun, X. Bi, A. K. Jones, and H. Li. “Design Exploration of Racetrack Lower-Level
Caches”. In: 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED). 2014, pp. 263–266. DOI: 10.1145/2627369.2627651
(Cited on page 32).

[SBW+16] Z. Sun, X. Bi, W. Wu, S. Yoo, and H. (Li. “Array Organization and Data Manage-
ment Exploration in Racetrack Memory”. In: IEEE Transactions on Computers 65.4
(04/2016), pp. 1041–1054 (Cited on page 32).

[Shi79] Y. Shiloach. “A Minimum Linear Arrangement Algorithm for Undirected Trees”. In:
SIAM Journal on Computing 8.1 (1979), pp. 15–32. DOI: 10.1137/0208002 (Cited
on page 32).

[SNM+15] Songping Yu, Nong Xiao, Mingzhu Deng, Yuxuan Xing, Fang Liu, Zhiping Cai, and
Wei Chen. “WAlloc: An efficient wear-aware allocator for non-volatile main memory”.
In: 2015 IEEE 34th International Performance Computing and Communications
Conference (IPCCC). 12/2015, pp. 1–8. DOI: 10.1109/PCCC.2015.7410326
(Cited on pages 28 sq., 31).

[SWL13] Z. Sun, W. Wu, and H. Li. “Cross-layer Racetrack Memory Design for Ultra High
Density and Low Power Consumption”. In: 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC). 05/2013, pp. 1–6 (Cited on page 32).

[SZL+15] G. Sun, c Zhang, H. Li, Y. Zhang, W. Zhang, Y. Gu, Y. Sun, J. Klein, D. Ravelosona,
Y. Liu, W. Zhao, and H. Yang. “From Device to System: Cross-Layer Design
Exploration of Racetrack Memory”. In: DATE. ACM, 2015, pp. 1018–1023 (Cited
on page 32).

[VKS+16] R. Venkatesan, V. J. Kozhikkottu, M. Sharad, C. Augustine, A. Raychowdhury,
K. Roy, and A. Raghunathan. “Cache Design with Domain Wall Memory”. In: IEEE
Trans. on Computers 65.4 (2016), pp. 1010–1024 (Cited on page 32).

https://doi.org/10.1109/LCA.2015.2402435
https://doi.org/10.1109/LCA.2015.2402435
https://doi.org/10.1145/1669112.1669117
https://doi.org/10.1145/1669112.1669117
https://doi.org/10.7873/DATE.2015.0838
https://doi.org/10.1145/2627369.2627651
https://doi.org/10.1137/0208002
https://doi.org/10.1109/PCCC.2015.7410326

182 Bibliography

[VMG+12] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger. “Accelerating a random
forest classifier: Multi-core, GP-GPU, or FPGA?” In: Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium
on. IEEE. 2012, pp. 232–239 (Cited on page 33).

[VMS+17] A. Vahid, G. Mappouras, D. J. Sorin, and A. R. Calderbank. “Correcting Two
Deletions and Insertions in Racetrack Memory”. In: CoRR abs/1701.06478 (2017).
arXiv: 1701.06478. URL: http://arxiv.org/abs/1701.06478 (Cited on
page 32).

[WA17] A. Waterman and K. Asanovic. “The RISC-V instruction set manual, volume I:
User-level ISA, version 2.2”. In: 1SiFive Inc., CS Division, EECS Department,
University of California, Berkeley (2017) (Cited on page 25).

[WC20] C. Wang and S. Chattopadhyay. “Isle-Tree: A B+-Tree with Intra-Cache Line Sorted
Leaves for Non-volatile Memory”. In: 2020 IEEE 38th International Conference on
Computer Design (ICCD). IEEE. 2020, pp. 573–580 (Cited on page 31).

[XAM+16] H. Xu, Y. Alkabani, R. Melhem, and A. K. Jones. “FusedCache: A Naturally
Inclusive, Racetrack Memory, Dual-Level Private Cache”. In: IEEE Trans. on
Multi-Scale Computing Systems 2.2 (04/2016), pp. 69–82. ISSN: 2332-7766. DOI:
10.1109/TMSCS.2016.2536020 (Cited on page 32).

[XLM+15] H. Xu, Y. Li, R. Melhem, and A. K. Jones. “Multilane Racetrack caches: Improving
efficiency through compression and independent shifting”. In: Asia and South
Pacific Design Automation Conference (ASP-DAC). 01/2015, pp. 417–422. DOI:
10.1109/ASPDAC.2015.7059042 (Cited on page 32).

[YWW+15] J. Yang, Q. Wei, C. Wang, C. Chen, K. L. Yong, and B. He. “NV-Tree: A Consis-
tent and Workload-adaptive Tree Structure for Non-volatile Memory”. In: IEEE
Transactions on Computers 65.7 (2015), pp. 2169–2183 (Cited on page 31).

[YZZ+18] T. Ye, H. Zhou, W. Y. Zou, B. Gao, and R. Zhang. “RapidScorer: Fast tree en-
semble evaluation by maximizing compactness in data level parallelization”. In:
Proceedings of the ACM International Conference on Knowledge Discovery and
Data Mining. 2018. ISBN: 9781450355520. DOI: 10.1145/3219819.3219857
(Cited on page 33).

[ZHN+06] M. Zukowski, S. Heman, N. Nes, and P. A. Boncz. “Super-Scalar RAM-CPU Cache
Compression.” In: Icde. Vol. 6. 2006, p. 59 (Cited on page 89).

[ZJZ+14] M. Zhao, L. Jiang, Y. Zhang, and C. J. Xue. “SLC-enabled wear leveling for MLC
PCM considering process variation”. In: Proceedings of the 51st Annual Design
Automation Conference. 2014, pp. 1–6 (Cited on page 37).

