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Abstract

Anomaly detection becomes essential across diverse domains. Data is usually

collected sequentially in real-world applications such as sensor records and net-

work logs. Consequently, a major challenge in anomaly detection is the real-time

volatile sequential abnormal events. Recent research on time series has gained

supreme advancements, leveraging the vast development of deep models like re-

current neural networks and transformers. However, most existing deep models

focus on static time series while neglecting the dynamic streaming feature inher-

ent in real-world deployment. A critical issue arises from the potential occurrence

of distributional drift in streaming data, after which the pre-trained models be-

come invalid. Furthermore, as machine learning models are applied in the safety-

crucial fields like autonomous vehicles and medical diagnoses, the trustworthiness

of model predictions becomes a growing concern. A desired anomaly detector is

expected to both predict and interpret the abnormal events.

This dissertation focuses on the intersecting research area between time series and

data stream anomaly detection as well as their interpretability. We first develop

a contrastive-learning-based self-supervised approach for time series anomaly de-

tection, contributing to the effective representation learning of time series anoma-

lies without labels. Subsequently, we investigate a novel concept drift detection

approach for identifying correlation changes in the data stream. We also propose

a state-transition-aware online anomaly detection framework for data streams. Fi-

nally, we delve into the necessary properties of time series interpreters, including

cohesiveness, consistency, and robustness. We also showcase an example-based

interpreter for reconstruction-based anomaly detection models, which provides in-

tuitive and contrastive explanations of the reasons behind anomalies. The pro-

posed approaches are rigorously evaluated on various popular real-world bench-

mark datasets and simulations.
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1
Introduction

“An outlier is an observation that deviates so much from other observations as to arouse sus-

picion that it was generated by a different mechanism” [Haw80]. Hawkins’ definition from

the 1980s has been commonly used as a general definition of outliers. In recent decades, out-

liers have gained their unique definition in more and more machine learning application areas.

Accordingly, the outlier detection approaches have also evolved from statistical and density-

based methods to recent deep-learning models. Despite the data becoming more complex and

the model becoming more capable, the essential implication of outliers stays the same, i.e.,

data points deviating from the studied mechanism or distribution. Under the common “inde-

pendent and identically distributed” (i.i.d.) assumption in classical machine learning, outliers

show deviating behaviors, e.g., machine failure, physical disease, and unexpected traffic sce-

narios. Although noise refers also to deviating data points in the machine learning context,

they are usually less informative or interesting to the user. Certain prepossessing techniques

usually eliminate noise before the machine learning tasks. However, outliers are usually worth

investigating and bring potential valuable knowledge to the system.

Outlier detection has been researched as an essential task in both academia and industry.

While the term “outlier” usually refers to a statistically extreme value within the dataset, in
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1. INTRODUCTION

the industry, “anomaly” refers to broader extreme events in the general application context.

Although “outlier” and “anomaly” are interchangeably used in several scenarios, in this work,

we stick to “anomaly” targeting a more applied research domain. Correspondingly, the opposite

of “anomaly” is referred to as “normal” 1.

With the rapid industrial digitization in the last decade, the data format in machine learning

tasks has evolved from tabular data to more complex formats such as text, image, and video.

Previously, anomalies typically were outlying points in the relational database system, some

of which are even detectable by setting a single threshold. Detecting anomalies becomes chal-

lenging due to the intricate representation of recent data. In this work, we focus on detecting

anomalies in temporal data, a series of sequential data collected in time order. Specifically, we

distinguish temporal data between time series and data streams. With time series, we refer to

the whole stationary sequence that is available for machine learning processing. We are detect-

ing abnormal events during certain periods in the given sequence. In contrast, a non-stationary

data stream is closer to real-world applications. Data arrives continuously as a stream from

certain data sources, e.g., sensor networks and wearable devices. Due to the nature of dynamic

data streams, distributional drifts are one of the major challenges in modeling streaming data.

We target detecting anomaly events in dynamic data streams given the latest temporal context

of the data. We stick to the unsupervised paradigm because of the expensive label acquisition

in the real-time environment.

Recently, deep models have been developed for various challenging tasks, including tem-

poral anomaly detection. Although proficient deep models have achieved significant success,

there is an increasing concern about the trustworthiness of these black-box models. Especially

in safety-crucial applications, it is vital to understand the reason for machine learning model

predictions. Specifically in anomaly detection, users expect not only a precise alarm of abnor-

mal events but also a proper reasoning of the cause.

To this end, in this dissertation, we research the intersecting area between time series and

data stream anomaly detection and their model interpretability. In the rest of this chapter,

we first introduce the common applications in this area and existing solutions in Section 1.1.

Furthermore, we emphasize the major challenges in Section 1.2. Finally, we summarize the

contribution in the remaining chapters in Section 1.3.

1Unless specifically stated, the term “normal” only refers to the opposite of “abnormal” in the anomaly detec-
tion context, instead of normal distribution.
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1.1 Background

1.1.1 Applications

Time series anomaly detection (TSAD) is an essential task in various application branches,

many of which require streaming anomaly detection due to the real-time demand. In re-

cent years, the vast development of IoT techniques has enabled rapid industrial digitization.

Anomaly detection in sensor networks is an essential subtask in IoT systems. For example,

Mathur et al. [MT16] detect time series anomalies from a water treatment testbed in the in-

dustrial control system. By analyzing the sensor data, they aim to detect simulated attacks on

the testbed devices (e.g., water tank overflow). Similarly, HAI [SLYK20] is collected from an-

other industrial testbed for steam turbine power and pumped-storage hydropower generation.

By collecting sequential sensor data, they also aim to detect simulated abnormal attack sce-

narios. Predictive maintenance is another important industrial application domain of TSAD.

Machine failure can potentially lead to expensive consequences. Early detection of abnor-

mal machine behaviors can prevent or reduce repair costs [CLAM+21, dSAdSAF+21, KS20].

TSAD also plays a vital role in IT security [SGF+02, TJ03, DLZS17]. Network and system

attacks are evolving and persistent challenges in the IT security domain. Network traffic and

access logs contain temporal consistent information, which can be used to indicate potential

attacks. Compared to traditional signature-based intrusion detection systems [IVML18], mod-

ern approaches [SZ18] detect anomalies considering the temporal network access behavior. In

the finance domain, credit card fraud can be detected by analyzing the consumption history.

In environment monitoring, evolving environment data (e.g., humidity, air temperature, wind

velocity) has been used to predict forest fire risk in Australia [SR18].

For some safety-crucial domains, trustworthiness and reliability become increasingly im-

portant factors in addition to anomaly detection performance. For instance, detecting abnormal

physical conditions in the medical diagnosis domain requires reliable machine learning mod-

els and explainable predictions, e.g., detecting arrhythmia in ECG data [CF07, PS19, CV15].

Recent wearable devices also support automatic emergency calls for either physical diseases

or accidents. TSAD also contributes to the aerospace field [HCL+18]. For instance, trajectory

anomaly detection of spacecraft helps with real-time monitoring. However, untrustworthy pre-

dictions and decisions may lead to catastrophic and irreparable consequences. Finally, anomaly

detection is also important in autonomous vehicles [BNZ22]. Application spreads across mul-

tiple sensor modalities (e.g., camera, lidar, radar).

5



1. INTRODUCTION

1.1.2 Common anomaly detection approaches

Anomaly detection has been widely studied as an essential machine-learning task. Solution

frameworks spread from classical machine learning to recent deep learning models. The recent

solutions are well summarized in the literature [HHH+22]. Here, we give an overview of the

popular approaches from the supervision perspective. We extensively go through the unsuper-

vised approaches most relevant to our work while summarizing the ideas of supervised and

semi-supervised approaches from a broad view.

1.1.2.1 Unsupervised approaches

Due to the biased distribution between normal and abnormal data, unsupervised approaches

are considered more practical for real-world problems. A common assumption in unsupervised

anomaly detection solutions is that pure normal data is available in the training phase [LZX+21].

The task is to detect abnormal samples in the test phase without label information.

In classical machine learning, various categories of approaches solve the anomaly de-

tection task in an unsupervised fashion. Statistical approaches work under certain probability

distribution assumptions. Normal points are supposed to lie in the probability-dense regions,

while anomalies can be observed with less probability. For example, according to the em-

pirical rule, instances more than two or three standard deviations away from the mean in a

Gaussian distribution can be considered anomalies. In the case of multivariate data, the sta-

tistical approach can be extended to measure the Mahalanobis distance between an object and

the multivariate Gaussian distribution parameterized by the mean and covariance matrix. Ob-

viously, these approaches work under the strong assumption of the data distribution and the

cut-off parameter.

Distance-based approaches belong to another category of solutions. An object o is defined

as a DB(minPts, ϵ)− outlier if there are less than minPts objects within the neighborhood

area determined by radius ϵ. This approach is limited in large datasets due to the nested loop of

database scan with O(n2) complexity. Furthermore, a single pair of parameters (minPts and

ϵ) can also not capture datasets with different densities.

Targeting the limitation of Distance-based approaches, the density-based approaches fur-

ther model the neighborhood density definition with more advances. LOF [BKNS00] detects

outliers by accessing the local densities of instances. Kernel density estimation extends LOF

for high-dimensional applications [SZK14, LLP07].
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Reconstruction-based approaches serve as unsupervised anomaly detectors with the basic

idea of learning shared patterns of normal data by reconstructing the instances. Instances with

poor reconstruction in the test phase are suspected to be abnormal. A linear model from this cat-

egory is to reconstruct instances by non-negative matrix factorizations [AGAA18]. The input

matrix is mapped into the latent space and then reconstructed using two low-ranked matrices,

which can be acquired from, for instance, singular value decomposition (SVD).

Other variants of classical machine learning models are also designed for anomaly de-

tection in an unsupervised fashion. Isolation Forest [LTZ08] extends the supervised tree-based

random forest model for anomaly detection by “isolating” outlier points using the tree branches.

Outlier points are supposed to be contained in shorter branches in the tree. OCSVM [SWS+99]

extends the classical Support Vector Machines. Instead of maximizing the margin between

classes, OCSVM is trained with only normal data. It seeks to find a hyperplane that sepa-

rates the normal instances from the origin in the feature space. This hyperplane is chosen

to maximize the margin between the hyperplane and the nearest normal instances. Similarly,

SVDD [TD04] minimizes the volume of the hypersphere around the normal data.

Despite the efficiency and efficacy of classical machine learning methods, they usually

fail on complex (e.g., high-dimensional, temporal) data. Various deep models have recently

been developed for anomaly detection in complex data. Similar to classical machine learn-

ing, deep reconstruction-based approaches are popular in unsupervised anomaly detection.

Autoencoders are designed to reconstruct the input data, and the reconstruction error of un-

seen data indicates the likelihood of being an anomaly. The application area of Autoencoder-

based anomaly detection spread across time series data [SY14], data streams [CK22], image

data [PSvdH19], video scenes [XRY+15], etc. Different than minimizing the reconstruction

error, DeepSVDD [RVG+18] minimizes the hypersphere volume enclosing the normal data

represented by a deep neural network.

1.1.2.2 Supervised approaches

Anomaly detection can be treated as a supervised task for classifying samples into normal and

anomaly classes. However, classical classifiers (e.g., random forest [Ho95], support vector ma-

chine [CV95]) may fail in this setting due to the biased class sample distribution. In anomaly

detection, the majority of samples are usually from the normal class, while anomalies are sup-

posed to appear only rarely. Therefore, balancing the two classes by resampling is a necessary

pre-processing step to use classical supervised models.
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Another critical issue is the unseen anomalies [HHH+22]. Although normal data is usually

fully represented in the train set, anomalies can be any unknown patterns that differ from the

normal one. Therefore, a binary classifier can only be trained to distinguish existing patterns

in the train set, which causes large uncertainty on the unknown anomalies in the test phase.

1.1.2.3 Semi-supervised approaches

Semi-supervised approaches assume partial label availability. They use the available labels

to learn representations of the normal data while keeping flexible detection ability of unseen

anomalies. Some representative approaches are DeepSAD [RVG+19], an extension of the

unsupervised DeepSVDD [RVG+18] method that uses labels to enforce anomalies being rep-

resented away from the center of normal data; DevNet [PSvdH19] uses a few labeled anomalies

to enforce deviation of the anomaly scores of anomalies from normal objects in an end-to-end

neural deviation learning.

1.1.3 Advanced settings

Despite the vast development of anomaly detection techniques, their deployment in real-world

scenarios still faces vital challenges. In the era of big data, machine learning paradigms re-

quire advanced adaptation for complex data formats. Here, we discuss the advanced anomaly

detection methods in streaming and high-dimensional data.

1.1.3.1 Streaming anomaly detection

Anomaly detection in data streams is a common application in many real-world domains, e.g.,

predictive maintenance [CLAM+21, dSAdSAF+21, KS20], medical diagnosis [CF07, PS19,

CV15], telecommunication [FRC+19]. The input data is generated in real-time, while the

challenging task is to detect abnormal events in an online streaming fashion, where the label-

ing is expensive and the processing time is limited. One common strategy is applying sliding

windows over the arriving data stream and employing static unsupervised approaches in Sec-

tion 1.1.2.1 to the recent buffered data. Streaming clustering algorithms [PZX+18, CEQZ06,

APHW03] can be used for online anomaly detection, where tiny or single-element clusters are

the targets. Some static anomaly detection approaches have also been adapted for the streaming

setting, e.g., incremental LOF [PLL07], stream-adapted Isolation Forest [DF13].
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Dedicated streaming anomaly detection approaches have also been developed for this pur-

pose. xStream [MLA18] is a density-based approach that detects abnormal streaming data at

different granularities. LODA [Pev16] is an online ensemble approach that combines lightweight

weak histogram-based anomaly detectors for online processing. HS-tree [TTL11] is a tree-

based online anomaly detector with low complexity enabled by efficient tree splitting.

Considering the limited capability of shallow models on complex streaming data, deep

models have also been developed for this target. HTM [ALPA17] is a neural network model

trained unsupervised and dynamically adapted to the latest statistics of data streams. Similar

to the ensemble shallow methods, deep Autoencoders have also been aggregated by pooling

strategies [YLLL22] for online anomaly detection.

1.1.3.2 Subspace anomaly detection

In addition to the high-velocity and volatile streaming data, the high dimensionality is an-

other major challenge when deploying anomaly detection models for real-world applications.

Curse of dimensionality describes a failure effect of classical machine learning models in high-

dimensional space. Classical distance measurements become meaningless, and the algorithm

scalability reduces drastically. Detecting anomalies in high-dimensional data requires effi-

ciently identifying the relevant features (i.e., the subspace) where the abnormal events occur.

HiCS [KMB12] is a density-based approach that ranks outlier scores in high contrast (relevant)

subspaces. SOD [KKSZ09] infers relevant attributes from the neighbors of each data point.

Deep models are naturally more capable of handling high-dimensional data than shallow

models, thanks to their deep structures and quantity of trainable parameters. In addition to the

common deep models mentioned in Section 1.1.2, more and more deep neural networks are

proposed for the anomaly detection task. Recent advancements include deep generative mod-

els [HCL21, ZFL+18, ZLH+19], diffusion models [XGT+23, LZWW23, LJHR23], transform-

ers [XWWL21, TCJ22, YZZ+23] and large language models [GZZ+23, ZPT+23, HYT23].

1.1.4 Anomaly interpretation

An essential target of anomaly detection is to analyze the causes and prevent further appearance

or take early treatments (e.g., machine failures, disease diagnosis). Therefore, the interpretation

of abnormal data and the decisions of anomaly detectors are vital. Interpreting black-box

machine learning models is still understudied but has recently become popular.
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Interpretation approaches are commonly categorized by various criteria. Global approaches

provide insights into overall model behavior across the entire dataset, while local approaches

focus on explaining an individual instance or prediction. Model-specific interpretation are de-

signed for specific model structures, utilizing their internal characteristic, while model-agnostic

interpretation can be applied to universal models without prior knowledge of their internal

structure. Intrinsic approaches enable interpretability inherently from the model design and

learning process, while post-hoc approaches are applied after the model training. Targeting

temporal anomaly detection in long-lasting and high-dimensional time series, in this disserta-

tion, we focus on local interpretations, providing more clear explanations to individual anomaly

cases, model-agnostic and post-hoc approaches being more flexible to anomaly detectors.

In the existing interpretable machine learning approaches, some general-purpose approaches

can be applied to anomaly detection tasks [TCD+22, IGCBF20]. Other than them, dedicated

approaches are designed with more careful consideration of the challenges in anomaly detec-

tion tasks; some can also complete the interpretation together with anomaly detection in an

end-to-end fashion. ACE [SSFE23] provides unsupervised concept-based binary interpreta-

tion. It explains each prediction by indicating whether a human-interpretable concept is in the

target input. Mask-based approaches [LMA23] are commonly used to analyze the attributions

of features to the abnormal event. Singh et al. [SJLM23] generate task-specific explanations

for video anomaly localization. In this work, we will investigate the necessary properties of

time series interpreters, focusing on anomaly detection.

1.1.5 Resources and limitations

Current time series and data stream anomaly detection approaches are usually compared and

evaluated based on common benchmark datasets and library implementations. In this section,

we summarize a few popular existing resources in this field and discuss their limitations and

potential impact on new anomaly detectors.

1.1.5.1 Existing resources

Textbooks and surveys: Classical machine learning models to our research topics are well de-

scribed in various textbooks, including anomaly detection [Agg16], data stream analysis [Gam10]

and interpretable machine learning [Mol22]. Recent advances are well summarized in the fol-

lowing surveys. Choi et al. [CYPY21] and Darban et al. [DWP+22] summarize the state-of-

the-art TSAD approaches in their works. Lu et al. [LLD+18] systematically review the drift
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detection and modeling approaches. And Li et al. [LZVL23] provide an overview of the ex-

plainable anomaly detection techniques.

Benchmark studies: A few benchmark studies have covered the performance evalua-

tion of a vast amount of popular anomaly detectors. From a theoretical perspective, Ruff et

al. [RKV+21] benchmark various deep and shallow anomaly detection models. ADBench [HHH+22]

conducts extensive experimental comparisons among the latest models. Lai et al. [LZX+21]

conduct a TSAD benchmark study. Ismail et al. [IGCBF20] conduct a benchmark study on

time series interpretation approaches.

Libraries: Existing anomaly detection models are well-implemented by various open-

source libraries. PyOD [ZNL19], RapidMiner [AG12], River [MHM+21] and Weka [HFH+09]

are designed for general purpose, TODS [LZW+21] and DeepADoTS 1 are for TSAD, PySAD [YK20]

and MOA [BHKP10] support streaming data anomaly detection, and Captum [KMM+20] im-

plements a batch of interpretability models.

Datasets: The following repositories well cover standard benchmark datasets for anomaly

detection. ODDS [Ray16] and UCI [AN07] contain datasets for general purpose, UCR [CKH+15]

is a recent repository with TSAD datasets. Besides public data archives, synthetic data are also

often used for streaming model evaluation. Popular ones include scikit-multiflow [MRBA18]

and agots 2.

1.1.5.2 Limitations

Despite the resources in the TSAD domain, the approaches and the benchmark datasets still

have some limitations. Firstly, anomaly detectors are usually designed and evaluated in a task-

specific fashion, i.e., telemetry sensors [HCL+18], water treatment [DH21, HW22]. A signifi-

cant consequence is that those approaches are not cross-validated by other benchmark datasets.

In addition, we also observe that TSAD and data stream concept drift detection are usually re-

searched separately. Joint research on distinguishing anomalies and drifts, as well as adaptively

updating anomaly detectors with data streams, are still understudied.

From the data perspective, though several popular benchmark datasets are employed in the

evaluation of multiple approaches (e.g., SMD [SZN+19], SMAP and MSL [HCL+18]), Keogh

et al. [WK21] point out that they are flawed. Even a single line of MATLAB code can detect

many trivial anomalies in these popular datasets. In contrast, the UCR [CKH+15] archive is

1https://github.com/KDD-OpenSource/DeepADoTS
2https://github.com/KDD-OpenSource/agots
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1. INTRODUCTION

more reliable. However, a well-qualified multivariate TSAD benchmark dataset is still rare to

see. Given the severe situation, we claim that anomaly interpretation is an efficient way of

understanding anomalies and identifying unreliable predictions of biasedly evaluated anomaly

detectors.

1.2 Challenges

As discussed in Section 1.1, various approaches and resources have been investigated in the

anomaly detection and interpretation domains, given that there are still considerable flaws in

the evaluation procedure. In this section, we highlight the existing challenges in the studied

intersecting research area. An overview is depicted in Figure 1.1. Generally, detecting and

explaining time series and streaming anomalies suffer under complex temporal information,

dynamic data characteristics, as well as black-box predictions.

1.2.1 Static time series

Similar to anomaly detection in other domains (e.g., tabular, image, text data), TSAD usually

faces a lack of labeled data. On the one hand, labeled anomalies by domain experts is often ex-

pensive. On the other hand, anomalies only appear rarely compared to normal data. Therefore,

supervised approaches often under-represent the anomaly class. Although the normal class can

usually be represented by a limited amount of patterns, anomalies are endless, i.e., any pattern

differing from the predefined normal pattern can be considered an anomaly.

Specifically in TSAD, the contextual dependency on time series data makes the severe

problem even more challenging. One significant difference between time series and tabu-

lar data is the interdependent relationship between instances at adjacent timestamps. Hence,

the patterns learned from time series should be temporal patterns describing certain periods.

The windowing technique is one of the most commonly used strategies to collect temporal

instances, e.g., landmark windows, damped windows, and sliding windows [WC06]. One sig-

nificant challenge here is determining a proper window size, which should be large enough to

cover the necessary temporal context yet not redundant.

The temporal-dependent features also play a vital role in defining time series anomalies.

Point anomalies are similar to anomalies in the non-temporal context, where a data instance at

a single timestamp is outlying from the global data distribution. Additionally, in TSAD, the

contextual anomalies are more of concern, which are abnormal events consisting of multiple
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Time series 
anomaly detection

Data stream 
anomaly detection

Temporal  
anomaly interpretation

Point and contextual anomalies 
Contextual dependency 
High-dimensionality  
Missing / rare labels

Concept drifts 
Model adaptation / retraining 
Distinguishing drifts & anomalies

Black-box model interpretation 
Prediction reasoning 
Human-understandable visualization

Figure 1.1: Challenges in the intersecting research area. The challenges correspond to the
proposed solution set: Part II focuses on time series anomaly detection; Part III on data stream
anomaly detection; Part IV on temporal anomaly interpretation.

temporally adjacent data instances in a period. Detecting contextual anomalies is challenging

while every single instance within the abnormal event period might still show normal behavior

w.r.t. the point-wise anomaly definition, however, the holistic pattern is outlying.

1.2.2 Dynamic data streams

In data stream anomaly detection, temporal information and contextual anomalies are major

challenges. In the dynamic streaming environment, concept drifts become unavoidable. In

classical machine learning tasks, including TSAD, we usually make the i.i.d. assumption.

Namely, we assume the data for both training and testing are uniformly and independently

sampled from an identical distribution. However, in data streams, the data distribution can also

change over time with the evolving environment. This could make the model initialized on one
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data distribution no longer valid after a distributional change, i.e., concept drift. In the context

of anomaly detection, concept drifts raise the issue: normal data defined in one distribution

may become anomalies after a concept drift, and vice versa. Hence, an efficiently adaptive

anomaly detector is desired for the streaming environment.

In addition, both abnormal events and concept drifts indicate receiving newly arriving data

instances different from the last observations. One crucial task is to distinguish anomalies

from concept drifts. Although concept drifts can also be considered as anomalies w.r.t. to

the previous data distribution, in practice, they are usually less interesting to be defined as

anomalies. After observing concept drifts, the primary task is to trigger the model adaptation

and update the model to the latest distribution.

1.2.3 Interpretability

In addition to prediction performance, interpretability has been increasingly considered one

of the most critical aspects of machine learning models, especially in safety-crucial applica-

tions. A desired anomaly detection model should not only precisely detect the abnormal events

but also provide proper reasoning of the cause. Interpreting anomalies can help users under-

stand the abnormal event early, apply proper treatment, and possibly prevent future recurrence.

Existing interpretability approaches are usually not directly applicable to TSAD models. In-

terpretation models designed for general purposes do not focus on the temporal information in

time series. A proper explanation of time series prediction should based on the temporal event

that causes the prediction. Due to the complex temporal (timestamps) and spatial (features)

characteristics of time series, visually understanding the raw input data is already challenging

for humans. Therefore, the interpretation of time series anomalies should be efficient and sim-

plified. Another challenge is interpreting anomalies. In order to understand the type and cause

of anomalies, it is usually necessary to first understand what is normal. Although classical

feature attribution approaches help to figure out the most contributing features and timestamps,

they still need intuitive interpretations. Instead, a contrastive interpretation between normal

and abnormal is informative for humans.

In Figure 1.2, the three research topics of this dissertation are visualized on a problem axis.

From time series anomaly detection via data stream anomaly detection to temporal anomaly

interpretation, the hardness increases due to the problem setting and the task changes from the-

oretical and performance-oriented (e.g., optimizing detection accuracy) to practical and human-

oriented (e.g., industrial deployment and interpretation).
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Figure 1.2: Problem axis.

1.3 Contributions

In this dissertation, we study the intersecting research area between time series and data stream

anomaly detection, as well as their interpretation. An overview of the covered topics and the

corresponding publications are listed in Table 1.1. We first develop a general approach for

TSAD focusing on the temporal features in Part II. In Part III, we extend the problem setting

to real-time data streams. Specifically, we study the impact of concept drift on static TSAD

models and possible model adaptation strategies. Finally, aiming at the practical deployment

in real-world applications, especially targeting safety-crucial domains, we investigate interpre-

tation approaches on time series prediction and anomaly detection in Part IV.

In Chapter 2, we develop a self-supervised TSAD model ContrastAD [LM23a]. Inspired

by the convincing performance of contrastive learning in image data representation learning,

we extend its benefit of representing the normal class without accessing anomaly samples in

the TSAD domain. Facing the challenging construction of contrastive pairs for time series data,

we design anomaly-induced temporal transformation.

In the data stream setting in Part III, we firstly revisit the drift detection techniques in Chap-

ter 3. Anomalies in the data stream are defined in the context of their temporal context. There-

fore, drift detection techniques contribute to identifying the timestamps or periods where the

hidden data distribution in the stream drifts. Given the expensive labeling process in real-time,

different from common drift detectors [GMCR04, BG07], we focus on the prior distribution

changes (i.e., virtual concept drifts [LLD+18]) in the temporal anomaly detection context. We

propose slidSHAPs [BLM23b], an unsupervised drift detection approach based on the feature

correlation drifts derived from Shapley values [Sha53]. After that, in Chapter 4, we delve into

the anomaly detection task in drifting data streams. We propose STAD [LM23b], a state transi-

tion model that captures the anomaly detector performance w.r.t. the drifting data distributions
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Table 1.1: Topics overview

Topic Publication

Part I Chapter 1 Introduction

Part II Chapter 2 Contrastive time series anomaly detection [LM23a]

Part III Chapter 3 Correlation drift detection [BLM23b]
Chapter 4 Online adaptive anomaly detection [LM23b]

Part IV Chapter 5 Cohesive time series explanation [LM24]
Chapter 6 Consistency and robustness [BLM23a]
Chapter 7 Example-based explanation [LJM22]

Part V Chapter 8 Conclusion & future work

in an online fashion. We design automated real-time model selection and transition paradigms

that optimize the anomaly detector to the latest data patterns.

While the approaches proposed so far optimize for the anomaly detection performance

in both static and dynamic settings, in Part IV, we study the interpretability of the temporal

anomaly detectors, focusing on local, model-agnostic and post-hoc interpretations. We also

define the essential demand of interpreting time series predictions. In Chapter 5, we emphasize

the challenge of using saliency maps to interpret the complex and less human-readable (com-

pared to image or text data) time series data. We propose CETS [LM24], a two-stage cohesive

time series prediction interpretation approach, which simplifies the attribution analysis of both

sub-feature space and time period of each input data window. Furthermore, for future research,

in Chapter 6, we point out the existing issue that the attribution consistency between adja-

cent time windows is not guaranteed by classical machine learning interpretation approaches.

