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Abstract

Item response theory (IRT) represents a statistical framework within which responses
to psychological tests can be modelled. A psychological test consists of a set of items
(e.g., tasks to solve or statements to rate) to which a person taking the test responds.
IRT assumes that responses are influenced by respondents’ latent traits (e.g., personal-
ity traits or cognitive abilities) as well as by items’ characteristics (e.g., difficulty). IRT
models exist for a variety of different response types; the focus of this thesis lies on
count responses. These can for example be generated by cognitive tests measuring idea
fluency (counts: number of ideas), as process data during test taking (counts: number
of clicks), or by reading proficiency assessments (counts: number of errors). Previ-
ously comparatively understudied, the field of count item response theory (CIRT) has
witnessed a steady increase in interest in recent years. As a result, a number of new
CIRT models have been proposed that address limitations of previously existing CIRT
models, broadening the empirical applicability of CIRT.

An important concern regarding modelling of counts is their dispersion: The most com-
mon distribution for counts, the Poisson distribution, assumes its mean equals its vari-
ance (so called equidispersion). By relying on the Poisson distribution, prominent CIRT
models assume such equidispersion for responses (conditional on the latent trait(s)).
Research has found this assumption empirically violated for some tests. A recently
introduced unidimensional CIRT model using the Conway-Maxwell-Poisson (CMP)
distribution instead, accommodates over- and underdispersed conditional responses as
well. Nonetheless, the model maintains some of the restricting assumptions of previ-
ous models. Thus, even with new model proposals, CIRT still offers less modelling
flexibility than IRT for other response types (such as binary responses).

The present cumulative thesis aims to address three such gaps in the CIRT landscape.
In the first article, I propose a unidimensional CIRT model with a conditional CMP
response distribution which extends a previously proposed model through the inclusion
of another item parameter (i.e., a discrimination parameter). As such a model has pre-
viously not been computable with existing estimation methods, I derive a maximum
likelihood estimation procedure to this end, using the Expectation-Maximization (EM)
algorithm. In the second article, we propose two extensions of this model which allow
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the inclusion of item- and person-specific covariates, respectively. Therewith, we allow
to investigate explanations for differences between items and participants, respectively.
Again, we provide corresponding estimation methods. In the third article, we general-
ize the unidimensional CIRT model proposed in the first article to a multidimensional
count item response model framework, with a focus on exploratory models. We provide
a respective estimation procedure, of which we additionally develop a lasso-penalized
variant. The articles in this thesis are accompanied by the development of an R package
that implements the proposed models and estimation methods.



Zusammenfassung

Item-Response-Theorie (IRT) stellt ein statistisches Framework dar, in welchem Ant-
worten aus psychologischen Tests modelliert werden können. Ein psychologischer Test
besteht aus einer Menge an Items (z.B. Aufgaben, die gelöst werden müssen oder
Aussagen, die bewertet werden müssen), auf die eine den Test bearbeitende Person
antworten muss. IRT trifft die Annahme, dass die Antworten durch latente Merkmale
der getesteten Personen (z.B. Persönlichkeitsmerkmale oder kognitive Fähigkeiten) so-
wie durch Eigenschaften der Items (z.B. Schwierigkeit) beeinflusst werden. IRT-Mo-
delle sind für eine Reihe verschiedener Antwortarten verfügbar; der Schwerpunkt dieser
Dissertation liegt auf Zähldaten. Diese entstehen zum Beispiel aus kognitiven Tests,
die Ideenflüssigkeit messen (Zähldaten: Anzahl der Ideen), aus Prozessdaten während
der Testdurchführung (Zähldaten: Anzahl von Klicks) oder aus Erfassungen der Lese-
fähigkeit (Zähldaten: Anzahl der Fehler). Das zuvor vergleichsweise weniger en-
twickelte Feld der Zähldaten-Item-Response-Theorie (ZIRT) hat in den letzten Jahren
einen stetigen Anstieg an Interesse erlebt. In der Folge wurden eine Reihe neuer
ZIRT-Modelle vorgeschlagen, die Limitationen der vorangegangenen ZIRT-Modelle
adressieren und damit die empirische Anwendbarkeit der ZIRT ausweiten.

Ein wichtiger Punkt in der Modellierung von Zähldaten ist deren Dispersion: Die
am häufigsten verwendete Zähldatenverteilung, die Poisson-Verteilung, trifft die An-
nahme, dass der Erwartungswert der Varianz entspricht (sog. Equidispersion). Durch
die Verwendung der Poisson-Verteilung treffen bekannte ZIRT-Modelle ebenso die An-
nahme equidispersierter Antworten (bedingt auf das oder die latente(n) Merkmal(e)).
Forschung hat gezeigt, dass diese Annahme empirisch durch manche Tests verletzt
wird. Ein kürzlich vorgeschlagenes eindimensionales ZIRT-Modell, welches die Con-
way-Maxwell-Poisson- (CMP-) anstelle der Poisson-Verteilung verwendet, kann zusät-
zlich über- und unterdispersierte bedingte Antworten modellieren. Nichtsdestotrotz be-
hält auch dieses Modell manche der einschränkenden Annahmen der vorherigen Mod-
elle bei. Folglich bietet ZIRT, trotz neuer Modellentwicklungen, immer noch weniger
Modellierungsflexibilität als IRT für andere Antworttypen (wie z.B. binäre Antworten).