[ZL09] W. Zhang and T. Li. “Characterizing and mitigating the impact of process variations
on phase change based memory systems”. In: 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 12/2009, pp. 2–13 (Cited
on page 29).

[ZSY+14] M. Zhao, L. Shi, C. Yang, and C. J. Xue. “Leveling to the last mile: Near-zero-
cost bit level wear leveling for PCM-based main memory”. In: 2014 IEEE 32nd
International Conference on Computer Design (ICCD). IEEE. 10/2014, pp. 16–21.
DOI: 10.1109/ICCD.2014.6974656 (Cited on page 29).

https://arxiv.org/abs/1701.06478
http://arxiv.org/abs/1701.06478
https://doi.org/10.1109/TMSCS.2016.2536020
https://doi.org/10.1109/ASPDAC.2015.7059042
https://doi.org/10.1145/3219819.3219857
https://doi.org/10.1109/ICCD.2014.6974656

[ZSZ+15a] C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao. “Quantitative modeling of
racetrack memory, a tradeoff among area, performance, and power”. In: The 20th
Asia and South Pacific Design Automation Conference. 01/2015, pp. 100–105.
DOI: 10.1109/ASPDAC.2015.7058988 (Cited on page 32).

[ZSZ+15b] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang, Y. Liu, Y. Wang,
and J. Shu. “Hi-fi playback: Tolerating position errors in shift operations of racetrack
memory”. In: 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). 2015, pp. 694–706. DOI: 10.1145/2749469.2750388 (Cited
on page 32).

[ZZY+09] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. “A durable and energy efficient main
memory using phase change memory technology”. In: ACM SIGARCH computer
architecture news 37.3 (2009), pp. 14–23 (Cited on pages 28 sq., 40).

https://doi.org/10.1109/ASPDAC.2015.7058988
https://doi.org/10.1145/2749469.2750388

	Introduction
	Exploiting Traditional Interfaces
	Relevance to the Research Community
	Interface Exploitation for nvm Lifetime
	Interface Exploitation for rtm Properties
	Interface Exploitation for Immediate Arithmetic

	Contribution of this Work
	Application Transparent NVM Wear-Leveling
	Application Cooperative NVM Wear-Leveling
	Memory Optimization for Random Forests
	CPU Optimization for Random Forests

	Organization of the Thesis
	Author's Contribution to this Thesis

	Background and Related Work
	Technological Background
	Disruptive Memory Technologies
	Memory Hierarchies
	Computer Arithmetic
	rf Ensembles

	Related Work
	nvm Wear-Leveling
	rtm Optimization
	rf Performance Optimization

	System Model
	Non-Volatile Memory Model
	Technical Overview
	Wear-Out Model
	Iterative Memory Writes
	Hybrid Memories
	Simulation Setup
	Latency Model for rtm

	Random Forest Execution Model
	Probabilistic Execution Model
	Implementation
	Arithmetic Considerations
	Performance Consideration
	Tooling

	CPU Model
	Memory Hierarchy
	Floating-Point Arithmetic

	Application-Transparent NVM Wear-Leveling
	Modern Technologies and Traditional Interfaces
	Overview
	Wear-Leveling Decisions
	Wear-Leveling Actions
	Wear-Leveling Flow

	Software-Managed Read and Write Wear-Leveling
	Scope
	Problem Analysis and Statement
	Coarse-Grained Wear-Leveling
	Fine-Grained Wear-Leveling
	Evaluation
	Wrap-Up

	Semantic Memory Tracing
	Scope
	Problem Analysis and Statement
	Modular Analysis
	Case Study
	Wrap-Up

	Concluding Interface Exploitation

	Application-Cooperative NVM Wear-Leveling
	Modern Technologies and Traditional Interfaces
	Overview
	Application-Cooperative Decisions
	Application-Cooperative Actions

	Stack Usage Analysis and Wear-Leveling Hints
	Scope
	Problem Analysis and Statement
	Stack Usage Analysis
	Stack Wear-Leveling Overhead Optimization
	Evaluation
	Wrap-Up

	B+-Tree Checkpoint Wear-Leveling
	Scope
	Problem Analysis and Statement
	B+-Tree Organization
	OCTO+ Algorithm
	Evaluation
	Wrap-Up

	Concluding Software-Based Wear-Leveling

	Memory Optimization for Random Forests
	Modern Technologies and Traditional Interfaces
	Overview
	Unified Layout Optimization of dt on Racetrack Memory
	Scope
	Problem Analysis and Statement
	BLOwing Trees
	Evaluation
	Wrap-Up

	Decomposed Layout Optimization of dt on Racetrack Memory
	Scope
	Problem Analysis and Statement
	Decomposed Tree Optimization
	Evaluation
	Wrap-Up

	Concluding Memory Optimization of Random Forests

	CPU Optimization for Random Forests
	Modern Technologies and Traditional Interfaces
	Overview
	Numeric Formats
	Memory Encoding and Hierarchy

	Immediate Encoding of Floating-Point Split Values
	Scope
	Problem Analysis and Statement
	Immediate Encoding
	Evaluation
	Wrap-Up

	FLInt: Exploiting Floating-Point Enabled Integer Arithmetic for Efficient Random Forest Inference
	Scope
	Problem Analysis and Statement
	Providing Correct Floating-Point Comparisons with Integer and Logic Arithemtic
	Evaluation
	Wrap-Up

	Concluding CPU Optimization for Random Forests

	Conclusion and Future Work
	Conclusion
	Summary
	Outreach

	Future Work

	Acronyms
	Bibliography