Similar to the time dimension, in the feature dimension, we also demonstrate that the time

series interpretation approaches require robustness against feature permutation. Subsequently,

in Chapter 7, we provide a prototypical study on interpreting time series anomaly in practice.

We propose ProtoAD [LJM22], an example-based interpretation approach for reconstruction-

based anomaly detectors. Visualizing examples of normal and abnormal samples intuitively

shows the reasoning behind anomalies.

As a conclusion of this dissertation, in Part V, we summarize our contributions to the

research area and sketch potential further research gaps for future works.

16



Part II

Time Series Anomaly Detection
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2
Contrastive Time Series Anomaly

Detection

The complex and volatile temporal features make temporal anomaly detection in time series

and data streams extremely challenging. In this chapter, we start with anomaly detection in

static time series, where sufficient data is available for the training, and the dataset is uniformly

sampled. We address the challenges in Section 1.2.1, specifically, in time series data, some

anomalies only show deviating patterns to their local temporal context instead of the overall

distribution. Furthermore, the biased sample distribution between normal and abnormal classes

hinders the efficient usage of the labels. Self-supervised approaches are practically efficient for

anomaly detection, in which only normal data is used during the training. However, they often

fail to detect contextual anomalies in high-dimensional time series data, while the representa-

tion learning of such temporal data patterns is sub-optimal.

In this chapter, we propose ContrastAD, a novel self-supervised framework for time se-

ries anomaly detection (TSAD). Specifically, we employ the contrastive learning process with

anomaly-induced temporal transformations. Targeting the point and contextual anomalies in

time series data, we develop corresponding transformations to enforce the model to learn dis-
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crepant representations for normal and abnormal data in the latent space. With extensive exper-

iments, we show that our approach outperforms baseline anomaly detectors on various bench-

mark datasets. Our empirical results indicate that ContrastAD improves anomaly detection

performance on noisy and high-dimensional time series datasets.

2.1 Introduction

Anomaly detection in time series data has attracted vast attention in recent machine learn-

ing research. Classical database anomaly detection approaches [LTZ08, BKNS00, EKS+96,

SWSST00] usually work efficiently on low-dimensional data and detecting point anomalies.

Meanwhile, temporal information is a major aspect when considering contextual anomalies in

time series. Time series forecasting-based models can detect anomalies without losing histor-

ical information [RL05]. Reconstruction-based models [Hof07] belong to another thread of

approaches that use the reconstruction error to indicate the likelihood of anomaly without ac-

cessing labels. However, those models often fail when the complexity and dimensionality of

the time series increase. A sub-optimal representation of the data hinders anomaly detection

tasks.

Recently, multiple deep models have achieved promising performance on standard bench-

mark datasets. The deep models capture long-term temporal information in the time series

sequences with their deep structures. Learning informative representation with deep models

facilitates anomaly detection enormously. Recurrent Neural Networks (RNNs) are used in

both forecasting-based [MVS+15] and reconstruction-based models [MRA+16, SY14]. The

recurrent units are supposed to aggregate important information from history. Temporal Convo-

lutional Networks (TCNs) model the temporal data with convolution kernels [BKK18]. Trans-

formers are also applied to time series data where the attention mechanism extracts temporal

dependencies between timestamps from the time series data [XWWL21, TCJ22, ZJP+21]. De-

spite the powerful modeling capacity of the deep models, they usually focus on intra-instance

information (e.g., within a sliding window) while neglecting the semantic relation between

instances. Inter-instance information (between sliding windows) is especially important for

contextual dependency analysis between instances.

Contrastive learning (CL) is a self-supervised learning paradigm that learns underlying rep-

resentation from unlabeled data [JBZ+20]. It has achieved notable breakthroughs in multiple
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computer vision tasks [CSL21, SLY+21, GEY18]. The main idea is to augment the origi-

nal data with multiple transformations and discriminatively learn to distinguish between them.

Previous works commonly follow the strategy of augmenting the input data with different trans-

formations, then deriving positive and negative pairs from the augmented data. The learning

objective encourages relevant data (positive pairs) to stay together in the latent space while

irrelevant data (negative pairs) to be apart from each other. This procedure allows the model to

learn to differentiate features between instances. We are motivated to apply CL to TSAD tasks

to enable the model to recognize the imperceptible contextual anomalies in time series. In the

CL-based anomaly detection models, data transformations facilitate learning useful features

for detecting novelties [GEY18]. A downstream auxiliary classification task is often used to

predict the anomaly score [TMJS20, SLY+21, WBR+20, SCM21]. It has been shown that the

contrastive loss can also be used directly as the anomaly score if no label is available to train

a classifier [SW22, QPK+22]. The anomaly data are supposed to cause larger contrastive loss

due to sub-optimally distinguishing the original and transformed data.

CL has already been employed in many image [WBR+20, SLY+21, TMJS20] but few in

time series [QPK+22, SQK+22] anomaly detection tasks. Thanks to the nature of image data,

it is straightforward to apply transformations to the raw data and further define contrastive pairs

for the learning process. Common transformations include geometric transformations (e.g., ro-

tation, flipping, reflection) [GEY18] and jittering (i.e., adding random noise) [WLM+22]. CL

has yet to be widely developed for time series data while finding informative transformation

for temporal data is not trivial. Existing works apply an autoregressive model for latent space

forecasting [OLV18] or learn transformations by a dedicated neural network [QPK+22]. How-

ever, they are not designed for TSAD and explicitly target representing the normal patterns

as well as the highly contrasting point and contextual anomalies. The contribution of such

transformations to time series data with context-dependent anomalies is unclear.

Here, we address the two major challenges in the TSAD tasks: (1) point and contextual

anomalies are hard to detect in time series data and (2) high-dimensional and noisy time

series data are difficult to represent. We employ deep models to capture complex time se-

ries data, and we use self-supervised CL in the TSAD task with multiple point and contextual

anomaly-induced temporal transformations. We are different from the classical CL approaches,

which usually define the original data instances and their transformations as the positive pairs,

while data instances with transformations of other instances as negative pairs. This approach

is practical for learning not task-specific representations; however, it does not target complex
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anomaly patterns in time series. Thus, we adapt positive and negative pairs based on the ar-

tificial temporal transformations. By artificially augmenting positive and negative temporal

transformations, we aim to explicitly encourage the model to learn a robust representation of

normal data and to differentiate the normal data from anomalies.

The main contribution of this chapter can be summarized as follows:

1. we propose a CL framework for TSAD

2. we propose multiple temporal time series transformations for the anomaly detection task

3. we demonstrate the effectiveness of the proposed framework with extensive empirical

experiments on common real-world TSAD benchmark datasets.

2.2 Related works

2.2.1 Time series anomaly detection

Classical anomaly detection approaches have shown their efficacy in detecting highly deviating

points from their neighborhoods in the same data collection, e.g., PCA [PKS18], density-based

LOF [BKNS00] and the one-class classifiers [SWSST00, TD04]. Recent deep models expand

the anomaly detector to more high-dimensional and complex data. They include extended

one-class approach DeepSVDD [RVG+19], reconstruction-based approaching using autoen-

coders [ZSM+18, ZSZ+21] and generative approaches [SSW+17, AAAB18].

A major challenge in TSAD is detecting contextual anomalies. To capture contextual in-

formation, one thread of works is based on time series forecasting and uses the prediction error

to indicate anomalies [GRN18, MVS+15]. Several deep models are also used to capture the

temporal information in time series data. Malhotra et al.[MRA+16] use LSTMs build Autoen-

coders to reconstruct time series data. Similarly, Hundman et al. [HCL+18] use LSTMs for

forecasting-based anomaly detection. Su et al. [SZN+19] employ GRUs, which are supposed

to be easier to train than LSTMs due to their fewer parameters. Convolutional Neural Networks

have also been used for time series data. Bai. et al. [BKK18] have shown empirical results that

TCNs outperform LSTMs and RNNs in sequence modeling. Thill et al. [TKWB21] construct

Autoencoders with TCNs for anomaly detection. Finally, attention mechanism-based Trans-

former models are capable of long-term sequences. Tuli et al. [TCJ22] propose a Transformer-

based anomaly detector with an adversarial training procedure that can amplify reconstruction
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errors. Xu et al. [XWWL21] compose a Transformer network with prior- and series-association

to learn the temporal dependency.

2.2.2 Contrastive learning

Data augmentation is a key step in CL. In computer vision tasks, geometric transformations

enrich the image data without dramatically changing the semantic, e.g., flipping [CSL21],

rotation [SLY+21], reflection [GEY18], permutation [TMJS20], jittering [CKNH20], crop-

ping [WBR+20] and changing brightness [WBR+20]. To enrich the transformation beyond the

original image into a more general case, Bergman et al. [BH20] employ affine transformation.

By manipulating the affine parameters, the affine transformations allow for dimensionality re-

duction, non-distance preservation, and random transformation. Mistra et al. [MZH16] extend

the application to the video domain and transform the data by shuffling the frames.

A common training strategy is the SimCLR[CKNH20], which encourages close embedding

of positive pairs and penalizes nearly embedding of negative pairs [TMJS20, WBR+20]. The

InfoICE loss [OLV18, dHL21] manipulates the mutual information in the latent space. Incorpo-

rated with the downstream classification tasks, the constrictive objective is also combined with

cross entropy [SW22], triplet center loss [BH20] and one-class classification loss [SLY+21].

Under the self-supervised setting, CL also shows its strength in various anomaly detection

tasks with the biased class distribution. Winkens et al. [WBR+20] enhance out-of-distribution

detection with the contrastive objective. Sohn et al. [SLY+21] incorporate negative-sample-

free CL with deep one-class classification for anomaly detection. Wang et al. [WLM+22]

further propose using distribution augmentation to overcome the class collision problem in the

one-class setting.

Despite the recent development of CL, the application domain still needs to be expanded

beyond computer vision. Time series data still faces the challenge of getting proper transforma-

tions to form contrastive pairs. In the existing works, Shenkar et al. [SW22] transform tabular

data by masking consecutive feature subsets; however, they do not consider the temporal de-

pendency. Analog to jittering for image data, Wang et al. [WLM+22] transform time series

data by adding noise and manipulating the sequence magnitude. Another implicit solution is to

learn transformations with neural networks [QPK+22, SQK+22]. However, they do not explic-

itly consider the context-relevant anomalies in the time series data during their transformation

processes. Considering the unique nature of point and contextual anomalies, we extend the ar-

tificial time series transformation (e.g., jittering and pattern-wise magnitude change) by Wang
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et al. [WLM+22] with extensive anomaly-induced positive and negative transformations and

design a novel self-supervised CL framework for TSAD.

2.3 Methodology

2.3.1 Problem statement

Let X = {Xt}t∈Z be a D-dimensional time series (Xt ∈ RD). W = {Xt+1, ..., Xt+L} is a

sliding window over X with length L. We aim to detect both point and contextual anomalies

from the sliding window. A point anomaly occurs at a single timestamp T ∈ [t + 1, t + L],

e.g., a spike. A contextual anomaly event describes a consecutive subsequence of W in time

period [T, T + l] ⊂ [t+1, t+L] that makes W deviate from the common sliding windows. For

a given sliding window W , we need to predict one anomaly score a, indicating the likelihood

of W being anomalous. As a post-step, a threshold over a can be applied to receive a binary

prediction of being anomalous. The selection of such a threshold is out of our scope.

2.3.2 Contrastive anomaly detection

2.3.2.1 Architecture overview

The ContrastAD model consists of two stages. Firstly, we apply positive and negative temporal

transformations to each input sliding window W (Section 2.3.2.2). Secondly, after the original

and transformed data windows are encoded into the latent space, we conduct the CL process

using our contrastive objective (Section 2.3.2.3). The final anomaly score is calculated based on

the contrastive loss (Section 2.3.2.4). Figure 2.1 shows an overview of the model architecture.

2.3.2.2 Temporal transformations

We follow the common assumption in unsupervised anomaly detection tasks where pure nor-

mal data is available for the training and anomalies only appear in the test phase. To meet the

nature of the TSAD problem, we carry out temporal transformations of sliding windows con-

sidering the local context within each window. Specifically, we augment the normal time series

data windows with the jittering-based positive transformation and multiple anomaly-induced

negative transformations. The model is generalized by augmenting the normal training data to
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Figure 2.1: ContrastAD overview. For each input window W , we augment it with multiple
anomaly-induced positive (WP ) and negative (WN

∗ ) transformations. After the augmentation, all
data are fed to a time series encoder. The embeddings (z,z+ and z−’s) are used for the contrastive
learning process in the latent space.

learn noisy and slightly perturbed normal patterns. The negative temporal transformations con-

tain both point and contextual anomaly-induced artificial abnormal patterns. The contrastive

objective pushes the normal cluster away from negative transformations in the latent space.

In the jittering-based positive transformation, for data window W ∈ RL×D, we add random

noise ϵ ∈ RL×D to W , specifically,

WP := W + ϵ (2.1)

for ϵi,j ∈ N(0, σjitter) with i ∈ [1, L] and j ∈ [1, D]. σjitter controls the strength of the noise.

Moreover, oppositely, we augment the data window W with multiple anomaly-induced

negative transformations to encourage the normal windows to be embedded apart from de-

viating patterns. Specifically, we incorporate spike to simulate point anomalies and shuffle,

trend as well as scale to simulate contextual anomalies. So that we end up with the negative

transformation set

WN := {WN
spike,W

N
shuffle,W

N
trend,W

N
scale} (2.2)

The spike transformation simulates point anomalies by adding extreme values. The trans-

formation WN
spike is achieved by replacing the value WT,d at random timestamp T and feature

d with an extreme value deviating from the mean of the feature d
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W
′
T,d = µd + λspike · σd (2.3)

where µd and σd are the mean and standard deviation on feature d in the sliding window. λspike

is a hyperparameter that controls the spike amplitude.

The shuffle transformation simulates an interrupted temporal context by shuffling the first

and second half of the window. The data window still contains the local temporal context in

each half window; however, the global order within the entire window is shuffled.

WN
shuffle = [W⌈L

2
⌉:L;W1:⌈L

2
⌉−1] (2.4)

The trend transformation simulates abnormal data windows caused by irregular trends

within the window. WN
trend scales each timestamp with an incremental factor so that for value

WT,d at timestamp T on feature d,

W
′
T,d = (

L+ T

L
)×WT,d (2.5)

where L is the window length.

The scale transformation stretches the sequence on its feature dimensions. The transfor-

mation scales the whole window W by a random factor λscale ∈ N(2, σscale):

WN
scale = W × λscale (2.6)

where σscale is a hyperparamter controls the scaling strength.

Figure 2.2 visualizes an example of the temporal transformations on one normal and one

abnormal data window from the univariate ECG [CHR+15] dataset.

2.3.2.3 Contrastive objective

All the positive, negative temporal transformations and the original time series windows are

fed into the encoder to get latent space representations. The encoder f can be one of the time

series representation learning models that capture contextual information. We give a further

discussion on the existing encoder models in Section 2.3.2.5. After the encoding process, we

get the latent space representations z = f(W ) for the original input window W , z+ = f(WP )

for the positive-transformed window WP and z−∗ = f(WN
∗ ) for each negative-transformed

window WN
∗ ∈WN .
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Figure 2.2: An example of the temporal transformations on ECG. The gray lines and the red
lines are two examples of the original normal and abnormal data. The blue lines are the temporal
transformations.

We define contrastive pairs in each mini-batch B of data windows. Figure 2.3 visualize

an overview of all pairs derived from the two data windows W (i) and W (j) in mini-batch

B. Our intuition is to pull the normal windows and their positive transformations together and

push positive transformations of different data windows as well as data windows with their

negative transformations apart from each other. Concretely, we define positive pairs as the

embeddings of a window W (i) ∈ B and its own positive transformation. So that the positive

loss component is

LP =
1

|B|

|B|∑
i=1

exp(sim(z(i), z+(i)))/τ) (2.7)

where τ is the temperature parameter, sim(·, ·) denotes the cosine similarity.

Furthermore, in each mini-batch B, we define the negative pairs and corresponding negative

loss components as

(1). the embeddings of the positive transformations of two different data windows W (i)

and W (j)

LWW =
2

|B|2 − |B|

|B|∑
i=1

|B|∑
j=i+1

exp(sim(z+(i), z+(j))/τ) (2.8)

where 1
|B|(|B|−1)

2

= 2
|B|2−|B| is the number of distinct negative sample pairs within one

mini-batch.

(2). the embeddings of each data window W (i) and its every negative transformation

WN
∗ (i) ∈WN
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Figure 2.3: Contrastive pairs. z(i) and z(j) are window embeddings of W (i) and W (j). z+ and
z−∗ are corresponding positive and negative transformations. The blue solid lines connect positive
pairs, and the red dashed lines connect negative pairs in contrastive learning.

LWN =
1

|B| × |WN |

|B|∑
i=1

|WN |∑
p=1

exp(sim(z(i), z−p (i))/τ) (2.9)

The final contrastive objective is

L = −log LP

LP + LWW + LWN
(2.10)

2.3.2.4 Anomaly score

We define the anomaly score of each data window based on the contrastive loss [QPK+22]

without access to the labels. Specifically, we adapt the positive and negative loss components

to extract each data window’s positive and negative contributions. Concretely, for data window

W (i), the positive contribution is

aP (i) = exp(sim(z(i), z+(i)))/τ) (2.11)

and the negative contributions are

aWW (i) =
1

|B| − 1

∑
j∈[1,|B|],j ̸=i

exp(sim(z+(i), z+(j))/τ) (2.12)

aWN (i) =
1

|WN |

|WN |∑
p=1

exp(sim(z(i), z−p (i))/τ) (2.13)

The final anomaly score is

a(i) = −log aP (i)

aP (i) + aWW (i) + aWN (i)
(2.14)
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2.3.2.5 Time series encoders

In ContrastAD, the encoder f learns representations of the original data windows and their

temporal transformations. Several existing time series representation learning models can act

as the encoder. In our experiment, we primarily use the autoregressive model-based Contrastive

Predictive Coding (CPC) [OLV18], which is effective in multiple sequential data representation

learning tasks [dHL21, Hen20]. This is especially important for high-dimensional and long-

span time series to keep the global structure, while classical unimodal approaches are often not

powerful enough, and conditional generative models are computationally intense [OLV18]. We

compare different time series encoders in Section 2.4.2.2.

2.4 Experiments

2.4.1 Experiment setup

2.4.1.1 Dataset description

We conduct experiments on multiple TSAD benchmark datasets. ECG [CHR+15] is a univari-

ate dataset describing 5000 patient heartbeats in 5 classes. We consider the two smallest classes

as anomalies and the other three as normal. SMAP and MSL are high-dimensional spacecraft

telemetry data with pre-labeled point and contextual anomalies [HCL+18]. These datasets are

noisy and do not contain common repeating patterns. SWaT [MT16] is collected from a water

treatment testbed, where artificial attacks are labeled as anomalies. Finally, UCR [KTNA21] is

a challenging univariate dataset from various real-world applications. SMAP, MSL, and UCR

contain subsets collected from different devices. We train a dedicated model for each subset.

In our experiments, we use 5 subsets from UCR (001 ∼ 005), SMAP (P − 1, S − 1, E − 1,

E − 2, E − 3) and MSL (M − 6, M − 1, M − 2, S − 2, P − 10) respectively based on the

order in the original datasets, which cover both point and contextual anomalies. The train and

test sets are specified in the original datasets, so the train sets only contain normal data. The

evaluation results are averaged over all subsets. The source code of ContrastAD is available

online 1.

1https://github.com/KDD-OpenSource/ContrastAD
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2.4.1.2 Competitors

We compare ContrastAD with multiple common baseline anomaly detection models. We in-

clude classical anomaly detection approaches Local Outlier Factor (LOF) [BKNS00], One-

Class SVM (OCSVM) [SWSST00] with RBF kernel and Isolation Forest (IF) [LTZ08]. Fur-

thermore, we also compare with the recent reconstruction-based deep models LSTM-Autoencoder

(LSTMAE) [MRA+16] and DAGMM [ZSM+18]. The implementation of baseline models is

taken either from Scikit-learn 1 or online resources 2.

2.4.1.3 Evaluation metric

Our model calculates the anomaly score based on the contrastive loss. The anomaly score

indicates the likelihood that a window is an anomaly. We do not include a specific thresh-

olding technique to receive a binary prediction. The anomaly detector should deliver a good

performance of multiple threshold settings, and the user can select the threshold depending on

the concrete use cases. Following [QPK+22, GEY18], we use the AUROC (Area Under the

Receiver Operating Characteristic curve) to evaluate the anomaly detector performance.

2.4.1.4 Parameter configuration

For sliding window construction, we set window size L = 140 for ECG defined by the data

source. For the other datasets without prior knowledge, we generally set L = 100 except

L = 50 for the smaller dataset MSL. We slide the window forward without overlap. For the

time series transformation, we set hyperparameters by default σjitter = 0.2 for WP , λspike = 5

for WN
spike and σscale = 0.8 for WN

scale. With these, the spike transformation generates a

significant point anomaly, while the jittering transformation only augments the data with minor

perturbation. Beyond the selected default parameter configuration, an extensive parameter

sensitivity analysis is provided in Section 2.4.2.3. For ContrastAD, we train with the Adam

optimizer [KB14] for 50 epochs with learning rate 0.001 and batch size |B| = 8. We use 20%

of the training data for validation. In the contrastive objective, we set the temperature parameter

τ = 0.2. For the time series encoder, in addition to the default CPC model [OLV18], we also

compare to a three-layer bidirectional LSTM model, a TCN model [BKK18] with kernel size

5 and a Transformer model [ERC+21], all with 80 hidden units.

1https://scikit-learn.org
2https://github.com/KDD-OpenSource/DeepADoTS

30

https://scikit-learn.org
https://github.com/KDD-OpenSource/DeepADoTS


2.4 Experiments

Table 2.1: Overall performance (AUROC)

ECG SMAP MSL SWaT UCR

LOF 0.487 0.348 0.702 0.435 0.502
OCSVM 0.505 0.268 0.789 0.617 0.526
IF 0.500 0.307 0.500 0.469 0.481
LSTMAE 0.566 0.253 0.786 0.791 0.535
DAGMM 0.643 0.576 0.745 0.659 0.567

ContrastAD (Ours) 0.500 0.619 0.813 0.729 0.734

2.4.2 Performance

2.4.2.1 Overall performance

The overall performance (AUROC score) of ContrastAD and the baseline models has been

summarized in Table 2.1. Our model outperforms the baseline model on three benchmark

datasets and performs on par with the baseline models on SWaT. Specifically, on the ECG data,

the classical deep models LSTMAE and DAGMM show better performance than ContrastAD.

This may indicate that the artificial transformations in ContrastAD do not bring many benefits

to the dataset containing fixed repeating normal patterns and specific abnormal patterns. In this

case, we recommend defining data-specific artificial negative transformations based on prior

knowledge of the datasets.

2.4.2.2 Ablation study

We conduct two ablation studies to examine the importance of the negative transformation

functions (Table 2.2) and encoder models (Table 2.3). ContrastAD with all four negative trans-

formation functions spike, shuffle, trend, and scale shows the best performance on MSL, SWaT

and UCR and is on par with the two deep models on SMAP. Especially on UCR, which is

claimed to be a challenging dataset [XWWL21], even removing a single transformation func-

tion will cause a significant decrease in the AUROC score. The ECG dataset shows results in

the opposite direction. Removing trend or scale does not impact the performance, while remov-

ing spike or shuffle is even beneficial. One possible reason is that ECG contains neither severe

point anomalies like spike nor contextual anomalies like shuffle; those two functions may con-

fuse the model with unrealistic transformations. In the other high-dimensional datasets with
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Table 2.2: Ablation study: negative temporal transformations (AUROC)

ECG SMAP MSL SWaT UCR

w/o spike 0.535 0.565 0.705 0.626 0.464
w/o shuffle 0.530 0.474 0.632 0.650 0.455
w/o trend 0.500 0.624 0.710 0.682 0.484
w/o scale 0.500 0.639 0.702 0.588 0.553

ContrastAD 0.500 0.619 0.813 0.729 0.734

Table 2.3: Ablation study: time series encoders (AUROC)

ECG SMAP MSL SWaT UCR

LSTM 0.430 0.349 0.503 0.365 0.473
TCN 0.449 0.447 0.516 0.670 0.369
Transformer 0.540 0.718 0.688 0.708 0.477

CPC 0.500 0.619 0.813 0.729 0.734

more general and noisy patterns, the negative transformations benefit the learning procedure.

Table 2.3 shows the model performance when alternating the encoder CPC with another

time series representation learning model. The CPC encoder shows dominating performance

on MSL, SWaT, and UCR while is on par with other encoders on ECG and SMAP. The classical

time series modeling approaches LSTM and TCN, however, do not show convincing results.

2.4.2.3 Parameter sensitivity

We show the results of parameter sensitivity analysis in Figure 2.4. Since the contrastive pairs

are built within mini-batches, the batch size is supposed to be an important factor in Con-

trastAD. We evaluate the model performance under the batch sizes |B| ∈ {1, 2, 4, 8, 16, 32, 64, 128}.
We train one model per subset (some datasets do not allow batch sizes larger than 32). The re-

sults are shown with mean and standard deviations over three runs. Our experimental results

show that large batch sizes do not directly bring better results. Rather, there is a drop in the

AUROC score on UCR when the batch size increases from 16 to 128. Most datasets show

increasing performance when the batch size increases from 1 to 16. This indicates that a proper

middle size of batches helps to learn features among local instances.
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Figure 2.4: Parameter sensitivity analysis. Batch size |B|. Positive transformation parameter
σjitter. Negative transformation parameter λspike. Negative transformation parameter σscale.

Furthermore, Figure 2.4 also shows the result of sensitivity analysis of the hyperparam-

eters σjitter, λspile and σscale in the negative temporal transformations. The parameters are

used to determine the strength of the transformation effect. We examine both small values

{0.1, 0.3, 0.5, 0.7, 0.9} and large values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} for σjitter and λspile. For

σscale, we try values in {0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9}. We observe that ContrastAD is

generally not sensitive to all parameters in the value ranges we have examined. For the σjitter in

the positive transformation, a small value will add random noise to the input signal, which helps

the model to learn robust representations of the normal pattern. However, a very large σjitter

will lead a noisy normal data becoming an anomaly, therefore harming the performance (e.g.,

on SWaT). On the opposite side, a tiny spike is hard for the model to distinguish. Therefore
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we recommend to select values σjitter ∈ [0, 1] and λspile ∈ [1, 10]. The scale transformation

scales the data window with some random factors λscale ∈ N(2, σscale). In our experiments,

we fix the average factor value to 2, so it doubly stretches the data window amplitude. The

hyperparameter σscale does not significantly impact performance.

2.5 Conclusion

In this chapter, we presented a novel TSAD framework, ContrastAD, by temporal transformation-

based CL. Specifically, we defined multiple point and contextual anomaly-induced temporal

transformations when constructing contrastive pairs. Our experimental results indicate that

ContrastAD performs better or on par with common baseline models. In the extensive analy-

sis, we discovered that ContrastAD brings more benefits to high-dimensional and noisy datasets

without common repeating patterns.

Currently, we include four negative transformations to simulate the most common point

and contextual anomalies in time series data. These contribute to the anomaly detector even

though the anomalies in the datasets are not directly the same as what we generated. However,

we believe few real anomaly data are necessary for the model to learn precise negative trans-

formations for datasets with some common repeating patterns or limited types of anomalies,

e.g., ECG. To this end, one promising future work is to develop the temporal transformation

procedure in a semi-supervised manner, with a few labeled anomaly patterns as guidance for

the negative temporal transformations.