Die vorliegende kumulative Dissertation verfolgt das Ziele drei Forschungslücken in
der ZIRT-Landschaft zu schließen. Im ersten Artikel der Arbeit schlage ich ein eindi-
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mensionales ZIRT-Modell mit einer bedingten CMP-Verteilung der Antworten vor,
welches ein zuvor in der Literatur vorgeschlagenes Modell erweitert durch die Inte-
grierung eines weiteren Itemparameters (nämlich eines Diskriminationsparameters).
Ein solches Modell ist zuvor nicht berechenbar gewesen mit existierenden Schätzmeth-
oden, daher entwickele ich Maximum-Likelihood-Schätzmethoden hierfür, basierend
auf dem Expectation-Maximization-Algorithmus (EM-Algorithmus). Im zweiten Ar-
tikel schlagen wir zwei Erweiterungen dieses Modells vor, die es erlauben, jeweils
item- oder personenspezifische Kovariaten in das Modell aufzunehmen. Damit er-
lauben wir es, Erklärungen für Unterschiede zwischen Items und Personen zu unter-
suchen. Auch hier entwickeln wir entsprechende Schätzmethoden. Im dritten Artikel
generalisieren wir das im ersten Artikel vorgeschlagene eindimensionale ZIRT-Modell
zu einem multidimensionalen ZIRT-Framework, mit einem Fokus auf exploratoriven
Modellen. Wir entwickeln entsprechende Schätzmethoden, von denen wir zudem eine
Lasso-penalisierte Variante erarbeiten. Die Artikel dieser kumulativen Dissertation
werden durch die Entwicklung eines R-Pakets begleitet, in welchem die vorgeschla-
genen Modelle und Schätzmethoden implementiert sind.
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Notation

This overview lists the most important notation used throughout this thesis. Any addi-
tional notation is explained upon first introduction.

N Natural numbers

R Real numbers

N Number of participants (persons)

M Number of items

L Number of latent traits

K Number of quadrature nodes (unidimensional model) or number of quadra-
ture nodes per trait (multidimensional model) in Gauss-Hermite quadrature

i Person index

j Item index

l Trait index

k Quadrature node index

Xij Response for person i to item j (random variable)

xij Response for person i to item j (realization)

Ujc cth item covariate for item j (random variable)

ujc cth item covariate for item j (realization)

Tip pth person covariate for person i (random variable)

tip pth person covariate for person i (realization)

θi Latent trait for person i (unidimensional model)

θli lth latent trait for person i (multidimensional model)

αj Slope parameter for item j (unidimensional model)
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αjl Slope parameter for item j and trait l (multidimensional model)

δj Intercept parameter for item j

ζj Set of all item parameters for item j

qk kth quadrature node

wk kth quadrature weight

Vectors and matrices are represented by bold symbols without the indices. E.g., re-
sponses for all persons to all items are a N × M matrix X (random variable) or x
(realization). Responses to all items for a person i are a vector of length M , Xi (ran-
dom variable) or xi (realization). Responses to one item j for all persons are a vector
of length N ,Xj (random variable) or xj (realization).
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1 Introduction

Item response theory (IRT) is a theoretical framework within the field of psychometrics
(i.e., the study of psychological testing and measurement) which describes participants’
response behaviour in an assessment situation (e.g., a cognitive test or a personality
questionnaire) as a function of the participant’s latent trait(s) and characteristics of the
assessment tool (Embretson & Reise, 2000). With a test or a self-report, researchers
typically intend to measure one or multiple latent traits, i.e., unobservable psychologi-
cal constructs such as cognitive abilities or personality traits that influence observable
behaviour. Examples of such latent traits could be intelligence, processing speed, or
creative thinking, to only name a handful.

A psychological test or self-report consists of a set of items which are stimuli to which
participants respond, e.g., tasks for participants to solve or statements to which partici-
pants express their agreement. IRT assumes that each item has specific characteristics,
for example each item in a test has its specific difficulty. These item characteristics
are assumed to influence participants’ responses along with their latent trait(s) the test
or self-report is intended to measure. Statistical IRT models predict participants’ re-
sponses to each item as a function of these item characteristics and these latent trait(s).

The most widely known IRT models are perhaps those for binary data (see e.g., Baker
& Kim, 2004; Embretson & Reise, 2000). This type of data is for example generated by
intelligence tests, where items can be answered either correctly or incorrectly. Binary
item response models predict the probability to answer the item correctly. Another well
known and used class of IRT models in psychology are ordinal IRT models (see e.g.,
Embretson & Reise, 2000). They can be applied to self-report data, where responses
are given on rating scales, for instance. Ordinal item response models predict the prob-
ability to answer in specific rating categories. Unsurprisingly in view of their popularity
among applied researchers, binary and ordinal IRTmodels are important foci in the psy-
chometric research landscape. However, binary and ordinal response data are not the
only types of data generated by psychological assessment tools. Count data constitute
another possible psychometric response type.

Count responses have recently received increasing attention in the psychometric liter-
ature (e.g., Forthmann, Gühne, & Doebler, 2020b; Man & Harring, 2019; Qiao, Jiao,
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1 Introduction

& He, 2023). Apart from more traditional but ever relevant sources of count responses,
for example reading assessments (Rasch, 1960; Verhelst & Kamphuis, 2009), count re-
sponses that have only more recently become subject of item response analyses include
process data, such as fixations during eye-tracking while working on a test (Man &
Harring, 2019; Man, Harring, & Zhan, 2022) or action counts during computer-based
assessments (Qiao et al., 2023). With the increased interest in and new forms of gen-
eration of count responses in psychometric assessment, interest in and the relevance of
corresponding statistical methods is also growing.

1.1 Psychometric Count Data

Count data responses arise from psychological tests and self-reports where answers
can be summarized into a count. A common source for psychometric count data are
cognitive (ability) tests, such as tests to assess processing speed (Baghaei, Ravand, &
Nadri, 2019; Doebler & Holling, 2016), intelligence (Ogasawara, 1996), and verbal flu-
ency or divergent thinking (which are related to creative thinking; Forthmann, Holling,
Çelik, Storme, & Lubart, 2017; Forthmann, Çelik, Holling, Storme, & Lubart, 2018;
Myszkowski & Storme, 2021). Responses to (cognitive) ability tests are often counts,
for example, in reading assessments (Rasch, 1960; Verhelst & Kamphuis, 2009) or
language proficiency tests (Forthmann, Grotjahn, Doebler, & Baghaei, 2020a). Self-
reports can also be sources of count data responses, for instance in clinical psychology
(e.g., depressive symptoms or drug use; Magnus & Thissen, 2017; Wang, 2010). Count
data responses that have received increasingly more attention in psychometrics are pro-
cess data during (computer-based) assessments (e.g., eye-tracking fixations or action
counts; Man & Harring, 2019; Man et al., 2022; Qiao et al., 2023). Count data which
can be structured analogously to participants’ responses to items also occur in other
fields, for example, in political science in the shape of text data (Proksch & Slapin,
2009) or in researchers’ scores on bibliometric indicators in researcher performance
(Forthmann &Doebler, 2021; Mutz &Daniel, 2018). As long as the data can be thought
of as a responses-to-items structure and one or more latent dimensions are assumed to
influence the responses, psychometric count item response models can be applied to
such data (e.g., Forthmann & Doebler, 2021). In such settings, statistical models which
have strong commonalities with item response models are also frequently applied (e.g.,
Jentsch, Lee, & Mammen, 2021).

To illustrate, we are going to briefly take a look at a type of count-data generating
task that frequently features as an example in the works included in this thesis. These
are divergent thinking or fluency tasks (e.g., Forthmann et al., 2016; Forthmann et al.,
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2017; Forthmann et al., 2018). An example for such a task would be an alternate uses
task (Guilford, 1967), where participants are instructed to name as many different (or
as creative; Forthmann et al., 2016; Nusbaum, Silvia, & Beaty, 2014) alternative uses
as possible for an everyday object, such as a brick. A participant answers with a list of
uses, such as bookend, door stop, tread, weight, weapon. This list can be summarized
into a count of 5 which this particular participant answered to this particular item. In
a test of idea fluency, we would have several different items like this and a sample of
participants to answer them. For N participants and M items, we obtain a data set of
counts of N ×M dimensions. This is illustrated in Table 1.1. The counts in Table 1.1
could be numbers of ideas, but also any of the above mentioned examples of count data,
such as the number of eye-tracking fixations per task, the number of mistakes per text
read, etc.

Table 1.1: Illustration of a fictional psychometric count data set for N = 1000 partici-
pants andM = 5 items

Participant Item 1 Item 2 Item 3 Item 4 Item 5
1 5 10 6 7 9
2 3 6 4 4 5
3 4 9 5 9 6
4 6 12 9 6 9
. . . . . . . . . . . . . . . . . .
1000 4 11 3 7 7

The goals of applying a count item response model to psychometric count data (or of
applying any item response model to any psychometric data) can be manifold: In gen-
eral, (count) item response models are applied when (count) responses to multiple items
are supposed to be modelled as underlaid by one or more latent traits. The assumption
is that differences in this or these latent trait(s) can be – to a certain extent – captured
in the observable responses, thus, they in turn can be used to learn about differences
on these latent traits. The measurement of unobservable latent traits is typically one of
the core interests of applied psychometricians, and item response models can be used
to this end (Baker & Kim, 2004). Related are also questions of measurement precision,
that is, how well latent traits can be measured by psychological tests or self-report in-
struments. In this context, psychometricians are often interested in a test’s reliability,
which in psychological classical test theory is defined (for a unidimensional construct)
as the ratio of latent trait variance to manifest response variance (Lord & Novick, 1968).
In IRT, corresponding concepts exist and can be investigated with the help of item re-
sponse models (see e.g., Baker & Kim, 2004). To be able to pursue measurement aims,
item response models need to be calibrated, that is, the item properties, also referred to

5



1 Introduction

as item parameters, need to be estimated (Van der Linden, 2018).

1.2 Item Response Models for Count Data

The first count item response model was introduced by Rasch (1960): With Rasch’s
Poisson Counts Model (RPCM), Rasch (1960) modelled psychometric count responses
as a function of a unidimensional latent trait and an item-specific difficulty parameter.
The RPCM can be understood as a log-linear model and a special case of a general-
ized linear mixed model (Baghaei & Doebler, 2019). Since its proposal, the RPCM
has been the subject of numerous psychometric works, working on estimation meth-
ods (e.g., Jansen, 1986, 1994, 1995; Verhelst & Kamphuis, 2009), model diagnostics
(e.g., Holling, Böhning, & Böhning, 2015) or extensions, such as different link func-
tions (Doebler, Doebler, & Holling, 2014), explanatory versions of the RPCM where
item or person characteristics are included in the model (e.g., Graßhoff, Holling, &
Schwabe, 2013, 2020; Jansen, 2003; Ogasawara, 1996, see Chapter 3.2 for more de-
tails on exploratory models), or other extensions (Jansen, 1995; Jansen & van Duijn,
1992; Verhelst & Kamphuis, 2009).

Conditional on the latent trait, the RPCM assumes count responses are Poisson dis-
tributed. As a result of a property of the Poisson distribution (i.e., equidispersion; see
e.g., Fahrmeir, Heumann, Künstler, Pigeot, & Tutz, 2016), this assumption implies that
the conditional count responses are equidispersed, that is, the conditional mean equals
the conditional variance of the count responses (see Chapter 2 for more details). Empir-
ically, this is a rather strong assumption which has been found to be violated in real-life
applications (e.g., Forthmann et al., 2020b; Forthmann & Doebler, 2021). Violation of
the equidispersion assumption can take the shape of overdispersion, that is, the condi-
tional distribution of count responses has a variance larger than its mean. A violation in
this direction can cause liberal standard errors and upwards-biased model-based relia-
bility (Forthmann et al., 2020b; Hilbe, 2011). To account for overdispersed conditional
count responses, several different approaches have been proposed in the psychometric
literature: For instance, Hung (2012) proposed to rely on the negative binomial rather
than the Poisson distribution. The negative binomial distribution is a count distribution
which allows for overdispersion. Overdispersion can sometimes also be caused by an
excess of zero counts, which can be accounted for using the zero-inflated Poisson dis-
tribution, as used in the count item response model by Wang (2010). Other approaches
have been proposed for example by Verhelst and Kamphuis (2009), Mutz and Daniel
(2018).
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The equidispersion assumption for the conditional count responses cannot only be vi-
olated in the direction of overdispersion but also in the direction of underdispersion
(Forthmann et al., 2020b). For underdispersed conditional count responses, the con-
ditional distribution’s variance is smaller than its mean (see Chapter 2 for more de-
tails). Such a violation may lead to conservative standard errors and downwards-biased
model-based reliability (Faddy & Bosch, 2001; Forthmann et al., 2020b). Statistically,
this violation is more difficult to address, with the first count item response model
able to flexibly account for over-, equi- and underdispersion of conditional count re-
sponses having been only recently proposed by Forthmann et al. (2020b). The Conway-
Maxwell-Poisson Counts Model (CMPCM; Forthmann et al., 2020b) is a direct general-
ization of the RPCM as it replaces the Poisson distribution with the Conway-Maxwell-
Poisson (CMP) distribution (Conway &Maxwell, 1962; Huang, 2017; Shmueli, Minka,
Kadane, Borle, & Boatwright, 2005), which generalizes the Poisson distribution through
the addition of a dispersion parameter. Adequately modelling dispersion of conditional
responses is approached from a different angle in Tutz (2022).