So far, we restrict the problem setting to static time series data, where the training and

testing data are uniformly sampled. However, this does not hold in many real-world scenarios.

Data property evolves with the environment, and the same goes for anomalies. In such cases,

one stationary model is not able to detect anomalies from all temporal contexts. To this end,

we continue with data stream anomaly detection in Part III.
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Data Stream Anomaly Detection
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3
Correlation Drift Detection

Data streams are time series data collected in an online streaming manner. Therefore, the tem-

poral information between timestamps is also an important concern in data stream anomaly

detection. However, different from static time series, dynamic data streams contain distribu-

tional drifts along with the environment. Consequently, a single static model as in Chapter 2

may fail. As stated in Section 1.2.2, a major challenge is to detect the distributional drifts and

adapt the anomaly detection model according to the latest data characteristics. In Chapter 3, we

address the drift detection problem, and in Chapter 4, we continue with the adaptive anomaly

detection in data streams.

In the literature, drift detection approaches have addressed this problem in various perspec-

tives [GMCR04, BGdCÁF+06, BG07], however, detecting correlation structure changes of

the input dimensions under unsupervised setting is still an open challenge. The different data

features before and after a concept drift hinder the performance of most of the predictive mod-

els, mostly requiring re-training. Detecting such concept drifts represents a severe problem,

as volatile data labeling is often expensive or delayed in streaming data. Moreover, classical

concept drift detectors usually struggle with detecting drifts in correlations of multivariate data

streams.
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In this chapter, we focus on unsupervised drift detection, tracking correlation changes in

the input variables without class labels. By introducing the sliding SHAPley values series (slid-

SHAPs), we propose a fully unsupervised drift detector for multivariate data streams with cat-

egorical value domains; our approach detects correlation-based drifts through a representation

of the correlation structure of the input data. The slidSHAP series also underlines distribu-

tional drifts only in a few univariate input variables, thus being more sensitive to drifts than

prior drift detection methods. In contrast to the well-known application of Shapley values for

interpretable machine learning, we use this foundational game-theoretic concept to extrapolate

information on the correlation structure of data streams and achieve higher sensitivity towards

multiple drifts in the empirical evaluation of synthetic and real-world data.

3.1 Introduction

Concept drifts are a severe problem in streaming data analysis [LLD+18]. While supervised

drift detection concerns the drifts w.r.t. the conditional distribution function of a given class la-

bel y to the input variables P (y | X), unsupervised drift detection focuses on the distributional

drifts w.r.t. the probability distribution function of the input variables P (X). In this work, we

restrict ourselves to unsupervised drift detection; hence, we are unaffected by expensive, in-

correct, or delayed information on class labels. In this work, we primarily focus on detecting

abrupt drifts.

In many real-world scenarios, drifts are not easy to spot. We look for distributional shifts

inducing drifts in the correlation structure of multivariate data streams; generally, those distri-

butional drifts are hard to visualize within the chaotic behavior of the data streams. Through the

representation of the time-evolving correlation structures with the slidSHAP series, the drifts

are made easy to detect. Moreover, drift detectors fail to analyze complex correlation structures

among the data stream input dimensions. State-of-the-art methods limit to covariance evalu-

ation studies [QAWZ15, AK18], and, though a variety of measures [Spe61] try to assess the

structure of correlations in sets of N random variables, they often miss the complex multivariate

interactions [KMB12, SBS+17]. In most cases, it is insufficient to consider pairwise correla-

tions since more complex multivariate interactions potentially hide within higher-dimensional

subsets of variables. In the recent feature importance research, aggregated scores based on

Shapley values have been proposed to extract information using information theoretical-based

correlation measures [BHMM22], but they are not yet applied in drift detection.
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Table 3.1: Categorization and comparison of drift detection methods

Unsupervised
(classifier-free)

Pairwise
correlations

Multivariate
correlations

Visualization

Prediction error-based
[GMCR04]

[BGdCÁF+06]
[FBdCÁRJ+14]

✗ ✗ ✗ ✓

Covariance-based
[AK18]

[QAWZ15]
(✓) ✓ ✗ ✗

Shapley value-based
[BSC+21]

[ZK20]
[ZvdZP+19]

(✓) ✗ ✗ ✓

slidSHAPs (Ours) ✓ ✓ ✓ ✓

To develop reliable unsupervised drift detection techniques for streaming data, we face two

main challenges: (1) the lack of labels in streaming data and (2) the detection of drifts in

correlation structure among input variables. As already mentioned, the latter point can not

be reduced to the study of pairwise correlation scores [KMB12, SBS+17, BHMM22]; More-

over, though various methods tackling different kinds of distributional drifts exist [HKR+21,

ZvdZP+19, CMO16, AK18, QAWZ15], none of them detects correlation changes among

sets of input variables. Conversely, many drift detection approaches use the real-time clas-

sification error rate with the predicted label as a shift’s indicator [GMCR04, BGdCÁF+06,

FBdCÁRJ+14], thus requiring labeled data.

We introduce slidSHAPs, an unsupervised method detecting drifts in unlabeled streaming

data by tracking the correlation structure of the input dimensions. Our labels-free drift de-

tector focuses on the prior probability distribution function of the input variables: first, we

transform the original N -dimensional data stream into a new N -dimensional series represent-

ing the correlation structure among the input variables. The drifts in the correlations among

the input variables are readily detectable in our slidSHAP series. In contrast to covariance-

based approaches, Shapley values aggregate the correlation scores in the subsets of the input

variables (see Table 3.1). The slidSHAP series clearly outlines that drifts in a single or a few

input variables potentially affect the correlation structure of the whole data stream dimensions.

Moreover, one can observe the drifts in the correlation structure on the slidSHAP series; thus,

potential drifts in the original streaming data are made directly visible [LBM22]. Finally, we
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use the slidSHAP series to detect drifts in streaming data, mapping the concept drifts detected

in the series of sliding Shapley values back to the original data. We compare our approach

to state-of-the-art unsupervised concept drift detection methods in the experiments, using syn-

thetic and real-world data.

3.2 Related works

Concept drift detectors are often based on the prediction error rate of online classifiers as-

suming that distributional drifts appear in P (y|X) [HKR+21, BG07, GMCR04]. However,

in increasing scenarios, streaming data are collected without labels. The necessity of dealing

with distributional drifts on input variables forces the development of unsupervised concept

drift detection methods [GCGDS20]. Those methods detect concept drifts by comparing the

current data distribution with a reference historical data buffer; they rely on two main steps,

i.e., (1) the representation of the latest data stream and (2) the detection of drifts over the

representation. Although detection methods can be directly applied to the raw data stream,

the complex behavior of streaming data and the massive number of instances can hinder de-

tection performance. Among the several representation approaches, we recall some of the

most common ones, e.g., using the mean values of adaptive windows to represent the uni-

variate dimensions [BG07], using linear and non-linear features representing the whole data

stream [CMO16] and using multidimensional Fourier transformation to get information from

the frequency domain [dCDVdM17]. Recently, combinations of multiple statistical features

have been proposed as meta-information vectors [HKR+21]. Other approaches measure the

distributional discrepancy between data in different time periods, e.g., the Hellinger distance

between two distributions [DP11] and data partition via Kdq-Trees and generalizations of the

Kulldorff’s spatial scan statistic [DKVY06]. Unfortunately, they do not monitor the correla-

tion drifts among input variables; therefore, feature correlation remains mainly studied using

simple covariance. Tracking covariance drifts in a transformed artificial low-dimensional space

obtained by applying PCA on the data stream [QAWZ15] has been used to detect concept drifts;

however, the approach limits to track covariance drifts in the extracted space. To overcome this

limitation, Ahmadi et al. [AK18] use both mean and covariance to represent the concepts in

multivariate data streams.

Shapley values [Sha53] are often associated with the interpretability of black-box models;

on the contrary, their usage is not limited to trustworthy machine learning. Their popularity
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derives from the flexible definition of a value function based on which they are computed. Their

applications spread in various contexts, from supervised feature selection [CDR07, PHHN16]

to the interpretation of black-box models[LL17], from bioinformatics [SMP+20, MFPB10]

to the extrapolation of the correlation structure of tabular data [BHMM22]. Their success

and popularity in machine learning and bioinformatics are still broadening. As mentioned,

Shapley values are not always meant to interpret black-box models but, more generally, to

extract information about the role of the players in a game [RWB+22].

As time dependency represents an additional challenge, applying Shapley values in stream-

ing data is still not fairly explored. However, recently, Shapley values started finding applica-

tions in streaming data. Guidotti et al. [GMS+20] apply them to explain black-box models on

streaming data. TimeSHAP [BSC+21] represents an extension of the Lundberg et al. [LL17]

SHAP to time series data; the authors develop a method to compute Shapley values to get

event- and feature-level explanations. Antwarg et al. [AMSR21] introduce two different meth-

ods based on Shapley values. The first approach detects anomalies through the reconstruction

error of an autoencoder, while the second method is based on comparing Shapley values of the

original and the reconstructed features. Takeishi [Tak19] studies the difference among Shapley

values of single instances before and after a drift in one feature that makes the instance itself

anomalous. Nguyen et al. [NLD+19] explain the anomalies by analyzing the gradients to iden-

tify the main features affecting the anomalies. Furthermore, some data-specific applications

popped out in the literature, e.g., forecasting the income of consulting companies [SMK+21].

Shapley values in data streams are still often trivial transpositions of methods available for pre-

diction tasks circumscribed to either specific contexts or datasets. It is also evident that most at-

tempts are bound to supervised applications, i.e., relying on ground truth labels associated with

timestamps. We further recall some works applying Shapley values for drift detection. Among

them, Zheng et al. [ZvdZP+19] use Shapley values for drift detection for labeled series, Zhao

et al. [ZK20] employ Wasserstein and Energy distances to detect feature drifts without labels;

Shapley value and LIME [RSG16] are here used as post-hoc interpretation for the detected

drifts. As far as we are concerned, we are pioneering in introducing Shapley values to visualize

distributional drifts [LBM22] and, through this work, to detect concept drifts in unlabeled data.
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Figure 3.1: slidSHAPs overview: unsupervised concept drift detection in streaming data using
slidSHAPs.

3.3 Methodology

We introduce slidSHAPs to visualize and detect correlation drifts in unlabeled multivariate

discrete data streams. As we hypothesized, even distributional drifts happening only in a few

univariate dimensions can drastically change the correlation structure among all univariate di-

mensions. We map the data stream into the slidSHAP series, where we implicitly encode cor-

relations among the data stream’s input variables as a function of time; the resulting sequence

has a different dependency on time from the original timestamps. We use the slidSHAP series

to detect concept drifts through statistical tests, and we finally relocate the detected drifts to the

original time notion. Figure 3.1 provides an overview of our method; we go through each of

the steps in the following sections.

3.3.1 Data stream and sliding windows

We indicate with X = (X1, . . . , XN ) a multivariate N -dimensional discrete data stream where

Xi is the i-th univariate dimension; we currently restrict the approach to data streams whose

dimensions assume only a finite number of values, i.e., either categorical or discrete and finite.
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We indicate with t0 the first timestamp on which the data stream is defined. For each

timestamp tk > t0, X(tk) is a N -dimensional vector of discrete values, i.e., Xi(tk) ∈ Di and

|Di| is finite. Using this notation, we define overlapping sliding windows as a series of time

windows {ws}s∈N dependent on two parameters, i.e., the window length d ∈ N and the overlap

a ∈ N among adjacent windows:

ws = {ts(d−a), . . . , ts(d−a)+d−1}. (3.1)

Each window ws contains d timestamps, and a is the number of timestamps lying in the overlap

among adjacent windows, i.e., |ws ∩ ws+1| = a for all s ∈ N. At the current timestamp tT we

have created M(T ) =
⌊
T−d+1
d−a

⌋
+ 1 time windows.

Sliding windows are commonly used in concept drift detectors [BG07, BGdCÁF+06,

DKVY06]. However, most existing approaches focus on specific statistical features of the

sliding windows, which leads to an intrinsic inability to detect drifts in feature correlations. We

aim to create a feature extraction function over the sliding windows that outputs representative

features with more easily detectable concept drifts. In the following sections, we introduce

the slidSHAP series, a novel feature extractor for unlabeled streaming data based on sliding

windows.

3.3.2 slidSHAP series creation

Given a multivariate data stream X with N -dimensions, we can interpret the value Xi(tk) as the

realization of a discrete random variable Xi; hence, given the set of timestamps {t0, . . . , tT },
the set {Xi(t0), . . . , Xi(tT )} contains T + 1 independent realizations of the random variable

Xi. Similarly, {X(t0), . . . , X(tT )} is the set of realizations of a N -dimensional discrete ran-

dom variable. This interpretation allows us to study the correlations among the input variables

of the data stream and does not consider the temporal dependency among timestamps.

Given a game, Shapley values represent a way of fairly distributing resources among play-

ers [Sha53] and, as already stated, can be used in contexts unrelated to interpretable machine

learning. Given a set of players F = {X1, . . . , XN} and a value function ν, the Shapley

values’ definition reads

ϕ(Xi) =
∑

A⊆F\{Xi}

kA · (ν(A ∪ {Xi})− ν(A)) (3.2)

where kA depends on the number of players N and the size of the set A [Sha53]. Balestra

et al. [BHMM22] propose Shapley values within an unsupervised feature selection method.
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Given a set of N discrete random variables F = {X1, . . . , XN}, they propose to interpret F as

a set of players and encode the correlations within subsets of features of an unlabelled tabular

data set with categorical entries using the Shapley values. The authors claim in favor of using

a correlation metric as the value function. They propose for their categorical context to use

the total correlation as the value function, i.e., ν(A) = H(A) −
∑

X∈AH(X) where H(·)
is the discrete Shannon entropy. The proposed encoding enables information to be extracted

from the data set based on the correlation structure. Features obtaining high Shapley values are

highly correlated with subsets of other variables, while features with lower Shapley values are

uncorrelated with the resting variables. The authors use the Shapley values to rank the features

with respect to their ability to represent the correlation structure of the entire data set.

We interpret the realizations of a data stream on a time window {tk, . . . , tk+d−1} as a

discrete tabular data set with N columns and d rows. This allows us to compute a Shapley

value for each column, i.e., for each univariate dimension of the data stream using [BHMM22].

Our goal is to detect concept drifts appearing in the input dimensions of the data stream. We

trace the concept drifts using the Shapley values of the data stream’s input variables when

restricted to the sliding windows {ws}s∈N from Equation (3.1). For each window ws, we deal

with d observations of the N -dimensional random variable X , thus working with a discrete

(categorical) tabular data set with N columns and d rows. For each dimension Xi, we get

the Shapley value Si(s) = ϕ(Xi
ws
), i.e., the Shapley values of the input variable Xi when we

restrict the observations to the time window ws. ϕ(Xi
ws
) considers the correlations of Xi with

the other dimensions Xj
ws of the data stream in ws.

Definition 1 (slidSHAP value). For each ws, we obtain a N -dimensional real-valued vector

S(s) = [S1(s), . . . , SN (s)] (3.3)

and refer to it as the slidSHAP value.

Definition 2 (slidSHAP series). We define the sequence {S(s)}s∈N as the slidSHAP series.

In Section 3.3.1, we have introduced the time-dependent sliding windows {ws}s∈N; thus,

the slidSHAP series inherits the time-dependency from the windows and not the same time no-

tion as the original data stream. Figure 3.1 represents a visual schema for the slidSHAP series

construction process; Algorithm 1 shows the pseudo-code. We extrapolate information about

the input dimensions’ correlation structure from the original discrete data stream X with dis-

crete finite values and transfer the drift detection problem to a new N -dimensional real-valued
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Algorithm 1 Pseudo-code for the slidSHAP series computation.

Input: N -dimensional data stream X , sliding window length d, overlap among adjacent slid-
ing windows a, current timestamp T

1: s← 0

2: S ← [ ]

3: while s ≤
⌊
T−d+1
d−a

⌋
+ 1 do ▷ sliding on windows

4: for i ∈ {1, . . . , N} do ▷ iterate over dimensions of X
5: ws = {ts(d−a), . . . , ts(d−a)+d−1}
6: Si(s) = ϕ(Xi

ws
)

7: S ← Si(s)

8: end for
9: s← s+ 1

10: end while
11: return S ▷ slidSHAP series

series. We interpret the slidSHAP series as a projection of the time-dependent correlation struc-

ture of the original data stream. Note that the sliding windows are partly overlapping: given

two indices i, j, the intersection wi ∩ wj is non-empty if they are sufficiently close; hence, the

information covered by S(i) and S(j) relates to X on partly overlapping time windows. The

setup of the parameters a and d is essential to modulate the granularity of the slidSHAP series.

3.3.3 Concept drift detection

The slidSHAP values are based on the distributions and the correlations among the univari-

ate dimensions of the data stream and are label-independent. Oftentimes, when dealing with

real-world data streams, only a few input variables are subject to distributional drifts. How-

ever, those distributional drifts could affect the correlation structure of all the input variables.

Moreover, the concept drifts are often hardly visually detectable, especially when they do not

directly affect specific statistical features in which the variables vary.

We expect that distributional drifts in the input variables modify the correlation structure of

X on the sliding windows, and the slidSHAP values encode the correlations among the univari-

ate dimensions of X through time. Eventually, the slidSHAP series reflects these distributional

drifts allowing us to use it to detect drifts in X .

We target drift detection using statistical tests under the i.i.d. assumption of the slidSHAP

values. Similar to the original data stream X , the slidSHAP series is unlabeled; therefore, we
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have access only to its dimension-wise distributions to detect drifts. We employ two statistical

tests to examine for distributional drifts on each dimension Si

▶ the Student’s t-test

▶ and the Kolmogorov-Smirnov test (or KS-test) [Con99, dRFMB16].

We analyze their performances in the empirical evaluation. Both tests check whether there

is statistical significance for two slidSHAPs samples being drawn from the same distribu-

tion. We consider a reference sequence of slidSHAP values Sref of length m ending at s ∈
{0, . . . ,M(T )} and a latest new sequence Snew with length n precedent to it, i.e.,

Snew = {S(s) | s ∈ {s− n+ 1, . . . , s}} (3.4)

Sref = {S(s) | s ∈ {s−m− n, . . . , s− n+ 1}}; (3.5)

We call the two data sequences of slidSHAP values buffers. Fref and Fnew are respectively

the empirical cumulative distribution functions of Sref and Snew and we test whether there is

statistical significance of Snew and Sref to be drawn from the same probability distribution. The

user can define the sizes of the new and reference buffers.

We deal with multiple testing corrections as we perform a number N of statistical tests (one

for each univariate dimension of the slidSHAP series). Among the various multiple hypothesis

corrections available, we stick to the Bonferroni correction [BA95, BH95, RGL19], i.e., the

null hypothesis is rejected if the minimum p-value among all N tests is smaller than α
N . For

each s ≥ min{m,n}, we conduct a set of such dimension-wise statistical tests and compare

the performances using the two statistical tests in Section 3.4.2.4. For drift detection, statistical

tests are commonly applied on the original data stream [DKVY06, dRFMB16, YWP18]; the

inventive step we have introduced is detecting drifts in the slidSHAP series and then relocating

them to the original timestamps of the streaming data. The following section presents how to

transfer the detected concept drifts to the original timestamps.

3.3.4 concept drifts aggregation and re-location

Due to the construction of the sliding windows, each abrupt concept drift in X is covered

by multiple sliding windows. Hence, we need to aggregate the detected drift events on the

slidSHAP series to rebuild the single drift event on X . The concept drift detection over the

slidSHAP series results in alarms on the corresponding sliding windows and not on single
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timestamps. Our ultimate goal is to relocate the drifting positions to the timestamps where they

initially take place. We introduce the concept drift aggregation and re-location in this section.

The sliding windows have length d and overlap a. Given a concept drift at tdrift in X , the

number of windows containing information about tdrift is ⌊ d
d−a⌋ > 1 and the corresponding

concept drifts in the slidSHAP series are going to be tested in ⌊ d
d−a⌋ +m + n statistical tests

by moving Sref and Snew one step a time forward on each univariate dimension. Being aware

that it is less likely to detect statistical significance for the presence of distributional drift when

testing the first and last slidSHAP values involved in the drift event, we first detect alarms on

each univariate dimension of the slidSHAP series then we aggregate the alarms using testing

correction. At this point, for each window ws, we have detected an aggregated p-value; due

to the dilating effect of drift events in slidSHAP series, we check for sequences of p-values

being below the significance level α, i.e., we trigger the concept drift alarm if and only if we

find a continuous sequence of (m+ n) · γ corrected p-values below α. The parameter γ ∈ R+

scales the number of sequential corrected p-values to be below α before producing an alarm

on X and typically ranges in
[
1
2 , 1

]
. When (m+ n) · γ rejections of the null hypothesis are

detected in sequence, we get an alarm at the current time window wT . Finally, we relocate the

last timestamp t̃drift of wT as the corresponding concept drift position in the original streaming

data X .

We underline that we only consider abrupt drifts in the data stream, i.e., the distributional

drifts happen in specific timestamps that need to be located. The dilating effect makes abrupt

drift in X incremental drifts in the slidSHAP series. The same holds for gradual and incre-

mental drifts in the original data stream, such that our model is easily extendable to non-abrupt

concept drifts.

3.3.5 Complexity analysis

The slidSHAP series computation inherits the exponential runtime from the Shapley values

computation. The computation of the slidSHAP series has a complexity of O
(
d · 2N · T−d

d−a

)
where T is the number of instances to process, N is the number of input variables, d and

a are the length and overlap of the windows. The complexity O
(
d · 2N

)
derives from the

Shapley values’ computation [BHMM22]. However, several approximation techniques can be

applied [CGT09, MCFH22, vCHHL18, BC21, CKL22] thus accelerating the computation of
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the entire slidSHAP series to polynomial time O
(
d ·N · T−d

d−a

)
. On the other hand, dimen-

sionality reduction approaches [HKR+21, QAWZ15] can also contribute to reducing d to a

manageable scale.

3.4 Experiments

We evaluate slidSHAPs on both concept drift detection and visualization of correlation changes.

We compare our model against a set of selected representative unsupervised concept drift de-

tection methods. We consider several synthetic and real-world time series datasets with discrete

values. We use ground truth labeling for the allocation concept drifts in the data streams. We

acquire a binary set of concept drift alarms after fixing the significance level α, and we compare

them with the real timestamps of concept drifts. In summary, we evaluate (1) the concept drift

detection performance and alarm delay in Section 3.4.2.1, and (2) the visualization of the drift

events in the slidSHAP series in Section 3.4.2.2. The source code of slidSHAPs is available

online 1.

3.4.1 Experiment setup

3.4.1.1 Dataset description

We empirically evaluate slidSHAPs with both synthetical and real-world datasets. Table 3.2

summarizes their main characteristics. In the synthetic datasets, we include correlation drifts

in the input variables to evaluate the sensitivity of slidSHAPs in detecting different kinds of cor-

relation drifts. We artificially build distributions for each univariate random variable, including

correlations among them. Then, we concatenated different subsets at specific timestamps tdrift;

the input variables follow a correlation structure till tdrift and another from tdrift + 1 for each

concept drift. We constructed two types of synthetic datasets: Type I includes datasets with

only 5 features, where the correlations are of a specific type; Type II includes one dataset with

random types of correlation drifts at the drift positions and contains 10 features. Each synthetic

dataset is constructed as follows: we generate 6 different distributions, each containing 5000

instances, and concatenate them to simulate 5 concept drifts.

Type I synthetic datasets. For each distribution (i.e., concept), we select 2 or 3 variables to

be involved in the drift event, while at least one variable always follows the same distribution.

1https://github.com/KDD-OpenSource/slidshaps
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Table 3.2: Dataset description. Type I datasets are {ADD, MUL, COE, AND, OR, XOR}. Type II
dataset refers to MIX.

Synthetic Real-world

Type I Type II LED BC PH KDD MSL

Instances 30000 30000 90000 286 33659 16000 9809

Variables 5 10 9 10 7 40 54

Categories 1 ∼ 10 1 ∼ 10 2 2 ∼ 11 4 ∼ 13 1 ∼ 7 1 ∼ 2

Drifts 5 5 9 3 5 7 4

Each random sampled variable varies in the set of integers {1, . . . , 10}. In ADD, initially

X3 = X1 + X2, while X1, X2, X4 are independently randomly sampled; after each concept

drift, the relation among X1, X2, X3 changes, for example, to X2 = X1 +X3. MUL contains

only multiplicative relation among X1, X2 and X3; and drifts in a multiplication relations,

for example, X3 = X1 · X2. In COE, we included linear combinations, for example, X3 =

c1X1 + c2X2 where c1 and c2 assume various values. Furthermore, we create some datasets,

including logical feature correlations. In AND, OR, and XOR, one binary variable depends on

the value of the other two variables; after fixing a value c, we include correlations of the type

▶ X3 = 1[(X1 > c)&(X2 > c)] in AND,

▶ X3 = 1[(X1 > c) | (X2 > c)] in OR,

▶ X3 = 1[(X1 > c) ̸= (X2 > c)] in XOR

where 1 is the boolean function that returns 1 in the case the condition is satisfied and returns

0 otherwise.

Type II synthetic dataset. The dataset MIX contains 10 input variables where X1, X2, X3

are randomly sampled from {1, . . . , 10}. For each distribution, all the other variables are con-

structed using one randomly chosen correlation function of X1, X2, X3 among addition, multi-

plication, linear combination, and, or and xor. Thus MIX contains a mixture of the correlation

drifts. In addition to these synthetic datasets, we also consider one commonly used synthetic

dataset in literature, containing drifts in the data distribution instead of explicitly in feature

correlation; the LED dataset [FBdCÁRJ+14, PVP18] describes the digit displayed on a seven-

segment LED display. A binary 7-dimensional binary vector represents a digit; it contains in
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total 9 concept drifts, one per every 10000 instances. Each subset contains the vectorial repre-

sentations of the ten single digits except one; the drift events are implemented by changing the

absent digit.

Real-world datasets. Finally, we included some real-world datasets, processing them as

data streams and including concept drifts by concatenating different subsets [Ho05]. We use

the following publicly available categorical datasets:

▶ Breast Cancer dataset BC [DG17]

▶ Poker Hand dataset PH [DG17]

▶ KDD Cup 99 dataset KDD [DG17]

▶ Mars Science Laboratory dataset MSL [HCL+18]

BC contains purely categorical features describing breast tumors of patients. We concate-

nate subsets of patients in different age groups to simulate concept drifts. PH contains one

million randomly drawn poker hands. Five features describe the 4 possible suits, and another

five features describe the 13 possible ranks. We create virtual drift as in [BPRH13] by sorting

the ranks and suits and take a subset with 33659 instances for our experiments. KDD contains

both numerical and categorical features describing instances of network intrusion records. We

use all features in our experiments and discretize the numerical features into five categories.

A subset with 16000 instances from HTTP and SMTP services is selected and the concept

drifts are created by concatenating instances from the two services. Finally, MSL is introduced

in Section 2.4.1.1. We discard the numerical telemetry values and only consider the 54 remain-

ing binary features. The data is collected from different channels, and we consider the channel

changes as concept drifts.

3.4.1.2 Competitors

We compare the performances with some well-known unsupervised concept drift detectors.

Here, we give a brief overview of these methods.

Various univariate unsupervised drift detectors exist based on statistical features or dis-

tribution discrepancies. Among them, PCA-CD [QAWZ15] detects drifts by computing the

divergence metrics on the data’s principal components. First, the principal components are

computed on a reference window, and samples from a new window are projected onto them.
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The result of the divergence metric between the scores for the reference and test window is

used as a discriminator factor: if a fixed threshold is reached, a concept drift is alarmed. Based

on the Kullback-Leibler divergence, the Kdq-Tree concept drift detection method [DKVY06]

partitions data by constructing a Kdq-Tree. The output score of the comparison between the ref-

erence window and the test window is also compared to a threshold. Finally, ADWIN [BG07]

uses adaptive sliding windows to detect drifts by keeping updated statistics. The discriminator

factor here is the difference among the averages of the collected statistics over the reference and

new buffers; the obtained score is compared against a threshold. However, all these univariate

drift detector methods often fail to detect correlation drifts without significant deviations in the

specific statistical features they track (e.g., mean and variance, among others). We only report

the results of ADWIN to represent their similar performance. Additionally, HDDDM [DP11]

is a batch-based approach that compares the Hellinger distance between the reference and the

current batch of data. It considers multi-dimensions as a whole and can detect both abrupt and

gradual drifts.