Apart from equidispersion, the RPCM (Rasch, 1960) makes another assumption which
may prove empirically unrealistic: The RPCM implicitly assumes that all items capture
the latent trait equally well, that is, they all have the same discrimination. In IRT, item
discrimination is the property of an item (potentially included in IRT models as an item
parameter) that describes to what extent differences on the latent trait can be depicted
in the predicted count responses, akin to the concept of factor loadings. Empirically,
this assumption may be violated unless the item construction process was specifically
aimed towards equally discriminant items (Myszkowski & Storme, 2021). The CM-
PCM retains this assumption. Thus, available count item response models which in-
clude item-specific discrimination parameters do not at the same time accommodate
underdispersion. There is for example a direct extension of the RPCM (also using
the Poisson distribution) including a discrimination parameter (Myszkowski & Storme,
2021), a special case within the Generalized Linear Latent Mixed Models (GLAMM)
framework (Skrondal & Rabe-Hesketh, 2004). An approach that allows for overdis-
persed conditional count responses is for example provided by Wang (2010).

The RPCM is a unidimensional count item response model. The accompanying as-
sumption is that only one trait underlies the count responses. This can (but must not
necessarily) be a strong assumption as psychological constructs are often complex, de-
composing into several subconstructs, and response behaviour can be complexly de-
termined through more than one construct at a time. Multidimensional item response
models (MIRM; for an introduction, see e.g., Embretson & Reise, 2000, and Chap-
ter 3.3 for more details) accommodate this on occasion required empirical complexity
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1 Introduction

by allowing responses to be a function of item characteristics and multiple latent traits.
Unidimensional item response models constitute special cases of MIRM.While popular
in IRT for binary and ordinal responses (Embretson & Reise, 2000; Chalmers, 2012),
the research landscape for multidimensional count item response models is compara-
bly sparse. Apart from some bivariate extensions of the RPCM, with (Myszkowski
& Storme, 2021) or without (e.g., Forthmann et al., 2018) discrimination parameters,
multidimensional count data models are often embedded in other frameworks, such
as GLAMM (Skrondal & Rabe-Hesketh, 2004) or count data factor analysis (Wedel,
Böckenholt, & Kamakura, 2003). While item-specific discrimination can be accommo-
dated in these frameworks through model parameters such as factor loadings, dispersion
flexibility is typically quite limited due to use of the Poisson distribution, albeit Wedel
et al. (2003) allow dispersion flexibility to a certain extent via truncation and also allow
for different link functions.

1.3 The Present Thesis

This cumulative thesis consists of three articles which extend the existing count item
response model landscape to address some of the outlined restrictions and limitations of
previously available count item response models. In the first article (Beisemann, 2022,
Chapter 3.1), a unidimensional count item response model is proposed that combines
the dispersion flexibility of the CMP distribution with item-specific discriminations. To
allow for better understanding of test and item properties as well as driving factors of
latent trait differences in the model proposed in Beisemann (2022), two explanatory
extensions of this model are proposed in the second article (Beisemann, Forthmann,
& Doebler, 2024a, Chapter 3.2). In the third article (Beisemann, Holling, & Doebler,
2024b, Chapter 3.3), the unidimensional count item response model proposed in Beise-
mann (2022) is further generalized to a multidimensional count item response model
framework, with a focus on exploratory models.

For each (set of) new count item response model(s) proposed in this thesis, maximum
likelihood estimation procedures are derived and evaluated in simulation studies. In
IRT, we typically have two types of estimation tasks: IRT models first have to be cali-
brated, that is, item parameters have to be estimated, and can then be used for measure-
ment purposes, that is, to estimate participants’ latent trait(s) scores (Van der Linden,
2018). The focus of the present work is going to be on calibration. In the first article of
this thesis (Beisemann, 2022), an Expectation-Maximization (EM) algorithm (Demp-
ster, Laird, & Rubin, 1977) is proposed which is extended and generalized in the second
and third article, respectively.
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1.3 The Present Thesis

The overall aim of this thesis consists of extending item response models for count data,
allowing accommodation of previously unaddressed empirical challenges. The estima-
tion procedures were implemented in an R package (Chapter 4) to allow for these exten-
sions to be available for use by applied researchers. Impact, challenges, and limitations
of the present work as well as avenues for future research are discussed in Chapter 5.
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2 Statistical Methods and Background

In this section, statistical and psychometric constructs central to the works of this thesis
are going to be introduced and explained to give an overview of the statistical research
landscape in which the works of this thesis are embedded.

In the following, let X denote a random (count, unless stated otherwise) variable with
realisation x. Let i be a person index, running from 1 toN , and j an item index, running
from 1 toM .

2.1 The Conway-Maxwell-Poisson Distribution

For the count item response models in the works of this thesis, we are going to as-
sume conditional responses follow a Conway-Maxwell-Poisson (CMP) distribution.
The CMP distribution constitutes a generalization of the well known discrete Poisson
distribution for count data, for which the count density is defined as

Pois(x;λ) = P (X = x;λ) =
λx

x!
exp(−λ), (2.1)

where λ ∈ R+ and x ∈ N0 (Fahrmeir et al., 2016). The rate parameter λ deter-
mines both the expectation and the variance of the Poisson distribution, that is, E(X) =

Var(X) = λ, which is referred to as the equidispersion assumption of the Poisson dis-
tribution (Fahrmeir et al., 2016). Figure 2.1 shows the Poisson count densities for three
different values of λ, illustrating how λ determines both the location and the spread of
the distribution (i.e., equidispersion).