3.4.1.3 Evaluation metric

We evaluate the performance of slidSHAPs and the competitors for unsupervised concept drift

detection. The actual timestamps of concept drift tdrift are known in each dataset for evalua-

tion, while t∗drift represents the detected drift position. Following Pesaranghader et al. [PV16,

PVP18], we introduce an acceptable delay length ∆ to determine the true positive TP, false

positive FP, and false negative FN of detected concept drifts. Whether t∗drift is a TP, FN, or FP

is determined by the relative position of the labeled concept drift tdrift and the detected position

t∗drift. A concept drift alarm is a TP if it belongs to the interval set {tdrift, . . . , tdrift + ∆}, i.e.,

the delay characterizing its detection is smaller or equal to the accepted delay ∆.

For the evaluation, we use drift detection performance metrics, such as precision, recall,

and F1-score, and the average delay, defined as

avgDELAY =
∑

concept drift∈ TP

t∗drift − tdrift

number of TP
. (3.6)

3.4.1.4 Parameter configuration

For the statistical tests, we set the reference and the new buffer sizes m = n = 10 and γ = 1.0,

such that the statistical tests are based on sufficient data instances while keeping the prediction
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delay low. We conduct the test at a significance level α = 0.01. The acceptable delay length

∆ is set to 5 · d where d is the sliding window length, namely all concept drift alarms within

5 window size after the real concept drift are considered as true positives. In all experiments,

we implemented the t-test and the KS-test; by default, we opted to report the results obtained

using the t-test. Section 3.4.2.4 provides a comparison between the two tests.

In slidSHAPs, the two parameters, window length d and overlap a, influence the construc-

tion of the sliding windows and are set through an empirical evaluation of the data stream.

We conducted experiments using {10%, 20%, ..., 90%} as nine different overlap rates a
d with

fixed windows length d. The empirical evidence suggests keeping the overlap rate in the range

of 50% − 80%. Further details can be found in Section 3.4.2.3. In the experiments, we con-

struct the slidSHAP series using a fixed window length d = 100 and overlap a = 70; for the

small dataset BC, we set d = 10 and overlap a = 8. For the real-world high-dimensional

datasets KDD and MSL, we compute the slidSHAP series using the upper-bound approxima-

tion in [BHMM22].

For HDDDM, we set the data batch size to be two time windows for each dataset. Looking

at the performances, we notice that HDDDM shows a generally large delay in detecting drifts;

therefore, for HDDDM, we implement a relaxation of the criterion, such that true positives

are detected using ∆ = 10 · d. ADWIN works by detecting drifts on univariate data streams.

Therefore, we train one model for each input data dimension and let them run in parallel for the

N dimensions of the streaming data. An alarm is triggered if one concept drift is detected on

at least one dimension. For the other competitors Kdq-Tree and PCA-CD, we use the default

parameter setting from the GitHub implementation 1. All the experiments have been run on

Intel Xeon CPU E5-2640 v4 @ 2.40GHz with 10 cores.

3.4.2 Performance

3.4.2.1 Overall performance

Table 3.3 shows the overall performance comparison. The slidSHAPs outperforms the competi-

tors with respect to the F1 score in all datasets except MSL; slidSHAPs also shows dominating

performance on average delay in most synthetic datasets. Moreover, slidSHAPs appears more

sensitive in detecting different types of correlational drifts than the other distribution-based de-

tectors. Since there is no drift in the mean value, ADWIN fails to find any concept drift in each

1https://github.com/mitre/menelaus
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Table 3.3: Performance summary: for each dataset, the largest F1 score is underlined; the min-
imum detection delay in each dataset is in bold. In the gray-shaded area, ADWIN can not detect
any concept drift.

slidSHAPs (Ours) HDDDM ADWIN

P R F1 avgDELAY P R F1 avgDELAY P R F1 avgDELAY

sy
nt

he
tic

ADD 0.800 0.800 0.800 384 ± 55 0.200 0.200 0.200 599 ± 0 - 0.000 - -

MUL 0.571 0.800 0.667 369 ± 70 - 0.000 - - - 0.000 - -

COE 0.800 0.800 0.800 399 ± 40 0.111 0.200 0.143 559 ± 0 - 0.000 - -

AND 0.667 0.400 0.500 359 ± 0 0.222 0.400 0.286 599 ± 0 - 0.000 - -

OR 1.000 0.400 0.571 299 ± 0 0.167 0.200 0.182 559 ± 0 - 0.000 - -

XOR 1.000 0.400 0.571 329 ± 0 0.250 0.200 0.222 399 ± 0 - 0.000 - -

MIX 0.714 1.000 0.833 399 ± 91 0.143 0.400 0.211 199 ± 0 - 0.000 - -

LED 0.333 0.667 0.444 424 ± 47 0.063 0.556 0.114 199 ± 0 0.111 0.111 0.111 167 ± 0

re
al

w
or

ld

BC 0.750 1.000 0.857 37 ± 2 1.000 0.667 0.800 34 ± 18 1.000 0.667 0.800 16 ± 16

PH 1.000 0.400 0.571 382 ± 10 0.133 0.400 0.200 427 ± 235 - 0.000 - -

KDD 0.800 0.571 0.667 455 ± 50 0.350 1.000 0.519 143 ± 90 0.064 1.000 0.121 36 ± 11

MSL 0.500 0.250 0.333 487 ± 0 0.333 0.250 0.286 117 ± 0 0.667 0.500 0.571 237± 96

synthetic dataset except LED, i.e., recall equals 0. On the other hand, ADWIN outperforms the

slidSHAPs on the MSL dataset, which inherently contains correlation and distributional drifts

w.r.t. other statistical features. HDDDM only shows comparable results on BC and performs

significantly worse on other datasets.

Regarding the average delay of the various methods, ADWIN predicts every incoming

instance, generally showing a low average delay. Instead, the slidSHAPs detect the drift on

every incoming slidSHAP value, which intrinsically has a delay given by the sliding windows

of length d; this mechanism causes our approach to detect concept drifts with a larger delay.

HDDDM waits for every batch of data, and consequently, it shows the largest average delay.

3.4.2.2 slidSHAP series analysis and visualization

After fixing the length and the overlap among the sliding windows, the slidSHAP series repre-

sents the correlations among univariate dimensions of the data stream. The univariate dimen-

sions of the slidSHAP series follow more distinguishable trends than the original data stream.

Although we do not claim that slidSHAPs is an interpretable feature extraction approach, the

slidSHAP series provides intuitive visual information of where the concept drifts could be lo-

cated before statistically checking for their existence.
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(a) The vertical dashed lines are the detected concept drifts, and the gray-shaded areas are the changing areas in
which the concept drifts in the MIX dataset are mapped.
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(b) Evolution of the slidSHAP values (d = 1000, a = 900) in the different concepts. The color bar indicates the
average values of the corresponding dimension in the data stream while the x axis represents the distribution of
the slidSHAP values.

Figure 3.2: slidSHAPs visualization for the MIX dataset.

In Figure 3.2, we explore the visual properties of slidSHAPs series using the MIX dataset

(d = 1000 and a = 900). In Figure 3.2a, solid lines are the univariate dimensions of the

slidSHAP series, and the gray-shaded areas are the windows in which the concept drifts are

mapped using the slidSHAP. The MIX dataset only contains abrupt distributional drifts. How-

ever, the slidSHAP series shows smooth changes between one distribution and the next: abrupt

drifts are expanded in the slidSHAP series to multiple subsequent time windows. Furthermore,

as the slidSHAP values are an aggregation of the correlation structure in subsets of the data

stream dimensions, drifts in the slidSHAP series dimensions are observed for all the dimen-

sions and also the ones not affected by significant modification drifts (e.g., X1, X2 and X3).

Following the style of [LEC+19], Figure 3.2b represents how the slidSHAP values change in

the different distributions. We plot the slidSHAP values against the average value assumed by
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Figure 3.3: MIX dataset analysis: distributions before and after the first concept drift.
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Figure 3.4: MIX dataset analysis: visualization of first concept drift. Solid lines are the univariate
dimensions of the slidSHAP series (d = 1000 and 99%, 90%, 50% overlap rate); the dashed gray
line depicts the concept drift position.

the original data stream univariate dimensions. Intuitively, a distributional drift in the input

space causes a change in the slidSHAPs value, which can be detected as a distributional drift.

The slidSHAP series also shows some unobservable input space concept drifts, where the am-

plitude of features stays in the same range while the feature correlation changes. In such cases,

significant drifts can still be observed in the slidSHAPs values. The drifts in the data stream

are highlighted in the slidSHAP series, and the evolution of its univariate dimensions can be

used to simplify the detection of such concept drifts in the streaming data.

In Figure 3.3, we plot the different distributions of the streaming data before and after the
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Figure 3.5: MIX dataset analysis: tSNE plot slidSHAP series. Each colored dot represents a
concept. The red crosses are the slidSHAPs of the drift events.

first concept drift for each univariate dimension of the MIX data stream. Figure 3.4 shows

the evolution of the slidSHAP values around the first concept drift in MIX. We keep using

d = 1000 and vary the overlap rate a
d among the sliding windows in {99%, 90%, 50%}. Al-

though the overall behavior of the sliSHAPs is similar using the various parameter settings, a

difference in the smoothness in the slidSHAP series in the changing area is immediately no-

ticed. The setting of the parameters d and a also influences the computation time of the whole

slidSHAP series (as described in Section 3.3.5). It is worth noting that, to compute the Shapley

values using the total correlation, the number of instances per time window should not be too

low (e.g., under 100 instances). On the other hand, as the KS-test checks for samples being

drawn from equal distributions, if the changes in the slidSHAPs are too smooth, i.e., highly

overlapping sliding windows, the test loses statistical power, provoking a higher number of

false positives. We can maximize the KS-test’s statistical power to get the highest accuracy

by selecting a balanced ratio among a and d (c.f. Section 3.4.2.3). Finally, Figure 3.5 visual-

izes the 10-dimensional slidSHAP values of the MIX data in a two-dimensional space using

tSNE. As depicted by the color-coded dots, data from different distributions are well-separable

using their slidSHAP representations. The slidSHAP values, whose corresponding sliding win-

dow overlaps the drift position (red crosses), lie mostly apart from any cluster. Some are not

well-distinguishable with clusters, as they correspond to the beginning and ending sliding win-

dows of the drift events and, therefore, do not show a significant difference to the previous or

upcoming distribution.
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Figure 3.6: Parameter sensitivity. The impact of the overlap rate by fixed window length d = 100

(d = 10 for BC).

3.4.2.3 Parameter sensitivity

The window length d and the overlap a are the two influential parameters for constructing the

sliding windows in slidSHAPs. In practice, the sliding window length can be determined em-

pirically by the dataset’s size or prior knowledge of the data (e.g., an hour, a day). Moreover,

the overlap a directly impacts the generated slidSHAP representation. We conducted exper-

iments using {10%, ..., 90%} as nine different overlap rates a
d and same window length d as

in Section 3.4.2.1. Figure 3.6 shows the counts of TP, FP, FN, and the average delay for the

various setups. Generally, the model detects more TP with increasing overlap rate, i.e., fine-

granular slidSHAP series. However, due to the enormous increase of slidSHAP values under a
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high overlap rate, the FP also explosively increases. Exploring using the different introduced

datasets, we conclude that it is often reasonable to keep the overlap in the range 50% − 80%;

furthermore, the window length can be set up differently to detect concept drifts located with

various inter-spaces among each other. Finally, the average delay fairly reflects that with a

larger overlap rate, we need to conduct the statistical tests more often; therefore, it ends up

with less detection delay (we do not observe average delay rates below 60% due to the absence

of true positives).

3.4.2.4 KS-test versus t-test

We include both the t-test and KS-test in our experiments. In this section, we compare the two

statistical tests.

Student’s t-test. We restrict to the case when dealing with two separate sets of independent

and identically distributed samples, thus looking for statistical significance of equality for one

variable from each of the two populations. The two-sample t-test takes as the null hypothesis

that the means of two populations are equal.

KS-test. The KS-test is a non-parametric and distribution-free statistical test to compare

continuous one-dimensional probability distributions. It can be used to compare two sample

sets in the case of the two-sample KS-test. Given two samples and their empirical cumulative

distribution functions F1 and F2, the KS-test assumes as null hypothesis that the two samples

are drawn from the same distribution; thus, given a significance level α, the null hypothesis is

rejected if

sup
x
|F1(x)− F2(x)| > c(α)

√
m+ n

m · n
(3.7)

where c(α) =
√
− ln(α2 ) ·

1
2 , m and n are the sizes of the two sample sets.

To compare the slidSHAPs performance under the two statistical tests, we replace the

default t-test with the KS-test (significance level α = 0.05) and refer to the new variant as

slidSHAPs-KS and report the average ranking of F1 scores among competitors on all datasets.

As shown in Figure 3.7, the slidSHAPs (with t-test) and slidSHAPs-KS (with KS-test) rank in

first places.

3.4.2.5 slidSHAPs approximations

The computation of Shapley values is an NP-hard problem that involves evaluating the value

function on each possible subset of features. The exact computation of Shapley values will soon
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Figure 3.7: Critical difference diagram. F1 score comparison using the Nemenyi test with a 95%
confidence interval (smaller numbers are better).

become unfeasible due to the exponentially growing number of evaluations involved. Several

approximations appeared in the literature. Balestra et al. [BHMM22] suggest that defining an

(upper) bound for the subsets’ size on which the value function will be evaluated achieves

better results than using randomly sampled subsets. We implement the same approximation

for the computation of our slidSHAP series. The upper bound defined by the user influences

the quality of the approximation for the Shapley values. For a N -dimensional data stream, an

upper bound equals to N represents the non-approximated computation of the Shapley values.

We generally use the non-approximated version of the slidSHAPs, except in the two high-

dimensional real-world datasets KDD and MSL, where we use the approximated version with

an upper bound equal to 2.

We conducted experiments using various upper bounds on the synthetic datasets to evaluate

the runtime of the slidSHAP series’ computation. Table 3.4 contains the runtimes in seconds to

compute the slidSHAP series for d = 100 and overlap a = 70 when using the different upper

bounds.

3.5 Conclusion

In this chapter, we proposed a new unsupervised concept drift detection approach for data

streams with discrete values. slidSHAPs allows concrete visualization of concept drifts in

the correlation structure of the data stream and provides a method to relocate identified drifts

in the original multivariate data stream. We used data streams with input values varying in

finite discrete spaces. However, slidSHAPs can be extended to real-valued streaming data

using encoding techniques, e.g., [KLF05]. On the other hand, implementing a value function

that supports real values (e.g., [BHMM22]) can also enable slidSHAPs for continuous data,
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Table 3.4: Runtime in seconds for the computation of slidSHAP series for the synthetic datasets;
columns represent different upper bounds chosen. The parameters are set to d = 100 and a = 70

for all data sets and the reported results are the averages of 10 running trials.

2 3 4 5 6 7 8 9

ADD 50.25 63.81 68.88

MUL 50.34 60.99 68.46

COE 50.44 63.01 68.54

AND 51.84 61.52 65.91

OR 49.83 60.81 67.62

XOR 51.00 60.56 65.87

MIX 145.40 433.18 852.43 1344.84 1725.70 1860.64 1987.60 2046.01

LED 318.86 610.96 945.78 1223.09 1283.66

the differential Shannon entropy for the total correlation computation can be a starting point.

Furthermore, as a by-product, the slidSHAP series can be used to increase the interpretability

of the detected concept drifts, using the shifts in the slidSHAPs in the neighbor of the drift

positions to predict how they influence the input variable correlation in future timestamps.

Generally, the drift detection technique is the first step in the dynamic data stream anomaly

detection task. Depending on the problem settings, either classical supervised drift detectors or

unsupervised correlation drift detectors like slidSHAPs can be used to determine distributional

drifts in data streams. The anomaly detector can then be efficiently adapted to the latest data

characteristics. In the next chapter, we will introduce a strategy for online state-transition-

aware modeling of anomaly detectors under concept drifts.
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Detecting anomalies in data streams suffers from multiple challenges. On the one hand, similar

to static time series data in Chapter 2, the abnormal patterns are usually hidden in the temporal

context, which cannot be detected by evaluating single points. On the other hand, the normal

state evolves over time due to concept drifts so that a pre-trained model easily expires. In

addition to drift detection (Chapter 3), efficient model adaptation to the latest concept is also

desired.

Autoencoders have recently been applied for unsupervised anomaly detection. However,

they are trained on a single normal state and usually become invalid after distributional drifts in

the data stream. In this chapter, we use an Autoencoder-based adaptive approach for anomaly

detection under concept drifts. In particular, we propose a state-transition-aware model STAD

to map different data distributions in each period of the data stream into states, thereby address-

ing the model adaptation problem in an efficient way. Our experiments evaluate the proposed

method on synthetic and real-world datasets. While delivering comparable anomaly detection

performance as the state-of-the-art approaches, STAD works more efficiently and provides ex-

tra interpretability.
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4.1 Introduction

Anomaly detection in streaming data is gaining traction in the current big data research. De-

spite the high demand in a variety of real-world applications [Sip20], rare existing models

show convincing performance in real-time deployment. The detection of abnormal patterns in

streaming data is challenging. Labels are unavailable or expensive to acquire in real-time, such

that supervised approaches usually fail. Furthermore, the conventional batch models easily

expire, while a single stationary model does not fit the ever-changing data stream.

Recently, Autoencoders have been employed for anomaly detection in an unsupervised

manner [MRA+16, ZSM+18]. Autoencoders are trained to reconstruct the normal data, such

that for any unknown data instance, a high reconstruction error indicates an anomaly. Specifi-

cally, for time series data, the temporal dependencies between data points can be captured by

constructing Autoencoders using Recurrent Neural Networks (RNNs) and their variants [MVW+15,

MRA+16]. Although such methods show impressive performance on time series data, they

usually ignore the fact that such data is commonly collected in a streaming way and does not

allow full access during the training phase. Therefore, an adaptive Autoencoder is desired,

which can be initialized with a few normal data and continuously capture the latest knowledge

from the real-time data stream. Another major challenge of anomaly detection in streaming

data is distinguishing between abnormal patterns and concept drifts. Once the data stream

drifts to a novel distribution, a stationary model trained only on outdated data may detect most

of the upcoming data undesirably as anomalies.

Given the severe problems, we aim to consider the concept drift detection and anomaly

detection tasks holistically, adapt the model to the latest data distribution, and detect anomalies

only concerning the temporal context where they are located. Previous concept drift detection

research focuses on detecting changes of the joint probability P (X, y) under a supervised set-

ting, namely, the decision boundary changes along with the distributional changes in the input

data [LLD+18]. However, for anomaly detection, the class distribution between normal and

abnormal is extremely unbalanced, and labels are usually missing or delayed, so it is impracti-

cal to use traditional supervised approaches [GMCR04, BG07], e.g., detecting drifts based on

the changes of real-time prediction error rate. Instead, the adaptation based on changes of the

prior P (X) will ensure that the Autoencoder learns the normal data pattern from the latest data

distribution.
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Statistical tests are commonly used for unsupervised drift detection [LLD+18]. For in-

stance, the two-sample tests examine whether samples from two collections are generated from

the same data distribution. However, many existing methods conduct tests mostly in the origi-

nal input space, which are limited to linearly detectable drifts. Ceci et al. [CCJ+20] introduce

both PCA and Autoencoder to embed features into a latent space for the change detection in

power grid data. However, they use a feed-forward Autoencoder, which does not directly cap-

ture the temporal information in the data. A concept drift can also caused by local contextual

relationship changes.

In this chapter, we propose STAD (State-Transition-aware Anomaly Detection). In STAD,

data distribution in a time period is defined as a state. We use state transitions to model the

concept drifts between periods. As Autoencoders are well-studied for non-linear time series

anomaly detection (TSAD), we are motivated to extend the state transition paradigm to Au-

toencoders. We follow the standard usage of Autoencoders for anomaly detection and novelly

couple the detection of concept drifts and anomalies with the informative latent representation

of Autoencoders. An existing Autoencoder can be reused when a data concept reappears in the

stream. A state transition is triggered by the detection of a concept drift, and this will further

guide the reuse or adaptation of Autoencoders for the next period. Different from the Hid-

den Markov Model (HMM), which systematically models the state transition in a probabilistic

manner, in our approach, we focus on state maintenance, i.e., state similarity measurement, and

drift detection. Further extension w.r.t. HMM is discussed in Section 8.2

4.2 Related works

4.2.1 Data stream anomaly detection

Stationary TSAD approaches in Section 2.2.1 can be applied to data streams under the assump-

tion that the training and testing data are uniform. However, this assumption does not hold true

in common real-world applications. Hence, various online models are developed for anomaly

detection. A major category of online methods is the prediction models, which employ histori-

cal data to predict the near future. Abnormal data may not fit the normal prediction and, there-

fore, causes a large prediction error. The widely used ARIMA model in time series analysis is

also used in anomaly detection [BGBMY01]. However, using it in an online fashion requires

specific adaptation strategies. The Hierarchical Temporal Memory (HTM) model [ALPA17]

is designed for real-time application, while it can automatically adapt to changing statistics.
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One issue with models in this category is that they are usually designed for univariate data.

Therefore, deep neural networks have also recently been used to model higher dimensional and

more complex data. Malhotra et al. [MVS+15] use LSTMs as a basic prediction model, which

can capture the high-dimensional contextual information between different timestamps. Hund-

man et al. [HCL+18] also employ an LSTMs-based prediction model for anomaly detection.

However, their semi-supervised approach requires partial labels from the history, which is not

always possible in the streaming processing scenario.

Reconstruction-based approaches train models to reconstruct the normal data so that un-

known abnormal data in the test phase will cause larger reconstruction errors due to the lack of

knowledge. Autoencoders are used as an unsupervised approach for anomaly detection. Zong

et al. [ZSM+18] adopt a Gaussian Mixture Model to detect anomalies from the reconstruction

error. However, they use the feed-forward network, which cannot deal with inter-dependent

data points as in the data stream. Malhotra et al. [MRA+16] build the Autoencoder with LSTM

units to capture temporal information. Similarly, Meng et al. [MZLZ19] construct the Autoen-

coder with Transformers. These models assume that the sequential data are generated from the

same distribution. Therefore, they are vulnerable to drifts. In the worst case, every data point

that arrives after the drifts will be predicted as an anomaly.

4.2.2 Drift detection.

Recent drift detection approaches are well-summarized in [LLD+18]. Common processing

paradigms aggregate the historical data, extract data features, and conduct statistical tests.

Many works contribute to the streaming data classification problem [BG07, PVP18], where

the real-time classification error is used as an indicator of drift detection. Unfortunately,

the labels are not always immediately available in real-time. On the contrary, unsupervised

drift detection methods detect changes in P (X), namely the distributional changes in the

streaming data. Statistical tests are usually applied to detect drifts in univariate streaming

data [dRFMB16, PVP18]. For multivariate streaming data, each dimension can be tested indi-

vidually and aggregated afterward [RGL19].

Finally, the model’s trustworthiness and reliability are important for real-time anomaly

detection, especially in safety-crucial applications. However, the interpretation of black-box

anomaly detection models and complex streaming data is still under-studied. Sipple et al. [Sip20]

interpret device anomalies by feature responsibility gained from Integrated Gradient [STY17].

64



4.3 Methodology

X

Encoder

L

Decoder

X
′

E
rr
or

Anomaly
score

D
ri

ft
de

te
ct

io
n

Trigger
state transition

S0 S1

S2

S3

Model adaptation

Figure 4.1: STAD overview: the left block is a multivariate data stream, where red dots denote
abnormal data points and the dashed box is a data snippet. The middle block is a conventional
autoencoder-based anomaly detection module, which detects abnormal snippets from the data
stream. The right block takes latent representations from the autoencoder and conducts concept
drift detection, which consequently triggers state transition and model adaptation.

Ahmadi et al. [AK18] uses a graph-based framework to model recurring concepts in the data

stream. None of them focus on the drift detection perspective.

4.3 Methodology

In this section, we propose STAD, a state-transition-aware anomaly detection approach, which

employs Autoencoders as the base model. The latent representations of Autoencoders are used

to detect concept drifts, which consequently trigger state transitions. An overview of STAD is

shown in Figure 4.1.

4.3.1 Preliminaries

4.3.1.1 Terminology

Data Stream and concept drift. Let X = {Xt}Dt∈N be a D-dimensional data stream, where

Xt denotes the observation at timestamp t. The data stream contains unlabeled anomalies

as well as distributional changes caused by concept drifts. Instead of explicitly categorizing

different concept drift types [LLD+18], we uniformly consider that a concept drift occurs in

the data stream between timestamps t and t+ c if the prior probability P<t(X) ̸= P>t+c(X),

where P<t and P>t+c are respectively the data distribution from the last concept drift to t and

from t + c to the next concept drift. The period [t, t + c] is the drift period, defined as the
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4. ONLINE ADAPTIVE ANOMALY DETECTION

minimum period that covers the whole distributional change. The data distribution other than

drift periods is assumed to be stable. Due to the lack of labels under the unsupervised setting,

we only consider the prior (virtual) shifts [LLD+18] in the data stream.

State transition. Imitating the automata theory, we formulate concept drifts in streaming

data with a state transition model M = ⟨X, S, δ⟩ where X is a multivariate data stream, S =

{S1, S2, ..., SN} is a set of states (N is the user-defined maximum number of states that can be

maintained), δ is a set of transition functions δ : {Si ⇒ Sj}(Si, Sj ∈ S, i ̸= j). For each state

Si = ⟨Pi, AEi⟩(i = 1, ..., N), AEi is the Autoencoder trained on the current concept data,

Pi is the empirically estimated distribution in the Autoencoder latent space. In this work, we

assume sufficient data after the concept drifts is available to learn Pi and AEi.

For distributional stationary data streams where no concept drift occurs, there will be only

a single state without transition, and the model reduces to a single conventional Autoencoder

for stationary data.

Anomaly. An observed data window Xw
t = {xt+1, ..., xt+w}(t, w ∈ N) is abnormal if

it significantly deviates from its temporal neighbors (data windows in the same state). The

significance of the deviation can be determined by thresholding or statistical techniques. Both

concept drifts and anomaly windows are distributionally deviating from their temporal neigh-

bors. In our study, we distinguish them in terms of length. After the concept drifts, we assume

that the data distribution stays stationary in the new concept for a significantly longer period. In

contrast, after a short anomaly data window, the data stream returns to the previous distribution.

4.3.1.2 Problem statement

Given a D-dimensional data stream X = {Xt}Dt∈N, we aim to identify any period [t + 1, t +

w] where the corresponding data window Xw
t is abnormal. The detection process should be

unsupervised and in real-time. We also detect concept drifts in the data stream and switch to

an existing Autoencoder or train a new one on the newly arrived data.