In empirical applications, such as count data item response modeling in this thesis, as-
suming equidispersion can be limiting and unrealistic (Shmueli et al., 2005). When
data exhibit more variance than the mean would imply under the Poisson distribution
(i.e., E(X) < Var(X)), data are overdispersed. When the opposite is the case (i.e.,
E(X) > Var(X)), data are underdispersed. In these instances, the Poisson distri-
bution is no longer an appropriate choice to model such data (Shmueli et al., 2005).
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2 Statistical Methods and Background
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Figure 2.1: Poisson count densities for λ = 2 (Panel (1)), λ = 5 (Panel(2)), and λ = 15
(Panel (3)) illustrating equidispersion.

A more appropriate distribution is the generalization of the Poisson distribution: the
Conway-Maxwell-Poisson (CMP) distribution (Conway & Maxwell, 1962). The CMP
distribution generalizes the Poisson distribution by including an additional parameter,
the dispersion parameter ν ∈ R+

0 . The count density is defined as

CMP(x;λ, ν) = P (X = x;λ, ν) =
λx

(x!)ν
1

Z(λ, ν)
(2.2)

(Shmueli et al., 2005), where

Z(λ, ν) =
∞󰁛

x=0

λx

(x!)ν
(2.3)

(Shmueli et al., 2005) is a normalizing constant. Comparing Equations 2.1 and 2.2,
one can immediately see that for ν = 1, the CMP distribution simplifies to the Poisson
distribution. Further, the Bernoulli (when ν → ∞, Z(λ, ν) → 1+λ) and the geometric
distribution (when ν = 0,λ < 1) constitute border cases of the CMP distribution
(Shmueli et al., 2005). The CMP distribution is undefined for ν = 0 and λ ≥ 1

(Shmueli et al., 2005). The CMP distribution is a member of the exponential family
with sufficient statistics S1 =

󰁓n
i=1 xi and S2 =

󰁓n
i=1 log(xi!) for n i.i.d. observations

x1, . . . , xn (Shmueli et al., 2005).

For ν ∕= 1, the mean and variance of the CMP distribution do not coincide with the
rate λ (Shmueli et al., 2005). Huang (2017) argues that for applications where count
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2.1 The Conway-Maxwell-Poisson Distribution
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Figure 2.2: CMPµ count densities for µ = 2 (Panel (1)), µ = 5 (Panel (2)), and µ = 15
(Panel (3)), all with ν = 0.5, illustrating overdispersion (variance indicated
in the panels is rounded to the nearest integer).

responses are predicted, such as regression, a parameterization of the CMP distribution
in terms of its mean is beneficial in terms of interpretation. He introduces the mean-
parameterized CMP distribution, denoted in the following as CMPµ. He defines the
count density as

CMPµ(x;µ, ν) = P (X = x;µ, ν) =
λ(µ, ν)x

(x!)ν
1

Z(λ(µ, ν), ν)
(2.4)

(Huang, 2017), where µ ∈ R+
0 denotes the mean, and with the rate λ(µ, ν) as a function

of µ and ν implicitly defined through the root to

0 =
∞󰁛

x=0

(x− µ)
λx

(x!)ν
(2.5)

(Huang, 2017). Given the data, the different CMP parameterizations are equivalent
(Huang, 2017). If ν > 1, the distribution is underdispersed, if ν < 1, the distribution
is overdispersed, and – as mentioned above – for ν = 1, the distribution simplifies
to the Poisson distribution and is equidispersed (Huang, 2017). This is illustrated in
Figure 2.2 for overdispersion and in Figure 2.3 for underdispersion. The means of the
distributions are the same in the respective panels (1) – (3) as in Figure 2.1, but the
variances are larger in Figure 2.2 compared to Figure 2.1 and smaller in Figure 2.3
compared to Figure 2.1.
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2 Statistical Methods and Background
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Figure 2.3: CMPµ count densities for µ = 2 (Panel (1)), µ = 5 (Panel (2)), and µ = 15
(Panel (3)), all with ν = 1.5, illustrating underdispersion (variance indi-
cated in the panels is rounded to the nearest integer).

For the CMPµ distribution, the expectation E(X) = µ and the variance is given by

Var(X) =
∞󰁛

x=0

(x− µ)2λ(µ, ν)x

(x!)νZ(λ(µ, ν), ν)
(2.6)

(Huang, 2017).

Huang (2017) shows that in the CMPµ distribution, the parameters µ and ν are orthogo-
nal. Huang (2017) proves that the CMPµ distribution is a member of the two-parameter
exponential family as well as a member of the one-parameter exponential family if ν
is fixed. Thus, the CMPµ distribution lends itself well to generalized linear regression
modelling (Huang, 2017), as for example implemented in the R package glmmTMB
(Brooks et al., 2017).

For further properties of the rate- and mean-parameterized CMP distribution, see Shmueli
et al. (2005) and Huang (2017), respectively.

2.2 Count Item Response Models

Item Response Theory (IRT) is a popluar statistical framework in psychometrics. For a
general introduction, see Van der Linden (2018). Among IRT models, those for count
data are less well known than for example the very popular IRT models for binary data
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2.2 Count Item Response Models

(cf. Birnbaum, 1968; Rasch, 1960). The first count IRT model was introduced by Rasch
(1960) and is going to be described in detail in Section 2.2.2. Van der Linden (2018)
includes a chapter on some specific count IRT models.

As sources for general count IRT models are scarce beyond single chapters on specific
count IRT models in IRT textbooks, I describe a general count IRT model in the fol-
lowing based on work on specific count IRT models (Baghaei et al., 2019; Forthmann
et al., 2020b) and textbooks on dichotomous and polytomous IRT models (Baker &
Kim, 2004; Reckase, 2009).

Generally spoken, item response models formulate a relationship between person i’s
latent trait(s), θi, and item j’s properties, ζj , to predict the person’s answer to the
item. Additionally, one may include person- or item-specific covariates, which I denote
with uj and ti, respectively. IRT models which include item- and/or person-specific
covariates are referred to explanatory item response models (for an introduction, see
De Boeck &Wilson, 2004). We assume that answersXij are – conditional on the latent
trait(s) θi – distributed according to a count distribution τ(µ,ν), where µ is the mean
of the distribution and ν contains the remaining parameters of the distribution, that is,
Xij|θi ∼ τ(µij,νj). With this, we assume that the mean of that count distribution,
µij , depends on the person-specific latent trait(s) and item-specific properties (as well
as person and/or item covariates, if applicable), while the remaining parameters νj

are only item-specific (albeit in theory, this can also be extended to allow additional
dependence on the person-specific latent trait(s)). The mean µij is modeled as

µij = g(f(θi, ζj,uj, ti)), (2.7)

where g(.) is an inverse-link function and f(.) models the relationship between θi and
ζj . IRTmodels assume local independence (Van der Linden, 2018): When conditioning
on the latent trait(s), the items are independent of one another.