4.3.2 Reconstruction and latent representation learning

Let fEnc : Rw×D → RH and fDec : RH → Rw×D be the encoder and decoder of an Au-

toencoder. The encoder maps a data window Xw
t of the multivariate streaming data into an

H-dimensional latent representation L ∈ RH , while the decoder reconstructs the same format

data window X ′w
t from L, where w is the window length and t, w ∈ N. A common assumption

for anomaly detection using Autoencoders is that pure normal data are available for the initial
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model training. The reconstruction error ewt = |Xw
t −X ′w

t | indicates the goodness of fit to the

normal data. In the test phase, abnormal data will cause larger reconstruction errors than normal

data such that they are separable. The encoder and decoder can be implemented with a vari-

ety of deep models [ZSM+18, ZCLZ16]. Considering the temporal dependencies in streaming

data, RNNs and their variants [MVW+15, MRA+16] are naturally suitable for the target. In

the following illustration, as an example, we take the LSTM-Autoencoder [MRA+16], which

takes data windows as input and produces a single latent representation for each window. To

map the multivariate reconstruction error to the likelihood of anomalies, a commonly used

approach is to estimate a multivariate Gaussian distribution from the reconstruction error of

normal data and measure the Mahalanobis distance between the reconstruction error of an un-

known data point to the estimated distribution [MRA+16]. Moreover, the Gaussian Mixture

Model (GMM) [ZSM+18] and energy-based model [ZCLZ16] can also be used for likelihood

estimation. The thresholding over the estimated anomaly likelihood in an unsupervised man-

ner is challenging, especially in the real-time prediction scenario. A possible non-parametric

dynamic thresholding technique is proposed in [HCL+18]. The unsupervised approach for the

adaptive threshold in different periods is not our main focus. In the following sections, we

focus on adapting Autoencoders based on the state transitions.

4.3.3 Drift detection in the latent space

In real-time, the latent representations of the Autoencoder are accumulated for concept drift

detection. Existing concept drift detection approaches mostly work in the original space, tar-

geting linear concept drifts. Considering the complex concept drifts in multivariate streaming

data, even non-linear distributional changes can be observed in the Autoencoder latent space.

We perform the non-parametric and distribution-free two-sample Kolmogorov–Smirnov test

(KS-test) [CWZ+16, DKVY06] on each latent space dimension to check whether two latent

representations are drawn from the same continuous distribution. Algorithm 2 shows the online

concept drift detection process.

Similar to slidSHAPs in Section 3.3.3, here we also maintain two data buffers for the statis-

tical test-based drift detection. Different from slidSHAPs, we store the latent representations in

STAD. Formally, let Lhist = {Lt−m̂−n+1, Lt−m̂−n+2, ..., Lt−n} (m∗ ≤ m̂ ≤ m) be the accu-

mulated latent representation since the last concept drift and Lnew = {Lt−n+1, Lt−n+2, ..., Lt}
be the latest latent representations. m and n are the maximum size of Lhist and Lnew, m∗ is the

minimum size of Lhist to trigger a statistical test. Fhist and Fnew are the empirical estimated
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Algorithm 2 Latent Space Drift Detection

Input: Lhist with maximum size m, Lnew with maximum size n, minimum Lhist size m∗

trigger test, current state S = ⟨P,AE⟩, state transition model M = ⟨X, S, δ⟩
1: while stream does not end do
2: Lt← ANOMALYDETECTION(AE,Xt+w

t ) ▷ Get latent representation
3: Lnew ← Lnew ∪ Lt

4: if Lnew.size > n then ▷ Move the oldest element of Lnew to Lhist

5: Lt−n+1 = Lnew.pop()

6: Lhist ← Lhist ∪ Lt−n+1

7: end if
8: if Lhist.size > m then
9: Lhist.pop()

10: end if
11: if Lhist.size ≥ m∗ and Lnew.size = n then
12: if KSTEST(Lh

hist,L
h
new) is True then ▷ Equation 4.1

13: S ← STATETRANSITION(S, Lnew, S, δ) ▷ Section 4.3.4
14: Report concept drift, clear Lhist and Lnew

15: end if
16: end if
17: end while

cumulative distribution functions from the two latent representation sets. The null hypothesis

(i.e., the observations in Lhist and Lnew are from the same distribution) will be rejected if

sup
L
|Fhist(L)− Fnew(L)| > c(α)

√
m̂+ n

m̂ · n
(4.1)

where sup is the supremum function, α is the significance level, c(α) =
√
− ln(α2 ) ·

1
2 . We

maintain both Lhist and Lnew as queues. m is larger than n such that Lhist contains longer

and more stable historical information, while Lnew captures the latest data characteristic. The

drift detector will only start if Lhist contains at least m∗ samples, such that the procedure

starts smoothly. Since the KS-test is designed for univariate data, we conduct parallel tests

in each latent dimension and report concept drift if the null hypothesis is rejected on all the

dimensions. Once a concept drift is detected, we will conduct the state transition procedure

for model adaptation (Section 4.3.4). The historical and latest sample sets are emptied, and we

further collect samples from the new data distribution.
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4.3.4 State transition model

Modeling reoccurring data distributions (e.g., seasonal changes), coupling Autoencoders with

drift detection, and reusing models based on the distributional features can increase the ef-

ficiency of updating a deep model in real-time. We represent every stable data distribution

(concept) and the corresponding Autoencoder as a state S ∈ S. In STAD, for each period be-

tween two concept drifts in the data stream, the data distribution, as well as the corresponding

Autoencoder, are represented in a queue S with limited size. The first state S0 ∈ S represents

the beginning period of the data stream before the first concept drift. After a concept drift,

a new Autoencoder will be trained from scratch with the latest m input data windows, if no

existing element in S fits the current data distribution. Otherwise, the state will transit to the

existing one and reuse the corresponding Autoencoder. In our study, we assume that sufficient

data after the concept drifts can be accumulated to initialize a new Autoencoder.

To compare the distributional similarity between the newly arrived latent representations

Q and the distributions of existing states {Pi|i = 1, ..., N}, we employ the symmetrized Kull-

back–Leibler Divergence. The similarity between Q and an existing state distribution Pi is

defined as

DKL(Pi, Q) =
∑
L∈L

Pi(L)log
Pi(L)

Q(L)
+Q(L)log

Q(L)

Pi(L)
(4.2)

The next step is to estimate the corresponding probability distributions from the sequence of

latent representations. In [DKVY06, CWZ+16], the probability distribution of categorical data

is estimated by the number of object appearances in each category. In our case, the target is

to estimate the probability distribution of fixed-length real-valued latent representations. In

previous research, one possibility for density estimation of streaming data is to maintain his-

tograms of the raw data stream [SG07]. In STAD, we take advantage of the fixed-sized latent

representation of Autoencoders and maintain histograms of each period in the latent space for

density estimation.

Let L = {L1, L2, ..., Lt} be a sequence of observed latent representations, where Li =

⟨hi1, hi2, ..., hiH⟩ and H is the latent space size, the histogram of L is

g(k) =
1

t

∑
Li∈L

eh
i
k∑H

j=1 e
hi
j

(k = 1...H) (4.3)
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Algorithm 3 State Transition Function

1: function STATETRANSITION(Shist, Lnew, S, δ)
2: Pnew = DENSITYESTIMATION(Lnew)

3: if min
Si=⟨Pi,AEi⟩∈S

{DKL(Pnew, Pi)} ≤ ϵ then ▷ Equation 4.4

4: δ ← δ ∪ (Shist ⇒ Smin)

5: return Smin

6: end if
7: Snew ← ⟨Pnew, AEnew⟩ ▷ AEnew: Trained on new concept data
8: S← S ∪ Snew

9: δ ← δ ∪ (Shist ⇒ Snew)

10: if S.size > N then
11: Remove the oldest state and relevant transitions
12: end if
13: return Snew

14: end function

and the density of a given period is estimated by P (k) = g(k). Hence, Equation 4.2 can be

converted to

DKL(Pi, Q) =
∑

k=1...H

Pi(k)log
Pi(k)

Q(k)
+Q(k)log

Q(k)

Pi(k)
(4.4)

For a newly detected concept with distribution Q, if there exists a state Si(i ∈ [1, N ]) with

corresponding probability distribution Pi satisfies DKL(Pi, Q) ≤ ϵ, where ϵ is a tolerant factor,

and Si is not the direct last state, the concept drift can be treated as a reoccurrence of the existing

concept. Therefore the corresponding Autoencoder can be reused, and the state transfers to the

existing state. If no Autoencoder is reusable, a new one will be trained on the latest data

after concept drift. To prevent an explosion in the number of states, the state transition model

M = ⟨X, S, δ⟩ only maintains the N latest states. Considering that no information about the

upcoming new concept is accessible, despite a potentially high error rate, we still keep using

the previous model for anomaly detection until the model adaptation is finished. In other words,

the previous model is used for prediction during the upcoming drift period. The state transition

procedure is described in Algorithm 3.
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4.4 Experiments

Common TSAD benchmark datasets are often stationary without concept drift. Although some

claim that their datasets contain distributional changes, the drift positions are not explicitly

labeled and are hard to evaluate. To this end, we introduce multiple synthetic datasets with

known positions of abnormal events and concept drifts. Furthermore, we concatenate selected

real-world datasets to simulate concept drifts. We evaluate the anomaly detection performance

and show the effectiveness of model adaptation based on the detected drifts. The source code

of STAD is available online 1.

4.4.1 Experiment setup

4.4.1.1 Dataset description

We first generate multiple synthetic datasets from a sine and a cosine wave with anomalies and

concept drifts. For initialization, we generate 5000 purely normal data points with amplitude 1,

period 25 for the two wave dimensions. For the real-time testing, we generate 60000 samples

containing 300 point anomalies. All synthetic datasets contain reoccurring concepts, such that

we can evaluate the state-transition and model reusing of STAD. Following [PVP18], we create

the drifts in three fashions, abrupt (A-∗), gradual (G-∗) and incremental (I-∗). For each type

of drift, we create a standard version (∗-easy) and a hard version (∗-hard) with more frequent

drifts leaving the model less time for reaction. The drifts are created by either swapping the

feature dimensions (-Swap-) or multiplying a factor by the amplitude (-Ampl-). The abrupt

drifts are created by directly concatenating two concepts. The gradual drifts take place in a 2000

timestamp period, with partial instances changing to the new concepts. The incremental drifts

also take 2000 timestamps, while the drift features incrementally change at every timestamp.

Anomaly points are introduced by swapping the values on the two dimensions.

SMD (Server Machine Dataset) [SZN+19] is a real-world multivariate dataset containing

anomalies. To simulate concept drifts, we manually compose SMD-small and SMD-large. Both

only contain abrupt drifts. SMD-small consists of test data from machine-1-1 to machine-1-3,

which are concatenated in the order of machine-1-1⇒machine-1-2⇒machine-1-1⇒machine-

1-3. We take each machine as a concept and machine-1-1 appears twice. SMD-large consists

1https://github.com/KDD-OpenSource/STAD
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of data from machine-1-1 to machine-1-8 and is composed in the same fashion with machine-

1-1 recurring after each concept. For both datasets, the train set of machine-1-1 is used for the

model initialization.

Forest (Forest CoverType) [BD99] is another widely used multivariate dataset in drift de-

tection. To examine the performance in a real-world scenario, we do not introduce any artificial

drift here, but only consider the forest cover type changes as implicit drifts. As in [DJ18], we

consider the smallest class Cottonwood/Willow as abnormal.

4.4.1.2 Competitors

We compare our model with two commonly used unsupervised streaming anomaly detectors.

The LSTM-AD [MVS+15] is a prediction-based approach. Using the near history to predict

the near future, the model is less impacted by concept drifts. The prediction deviation to real

values of the data stream indicates the likelihood of being abnormal. The HTM [ALPA17]

model is able to detect anomalies from streaming data with concept drifts. Neither LSTM-AD

nor HTM provides an interpretation of the evolving data stream besides anomaly detection.

4.4.1.3 Evaluation metric

We adopt the AUROC (Area Under the Receiver Operating Characteristic curve) score to eval-

uate the anomaly detection performance. An anomaly score a ∈ [0, 1] is predicted for each

timestamp. The larger a, the more likely it is to be abnormal. The labels are either 0 (nor-

mal) or 1 (anomaly). We evaluate the AUROC score over anomaly scores without applying

any threshold [CZS+16] so that the performance is not impacted by the quality of the selected

threshold technique.

4.4.1.4 Parameter configuration

We construct the Autoencoders with two single-layer LSTM units. All training processes are

configured with a 0.2 dropout rate, 1e − 5 weight decay, 1e − 4 learning rate, and a batch

size of 8. All Autoencoders are trained for 20 epochs with early stopping. We detect drifts

with the KS-tests at a significance level of α = 0.05. We restrict that Lhist has to contain at

least m∗ = 50 data point to trigger the KS-tests. We set the input window size as the sine

wave period 25. For the SMD-based datasets, following [SZN+19], the window size is set to

100. We process the data stream using a sliding window without overlap. All experiments are

conducted on an NVIDIA Quadro RTX 6000 24GB GPU and are averaged over three runs.
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4.4.2 Performance

4.4.2.1 Overall performance

We compare the AUROC score in the streaming data anomaly detection task between STAD

and the competitors. In STAD, we set the latent representation size H = 50, and the sizes of

the two buffers during the online prediction phase as m = 200 and n = 50. The threshold ϵ

is set to 0.0005. We evaluate the performance of STAD in each state and report the average

AUROC. The results are shown in Table 4.1. STAD performs best on all synthetic datasets with

abrupt and gradual drifts. In the two more complicated real-world datasets, STAD outperforms

LSTM-AD and stays comparable to HTM, while requiring significantly less processing time

(see Section 4.4.2.3). LSTM-AD shows a dominating performance on the two incremental

datasets. Due to the fact that the value at every single timestamp changes in I-Ampl-easy and I-

Ampl-hard, LSTM-AD benefits from its dynamic forecasting at every timestamp, while STAD

suffers under the delay between state transitions.

Table 4.1: Anomaly detection performance (AUROC)

STAD (Ours) LSTM-AD HTM

A-Swap-easy 0.986± 0.005 0.994± 0.005 0.535± 0.008

A-Swap-hard 0.883± 0.016 0.742± 0.076 0.440± 0.017

A-Ampl-easy 0.816± 0.025 0.717± 0.052 0.500± 0.006

A-Ampl-hard 0.810± 0.012 0.715± 0.051 0.499± 0.006

G-Swap-easy 0.948± 0.019 0.854± 0.064 0.506± 0.008

G-Swap-hard 0.926± 0.030 0.800± 0.082 0.502± 0.005

I-Ampl-easy 0.911± 0.014 0.975± 0.018 0.488± 0.003

I-Ampl-hard 0.970± 0.017 1.000± 0.000 0.470± 0.003

SMD-small 0.755± 0.067 0.562± 0.001 0.813± 0.001

SMD-large 0.763± 0.016 0.578± 0.002 0.762± 0.003

Forest 0.751± 0.022 0.977± 0.001 0.211± 0.001

73



4. ONLINE ADAPTIVE ANOMALY DETECTION

20 40 60 80100 150 200

0.5

0.6

0.7

0.8

0.9

1

Latent representation size (H)

A
U

R
O

C

20 40 60 80100 150 200

Lnew size (n)

5020 100 150 200 250 300

Lhist minimum size (m∗)

A-Swap-easy A-Swap-hard A-Ampl-easy A-Ampl-hard I-Ampl-easy I-Ampl-hard
G-Swap-easy G-Swap-hard SMD-small SMD-large Forest

Figure 4.2: Parameter sensitivity: AUROC scores under different settings of latent representation
size H , Lnew size n and minimum size m∗ of Lhist to trigger KS-tests.

4.4.2.2 Parameter sensitivity

In this section, we conduct multiple experiments to examine the impact of several parameters to

STAD. We maintain two data buffers Lhist and Lnew to collect data from the Autoencoder la-

tent space to detect drifts. We set the upper bound of Lhist’s size m = 200 for all experiments.

Depending on the computational resource, larger m will lead to more stable test results. Here,

we examine the effect of the lower bound m∗. Similarly, we also experiment with different

sizes n of Lnew. Additionally, the latent representation size H of Autoencoders is a parameter

depending on the complexity of the input data.

In Figure 4.2, we check the impact of the three parameters H , n, and m∗ on abrupt drifting

datasets. We try different values on each parameter while keeping the other two parameters

equal to 50. The model is not sensitive to the three parameters on abrupt drifting datasets.

Specifically for the two buffers, 20 data windows of both the historical (m∗) and the latest (n)

latent representations are sufficient for drift detection. Similar results have been shown on the

datasets with gradual and incremental drifts. The performance is stably better than that of the

abrupt drifting dataset. One reason is that a longer drifting period leaves the model more time to

detect the drifts and conduct the state transition. On the contrary, the model may make mistakes

after an abrupt drift until sufficient data is collected and the state transition is triggered.

The other parameter ϵ controls the sensitivity of re-identifying an existing state. The larger

ϵ, the more likely the model will transfer to a similar existing state. We set all H , m, and n

to 50 and examine ϵ with a value that varies from 0.1 to 1e − 7 and observe the total number

of distinct states created during the online prediction. As shown in Figure 4.3, with large ϵ’s
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Figure 4.3: Number of distinct states under different settings of threshold ϵ.

(0.1 or 0.01), the model only creates two states and transits only between them once a drift is

detected. On the contrary, too small ϵ will lead to an explosion of state. The model seldom

matches an existing state but creates a new state and trains a new model after each detected

drift. Currently, we determine a proper value of ϵ heuristically during the online prediction.

4.4.2.3 Running time analysis

Finally, we compare the running time (including training, prediction, and updating time) of

the three models on all datasets in Figure 4.4. It turns out that the efficient reusing of existing

models especially benefits large and complex datasets, where the model adaptation is time-

consuming. STAD costs a similar processing time as LSTMAD in synthetic datasets and less

in real-world datasets. The HTM always takes significantly more processing time.

4.5 Conclusion

In this chapter, we proposed the state-transition-aware streaming data anomaly detection ap-

proach STAD. With a reconstruction-based Autoencoder model, STAD detects abnormal pat-

terns from data streams in an unsupervised manner. Based on the latent representation, STAD

maintains states for concepts and detects drifts with a state transition model. With this, STAD

can efficiently identify recurring concepts and reuse existing Autoencoders; or train a new

Autoencoder when no existing model fits the new data distribution. Our empirical results
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Figure 4.4: Average running time comparison.

have shown that STAD achieves comparable performance as the state-of-the-art streaming data

anomaly detectors. Beyond that, the states and transitions also shed light on the complex

and evolving data stream, contributing to understanding data and model changes in real-time.

STAD is our first try at enabling implicit interpretability, while in Part IV further interpretation

approaches will be investigated.
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Part IV

Temporal Anomaly Interpretation
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5
Cohesive Time Series Explanation

Beyond efficient anomaly detection in time series and data streams, we also target develop-

ing human-understandable time series explanations, which facilitates the interpretability of

anomaly detection. As stated in Section 1.1.4, we aim at local, model-agnostic, and post-hoc

interpretations for time series predictions. One major category of interpretation approaches

is the perturbation-based models. Perturbing important features in the input data is supposed

to cause a significant change in the black-box model prediction. However, perturbation-based

time series interpretation suffers under two major challenges: firstly, the long and multivariate

time series may lead to various incoherent salient spots on the saliency map, and secondly,

common perturbation techniques often return unrealistic sequences.

In this chapter, we proposed Cohesive Explanation for Time Series (CETS). This time

series interpretation approach provides cohesive (a notion of concentrated salient features at

adjacent timestamps) feature attribution using realistic prototype-based perturbations. CETS

ensures a cohesive interpretation by employing both global (temporal) and local (spatial) per-

turbations of time series. These perturbations confine the interpretation to a concise temporal

event within a specific subspace. Without loss of generality, we use classification as the down-

stream task here. The proposed approach can be easily extended to anomaly detection. We
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5. COHESIVE TIME SERIES EXPLANATION

perform extensive experiments on real-world benchmark datasets to demonstrate the efficacy

of our interpretations. Specifically, we visually illustrate how cohesive attributions contribute

to enhancing the interpretability of intricate time series data. Our empirical results show that

CETS achieves comparable interpretation quality to state-of-the-art approaches while provid-

ing cohesive and easy-to-understand explanations.

5.1 Introduction

With the vast development of machine learning applications in safety crucial domains [CBS+16,

HWT+15], the reliability and trustworthiness of machine learning models have become in-

creasingly prominent concerns. Despite the advancements in interpretation techniques across

various deep learning domains [STY17, SGK17, RSG16], interpreting time series data and the

associated sequential deep models (e.g., RNNs, GRUs, LSTMs) remains challenging. Unlike

tabular and image data, the time dimension in time series makes interpretation extremely chal-

lenging. In addition to the feature importance of multivariate time series, we also emphasize

understanding the temporal dynamics of feature importance throughout the entire time series.

Formally, for a given time series X ∈ RN×D with N timestamps and D features, a desired

interpretation should provide an importance a(n, d) for each (feature × time) combination,

where n ∈ {0, 1, ..., N} and d ∈ {1, 2, ..., D}.
Recently, time series interpretation has garnered increasing attention [BSC+21, IGCBF20,

LRS+23]. A major category of approaches treats time series as a 2-D image, where the two di-

mensions are features and timestamps, and applies classical image interpretation approaches to

them [IGCBF20]. However, features and timestamps are essentially not two equivalent dimen-

sions as in the 2-D images. The time dimension inherently carries strictly ordered temporal

information, while the feature dimension does not. Consequently, classical image interpreta-

tion approaches may neglect the temporal characteristic of time series data, leading to unde-

sired temporal feature attribution. One major problem is the cohesiveness of the (feature ×
time) attribution. Unlike saliency approaches for image data, where the salient areas with high

pixel attribution can be directly visualized on images, time series data is inherently less human-

understandable. Therefore, as illustrated in Figure 5.1 (left), visualizing incoherent (feature ×
time) attributions of time series data exacerbates the challenge, especially for long and multi-

variate time series. To enhance the human understandability of time series interpretations, we

propose to regularize the cohesiveness in both feature and time dimensions, such that the most
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Figure 5.1: Interpretation cohesiveness: darker orange cells denotes higher importance, while gray
cells denote no contribution.

salient cells are concentrated in a limited area of the saliency map, which contributes to the

simplification of interpretation (Figure 5.1 right). Intuitively, the presence of a cohesive salient

area indicates a brief subspace event that predominantly contributes to the model’s prediction.

Perturbation-based approaches have been applied in both image and time series data. A

significant prediction change after a slight perturbation of input attributes indicates high im-

portance. Here, we address two primary challenges, the cohesiveness and realisticness. Ex-

isting perturbation-based approaches often treat a time series as a (feature × time) matrix and

perturb the matrix with different strategies [IGCBF20, CS21]. However, they do not explicitly

consider the cohesiveness of the perturbations, resulting in salient elements being distributed

across multiple locations in the input time series matrix. A major challenge of regularizing

cohesiveness is the perturbation strategy. Purely element-wise enumeration [IGCBF20] or its

variants [CS21] does not consider the temporal and feature space context. Another challenge

in perturbing time series data is the realisticness of perturbed sequences. For example, replac-

ing a sub-sequence of an ECG snippet with random noise or temporal neighbor values could

potentially compromise the semantics of the input data.

To this end, we propose CETS, a perturbation-based time series interpretation approach.

CETS aims at perturbations on subspace events. Specifically, we introduce a two-stage global-

local (temporal-spatial) perturbation. We perturb a consecutive sub-sequence as an event and

perturb a sub-feature space to find the most influential features of that event. CETS utilizes

prototype for the subspace event perturbation. Prototypes are representative time series of the

training data, e.g., centers of time series clusters. The prototypes are considered as unified and

less informative sequences. Using the corresponding prototype to perturb time series subspace

events not only contributes to the cohesiveness of perturbation but also alleviates unrealistic

perturbations [LJM23].
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5. COHESIVE TIME SERIES EXPLANATION

The main contribution of this chapter can be summarized as follows:

1. two-stage perturbation-based approach: we introduce a novel two-stage perturbation-

based method for interpreting time series data, with a primary focus on ensuring the

cohesiveness of attributions

2. prototype utilization for realistic perturbation: to achieve realistic subspace event

perturbation, we employ prototypes, which are representative existing time series, alle-

viating unrealistic perturbations

3. empirical validation: we substantiate the effectiveness and interpretability of our pro-

posed approach through extensive experiments conducted on well-established real-world

benchmark datasets.

5.2 Related works

5.2.1 Perturbation-based interpretation

Perturbation-based interpretation is a local and model-agnostic approach, which has been ap-

plied in multiple application areas [ZF14, RSG16]. Regardless of the data format, the attribu-

tion is indicated by the prediction difference between original and perturbed inputs. Different

strategies can be applied to create the perturbations. Feature Ablation (FA) replaces the input

features with a predefined baseline. Fisher et al. [FRD19] split the data into two subsets and

use the feature values in one subset to perturb the other. Feature Occlusion (FO) [ZF14] re-

stricts the perturbed features to contiguous regions in image data. In computer vision tasks,

the perturbation of an image can be setting pixel intensity to zero [RSG16, ZF14], blurring the

area [FV17] or applying a random combination of regional pixels [PDS18].

However, due to the temporal nature, perturbing time series data with classical strategies

may lead to suboptimal results [SAEA+19]. Ismail et al. [IGCBF20] use a two-stage approach,

which first perturb timestamps with zeros and then perturb features at important timestamps

with zeros. Schlegel et al. [SOKEA20, SK23] consider the temporal information in time series

data and define the perturbation on continuous intervals. The original values in the selected

interval are replaced by zeros, the inverse, or their mean value. Nevertheless, the perturbed

sequences are not ensured with realisticness and validity, sometimes the perturbed sequence is

even out-of-distribution.

82



5.2 Related works

Indeed, for time series data, determining the perturbation interval and the replacement val-

ues is challenging. One solution is to learn perturbation implicitly. Mask-based perturbation

learns masks over the input time series to hide informative features. Mask-based approaches

are first applied in computer vision tasks [FV17, FPV19] and then extended to time series do-

main [CS21]. Gaussian blur is commonly used as a replacement for the masked positions.

Enguehard [Eng23] further improves the mask-based approaches with learnable replacement

values. Pan et al. [PHC21a] employ a learnable binary mask time time series forecasting inter-

pretation.

5.2.2 Time series prediction interpretation

In addition to the perturbation-based interpretation approaches, several other types of time

series interpretation approaches have been recently developed. One category is the Shapley-

value-based based approach. Unlike the perturbation-based approaches, which analyze the

model performance decrease, Shapley-value-based approaches are based on the magnitude of

feature attributions [Mol22]. SHAP [LL17] generates contrastive feature attributions based on

the game-theoretic Shapley values. Shapley Value Sampling (SVS) [MCFH22] conducts ran-

dom permutations to the input values. However, the large search space makes Shapley-value-

based approaches naturally computationally expensive. This problem becomes even more se-

vere if we consider the time dimension of the time series as an additional set of features. Bento

et al. [BSC+21] extends SHAP to sequential data by considering a time series as a (feature ×
time) matrix. By introducing a pruning method over timestamps, TimeSHAP [BSC+21] also

achieves computational effectiveness.

Probabilistic models are also used in time series prediction interpretation. FIT [TJC+20]

evaluates the feature importance by quantifying the shift of predictive distribution over time

using KL-divergence. They compare the distributional shift after turning off a feature at a

timestamp. WinIT [LRS+23] further improves this approach by explicitly considering the

distributional shift caused by multiple interdependent timestamps.

The attention mechanism has also been used for time series interpretation. The general

idea is to treat the attention scores as the importance of input data. RETAIN [CBS+16] adds

an attention layer to the conventional RNNs and observes the attention score to timestamps

and features in the hidden space. Similarly, Karim et al. [KMDC17] integrate the attention

mechanism in LSTMs and CNNs. Vinayavekhin et al. [VCM+18] directly feed the input to a

temporal context layer without recurrent units.
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5. COHESIVE TIME SERIES EXPLANATION

5.2.3 Explanation cohesiveness

Despite the development of interpretation approaches, the quality of interpretation still needs to

be improved to access and quantify. Nauta et al. [NTP+23] emphasized quality quantification

in a human-oriented subjective perspective. In Chapter 6, we will talk about the explanation

consistency [BLM23], namely, the feature attribution should be consistent between adjacent

sliding windows. Different from that, here we consider the explanation consistency within a

specific sliding window, targeting cohesive areas in the saliency map. Crabbe et al. [CS21] use

a similar idea to simplify the learned perturbation masks in order to restrict the salient elements

for the attribution result.