2.2.1 The Psychometric Concept of Reliability

Psychometric reliability is a (psychological) test goodness criterion. It quantifies how
precisely a test measures the latent trait. The classical test theory (CTT) tradition of
psychometrics assumes that test scores Y additively decompose into the true latent trait
values T and an error term E, that is, Y = T +E (Lord & Novick, 1968). CTT defines
the reliability for a test with test scores Y as Rel(Y ) = Var(T )

Var(Y )
(Lord & Novick, 1968),

where T are the true latent trait values. With this definition, CTT obtains one reliability
value for a test across all possible true latent trait values.
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2 Statistical Methods and Background

In IRT, reliability is typically defined in relation to or directly as test information. Test
information is additively composed of the item information for each item j = 1, . . . ,M ,
that is,

I(θ) =
M󰁛

j=1

Ij(θ), (2.8)

where Ij(θ) is the item information for item j (described for dichotomous and polyto-
mous IRT models e.g., in Baker & Kim, 2004, and analogous for count IRT models).
The item information is the Fisher information for that item with respect to the latent
trait parameter θ. The item as well as the test information are functions of θ, implying
that reliability can vary across the latent trait range in an IRT conceptualization of reli-
ability (described for dichotomous and polytomous IRT models e.g., in Baker & Kim,
2004, and analogous for count IRT models). For a study of the item information under
the RPCM, see for example Doebler et al. (2014), Graßhoff et al. (2013, 2020).

An alternative is the empirical (marginal) reliability, which is defined as

Relemp = 1− SE(θ)2

Var(θ)
(2.9)

(Brown & Croudace, 2014; Green, Bock, Humphreys, Linn, & Reckase, 1984). When
estimating the empirical reliability, one can use the latent trait’s standard error and
variance estimates obtained from one’s IRT model. This approach was for example
used by Forthmann et al. (2020b) for their count IRT model (the CMPCM, see below).
A characteristic of empirical reliability is that this approach only provides one reliability
for the test across the whole range of the latent trait. Forthmann et al. (2020b) found
that specifically for count IRT models, reliability estimates are biased if equidispersion
is assumed by the count IRT model, but over- or underdispersion is present in the data.

2.2.2 Unidimensional Count Item Response Models

This subsection introduces two unidimensional count item response models which were
generalized in the works of this thesis. They are important previous works for this thesis
which is why they receive special attention in this section. For an extensive overview of
other existing unidimensional count item response models, the reader is referred back
to Chapter 1. The models are introduced in the following using a parameterization
and notation that is consistent with the parameterization and notation of the models

16



2.2 Count Item Response Models

proposed in the works of this thesis as this is more convenient for the reader. Please
note that in the original and related publications, in part, other parameterizations and
notation were used.

Rasch’s Poisson Counts Model

The first count data IRT model was proposed by Rasch (1960): the Rasch Poisson
Counts Model (RPCM; Rasch, 1960) which models the expected count µij as

µij = exp(θi + δj). (2.10)

Referring back to Equation 2.7, the RPCM uses the exponential function for g, an
additive relationship between the uni-dimensional latent trait θi and one item-specific
parameter δj (i.e., for an item j, ζj = {δj}) as f . The latent abilities θi are not directly
observable, they are latent variables. Depending on the specific estimation approach, we
handle them differently. In the context of this thesis, we use the assumption that θi

i.i.d.∼
N (0, σ2), i = 1, . . . , N (as an alternative, one can e.g., assume a gamma distribution
for the θi; Jansen & van Duijn, 1992). The latent mean is fixed to 0 for identification. In
this formulation of the RPCM, the latent variance σ2 can be estimated (see e.g., Baghaei
& Doebler, 2019). In the parameterization used here, δj is an item-specific intercept
which can be interpreted as the item-specific easiness: The higher δj , the higher the
expected count µij , regardless of the person’s latent trait θi. For example, if one models
the number of ideas, this means that in response to an easier item, all participants, even
the less creative ones, are able to generate higher number of ideas compared to a more
difficult item. In the original RPCM, there are no item or person covariates (i.e., no uj

or ti), but the RPCM has since been extended to include those (see e.g., Graßhoff et al.,
2013, 2020; Jansen, 2003; Ogasawara, 1996).

The RPCM assumes for the conditional response distribution τ the Poisson distribution
which has no further parameters (we set λ = µij). Relying on the Poisson distribution
as the conditional response distribution implies that the RPCM assumes equidispersed
conditional responses.

Several estimation approaches have been developed for the RPCM, such as conditional
maximum likelihood (e.g., Jansen, 1995; Rasch, 1960), and marginal maximum likeli-
hood (MML) using for instance an Expectation-Maximization algorithm (e.g., Jansen,
1995) but also other MML approaches (e.g., Jansen & van Duijn, 1992). In the for-
mulation used in Equation 2.10, it is easy to see that the RPCM also constitutes a spe-
cial case of a generalized linear mixed model (GLMM; see e.g., McCulloch & Searle,
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2 Statistical Methods and Background

2004), with the θi modelled as a random intercept (see e.g., Baghaei & Doebler, 2019).
As such, the RPCM can be estimated in any GLMM estimation framework, such as the
R package lme4 (Bates, Mächler, Bolker, & Walker, 2015), as explained in detail in
Baghaei and Doebler (2019).
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Figure 2.4: Item response curves under the RPCM for an item with easiness δ1 = 1.2
(Item 1) and an item with easiness δ2 = 1.7 (Item 2) (shaded ribbons indi-
cate ±1 conditional SD).