5.2.4 Prototype-based explanation

Prototypes [LLCR18] are example-based explanations that provide explicit and intuitive in-

terpretation using representative data instances. Especially for complex data like time series,

prototypes help to understand the data. Li et al. [LLCR18] and Gee et al. [GGOGP19] use

Autoencoders to learn prototypes in the latent space. Similarly, Li et al. [LJM23] use proto-

types to explain anomalies in time series. More details about prototype-based explanation are

introduced in Chapter 7. Unlike previous works, we use prototypes not directly as time series

interpretations but as realistic perturbations to analyze feature attribution.

5.3 Methodology

In this section, we introduce the proposed CETS model. Firstly, we formally define our nota-

tions and the problem in Section 5.3.1. Followed by an overview of the model architecture in

Section 5.3.2. The subsequent subsections delve into a detailed exposition of each component

comprising CETS.

5.3.1 Preliminaries

Let X ∈ X(X ⊂ RN×D) be a D−dimensional time series with length N and S = {1, 2, ..., D}
be the feature space. And let Y ∈ [1, 2, ....,K] be the class label of a sequence X in a classifi-

cation task with K classes. We aim to explain a black-box model f using a perturbation-based

approach.
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To ensure a temporally cohesive explanation, we leverage prototype-based perturbations.

Thus, the perturbations are generated by consecutive realistic prototypical snippets of the time

series data. Let {p1, p2, ..., pM} denote a set of M distinct prototypes of X with pi ∈ RN×D for

i ∈ {1, 2, ...,M}. We further define temporal and spatial perturbations of X using a prototype

p ∈ {p1, p2, ..., pM}.

Definition 3 (Temporal perturbation). The temporal perturbation on time period {i+1, . . . , i+

L} with L timestamps replaces all features of X with the corresponding features of the most
similar prototype p in the same time period. Formally,

πt(X, i, L, p) = [X1,i; pi+1,i+L;Xi+L+1,N ] (5.1)

Definition 4 (Spatial perturbation). The spatial perturbation on the feature set T ⊆ S replaces
values on all timestamps of X by the corresponding values of the most similar prototype p.
Formally, for d ∈ S,

πd
s (X,T, p) =

pd if d ∈ T

Xd else
(5.2)

Remark 1. We restrict the temporal and spatial perturbation operation on consecutive times-
tamps so that the final interpretation will be cohesive sequences on the (feature× time) saliency
map.

Lemma 1. The temporal and spatial perturbations can be combined such that the time series
X is perturbed by prototype p on the feature space T ⊆ S for the period {i + 1, . . . , i + L}.
Formally, for d ∈ S,

πd
ts(X, i, L, T, p) =

[Xd
1,i; p

d
i+1,i+L;X

d
i+L+1,N ] if d ∈ T

Xd else
(5.3)

Remark 2. Due to the lack of supervision on feature importance generally in time series clas-
sification benchmark datasets, we use the prediction difference between ŷ∗ = f(X) and
ŷ = f(π(.)(X)) to implicitly signify the feature importance of perturbed elements.

5.3.2 Architecture overview

An overview of the CETS architecture is visualized in Figure 5.2. In the model initialization

phase, a labeled train set is utilized to train a black-box model for classification and learn a set

of prototypes. More details about prototype learning are described in Section 5.3.3. After the

85



5. COHESIVE TIME SERIES EXPLANATION
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Figure 5.2: Architecture overview.

model’s prediction on test data, the prototypes will be used for the perturbation-based interpre-

tation. A two-stage global-local perturbation strategy (Sections 5.3.4 and 5.3.5) will be applied

on each time series sequence. The ultimate temporal feature attribution will be determined by

assessing the prediction change after the prototype-based perturbation. The procedural steps of

CETS are elucidated in Algorithm 4.

5.3.3 Time series prototype learning

In CETS, we learn the prototypical sequence from the training data, which will be used for the

permutations in the follow-up explanation steps. We adopt a K-Medoid-based approach [KR09],

where the cluster medoids are regarded as prototypes. Considering the temporal characteristic

of time series data, we employ Dynamic Time Warping (DTW) [RK05] to quantify the dis-

similarity between time series. In K-Medoid, the cluster representatives (medoids) are selected

from real training data and updated by swapping between medoid and non-medoid points, such

that the learned prototypes are ensured to be existing time series sequences. With this, we pre-

vent generating unrealistic prototypes [LJM23, GGOGP19], which could subsequently affect

the perturbation quality.

We define M as the number of clusters, namely the number of prototypes to be learned.

{p1, p2, ..., pM} = KMedoids(Xtrain,M) (5.4)
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Algorithm 4 Cohesive Explanation for Time Series (CETS)

Input: time series X ⊂ RN×D, perturbation length L, number of prototypes M , black-box
model f

1: A = [ ]

2: Xtrain,Xtest ← train test split(X)

3: for c ∈ X.classes do
4: P c ← KMedoids(Xc

train,M) ▷ Equation (5.4)
5: end for
6: for X ∈ Xtest do
7: ĉ← f.predict(X)

8: p∗ ← argmin
pi∈P ĉ

(dist(X, pi))

9: i∗ ← argmin
i∈{1,...,N−L}

GTP (X, i, L, p∗) ▷ Algorithm 5

10: T ∗ ← argmin
T⊆S

LCA(X, i∗, L, T, p∗) ▷ Algorithm 6

11: a∗ ← a(i∗, T ∗) ▷ Equation (5.7)
12: A.add(a∗)

13: end for
14: return A

Typically, we conduct the K-Medoids algorithm for each class in the train set to represent

all classes equally. The number of clusters M is a hyperparameter. During the interpreta-

tion phase, we consider the class prediction of the black-box model to be correct and use the

predicted class to find the corresponding set of prototypes. For a given time series sequence

undergoing explanation, the most similar prototype is determined by clustering the sequence

to one of the K-Medoids clusters of the predicted class. The selected prototype will be used

in Section 5.3.4 and Section 5.3.5 for perturbation.

5.3.4 Global temporal perturbation

The global temporal perturbation (GTP) conducts a temporal perturbation πt(.) on a given time

period of X , which aims to locate the most important period {i+ 1, . . . , i+ L} within a time

series sequence.

GTP (X, i, L, p) := πt(X, i, L, p) (5.5)

For a specific globally perturbed time series X̃GTP = GTP (X, i, L, p) w.r.t. time period
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Algorithm 5 Global Temporal Perturbation (GTP)

Input: time series X ∈ RN×D, most similar prototype p, perturbation length L

1: for i ∈ {1, ..., N − L} do
2: X̃GTP ← πt(X, i, L, p) ▷ Equation (5.5)
3: a(i)← |f(X)− f(X̃GTP )|
4: end for
5: return argmax

i
{a(i)}

starts at i and last a fix length L, the attribution is defined by a(i) = |ŷ∗ − ŷ(i)|, where

ŷ∗ = f(X) being the prediction of original time series and ŷ = f(X̃GTP ) being the prediction

of X applied GTP starting from timestamp i.

GTP distinguishes temporal importance by always considering the whole feature space.

The intuition is to capture global features of time series in this period, e.g., trend, seasonality,

periodicity. The most important time period starting from timestamp i is determined by i =

argmax
i
{a(i)} for i ∈ {1, ..., N − L}. The time period {i, . . . , i + L} will be further used

in the next step for a more detailed local attribution analysis. The entire process of GTP is

presented in Algorithm 5.

5.3.5 Local contextual attribution

The local contextual attribution (LCA) focuses on the time period {i, . . . i+L} determined by

GTP and treats it as a local context for local attribution analysis. Specifically, LCA conducts a

spatial perturbation πts(.) on feature set T ⊆ S for the most important time period {i, . . . , i+
L},

LCA(X, i, L, T, p) := πts(X, i, L, T, p) (5.6)

for πts = [π1
ts, π

2
ts, . . . , π

D
ts ].

Given the most important time period {i, . . . , i + L} from GTP, for a specific locally per-

turbed time series X̃LCA = LCA(X, i, L, T, p) w.r.t. feature subset T ⊆ S, the attribution is

defined by

a(i, T ) =
1√
|T |
|ŷ∗ − ŷ(i, T )| (5.7)

where ŷ(i, T ) = f(X̃LCA) being the prediction of X applied LCA on T and the score is

normalized by the
√
|T |, in order to eliminate the impact of the numeral difference caused by

different subspace sizes.
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Algorithm 6 Local Contextual Attribution (LCA)

Input: time series X ∈ RN×D, most similar prototype p, perturbation start time point i,
perturbation length L

▷ S is the feature space of X with (|S| = D)

1: for T ∈ P(S)\Ø do
2: X̃LCA ← πts(X, i, L, T, p) ▷ Equation (5.6)
3: a(i, T )← 1√

|T |
|f(X)− f(X̃LCA)|

4: end for
5: return argmax

T
{a(i, T )}

For a D-dimensional time series data, we examine all the 2D−1 non-empty subsets of the

feature space to evaluate the most important subspace for LCA. The most important subspace

is T = argmax
T
{a(i, T )} for T ∈ P(S)\{Ø} where P denotes the power set. The process of

LCA is presented in Algorithm 6.

The final perturbation of time series X is X̃LCA, with values on feature subset T between

timestamps i and i+L being replaced by the corresponding values in the most similar prototype

p.

5.4 Experiments

5.4.1 Experimental setup

5.4.1.1 Dataset description

We empirically evaluate the interpretation of CETS on multiple real-world time series classifi-

cation benchmark datasets. We select both univariate and multivariate time series data from the

UCR Time Series Classification Archive [DBK+19]. A summary of the datasets is provided

in Table 5.1.

5.4.1.2 Competitors

We compare the CETS interpretation with multiple other methods from different categories.

Firstly, we compare with the gradient-based methods DeepLIFT [SGK17], GradientSHAP

(GradSHAP) [EJS+19] and Integrated Gradien (IG) [STY17]. Furthermore, we also include

Feature Occlusion (FO) [ZF14] and Augmented Feature Occlusion (AFO) [TJC+20] from
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Table 5.1: Dataset description

Dataset Length Dimensionality Classes

Meat (MEA) 448 1 3

GunPointAgeSpan (GUN) 150 1 2

SonyAIBORobotSurface2 (SON) 65 1 2

EthanolConcentration (ETH) 1751 3 4

SelfRegulationSCP1 (SCP) 896 6 2

RacketSports (RAC) 30 6 4

the feature perturbation-based approaches, and DynaMask [CS21] from the mask-based ap-

proaches. Finally, we compare with WinIT [LRS+23] as the probabilistic approach.

5.4.1.3 Evaluation metric

To quantify the quality of interpretation in an unsupervised fashion, we use the performance

drop in AUROC (Area Under the Receiver Operating Characteristic curve). To be noticed,

instead of beating all the competitors, we primarily aim to deliver cohesive time series inter-

pretation while staying comparable in quality to other competitors. Therefore, we also focus

on the ranking of the AUROC score drop.

5.4.1.4 Parameter configuration

We implement the black-box time series predictor as a single-layer GRU with 200 hidden units,

followed by a fully connected linear output layer. The model is trained over 200 epochs with

early stopping using the Adam optimizer [KB14] with 10−3 learning rate and 0.5 dropout rate.

The experiment results are averaged over five runs.

For CETS, we uniformly learn 5 prototypes for each class in the training data. By default,

we set perturbation length L = N
10 , namely 10% of the time series length N . We also provide a

parameter sensitivity analysis in Section 5.4.2.3. The source code of CETS is available online 1.

1https://github.com/KDD-OpenSource/CETS
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5.4 Experiments

5.4.1.5 Masking strategy

In contrast to point-wise-ranked attribution approaches that involve masking the subsequential

timestamps of the top-ranked (feature× time) elements [LRS+23], CETS utilizes prototypes

to mask consecutive time periods in order to achieve the optimal cohesiveness in the generated

attribution explanation. Specifically, in CETS, we directly perturb the time period on the most

important features using the output of the LCA process. To make a fair comparison, we also

implement a prototype-based perturbation version of the competitor approaches using their

own attributions. For the competitor models’ attribution of the time series X , we identify the

highest element (i, d), where i denotes the i-th timestamp, and d represents the d-th feature. For

a prototype-based perturbation with perturbation length L, we take the most similar prototype

p of X , and perturb X with

X̃ =

{
[X1,i; p̃;Xi+L+1,N ] if i ≤ N − L

[X1:N−L; p̃] else
(5.8)

where

p̃ =

{
[X1,d−1

i+1,i+L; p
d
i+1,i+L;X

d+1,D
i+1,i+L] if i ≤ N − L

[X1,d−1
N−L+1,N ; pdN−L+1,N ;Xd+1,D

N−L+1,N ] else
(5.9)

5.4.2 Performance

5.4.2.1 Interpretation evaluation

Following the masking strategy in Section 5.4.1.5, we quantify the performance drop of com-

pared approaches and report the average ranking among the eight interpreters in Table 5.2.

Smaller numbers indicate higher ranking, i.e., averagely larger performance drop by perturba-

tion. CETS achieves the best average ranking on GUN, SON, ETH, SCP, and second best for

other datasets. To be noticed, ETH always ranked last for WinIT because WinIT does not con-

verge during feature generation [LRS+23] on ETH. In summary, CETS provides outstanding

feature attribution quality w.r.t. performance drop analysis. Beyond this, CETS enables better

cohesive interpretability using prototype-based perturbations.

5.4.2.2 Cohesive interpretation

A significant advantage of CETS is that the prototypes employed for perturbation also con-

tribute to the cohesive interpretation. The prototypes, corresponding to instances with the

largest performance drop, inherently indicate the most crucial time span and features in the

91
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Table 5.2: AUROC drop ranking (Best: bold, second best: underline)

MEA GUN SON ETH SCP RAC

IG 6.200±1.304 6.600±1.140 6.800±0.447 6.000±1.225 2.800±2.387 4.600±2.510

FO 4.800±2.280 2.600±1.673 3.600±1.140 4.800±1.483 6.000±1.732 3.800±2.588

AFO 5.600±1.342 5.600±1.949 2.600±1.140 3.000±1.414 5.400±0.894 4.800±1.483

GradSHAP 4.800±1.304 6.000±1.581 4.600±1.140 6.000±0.707 4.000±2.550 5.400±2.074

DeepLIFT 6.400±1.517 2.400±1.140 8.000±0.000 4.000±2.121 4.600±1.140 5.600±2.510

WinIT 4.200±3.493 4.400±2.191 2.600±1.517 8.000±0.000 7.200±1.304 6.400±1.673

DynaMask 1.600±0.894 6.600±0.894 6.000±0.707 2.400±1.342 3.800±2.775 2.000±1.414

CETS (Ours) 2.400±0.894 1.800±0.837 1.800±1.304 1.800±1.095 2.200±1.304 3.400±2.191
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Figure 5.3: CETS time series prediction interpretation: SON dataset.

original data. We visually present several sample pairs of the raw data and their most similar

prototypes from both the univariate SON and the 6-dimensional SCP data. In Figure 5.3, we

showcase three samples from each class of SON, where the highlighted snippet in the input

data represents the period with the highest attributing importance according to CETS. Per-

turbing this highlighted snippet by the corresponding prototype leads to the most substantial

performance drop. Due to the cohesive perturbation in CETS, only a consecutive snippet is

highlighted for each input time series, directly emphasizing the most relevant features for the

prediction.

Similarly, in Figure 5.4 we also visualize the output of CETS for both the “Negativity” and

“Positivity” classes from SCP. For this multivariate data, the advantages of employing CETS

for subspace feature importance interpretation become more apparent. After the most relevant

time period is determined by GTP (Algorithm 5), the most relevant feature combination is

learned by LCA (Algorithm 6). For the “Negativity” class, the period at the beginning of the
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Figure 5.4: CETS time series prediction interpretation: SCP dataset.

selected sample on feature 1 and 5 are determined with the highest contribution. And for the

“positivity” class sample, a period of the full feature space is determined.

5.4.2.3 Parameter sensitivity analysis

The perturbation length L determines the number of consecutive timestamps to be perturbed

by prototypes in GTP (Algorithm 5). To assess its sensitivity, we conduct an analysis with

different perturbation rates α, where L = ⌊α ·N⌋. Specifically, we test values of α within the

set {1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}. The results are presented in

Figure 5.5. Generally, CETS is insensitive to the perturbation rate on the tested datasets. A

slightly increasing trend with increasing perturbation rate indicates that perturbing the time

series with less informative prototypes leads to a performance drop. In addition, we also exam-

ined different numbers of prototypes per class M , from 3 to 30. The result in Figure 5.6 shows

general stability of performance drop when increasing the number of prototypes. Even three

per class is sufficient for the perturbation.
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Figure 5.5: Perturbation rate sensitivity analysis.

Table 5.3: Ablation study: AUROC performance drop

MEA GUN SON ETH SCP RAC

w/o GTP 0.000±0.000 0.006±0.003 0.002±0.002 0.001±0.000 0.001±0.000 0.023±0.007

w/o LCA 0.001±0.001 0.052±0.034 0.228±0.065 0.000±0.000 0.000±0.000 0.005±0.007

CETS 0.001±0.001 0.052±0.034 0.228±0.065 0.002±0.001 0.002±0.001 0.066±0.031

5.4.2.4 Ablation study

To evaluate the contribution of the two major building blocks GTP and LCA in CETS, we

conduct an ablation study to remove one component at a time and compare with the complete

CETS. Due to the significant difference in number of masked elements between configurations,

in Table 5.3, we report the rescaled AUROC drop γ∗ = γ∗10
|Mask| , where γ and γ∗ are the AUROC

drops before and after rescaling and |Mask| is the number of masked elements of a configura-

tion. For the univariate datasets, we only use GTP to find the most important time period for

the single feature, therefore, the performance of “w/o LCA” is the same as CETS. In general,

we observe that CETS, incorporating both GTP and LCA, achieves the best performance.
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Figure 5.6: Number of prototypes sensitivity analysis.

5.5 Conclusion

In this chapter, we presented CETS, a perturbation-based time series interpretation approach

using prototypes. Specifically, we achieve the cohesive explanation by conducting a two-step

global-local perturbation to acquire consecutive attributions. Our experiments show that CETS

achieves comparable interpretation performance to state-of-the-art time series interpretation

approaches. Moreover, CETS additionally guarantees the cohesiveness of interpretation. Cur-

rent prototype-based perturbation is based on sliding window (GTP) and exhaustive subspace

search (LCA). Efficient search strategies for both time and feature domains are promising ex-

tension possibilities.

So far, we have examined the cohesiveness of time series saliency maps. Actually, there

are still many aspects that new interpretation approaches should consider. In Chapter 6, we

showcase two of those important factors, consistency, and robustness, which are defined over

multiple adjacent sliding windows.
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6
Consistency and Robustness

Apart from cohesiveness in a single time series sliding window, more properties are also de-

sired to form a good qualified time series interpretation. This chapter demonstrates the consis-

tency and robustness between adjacent sliding windows as two additional important properties.

Specifically, we examine saliency explanations from both perturbation-based and gradient-

based explanation models in a time series classification task. Our experimental results on five

real-world datasets show that they all lack consistent and robust performances to some extent.

We emphasize the importance of developing consistent and robust explanations for time series

prediction by drawing attention to the flawed saliency explanation models.

6.1 Introduction

Saliency approaches for time series explanation confront essential challenges due to the com-

plex temporal structure in time series data. The temporal dependency leads to time-dependent

changes in feature attribution. Furthermore, explanation approaches are often not directly ap-

plicable to time series models with recurrent- or attention-based components [CBS+16, JW19].

Although several approaches try to treat data windows of time series as images and apply vision
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Figure 6.1: Inconsistent saliency map explanation in time series predictions. Orange cells rep-
resent important timestamps and features for predicting certain sliding windows. The red-marked
periods are overlapped across the three adjacent sliding windows with the same input time series
values. However, their feature importance is inconsistent.

explanation methods [IGCBF20, PHC21b], the quality of such explanations is often question-

able. In this chapter, we address two main issues that arise when using saliency maps for

explaining time series data predictions, i.e., the consistency and the robustness, and show in

the experiments that several common feature attribution approaches are neither consistent nor

robust.

Deep time series prediction models usually consider sliding windows as basic input units to

capture temporal information. Analog to saliency maps for visualizing image pixel importance,

similar saliency maps are generated for time series frames with feature-time pixel importance.

Current research on explanation approaches for time series data can be classified into two cat-

egories. The first category contains methods treating sliding windows as frames of images

and applying classical image explanation methods, e.g., SHAP [LL17], LIME [RSG16], and

DeepLIFT [SGK17]. Those methods extract local feature information while neglecting the

time series data’s typical time structure. The second category contains methods considering

the time dimension as an additional feature for separate explanations [BSC+21, IGCBF20].

Overall, explanation methods on time series data consider the time dimension either jointly

with the other features [PHC21b] or separately through sequentially considering time and fea-

tures [IGCBF20]. In both cases so far, the explanations consider one single frame (i.e., sliding

window). Hence, both categories reveal insufficient interpretation of the overall temporal infor-
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Figure 6.2: Non-robust saliency maps in time series predictions. The position of a pixel in an
image is defined by row and column numbers, while in time series data, by input variables and
timestamps. Swaps of rows and columns in images may affect the semantic meaning of the entire
data frame. For time series, this may happen only when swapping observations at different times-
tamps.

mation over a long time span. We claim that explanations over the intersection of sliding win-

dows should exhibit consistent behaviors to identify such a flaw in current time series saliency

explanations. We admit that in adjacent sliding windows, different temporal contexts may lead

to different absolute feature attribution. Therefore, we pursue the consistent relative attribution

in local sub-windows. Figure 6.1 illustrates the inconsistency effect among overlapping time

windows.

In addition to the saliency explanation consistency, the robustness of saliency maps against

feature perturbation is another essential factor in ensuring explanation quality. As shown in Fig-

ure 6.2a, the semantic meanings of columns and rows are equivalent in image data. At the same

time, in time series, the time structure makes time series data semantically different and intro-

duces dependence among the observations in the various timestamps. In images, swaps of both

rows and columns affect the semantic structure of the original data. In contrast, in time series,

only the swaps affecting the temporal orders of the observations are semantically significant.

The order in which the input features are organized has no semantic effect. The phenomenon is

illustrated in Figure 6.2b, where the x-axis corresponds to time and the y-axis to the input vari-

ables. When saliency maps are applied to time series, the salient features should be insensitive

to the order of input features. We call this the robustness of saliency explanations.
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We study the consistency and robustness of saliency explanations for time series predic-

tions. We examine saliency explanations from popularly used perturbation- and gradient-

based approaches [SHJ+17, STY17] on multiple deep classification models [HS97, LFV+17,

VSP+17]. We show on five real-world datasets that the studied saliency explanations suffer

from consistency and robustness issues. These preliminary results underline the problems en-

countered as a motivation to conduct further research on time series prediction explanation.

6.2 Related works

Intrinsic and post-hoc explanations have transformed into a core topic for machine learning re-

search. The interest in increasing the explainability of the methods embraces the entire machine

learning and AI communities [SGK17, SK10]. GRAD [BSH+10] is a post-hoc agnostic inter-

pretation method that is able to explain nonlinear classifiers at a local level. The explanations

measure how each data point has to be moved to change the predicted label [BSH+10]. The lo-

cal scores are derived from the direct computation of the local gradients (or their estimations).

Similarly, Integrated Gradients [STY17] is also a gradient-based feature importance attribution

method and builds up on [BSH+10] and two axioms, i.e., the sensitivity and implementation

invariance. Finally, SHAP [LL17] represents a successful attempt to introduce Shapley values

in machine learning. Lundberg et al. [LL17] use Shapley values to assign importance scores to

features for local explanations of black-box models’ predictions. The Shapley values’ approx-

imations are based on the computations of the gradient of model predictions.

Although progress is not neglectable, the explanations provided by the most recent works

are mostly not quantifiable, thus still raising trust issues [ZSS+19]. Few recent works focus on

the quality of the explanation methods; Dombrowski et al. [DAA+19] show that explanations

for image classification are non-robust against possible visually hardly detectable manipula-

tions.

Explanation methods appear for most machine learning techniques with different strengths.

Time series represents a data type where most implemented methods still lack explanations.

One of the reasons for the poor literature on the explainability of time series data is the addi-

tional time-dependent structure. Explanations often reduce to applications of model-agnostic

post-hoc explanations for general data samples to time-dependent data. The time structure is

often disregarded, and the timestamps are treated as independent samples on which the model

is learned [BSC+21, SAEA+19]. Another thread of approaches using attention-based models
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obtains time-dependent explanations by attention weights [KZK+19, SRTS18, CBS+16]. The

acquired feature and time attribution to the prediction can be visualized in saliency maps, which

are initially implemented for images [BBM+15] and are a current trend in obtaining explana-

tions for importance scores of timestamps and features. For example, gradient-based [BSH+10,

STY17, STK+17, SGK17] and perturbation-based feature importance scores [ZF14, SHJ+17].

Ismail et al. [IGCBF20] pointed out how these methods often suffer from a lack of understand-

ing of the time-feature structures, either allowing them to achieve only good performances at

a time level or the features level. The authors propose an alternative two-step approach to

saliency explanations for time series, where the time structure is first considered, and the im-

portance of the features is considered in the second step. The explanation quality of such a

method is still under-studied in the time series domain.

6.3 Open issues on saliency explanations

In this section, we formally define the consistency and robustness of saliency explanations for

time series predictions.

We indicate with X = (X1, . . . , XN ) a multivariate N -dimensional discrete time series

where Xi is the i-th univariate dimension; t0 is the first timestamp on which the time series

is defined. For each timestamp tk > t0, X(tk) is a N -dimensional vector of real values, i.e.,

X(tk) ∈ RN . We study the consistency and robustness of saliency explanations for classifica-

tion models trained on time series data. We draw upon the concept of consistency proposed by

Pillai et al. [PKO+22], and define consistency of saliency explanations over adjacent sliding

windows of time series. Additionally, regarding robustness, we consider the influence of swaps

of features in the series.

6.3.1 Consistency

We define time windows {wd
s}s∈N dependent on the window length d ∈ N and the starting

timestamp ts, i.e.,

wd
s = {ts, . . . , ts+d−1} (6.1)

For each time window and given a fixed saliency map method assigning importance score S,

we get S(wd
s) = Sd

s a matrix in RN×d such that (Sd
s )n,t is the importance scores assigned

to the input variable Xn at time t. Saliency maps are transposed from image (pre)processing

applications to explain time series classification predictions. We examine the consistency of
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saliency maps defined over overlapping windows. Given two windows wd
s and wd̄

s̄ such that

|wd
s ∩ wd̄

s̄ | ≠ ∅ and the respective saliency maps Sd
s and sd̄s̄ , the saliency explanations are

inconsistent at timestamp t, if t, t̄ ∈ wd
s ∩ wd̄

s̄ such that

(Sd
s )n,t > (Sd̄

s̄ )n,t and (Sd
s )n,t̄ < (Sd̄

s̄ )n,t̄, (6.2)

i.e., the importance scores assigned to features and timestamps are relatively inconsistent

among overlapping time windows.

6.3.2 Robustness

Although similarly structured, images and time series intrinsically contain different semantic

meanings due to the time dependency. However, the time series explanation should be insen-

sitive to the feature ordering. A saliency explanation is considered as robust if the saliency

changes accordingly when the features are swapped. We define the feature swapping operation

on data window wd
s and observe the effect in the corresponding saliency explanation Sd

s . Con-

cretely, we swap a random pair of features Xi and Xj (i ̸= j) in wd
s for all timestamps from

ts to ts+d−1. Their feature attribution in Sd
s are (Sd

s )i and (Sd
s )j . After features swapping,

the data window is denoted by w∗d
s , and the new saliency explanation is S∗d

s . (Sd
s )i corre-

sponds to (S∗d
s)j while (Sd

s )j corresponds to (S∗d
s)i. The saliency explanations are robust if

t1, t2 ∈ wd
s ∩ wd

s such that

(Sd
s )i,t1 > (Sd

s )i,t2 and (S∗d
s)j,t1 > (S∗d

s)j,t2 , (6.3)

i.e., important feature-time pixels maintain relative importance after swapping the feature of

the data window.

6.4 Experiments

We perform experiments on real-world datasets for time series classification. We generate

various types of explanations in the form of saliency maps for the predictions made by the

classifiers to examine their consistency and robustness. We incorporate artificial padding into

the input sequences to precisely control the feature importance and simulate the sliding window

mechanism commonly used in time series prediction tasks. This section presents our findings

on identifying inconsistency and non-robust saliency explanations across multiple datasets.
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6.4.1 Experiment setup

6.4.1.1 Dataset description

We consider five real-world univariate time series datasets: Power Demand (PD), Wine (WIN),

Italy Power Demand (IPD), Two Lead ECG (ECG) and Mote Strain (MS). PD derives from

Keogh et al. [KLF05], while the others are available in the UCR Archive [CKH+15]. We

preprocess all datasets by dividing them into non-overlapping windows a priori, and the class

labels of each window are available. However, the ground truth does not include the attribution

of the prediction. In Sections 6.4.2.1 and 6.4.2.2, we introduce artificial padding with random

noise to each input window and assign equal importance to the area of the original input.

6.4.1.2 Experiment configuration

For our experiments, we select three representatives from the common saliency explanation

approaches [IGCBF20] for time series data. We employ Feature Permutation (FP) and Fea-

ture Ablation(FA) [SHJ+17], which are perturbation-based methods, and Integrated Gardients

(IG) [STY17], which is a gradient-based method. We use the implementation provided by

Ismail et al. [IGCBF20].

We investigate the behavior of saliency explanations on three types of network structures:

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and attention-

based networks. To this end, we pick three implementations commonly used for time series

data: LSTM [HS97], TCN [LFV+17], and Transformer [VSP+17]. We configure these models

with a Softmax output layer for classification and train the models on all the padded variants

of the input windows, including top, middle, and bottom padding. During the test phase, we

generate saliency maps and analyze the effect of each group of padding variants separately.

6.4.2 Performance

6.4.2.1 Consistency evaluation

We apply artificial padding to each univariate time window to evaluate the explanation consis-

tency over sliding windows. Specifically, we expand each univariate data window wd
s ∈ Rn×d

to a matrix m ∈ Rα×⌊β·d⌋(α > n, 1 < β < 3). The data window wd
s is placed on d consecu-

tive dimensions of m, and the other dimensions are filled with randomly sampled noise from a

normal distribution. The effect of a sliding window can be simulated by placing wd
s at different
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rows in m. Specifically, we allocate wd
s at the top, middle, and bottom third of m to generate

three overlapping sliding windows, i.e., three variants of each input window. We call the area

in the saliency map corresponding to the input window wd
s , the area of interest. We show the

experimental results by setting α = 4 and β = 5
3 . An example of the padded data window is

shown in Figure 6.3.

In the proposed construction, each padding variant group (top/middle/bottom) contains the

same input window but is only located differently. To examine the consistency of the saliency

explanations, we compare the feature ranking of the obtained attributions at corresponding

locations in each padding variant. As a showcase, we visualize the result of one window from

the IPD dataset in Figure 6.3. The upper left group of saliency maps in Figure 6.3 represent

the input window at various padding positions, the y-axis being the time and the x-axis being

the input features. Only the second feature contains essential information to be learned by the

classifiers. The remaining groups of saliency maps correspond to the three explanation models

FP, FA, and IG. We expect the second feature column’s top, middle, and bottom third to be

marked as salient. However, as Ismail et al. [IGCBF20] have already shown, classical saliency

methods might fail on time series data due to the temporal feature, and our experiment results

in Figure 6.3 confirm their claim where the latest timestamps play more important roles in the

prediction, especially for LSTM. The explainers suffer from distinguishing important features

in TCN and Transformers.

Despite the sub-optimal saliency explanations, we analyze the consistency between the

padding variants. We empirically evaluated the disagreement on the saliency explanations

using Kendall’s τ [Ken48] and Pearson correlation. Kendall’s τ measures the smallest number

of swaps of adjacent elements that transform one ranking into the other, while the Pearson

correlation coefficient measures the covariance of the two random variables normalized by the

product of their standard deviations. All quantities can be estimated using finite samples.

We calculate the importance scores for each timestamp and input feature, obtaining the

importance ordering of the area of interest. For each pair of ranking from the three padding

variants, we analyze the pairwise comparisons among rankings of feature-time pixels in the

saliency explanations of FP, FA, and IG. The average Kendall’s τ and Pearson correlation (ρ)

are summarized in Table 6.1 and the absolute values are visualized in Figure 6.4.

Table 6.1 contains, for each data set, neural network architecture, and saliency map, the av-

erage Kendall’s τ and Pearson correlation coefficients with the respective variance. From the

table, it is easy to spot how the importance scores rankings vary in ranges below 1. Kendall’s
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Figure 6.3: Saliency explanation of one data window from the IPD dataset: the upper left group
blue heatmaps denote the variants of one input frame from the IPD dataset, where rows are times-
tamps and columns are features. The real data window is located at the frame’s top, middle, and
bottom third of the second feature, and the rest of the elements are random noise. The other three
groups of saliency maps are acquired from three feature attribution algorithms: Feature Permuta-
tion (FP), Feature Ablation (FA), and Integrated Gradient (IG).
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Figure 6.4: Violin plots of inconsistent saliency explanations.

τ and Pearson correlation coefficients range between 1 and −1, where 1 indicates complete

agreement among the rankings, while values close to zero suggest non-constant and indepen-

dent orderings. From Figures 6.4a and 6.4b, we observe that the coefficients are, in most cases,

crowded at low values, and only rare cases show good agreement among the obtained rankings

in the different windows.
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A special case is the LSTM model, which provides consistent saliency maps among the

various windows. However, observing the explanations of the LSTM model, we see that both

Kendall’s τ and Pearson correlation coefficients tend to accumulate to high scores (≈ 1) as

the LSTM model tends to accumulate the learning in the last timestamps, thus implying that

the explanation methods assign high importance only to the last timestamps. We observed that

FA correctly finds the relevant timestamps but cannot distinguish between noisy and relevant

features.

In addition to the relative ranking, we also check the quality of saliency explanations us-

ing Recall@k. Table 6.2 contains the Recall@k obtained among the importance rankings of

timestamps in the areas of interest. Recall@k measures the ratio among correctly relevant and

retrieved elements and the number of relevant elements and ranges in [0, 1]. High recall (≈ 1)

indicates that the highly ranked feature-time pixels are concentrated in the area of interest,

while low Recall@k indicates the inability to find relevant elements correctly.

6.4.2.2 Robustness evaluation

To evaluate the robustness of saliency explanations, we apply the feature swapping depicted

in Figure 6.2. Specifically, we continue using the padded input matrix m ∈ Rα×⌊β·d⌋ from Sec-

tion 6.4.2.1 and swap the feature dimensions containing the original input data window (area of

interest) with noise dimensions. We train different classification models with the swapped and

not swapped data. For simplicity, we always locate the original window in the middle of the

selected feature dimension in this experiment. We compare the ranking of feature-time pixel

explanations in the areas of interest of swapped and not swapped pairs. The Kendall’s τ and

Pearson correlation ρ are summarized in Table 6.3.

The absolute values of Kendall’s τ and Pearson correlation for TCN and Transformer mod-

els indicate a significant difference in saliency maps after the swapping. In other words, when

the important feature is switched with a noisy feature, the feature attribution in the saliency map

is not switched correspondingly. An exception is the LSTM model, which robustly explains all

datasets except IPD. However, the explanation quality is limited.

6.5 Conclusion

While explanations based on saliency maps have succeeded in vision and natural language

domains, they remain challenging for time series data. In addition to the well-known challenges
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posed by the additional time dimension to the input features, in this chapter, we have also

identified issues on consistency and robustness.

We explored the issue of inconsistency raising in saliency explanations over overlapping

time windows and the issue of non-robustness when swapping features in time series windows.

The presented exploratory analysis aims to raise awareness of the described problems and

motivates further development of saliency methods that address the existing flaws.
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6.5 Conclusion

Table 6.1: Consistency ranking analysis

Feature
Permutation (FP)

Feature
Ablation (FA)

Integrated
Gradients (IG)

τ ρ τ ρ τ ρ

PD

LSTM 0.936±0.063 0.967±0.035 0.868±0.114 0.921±0.092 0.852±0.024 0.968±0.012

TCN 0.475±0.143 0.625±0.155 0.247±0.200 0.334±0.256 0.060±0.148 0.080±0.168

Transformer 0.040±0.136 0.049±0.145 −0.049±0.149 −0.086±0.161 0.026±0.138 0.030±0.145

WIN

LSTM 0.914±0.042 0.961±0.023 0.843±0.044 0.908±0.030 0.918±0.022 0.971±0.009

TCN 0.445±0.164 0.530±0.169 0.220±0.159 0.287±0.149 0.052±0.200 0.057±0.206

Transformer 0.150±0.192 0.196±0.207 −0.11±0.218 −0.198±0.236 0.107±0.180 0.140±0.178

IPD

LSTM 0.475±0.086 0.633±0.101 0.531±0.047 0.725±0.045 0.767±0.030 0.921±0.019

TCN 0.001±0.083 −0.002±0.112 −0.004±0.075 −0.031±0.095 0.192±0.083 0.277±0.114

Transformer 0.124±0.115 0.167±0.157 0.054±0.141 0.042±0.199 0.204±0.088 0.295±0.121

ECG

LSTM 0.789±0.070 0.873±0.056 0.738±0.062 0.827±0.055 0.954±0.007 0.995±0.001

TCN 0.102±0.074 0.143±0.096 0.072±0.062 0.054±0.070 0.129±0.078 0.189±0.101

Transformer 0.089±0.082 0.098±0.110 0.020±0.092 −0.038±0.137 0.315±0.066 0.453±0.081

MS

LSTM 0.642±0.072 0.768±0.066 0.632±0.078 0.753±0.070 0.950±0.007 0.995±0.002

TCN 0.038±0.096 0.053±0.134 −0.031±0.116 −0.058±0.167 0.055±0.061 0.081±0.089

Transformer 0.124±0.136 0.156±0.189 0.093±0.165 0.076±0.244 0.291±0.089 0.423±0.125

Table 6.2: Consistency Recall@k

Feature Permutation (FP) Feature Ablation (FA) Integrated Gradients (IG)

Top Middle Bottom Top Middle Bottom Top Middle Bottom

PD

LSTM 0.041 0.000 0.000 0.072 0.000 0.000 0.165 0.268 0.268

TCN 0.227 0.216 0.216 0.454 0.320 0.320 0.103 0.206 0.206

Transformer 0.258 0.258 0.258 0.825 0.928 0.928 0.351 0.330 0.330

WIN

LSTM 0.064 0.051 0.051 0.103 0.060 0.060 0.244 0.248 0.248

TCN 0.256 0.269 0.269 0.500 0.487 0.487 0.286 0.295 0.295

Transformer 0.333 0.812 0.812 0.949 0.962 0.962 0.389 0.385 0.385

IPD

LSTM 0.250 0.250 0.250 0.625 0.708 0.708 0.375 0.458 0.458

TCN 0.250 0.250 0.250 0.875 0.958 0.958 0.292 0.375 0.375

Transformer 0.250 0.250 0.250 0.750 0.708 0.708 0.167 0.292 0.292

ECG

LSTM 0.171 0.171 0.171 0.341 0.244 0.244 0.256 0.268 0.268

TCN 0.256 0.256 0.256 0.634 0.634 0.634 0.329 0.305 0.305

Transformer 0.256 0.256 0.256 0.780 0.829 0.829 0.244 0.293 0.293

MS

LSTM 0.250 0.262 0.262 0.536 0.560 0.560 0.357 0.321 0.321

TCN 0.250 0.262 0.262 0.750 0.798 0.798 0.298 0.381 0.381

Transformer 0.250 0.250 0.250 0.845 0.821 0.821 0.274 0.369 0.369
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Table 6.3: Robustness ranking analysis

Feature Permutation (FP) Feature Ablation (FA) Integrated Gradients (IG)

τ ρ τ ρ τ ρ

PD

LSTM 0.972±0.064 0.985±0.036 0.973±0.112 0.982±0.102 0.807±0.064 0.942±0.066

TCN 0.680±0.168 0.803±0.157 0.597±0.259 0.706±0.285 0.221±0.148 0.307±0.175

Transformer 0.042±0.141 0.052±0.153 0.129±0.148 0.164±0.161 0.123±0.133 0.171±0.143

WIN

LSTM 0.932±0.047 0.971±0.021 0.924±0.056 0.967±0.029 0.929±0.075 0.972±0.057

TCN 0.598±0.107 0.696±0.083 0.553±0.094 0.676±0.073 0.083±0.186 0.105±0.189

Transformer 0.267±0.241 0.347±0.283 0.466±0.153 0.587±0.167 0.345±0.149 0.473±0.143

IPD

LSTM 0.446±0.124 0.603±0.147 0.579±0.075 0.732±0.076 0.699±0.062 0.864±0.053

TCN 0.114±0.141 0.157±0.188 0.277±0.159 0.358±0.194 0.254±0.137 0.361±0.183

Transformer 0.369±0.158 0.480±0.178 0.364±0.215 0.458±0.244 0.322±0.148 0.449±0.192

ECG

LSTM 0.821±0.100 0.898±0.073 0.841±0.133 0.905±0.103 0.967±0.029 0.996±0.028

TCN 0.382±0.119 0.515±0.138 0.517±0.087 0.657±0.101 0.207±0.125 0.300±0.172

Transformer 0.276±0.126 0.365±0.153 0.535±0.141 0.673±0.141 0.415±0.081 0.582±0.101

MS

LSTM 0.747±0.112 0.857±0.089 0.694±0.107 0.811±0.090 0.968±0.027 0.996±0.024

TCN 0.147±0.140 0.201±0.187 0.184±0.144 0.248±0.189 0.068±0.087 0.100±0.126

Transformer 0.473±0.220 0.575±0.238 0.513±0.215 0.627±0.239 0.453±0.105 0.621±0.125

Table 6.4: Robustness Recall@k

Feature Permutation (FP) Feature Ablation (FA) Integrated Gradients (IG)

Top Middle Bottom Top Middle Bottom Top Middle Bottom

PD

LSTM 0.031 0.000 0.000 0.072 0.000 0.000 0.134 0.237 0.237

TCN 0.227 0.258 0.258 0.299 0.443 0.443 0.155 0.216 0.216

Transformer 0.268 0.309 0.309 0.742 0.876 0.876 0.268 0.299 0.299

WIN

LSTM 0.056 0.030 0.030 0.103 0.051 0.051 0.231 0.248 0.248

TCN 0.274 0.265 0.265 0.389 0.355 0.355 0.295 0.282 0.282

Transformer 0.303 0.252 0.252 0.466 0.568 0.568 0.179 0.372 0.372

IPD

LSTM 0.250 0.250 0.250 0.458 0.417 0.417 0.375 0.458 0.458

TCN 0.250 0.250 0.250 0.458 0.500 0.500 0.333 0.375 0.375

Transformer 0.250 0.250 0.250 0.458 0.542 0.542 0.292 0.333 0.333

ECG

LSTM 0.244 0.134 0.134 0.341 0.232 0.232 0.256 0.280 0.280

TCN 0.256 0.256 0.256 0.476 0.476 0.476 0.232 0.256 0.256

Transformer 0.256 0.256 0.256 0.634 0.622 0.622 0.390 0.305 0.305

MS

LSTM 0.250 0.250 0.250 0.381 0.417 0.417 0.333 0.262 0.262

TCN 0.250 0.250 0.250 0.500 0.500 0.500 0.405 0.381 0.381

Transformer 0.250 0.250 0.250 0.357 0.405 0.405 0.190 0.226 0.226
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7
Example-based Explanation

In this chapter, we showcase a concrete time series anomaly interpretation approach ProtoAD.

ProtoAD learns prototypes end-to-end during model training and employs them as example-

based explanations for the normal patterns during anomaly detection. Without significant im-

pact on the detection performance, prototypes shed light on the deep black-box models and

provide intuitive understanding for domain experts and stakeholders. We extend the widely

used prototype learning in classification problems into anomaly detection. By visualizing both

the latent space and input space prototypes, we intuitively demonstrate how normal data are

modeled and why specific patterns are considered abnormal. As an example-based explana-

tion approach, ProtoAD provides an intuitive human-understandable interpretation of the time

series anomalies and, hence, is valuable in real-world applications.

7.1 Introduction

As introduced in Chapter 4, Autoencoders are widely used for unsupervised anomaly detec-

tion tasks. Despite the performance advantage, Autoencoders also suffer from criticisms of

other deep neural networks, such as the lack of transparency. Though the detected anomalies
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fit well with standard evaluation criteria, their reliability is not well-proven. The lack of hu-

man interpretable information makes it hard to tell why an anomaly is abnormal, especially

in high-dimensional time series data or long input sequences. To address the black-box is-

sue, we use example-based prototypes as an intuitive and explainable solution for interpreting

anomalies in time series data. Prototypes are widely used for case-based reasoning in com-

puter vision [LLCR18, CLT+18, HCLR19], graph learning [ZLW+21] and sequential data

learning [NCC+21, MXQR19, GGOGP19]. Different from Chapter 5, where we learn proto-

types using the K-Medoid algorithm as a prior step, here we learn prototypes in an end-to-end

fashion by embedding a prototype layer in the Autoencoder. With the built-in prototype layer

in the neural network, prototype-based models are efficient in training without requiring ex-

tra investigation into the interpretability functionalities. Moreover, the prototypes are usually

self-contained and straightforward, e.g., representative animal faces, sentences, and sensor data

patterns. However, prototypes are still understudied in the anomaly detection field.

We propose using prototypes to interpret normal data during anomaly detection using Au-

toencoders. In this context, data showing certain repeating normal patterns is generated by one

or more latent distributions, while the anomaly is any data point or period that deviates from

these normal patterns. We model the normal patterns of the time series data with prototypes in

the latent space of the Autoencoder and learn multiple prototypes to discover the latent com-

ponents of the normal data distribution. Anomaly patterns that lie distantly from the normal

patterns in the latent space can be explained by comparing them with the learned prototypes.

The main contribution of this chapter can be summarized as follows:

1. we propose ProtoAD, an end-to-end LSTM-Autoencoder for anomaly detection with

prototype learning

2. we develop latent space prototype-based explanations for the understanding of the nor-

mal state of the studied data

3. we evaluate our method with synthetic and real-world time series data. Moreover, we

visually demonstrate prototype examples to qualitatively show our model’s benefit.
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7.2 Related works

7.2.1 Reconstruction-based anomaly detection

Autoencoders have been used as an unsupervised anomaly detection approach for years. Feed-

forward Autoencoders [ZSM+18] and Variational Autoencoders [XCZ+18] are used for time-

independent data. In contrast, RNN-based Autoencoders [MRA+16] show their strength in

detecting contextual anomalies in time series data. Based on the reconstruction error, a standard

approach for estimating anomaly likelihood is to assume the reconstruction error following a

normal distribution and measure the Mahalanobis distance between the reconstruction error of

unknown data and the estimated distribution [MRA+16]. In addition to reconstruction error, the

hidden representation in the latent space can also be used for likelihood estimation [ZSM+18].

Gaussian Mixture Model (GMM) [ZSM+18] and energy-based model [ZCLZ16] have also

been used for the likelihood estimation. Common thresholding techniques over the anomaly

likelihood are based on maximizing the performance on a validation set, which requires labels

in advance [MRA+16].

Other approaches, including the hierarchical temporal memory (HTM) [ALPA17] and tem-

poral convolutional network (TCN) [HZ19] have also been adopted in TSAD concerning differ-

ent use cases and data properties. However, they are not directly relevant to the reconstruction-

based models.

7.2.2 Explanation with prototypes

Due to the complex properties of both feature and time dimensions of time series data, pro-

totypes are considered an intuitive explanation. Common prototype learning approaches for

neural networks follow a three-step paradigm: 1) representation learning, 2) prototype learning

in the latent space, and 3) class prediction. The objective commonly includes 1) minimizing

classification error, 2) minimizing the distances between each hidden representation and one of

the prototypes, and 3) maximizing the distances between prototypes.

In the existing prototype learning literature, Li et al. [LLCR18] employ a multi-layer

convolutional neural network to construct the Autoencoder, which learns hidden represen-

tations for image data. They rely on the decoder to project the learned prototypes in the

human-understandable space, though sometimes producing unrealistic reconstructions. Us-

ing a single encoder to replace the Autoencoder is considered as a reduction of training effort
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in [CLT+18, MXQR19], and the authors use the nearest neighborhood of each prototype in

the latent space as the corresponding realistic patterns in the input space. Chen et al. [CLT+18]

and Hase et al. [HCLR19] build up the encoder with convolutional neural networks to en-

code image data, Ming et al. [MXQR19] use RNNs for sequential data, Ni et al. [NCC+21]

use a convolutional layer to learn time series representations, Zhang et al. [ZLW+21] employ

graph neural networks for the encoder. In our work, we use the LSTM-Autoencoder for both

reconstruction-based TSAD and hidden space representation learning.

The standard objective functions of existing prototype learning approaches consist of mul-

tiple regularisation terms that are trained jointly. To ensure the representation ability of the

prototypes, many existing works [LLCR18, MXQR19, GGOGP19, ZLW+21, CLT+18] min-

imize the distance between each prototype and every nearby hidden representation as well

as every hidden representation to each prototype. Furthermore, the learned prototypes are

supposed to be diverse from each other [MXQR19, ZLW+21, GGOGP19]. In the objective

function, we follow the standard design of the regularization terms above. However, different

from most existing works, which use cross-entropy for their classification tasks to minimize

the classification error [LLCR18, MXQR19, HCLR19], in our unsupervised setting, we use

the reconstruction-error to regularize the reconstruction process of normal data.

Besides prototypes, other techniques have also been used to explain time series data. The

representative subsequences Shapelets [KML20, LCX+20] can be similarly used for explana-

tion. Instead of finding the representative patterns as prototypes, counterfactuals [AALC21]

explain the instance towards the opposite class.

7.3 Methodology

7.3.1 Preliminaries

7.3.1.1 Terminology

Let X = {Xt}t∈Z be a d-dimensional time series that shows a regularly repeating pattern over

time periods of some length L. These repeating patterns are contained in sliding windows

Wt = {Xt+1, . . . , Xt+L} of L consecutive elements of the time series. Often, the window size

L can be selected based on prior knowledge of the dataset, which is known to show seasonality

over, for example, one day or one week.
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In ProtoAD, we consider both point and contextual anomalies. We assume that the data

points are generated by a periodically stationary time series X with periodicity L [WSM15,

UD09]. The time series consists of regularly repeating patterns of length L, which evolve over

time without distributional changes, i.e., we do not consider concept drifts [GŽB+14].

Let (Wt, yt)t∈Z be the dataset after applying the sliding window and yi ∈ {0, 1} is the label

of the window Wt (0 for normal data and 1 for anomaly). The anomaly detection is conducted

on the window level. A window is considered abnormal if at least one point or a sub-window

with multiple points shows significantly different behavior from the normal windows. The

significance is determined by comparing the window anomaly score predicted by the model

and a user-defined threshold.

7.3.1.2 Problem statement

Given the multi-dimensional time series data with applied sliding windows, the target is to train

an Autoencoder-based end-to-end anomaly detector that

1. detect abnormal windows in an unsupervised manner

2. learn representative prototypes of normal data in the latent space

3. leverage interpretation of anomalies based on the prototypes of normal data.

7.3.2 Architecture overview

In ProtoAD, we use an LSTM-Autoencoder to learn time series hidden representations in the

latent space and feed the representations to the prototype layer for similarity-based prototype

comparison. Specifically, we design the architecture and training procedure for unsupervised

anomaly detection, while only normal data is used for the training and prototype learning. An

overview of the ProtoAD architecture is shown in Figure 7.1.

We construct the LSTM-Autoencoder in the fashion of [MRA+16]. More specifically, the

d dimensional input window Wt = {Xt+L
t+1 } is feed into the encoder

f : RL×d → Rm (7.1)

The last hidden state of the encoder LSTM unit hi = f(Wt) (hi ∈ Rm) is used as the hidden

representation of the input window in latent space. A same-structured decoder

g : Rm → RL×d (7.2)
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Encoder DecoderWt W′ 

t

Reconstruction error

Anomaly score

Figure 7.1: ProtoAD overview: ProtoAD consists of an encoder and a decoder, which reconstructs
the input data window Wt to W

′

t . The anomaly score is calculated based on the reconstruction error.
In the latent space, prototypes (stars) are learned as representative points of the encoded normal
windows (white dots). In the test phase, latent representations of the abnormal data windows (red
dots) can also be explained by comparing them with the learned prototypes.

targets at reconstructing the window W
′
t = {X ′t+L

t+1 } from the hidden representation. The

decoder LSTM unit takes hi as the initial hidden state while taking the real data from the

previous timestamp as input. We train the Autoencoder to minimize the reconstruction error of

normal windows, i.e., no anomaly data will be used during training.

The reconstruction error at timestamp t is defined as

et = |Xt −X
′
t | (7.3)

The train set is used to estimate a normal distribution N(µ,Σ) (N(µ, σ) for univariate data) of

the reconstruction error for multivariate input data. And the likelihood of a data point being

abnormal is defined by the anomaly score

at =

{
1

σ
√
2π
e−(et−µ)2/2σ2

d = 1

(et − µ)TΣ−1(et − µ) d > 1
(7.4)

The largest anomaly score is picked up to represent the window anomaly score

at+L
t+1 = max

i=1,...,L
(at+i) (7.5)

In our work, we do not specify a threshold over the window anomaly scores to get a binary pre-

diction. Instead, we directly evaluate the AUROC (Area Under the Receiver Operating Charac-

teristic curve) score based on the real-valued anomaly scores. Different existing thresholding

techniques can be applied to get a binary prediction in such a situation [MRA+16, SZN+19,

HCL+18].
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Based on the anomaly detection model above, we introduce a prototype layer between the

encoder and decoder, which leverages interpretable prototypes of the normal data during the

end-to-end training process. The prototype layer does not influence the information flow from

the encoder to the decoder, i.e., the only information the decoder gets from the encoder is the

last encoder’s hidden state. The prototype layer contains k prototypes pi ∈ Rm(i = 1...k) to

be learned, where k is a user-defined parameter and k vectors are randomly initialized within

the range [−1, 1]. As introduced in Section 7.3.3, several regularization terms are employed in

the objective function to get the expected prototypes.

In most existing prototype-based models for classification task [MXQR19, KKK16, GGOGP19],

the prototype layer is followed by some linear layers and a Softmax layer for the production of

prediction, which increases the complexity of the network and requires additional regulariza-

tion to enforce interpretability. As an anomaly detection model, our outputs are derived directly

from the Autoencoder reconstruction errors. Therefore, we omit the additional layers after the

prototype layer to simplify the network structure.

7.3.3 Objective function

The objective in the training phase is to 1) train the Autoencoder with normal windows such

that the reconstruction error is minimized and 2) learn a batch of prototypes from the normal

data. The reconstruction error loss of the Autoencoder is given by

Le =
1

n

n∑
i=1

L∑
l=1

et+l (7.6)

where n is the number of sliding windows. To ensure that the learned prototypes are infor-

mative and diverse enough to each other, we use the diversity loss,

Ld =

k∑
i=1

k∑
j=i+1

max(0, dmin − ||pi − pj ||22)2 (7.7)

which defines the threshold dmin that only applies this penalize to nearby prototype pairs.