Figure 2.4 illustrates the expected responses µj per item j as a function of the latent
trait θ for two different easiness values (item 1 with easiness δ1 = 1.2 and item 2 with
easiness δ2 = 1.7). These plots are called item response curves. We can see that under
the RPCM, the item easiness determines both where the item response curve crosses
the y-axis for θ = 0 (i.e., what number of counts we expect from a person of average
ability) as well as – due to the inverse log-link function – the steepness of the curve.
The traditional psychometric understanding – stemming from IRT models for binary
responses – associates the steepness of item response curves with the item’s capability
to differentiate between persons of different ability. It is slightly more complex for
count IRT items, nonetheless, psychometricians are often interested in estimating a
separate parameter for this property. This parameter is usually referred to as the item
discrimination (or simply slope, depending on the parameterization; Baker & Kim,
2004).
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2.2 Count Item Response Models

Figure 2.4 further illustrates the equidispersion assumption of the RPCM: The condi-
tional standard deviation is fully determined by the conditional mean, that is, by the
item’s easiness and the person’s latent trait level. Again, psychometrically, we might
wish to have a separate parameter which allows to modulate the mean-implied condi-
tional variance. This latter limitation of the RPCM was recently addressed by Forth-
mann et al. (2020b) with the introduction of a new count IRT model, the Conway-
Maxwell-Poisson Counts Model.

Conway-Maxwell-Poisson Counts Model

The Conway-Maxwell-Poisson Counts Model (CMPCM; Forthmann et al., 2020b) con-
stitutes a generalization of the RPCM as it uses the same model formulation given in
Equation 2.10 but assumes the CMPµ distribution as the conditional response distribu-
tion τ rather than the Poisson distribution. With the use of the CMPµ distribution,
the CMPCM has an additional item-specific (or global, if constrained equal across
items) dispersion parameter, νj (but note that in the original model formulation, Forth-
mann et al., 2020b, use the inverse of νj as the dispersion parameter). As illustrated
in Figure 2.5, the dispersion parameter allows to model overdispersion, that is, more
conditional variance than the mean implies (see items 3 and 4 which have the same
conditional mean as items 1 and 2 in Figure 2.4, but more conditional variance), and
underdispersion, that is, less conditional variance than the mean implies (see items 5
and 6 which have the same conditional mean as items 1 and 2 in Figure 2.4 but less
conditional variance).

Analogously to the RPCM, the CMPCM can be understood as a special case within
the GLMM framework (Forthmann et al., 2020b; Huang, 2017). It can therefore be
estimated with corresponding GLMM software as long as the software implements the
CMPµ distribution as a response distribution. This is the case for the glmmTMB package
(Brooks et al., 2017) in R. Forthmann et al. (2020b) described how the CMPCM can be
estimated with the help of glmmTMB.

In IRT, models such as the CMPCM and the RPCM with are typically referred to as
one-parameter models. Two-parameter IRT models additionally include another item-
specific parameter, (depending on the parameterization) a discrimination or slope pa-
rameter (see e.g., Baker & Kim, 2004, for an introduction to one- and two-parameter
IRT models for binary data and their estimation routines)1. This parameter allows to
modulate the response curve steepness beyond the steepness that is implied by the item
1Arguably the most well known IRT models have been developed for binary data, an introduction to
which is beyond the scope of this thesis.
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Figure 2.5: Item response curves under the CMPCM for items with easiness δ3 = δ5 =
1.2 (Items 3 and 5) and items with easiness δ4 = δ6 = 1.7 (Items 4 and
6), items 3 and 4 exhibit conditional overdispersion (ν3 = ν4 = 0.4) and
items 5 and 6 exhibit conditional underdispersion (ν5 = ν6 = 1.4) (shaded
ribbons indicate ±1 conditional SD).
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2.2 Count Item Response Models

easiness in count IRT models with an inverse log-link function. The formulation for
the RPCM and the CMPCM in Equation 2.10 implicitly assumes the discriminations or
slopes for all items to be fixed to 1, and allows to estimate the latent trait variance σ2.
This formulation aligns with estimation within a GLMM framework and highlights how
the RPCM and the CMPCM can be understood as special cases in the GLMM frame-
work (Baghaei & Doebler, 2019; Forthmann et al., 2020b). Alternatively, we could
formulate the prediction of the expected counts µij in the RPCM and the CMPCM as
µij = exp(αθi+ δj), assuming θi

i.i.d.∼ N (0, 1), for i = 1, . . . , N , that is, estimating one
slope parameter α that is equal across all items and fixing the latent trait variance to 1
for model identification. I explain this alternative formulation here as this generalizes
more organically to the two-parameter count IRT model using the CMPµ distribution I
proposed in the first article of this thesis (see Chapter 3.1).

2.2.3 Multidimensional Item Response Models

While multidimensional IRT (MIRT) models have become a staple in psychometric
analyses for binary and ordinal data (Chalmers, 2012), MIRT models for count data
are comparably underdeveloped. Multidimensional approaches for count data have
predominantly been developed in other frameworks than IRT, such as factor analysis
(Wedel et al., 2003) or generalized linear additive mixed models (Skrondal & Rabe-
Hesketh, 2004), which both have parallels to IRT. In the third article of this thesis (see
Chapter 3.3), we proposed a MIRT model for count data, filling this gap in the literature
landscape.

As the literature on specifically MIRT models for count data is scarce, I will briefly
give some background on MIRT models for binary data. A popular unidimensional
model for binary data is the two-parameter logistic (2PL) model (Birnbaum, 1968)
which models the binary responsesXij as conditionally Bernoulli distributed with suc-
cess probability πij . In the multidimensional extension of the 2PL model, the success
probability πij for person i and item j is modelled as

πij = expit

󰀣
L󰁛

l=1

αljθli + δj

󰀤
(2.11)

(Reckase, 2009), where we have L latent trait θli with a trait × item-specific slope αjl

(which are also often written in matrix notation as α ∈ RM×L, in this thesis referred
to as the discrimination matrix) and an item-specific intercept δj . Note that due to
the different inverse link function, the units for these parameters are different to what
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2 Statistical Methods and Background

they are in count IRT models, as would their interpretation and item response curves
(or surfaces, in the multidimensional case) be. The expit function is the inverse logit
function, defined as expit(x) = exp(x)/(1 + exp(x)). This type of MIRT model is
also called a compensatory MIRT model (Reckase, 2009). One frequently assumes a
multivariate normal distribution as the joint distribution for the latent traits (Chalmers,
2012), where one typically assumes latent trait means to be 0 and fixes the diagonal of
the covariance matrix to 1 for identification.