Finally, to ensure the prototypes are representative of the local hidden representations, we

define the following representation regularization term

Lr =
1

k

k∑
j=1

min
i∈[1,n]

||pj − hi||2 +
1

n

n∑
i=1

min
j∈[1,k]

||hi − pj ||2 (7.8)
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Table 7.1: Dataset description

Length Dimensionality Anomaly rate (%)

Synthetic 20000 1 1.0

Taxi 17520 1 4.4

SMAP 562800 25 13.1

MSL 132046 55 10.7

SMD 56958 38 9.5

The first term encourages that each prototype is close to at least one hidden representation,

while the second term encourages each hidden representation to be assigned to one prototype.

The overall objective function is

L = λeLe + λdLd + λrLr (7.9)

where λe, λd and λr are weighting hyperparameters.

7.4 Experiments

In this section, we introduce the experiments on ProtoAD under different settings. We experi-

ment with different real-world datasets with a variety of anomaly types. In addition, to evaluate

the model performance on specific data characteristics, we also introduce a synthetic dataset

with artificial anomalies. Finally, we demonstrate the prototypes visually and analyze the pro-

totype properties w.r.t. a variety of parameter settings. The source code of ProtoAD is available

online 1.

7.4.1 Experiment setup

7.4.1.1 Dataset description

We experiment on one synthetic dataset and four common real-world benchmark datasets in

the TSAD domain. The dataset properties are summarised in Table 7.1.

1https://github.com/KDD-OpenSource/ProtoAD
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7.4 Experiments

To understand the anomaly detection process and the learned prototypes, we introduce a

one-dimensional synthetic dataset sampled from a sine wave with amplitude 1 and period 100

timestamps. A random noise ϵ ∈ [0, 0.1] is added to every timestamp. In addition, we multiply

a random factor α ∈ [0, 1] to every 100th timestamp in the test set to simulate point anomalies.

We define a half period of the sine wave as the window length (i.e., L = 50), such that the

model is supposed to learn the crests and troughs as two types of prototypes.

The New York City Taxi (Taxi) dataset is a one-dimensional real-world dataset with a clear

periodical feature. It records the passenger counts over days in 2014. Extreme passenger

counts on public holidays are considered anomalies. Following [CSAH16], we aggregate the

count numbers into 30-minute intervals. We take one day (i.e., L = 48) as the window length.

SMAP and MSL are introduced in Section 2.4.1.1. They contain both point and contextual

anomalies. However, anomaly data is also present in the train sets, which can impact the purity

of prototypes. There is no common repeating pattern in these datasets. We set the window

length L as 100. SMD is introduced in Section 4.4.1.1. We only use the data from one machine

(machine-1-1) in our experiments. We set L = 100 for SMD.

7.4.1.2 Competitors

To the best of our knowledge, this is the first work that engages TSAD and prototype learn-

ing. The existing prototype learning networks [MXQR19, NCC+21, GGOGP19] commonly

work in a supervised manner, which requires labeled data for the training phase. Therefore,

they are not directly relevant to our setting. We mainly compare our method with the unsuper-

vised anomaly detection approaches. Firstly, we compare with the LSTM-Autoencoder (LST-

MAE) [MRA+16], which has a similar setting as ours but without the prototype layer. Thereby,

we can determine whether the prototype learning damages the original reconstruction-based

anomaly detection. Furthermore, we compare with one of the state-of-the-art unsupervised

TSAD approach OmniAnomaly [SZN+19]. We follow most of the default hyperparameter

settings in [SZN+19] but use the window length same as in our work for the sliding window.

7.4.1.3 Evaluation metric

We adopt the AUROC score as the evaluation metric. Considering the essential requirement of

detecting both point and contextual anomalies, we only evaluate on the window level. A data

window is abnormal if it contains one or multiple abnormal instance(s).
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Table 7.2: Anomaly detection performance (AUROC)

LSTMAE OmniAnomaly ProtoAD (Ours)

Synthetic 0.50 0.95 0.54

Taxi 0.53 0.52 0.63

SMAP 0.41 0.49 0.40

MSL 0.73 0.50 0.73

SMD 0.95 0.51 0.95

7.4.1.4 Parameter configuration

In all experiments, we set λe = 0.025, λd = 0.2 and λr = 0.5. During training, 25% of

the data is used for learning the parameters µ and Σ (σ for univariate data). All models are

trained for 100 epochs with batch size 20, learning rate 0.0001, and dropout rate 0.2. We use

the Adam optimizer [KB14]. All experiments are conducted on an NVIDIA Quadro RTX 6000

24GB GPU. The experimental results are averaged over three runs.

7.4.2 Performance

7.4.2.1 Overall performance

Firstly, we report the AUROC score over different models in Table 7.2. For ProtoAD, we

take the number of prototypes k = 10. There is no significant difference between LSTMAE

and ProtoAD, which indicates that the additional prototype layer and corresponding learning

process do not directly impact the anomaly detection performance. ProtoAD even benefits

from the prototype learning in the Synthetic and Taxi datasets. OmniAnomaly shows worse

AUROC scores in comparison with the other two models. Different from [SZN+19], where

all possible thresholds over the predicted anomaly scores are traversed, and only the threshold

with the best F1 score is reported, the AUROC score reflects the more general quality of the

anomaly scores over multiple thresholds.
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7.4.2.2 Latent space visualization

In this section, we investigate a visualization of the Autoencoder hidden space to understand

how time series data windows are embedded and how prototypes of normal data are learned.

We use UMAP [MHM18] to reduce the high-dimensional latent representations into two di-

mensions. The result is visualized in Figure 7.2. Here, we set k = 5 for all datasets. The

prototypes shown in the plots are learned during the training phase. The plotted normal and

anomaly points are latent space embeddings of the test data.

In the synthetic data, the normal data lie in two regions. Four prototypes are learned from

the trough half (lower left) and one from the crest half (middle right). In the real-world datasets,

especially the SMAP and MSL with polluted training data, normal and abnormal data do not

clearly show separated clusters. However, the learned prototypes represent the major blocks of

dense regions showing normal patterns. Specifically, the prototypes gather at the bottom right

corner for SMD, while no prototype is at the larger upper cluster. A possible reason is that

the high-dimensional server data contains many zero values. The model can not summarize

informative patterns in the train set, and slightly different normal patterns in the test data are

mapped into a different region.

7.4.2.3 Prototype-based explanation

Finally, we map the prototypes learned in the latent space back to the human-interpretable

input space. Similar to [CLT+18, MXQR19], we map the prototypes back to the input space

using the nearest training data embedding in the latent space to prevent unrealistic produced

by the decoder. Moreover, each neighbor can only be used once, making every prototype

unique. We visualize the prototypes learned in the one-dimensional datasets Taxi and Synthetic

in Figure 7.3 with five prototypes (P1 to P5) for each dataset.

In Figure 7.3a and Figure 7.3b, four similar prototypes (P1, P2, P4, P5) show an increas-

ing taxi usage pattern in the morning and turning down at night. P3 can be seen as a delayed

version of the other four, which is a weekend pattern. The light lines in the background are

the normal (gray) and anomaly (red) sequences with the smallest distance to the correspond-

ing prototypes in the latent space. Most of the normal patterns fit the assigned prototypes.

A considerable number of both normal and anomaly sequences have the smallest latent space

distance to P3. Some of them visually fit better with other prototypes, while the distance com-

parison and prototype assignment do not directly take place in the input space but in the latent
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SMD

Anomaly Normal Prototypes

Synthetic Taxi

MSL SMAP

Figure 7.2: ProtoAD latent space visualization using UMAP

space. However, this is effective for long and high-dimensional sequences. Figure 7.3b depicts

the explanation of anomaly patterns, namely how different are the anomaly sequences to their

nearest prototypes. Figure 7.3c shows the three assigned normal and anomaly sequences (if

available) to each prototype. Since the point anomalies are always generated at the beginning

of the crest half, all anomalies are assigned to the crest prototype P4.

For the high-dimensional datasets, oftentimes we are only able to observe the prototypes in

the latent space. In order to simplify the high-dimensional data in the input space, approaches

in Chapter 5 can be used to extract the most important time period and features. Another

extension possibility is to reduce the potential redundant prototypes (e.g., P1, P2, P3, P5

in Figure 7.3c).

7.4.2.4 Efficiency comparison

Training the Autoencoder with an extra prototype layer does not bring much training ex-

pense. We compare the epoch training time between LSTMAE (k = 0) and ProtoAD (k ∈
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P1
P2

P3
P4

P5

(a) Taxi normal

P1
P2

P3
P4

P5

(b) Taxi anomaly

P1
P2

P3
P4

P5

(c) Synthetic normal and anomaly

Figure 7.3: Prototype visualization (blue) with assigned normal (gray) and anomaly sequences
(red).

[5, 10, 20, 30, 50]). As shown in Figure 7.4, there is no significant increase in training time

for ProtoAD. On the contrary, due to the complex model structure, the epoch training time for
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Figure 7.4: Efficiency analysis: epoch training time with different numbers of prototypes k ∈
{0, 5, 10, 20, 30, 50}.

OmniAnomaly is: Taxi 39s, Synthetic 32s, SMD 225s, MSL 888s and SMAP 3627s.

7.5 Conclusion

In this chapter, we explored using prototypes to explain reconstruction-based anomaly de-

tection. Specifically, we integrate the recent end-to-end prototype learning into the LSTM-

Autoencoder. We use the latent space representations in the Autoencoder, which are not di-

rectly used in the conventional reconstruction-based anomaly detection models. In our em-

pirical evaluation, we figured out that adding a prototype learning step during the end-to-end

training of the Autoencoders does not damage the performance of the Autoencoder. The pro-

totypes contribute to an intuitive understanding of the normal patterns.

Although the prototypes learned in the two one-dimensional datasets are realistic and in-

terpretable for humans, there are still two challenges. Firstly, the selection of parameter k is

sometimes tricky. Pruning techniques can be applied to reduce the redundancy in the proto-

types. Moreover, extracting useful information from high-dimensional or very long prototype

sequences may be challenging. The global and local importance analysis introduced in Chap-

ter 5 can be used as a prior step to let the visualization only focus on important features and

time periods.
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8
Conclusion

8.1 Discussion

Time series are ubiquitous, far beyond the common application areas. For example, treating the

trajectory of an electron as a spatial-temporal sequence and viewing the evolution of bacterial

community with environmental variables as a time series. Even the migration patterns in demo-

graphic changes constitute a time series. Among various time series analysis tasks, anomaly

detection is one of the most essential and impactful. Identifying outliers within time series

data contributes significantly to extracting informative knowledge within research contexts.

However, a notable gap persists between cutting-edge research and the practical deployment

and decision-making processes in real-world applications. This discrepancy highlights vital

challenges from three distinct perspectives:

1. Complex and noisy time series in real-world applications: Time series collected in

real-world scenarios are usually noisy and contain missing values. It is hard to identify

task-relevant features and periods when collecting the data without deep domain knowl-

edge and prior understanding of the machine learning models. This ambiguity leads to
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significant redundancy. Moreover, due to the large volume of time series yet infrequent

appearance of anomalies, labeling becomes extremely expensive.

2. Real-time streaming processing: The value of time series analysis usually finds a place

in the real-time data generation and collection phase. Addressing anomalies at the earli-

est possible moment maximizes its impact. Consequently, models need to learn dynamic

patterns with the continuous arrival of streaming data instances and adapt efficiently to

the latest patterns.

3. Temporal anomaly interpretation A substantial gap exists between powerful deep

anomaly detectors and the trustworthiness demand in safety-crucial application domains.

While developing new anomaly detection models, the model interpretability and anomaly

reasoning should be prioritized on par with the detection accuracy. Despite the recent ad-

vancements of interpretable machine learning techniques in the vision and text domain,

efficiently and reliably interpreting complex time series data remains a persistent chal-

lenge.

In this dissertation, we first systematically introduced the background and existing solu-

tions in the temporal anomaly detection and interpretation field in Part I. Addressing the three

challenges highlighted above, we proposed our solution in the following three parts (Parts II

to IV) accordingly. In Figure 8.1, we append a technique axis to the problem axis in Fig-

ure 1.2, which forms a sparse matrix for the studied problems and used solution techniques. In

the remainder of this section, we summarize our solution techniques and sketch the potential

extension possibilities.

8.1.1 Time series anomaly detection

In Chapter 2, we proposed ContrastAD, a contrastive learning-based anomaly detection ap-

proach for static time series. The representation learning of complex time series is an impor-

tant bottleneck in improving anomaly detection performance. Inspired by recent advances in

contrastive learning in the image representation learning field, we extend it to the time series

domain. A major challenge is to define contrastive pairs for the learning procedure. Com-

mon image data transformations (e.g., cropping, rotation) for positive sample generation are

not ideal for time series data due to their temporal nature. To this end, we proposed anomaly-

guided artificial transformation for time series data. Specifically, we add random noise to the
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Time series 

anomaly detection

Data stream 

anomaly detection

Temporal anomaly  

interpretation

Problems

Contrastive 
 learning

Shapley value and 
State transition

Cohesiveness, consistency,  
robustness and prototypes

Techniques

ContrastAD

slidSHAPs 
STAD

CETS 
ProtoAD

Figure 8.1: Problem-technique matrix: a sparse matrix demonstrating the studied problems as
well as used solution techniques (colored cells). The gray-shaded cells denote potential future
work directions.

target time window to generate positive transformation while applying multiple artificial point

and contextual anomalies as negative transformations. With extensive experiments on standard

benchmark datasets, we showed supreme performance of the proposed method and efficacy of

the artificial temporal transformations.

Beyond our work, we still see promising potential for contrastive learning on data stream

analysis and time series interpretation. Thanks to the unsupervised representation learning

capability, contrastive learning may contribute to drift detection or be applied for adaptive on-

line anomaly detection. Furthermore, from the interpretability perspective, the positive and

negative pairs in contrastive learning are analogous to example-based interpretations, e.g., pro-

totypes and counterfactuals. Therefore, the contrastive learning outcomes could be explicitly

or implicitly used as interpretations.

8.1.2 Data stream anomaly detection

When applying an anomaly detector in the online setting, the primary challenge is the ever-

changing pattern in the data stream. Hence, in Chapter 3, we investigated slidSHPAs, a novel

unsupervised drift detection approach. Unlike a major category of drift detection approaches
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using labels and online prediction errors, we seriously consider the lack of labels in real-world

applications and focus on the prior distribution drifts in the data stream. Specifically, we pro-

posed to detect the correlation drifts of categorical features indicated by the total correlation.

We extend the common usage of Shapley values in the feature attribution analysis to indicate

correlation drifts, where total correlation is the value function of Shapley values. This enables

us to measure drifts in any possible subspaces systematically. In our empirical evaluation, we

first qualitatively visualized the effect of visualizing correlation drifts in the slidSHAPs space

and then quantitatively validated the performance advance to classical drift detectors using

other statistical descriptions of the data stream.

In Chapter 4, we proposed STAD, an online state-transition-aware anomaly detection frame-

work for effectively maintaining and adapting the models. Inspired by the automata theory in

theoretical computer science, we modeled each data distribution (i.e., each concept in the con-

cept drift detection context) as well as the model learned from that data distribution as a state.

We modeled the concept drift in data streams as state transitions, which enabled us to effi-

ciently compare similarities between states and potentially reuse existing models from similar

states to reduce the online model retraining effort. With empirical evaluation, we figured out

that the proposed approach outperforms standard time series and streaming anomaly detectors.

The explicit modeling of state transition also increases human understanding of the data stream

evolution as well as model scheduling.

We use Shapley values as a feature descriptor of data streams; however, they are more

commonly used for feature attribution analysis. It is interesting to incorporate the interpretation

aspect of Shapley values into the current framework. For example, feature attribution can be

added as additional information to describe a state (in addition to the data distribution and

Autoencoder model).

8.1.3 Temporal anomaly interpretation

In Chapters 5 and 6, we addressed the challenges of directly applying existing saliency methods

for image interpretation to time series data. Firstly, in Chapter 5, we investigated the cohesive-

ness of time series predictions. Targeting simplified and concentrated saliency maps for better

human understanding, we proposed a two-step global-local perturbation-based attribution anal-

ysis using time series prototypes. Using pre-learned prototypes, we ensure the realisticness of

time series perturbations. By sequentially applying the global and local attribution analysis,

we reduced and concentrated the salient regions in the saliency maps. We empirically showed
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the outstanding attribution quality of the proposed approach to non-time series saliency ap-

proaches. Furthermore, we also qualitatively visualized the cohesive explanations generated

by our approach.

In Chapter 6, we further investigated the necessary properties of time series attributions be-

tween adjacent sliding windows. Due to the contextual dependency of time series, a necessary

property of their feature attribution visualization is temporal consistency; namely, the same

timestamp should show consistent relative attribution in adjacent overlapping sliding windows.

In contrast, the features of time series do not implicate particular ordering; therefore, robust

attribution should persist in relative feature attribution even by feature swapping. We evaluated

existing saliency methods for general purposes and figured out their weakness in time series

predictions with regard to consistency and robustness.

Considering the rare abnormal event in massive time series, we claim an example-based

explanation is one of the most intuitive ways to provide reasoning for an anomaly. As a show-

case, in Chapter 7, we proposed a prototype-based approach to explain time series anomalies

in the reconstruction-based models. Specifically, we effectively learned representative and dis-

tinct samples in the latent space of Autoencoders as prototypes of the normal data. Predicted

anomalies are further visually compared with the prototypes for interpretation.

8.2 Future works

Despite our efforts in this research area, several aspects can be further improved. We emphasize

them with four future research directions (RD).

RD1: State modeling using Markov Model

In Chapter 4, we proposed to use a state-transition model to capture drifts in the Autoencoder

latent space for efficient model maintenance and adaptation. Similar research on concept mod-

eling in sequential data also uses the Hidden Markov Model (HMM). HMM has a similar target

to our approach STAD (Chapter 4). STAD is inspired by the automata theory and focuses on

the identification of reoccurring concepts in the Autoencoder latent space by measuring the

Kullback-Leibler divergence. HMM is a stochastic model that focuses on the modeling of state

and transition probabilities between states. Common Markov models for data stream modeling

works include Yang et al. [YWZ06] that use a Markov chain to model the state transition by
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observing classifier performance change. Angel et al. [ABE16] use an HMM to predict con-

cept reoccurrence with a state pool. Ahmadi et al. [AK18] use a first-order Markov chain to

not only maintain the state transitions but also actively merge states to keep online efficiency.

However, existing Markov models work majorly in the input space. Therefore, incorporat-

ing latent representation-based drift detection and state-matching STAD with the probabilistic

state transition modeling may boost the efficiency of online streaming processing. Specifically,

when state transition or model adaption of STAD is affected by a lack of data or a suspicion of

polluted normal data, a pre-modeled Markov model may serve as an alternative solution.

RD2: Potentials in time series contrastive learning

In Chapter 2, we employed a contrastive learning-based approach for time series representa-

tion learning and anomaly detection. In the contrastive loss design, we target constructing

contrastive pairs within mini-batches, i.e., minimizing distances between positive pairs and

maximizing distances between negative pairs within each mini-batch. The proposed method

shows validity on the tested time series datasets, while in other application domains [JBZ+20],

more efficient designs of the contrastive loss are applied to large-scale datasets. In computer

vision, image data essentially allows various valid representations of the target objects, e.g.,

photos from different perspectives with different poses. Hence, it is common to conduct con-

trastive learning on large benchmark datasets (e.g., CIFAR-10 [KH+09], ImageNet ILSVRC-

2012 [RDS+15]). When conducting contrastive learning within mini-batches, in order to cover

sufficient global information (i.e., comparing the target sample with as many other negative

samples in the rest of the dataset as possible), the mini-batches are supposed to be defined

as very large, e.g., default batch size 4096 in SimCLR [CKNH20]. Another popular alterna-

tive design is maintaining a memory bank [WXYL18], which contains latent embedding of

all instances in the dataset. During the contrastive learning procedure, every sample can be

operated with any other sample in the dataset, and the memory bank representation is updated

continuously along with the encoder. In order to keep the representation consistency, He et

al. [HFW+20] use a momentum approach to balance the new and old representations.

In time series, though the raw representations are also diverse, the difference between sam-

ples is more caused by random noise or stochastic permutations, while the essential statistical

features (e.g., frequency, periodic, trend) underlying in the same class stay stable. Therefore,

the mini-batch approach without a memory bank in Chapter 2 worked for our anomaly detec-

tion task. It is worth figuring out whether and how much the anomaly detection model can
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benefit from the memory bank and how well a memory bank can efficiently represent the time

series data and be updated during the representation learning.

RD3: Fair evaluation of anomaly detector

Both time series and data stream anomaly detection research often use the F1-score and AU-

ROC (Area Under the Receiver Operating Characteristic curve) as evaluation metrics. How-

ever, these two metrics do not explicitly consider the temporal anomalies in sequential data

and sometimes lead to biased performance results after aligning point-wise predictions to data

windows. Specifically for contextual anomalies taking place over several timestamps, in recent

adjusted evaluation approaches, the whole abnormal event subsequence is marked as true pos-

itive, as far as the anomaly detector alarms at any timestamp in between. Doshi et al. [DAY22]

have shown that even random guesses sometimes outperform state-of-the-art models using the

adjusted evaluation. Therefore, the research domain urgently needs a fair evaluation metric for

time series and stream anomaly detection. Several aspects should be considered, including dis-

tinguishing between point and contextual anomalies, precise identification of abnormal event

periods (potentially also sub-feature space), average alarm delay, and balance between false

positives and false negatives.

RD4: Quantitative evaluation of time series interpretations

In Chapters 5 and 6, we elaborated the demand of making time series interpretations meaning-

ful and human-understandable, i.e., cohesiveness, consistency, and robustness, however, not

only in time series interpretation but also generally in the interpretable machine learning field,

the quantification of interpretability is very challenging. This makes the practical design of

interpretability approaches hard to evaluate and justify. Therefore, quantifiable interpretation

for time series is a desired research direction in the upcoming decade.

Existing interpretability approaches are often implicitly evaluated. For example, in feature

attribution analysis, an interpreter is supposed to be highly qualified if the top-ranked features

lead to a significant performance drop when they get masked. These approaches, however, ne-

glect the human-understandability aspect, e.g., cohesiveness and simplicity. Therefore, further

explicit quantitative measurements are desired, especially for complex data like time series.

One possible extension to CETS in Chapter 5 is to design a metric to quantify cohesiveness,
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which should consider the feature attribution ranking, sparsity of saliency map, and contrastive-

ness of saliency cells as a whole. In order to incorporate subjective justification, human feed-

back is an inevitable step in interpretability evaluation. Case studies by crowdsourcing is an

inexpensive yet efficient option [HLM12, LTY+21].

8.3 Practical impact

During our research, we also investigated real-world problems in the relevant domain. As

a student project [MES+22], we have developed a web application for energy consumption

data anomaly detection at the university campus. By monitoring data streams from multiple

environmental sensors, the application can detect and interpret anomaly events. For example,

broken windows may lead to continuous unnecessary heating in winter.

Targeting helping researchers in the anomaly detection field, we developed a visualization

tool for reconstruction-based anomaly detectors [BLJM23]. Specifically, the latent space vi-

sualization and details of the training procedure contribute to efficient model development and

understanding.
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Eulanda Miranda Dos Santos. An overview of unsupervised drift detection

methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-

covery, 2020. 40

[GEY18] Izhak Golan and Ran El-Yaniv. Deep Anomaly Detection Using Geometric

Transformations, November 2018. arXiv:1805.10917 [cs, stat]. 21, 23, 30

[GGOGP19] Alan H Gee, Diego Garcia-Olano, Joydeep Ghosh, and David Paydarfar. Ex-

plaining deep classification of time-series data with learned prototypes. In

CEUR workshop proceedings, volume 2429, page 15. NIH Public Access,

2019. 84, 86, 112, 114, 117, 119

[GMCR04] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning

with drift detection. In Brazilian symposium on artificial intelligence, pages

286–295. Springer, 2004. 15, 37, 39, 40, 62

[GMS+20] Riccardo Guidotti, Anna Monreale, Francesco Spinnato, Dino Pedreschi, and

Fosca Giannotti. Explaining any time series classifier. In CogMI. IEEE, 2020.

41

[GRN18] Ralf Greis, T Reis, and C Nguyen. Comparing prediction methods in anomaly

detection: an industrial evaluation, 2018. 22
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Müller. Adept: Anomaly detection, explanation and processing for time se-

ries with a focus on energy consumption data. In Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, pages 622–

626. Springer, 2022. 134

[MFPB10] Stefano Moretti, Vito Fragnelli, Fioravante Patrone, and Stefano Bonassi. Us-

ing coalitional games on biological networks to measure centrality and power

of genes. Bioinformatics, 2010. 41

[MHM18] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018. 121

[MHM+21] Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier,

Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse

Read, Talel Abdessalem, et al. River: machine learning for streaming data in

python. 2021. 11

[MLA18] Emaad Manzoor, Hemank Lamba, and Leman Akoglu. xstream: Outlier de-

tection in feature-evolving data streams. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, pages 1963–1972, 2018. 9

[Mol22] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022. 10, 83

151



REFERENCES

[MRA+16] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig,

Puneet Agarwal, and Gautam Shroff. Lstm-based encoder-decoder for multi-

sensor anomaly detection. arXiv preprint arXiv:1607.00148, 2016. 20, 22,

30, 62, 64, 67, 113, 115, 116, 119

[MRBA18] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. Scikit-

multiflow: A multi-output streaming framework. Journal of Machine Learn-

ing Research, 19(72):1–5, 2018. 11

[MT16] Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed

for research and training on ics security. In 2016 international workshop on

cyber-physical systems for smart water networks (CySWater), pages 31–36.

IEEE, 2016. 5, 29

[MVS+15] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, Puneet Agarwal, et al. Long

short term memory networks for anomaly detection in time series. In Pro-

ceedings, volume 89, pages 89–94, 2015. 20, 22, 64, 72

[MVW+15] Erik Marchi, Fabio Vesperini, Felix Weninger, Florian Eyben, Stefano Squar-

tini, and Björn Schuller. Non-linear prediction with lstm recurrent neural net-

works for acoustic novelty detection. In 2015 International Joint Conference

on Neural Networks (IJCNN), pages 1–7. IEEE, 2015. 62, 67

[MXQR19] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Interpretable and steerable

sequence learning via prototypes. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages

903–913, 2019. 112, 114, 117, 119, 121

[MZH16] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn:

unsupervised learning using temporal order verification. In European confer-

ence on computer vision, pages 527–544. Springer, 2016. 23

[MZLZ19] Hengyu Meng, Yuxuan Zhang, Yuanxiang Li, and Honghua Zhao. Space-

craft anomaly detection via transformer reconstruction error. In International

Conference on Aerospace System Science and Engineering, pages 351–362.

Springer, 2019. 64

152



REFERENCES

[NCC+21] Jingchao Ni, Zhengzhang Chen, Wei Cheng, Bo Zong, Dongjin Song, Yanchi

Liu, Xuchao Zhang, and Haifeng Chen. Interpreting convolutional sequence

model by learning local prototypes with adaptation regularization. In Pro-

ceedings of the 30th ACM International Conference on Information & Knowl-

edge Management, pages 1366–1375, 2021. 112, 114, 119

[NLD+19] Quoc Phong Nguyen, Kar Wai Lim, Dinil Mon Divakaran, Kian Hsiang Low,

and Mun Choon Chan. GEE: A Gradient-based Explainable Variational Au-

toencoder for Network Anomaly Detection. In CNS, 2019. 41

[NTP+23] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters,

Yasmin Schmitt, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert.

From anecdotal evidence to quantitative evaluation methods: A systematic

review on evaluating explainable ai. ACM Computing Surveys, 55(13s):1–42,

2023. 84

[OLV18] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

21, 23, 29, 30

[PDS18] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling

for explanation of black-box models. arXiv preprint arXiv:1806.07421, 2018.

82
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