As I will describe in more detail in Section 2.3, a very popular method for estimat-
ing (M)IRT models is the Expectation-Maximization algorithm (Bock & Aitkin, 1981;
Dempster et al., 1977). A range of popular MIRT models for binary, polynomous, and
ordinal data are implemented in the R package mirt (Chalmers, 2012).

Confirmatory and Exploratory Models

The MIRT literature usually distinguishes between exploratory and confirmatory MIRT
models; a distinction also made in the factor analysis literature (Chalmers, 2012; Mc-
Donald, 1999). The discrimination matrix α can be regarded as analogous to a factor
loading matrix in factor analysis (e.g., McDonald, 2000, for MIRT model for binary
data). A confirmatory MIRT model imposes constraints on the discrimination matrix
α so that specific relationships between each item and the factors are modelled. By
fitting the confirmatory MIRT model to the data and assessing the model fit, one can
assess whether the theoretical assumptions that informed the imposed constraints find
empirical support (McDonald, 2000).

Exploratory MIRT models aim to estimate the whole discrimination matrix α from the
data. Thereby, relationships between items and factors are not modelled according to
substantive considerations but estimated empirically from the data (McDonald, 2000).
Due to neither the αjl nor the θli being fixed and their linear relationship, there are an
infinite number of possible solutions for α – a phenomenon referred to as rotational
indeterminancy (Scharf & Nestler, 2019). There are different criteria for choosing a
preferred solution for α (Scharf & Nestler, 2019). Popular ones are those which imply
a simple structure for the α matrix (Thurstone, 1947), in simple terms that is, a dis-
crimination matrix in which each item is associated with predominantly one latent trait
(see e.g., Trendafilov, 2014, for a more specific definition). For a setting with two latent
traits and six items, a perfect simple structure would for example be given by
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2.2 Count Item Response Models

α =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

α11 0

α21 0

α31 0

0 α42

0 α52

0 α62

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (2.12)

Rotation for Simple Structure

To obtain a simple structure solution for α, one first estimates the MIRT model with
sufficient identification constraints and rotates the resultingαmatrix after dropping the
identification constraints. Denote the N × L matrix of latent traits with Θ. The α

matrix is rotated by multiplying with a rotation matrix V ∈ RL×L which satisfies that

αΘT = αV V −1ΘT (2.13)

(Scharf & Nestler, 2019; Trendafilov, 2014). The rotation matrix V is selected accord-
ing to different criteria depending on the specific rotation method (Scharf & Nestler,
2019). Rotation methods can be classified into orthogonal and oblique approaches
(Trendafilov, 2014). An example for an orthogonal rotation technique, which assumes
uncorrelated latent traits, is Varimax (Kaiser, 1958, 1959). Denote the elements of the
rotated discrimination matrix (α∗ = αV ) as α∗

jl for the element in the jth row and lth
column. The Varimax approach chooses the orthogonal rotation matrix V that max-
imizes the sum of the column-wise variances of discriminations (analogous to factor
loadings) Var(α∗

l ), where

Var(α∗
l ) =

M󰁛

j=1

α∗4
jl −

1

M

󰀣
M󰁛

j=1

α∗2
jl

󰀤2

(2.14)

(Trendafilov, 2014). An example for an oblique rotation technique, which allows corre-
lations between the latent traits, is Oblimin (Carroll, 1957; Clarkson & Jennrich, 1988).
For the Oblimin family (Carroll, 1957; Clarkson & Jennrich, 1988), the goal is to find
the oblique rotation matrix V that minimizes the function

f(α∗) =
󰁛

l ∕=l∗

󰀣
M

M󰁛

j=1

α∗2
jl α

∗2
jl∗ − κ

M󰁛

j=1

α∗2
jl

M󰁛

j=1

α∗2
jl∗

󰀤
(2.15)
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(Clarkson & Jennrich, 1988). The value κ is chosen depending on the specific variant;
it must hold that 0 ≤ κ ≤ 1.

A range of orthogonal and oblique rotation criteria, including Varimax and Oblimin, are
implemented in the R package GPArotation (Bernaards & Jennrich, 2005) which
implements the gradient projection algorithm (GPA; Jennrich, 2001, 2002, 2004).

2.3 Marginal Maximum Likelihood Estimation in IRT

Apart from the articles on maximum likelihood approaches for specific count IRT mod-
els (e.g., Jansen, 1995, 2003, for the RPCM), there is little literature on (marginal)
maximum likelihood (MML) estimation for count IRT models in general. There is
however ample good literature on (M)ML estimation for dichotomous and polytomous
IRT models (e.g., Baker & Kim, 2004; Reckase, 2009). I have written the following
general section on MML for count IRT models based on these works (Baker & Kim,
2004; Reckase, 2009) and adapted them to the generic count IRT model introduced in
Section 2.2.

For any count IRT model, let P (xij;θi, ζj,uj, ti) denote the probability of observing
xij counts for person i responding to item j. With the assumption of local independence,
the probability for the response vector xi for person i to allM items can be obtained as

P (xi;θi, ζ,u, ti) =
M󰁜

j=1

P (xij;θi, ζj,uj, ti). (2.16)

If estimated with a marginal maximum likelihood approach, one further places a dis-
tribution assumption on the latent trait(s) which often is a uni- or multivariate normal
distribution (but see also e.g., Jansen & van Duijn, 1992), depending on whether the
model is uni- or multidimensional. Let Ψ generically denote the density of the distribu-
tion assumed for the latent trait(s), which depends on parameters ξ. The probability of
response vector xi for person i, marginalized over θi, is

P (xi; ζ,u, ti) =

󰁝

θi

P (xi;θi, ζ,u, ti)Ψ(θi; ξ)dθi. (2.17)

Further assuming the N persons have been sampled independently from one another,
the marginal likelihood for ζ given the data x ∈ NN×M

0 is
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Lm(ζ;x,u, t) =
N󰁜

i=1

󰁝

θi

P (xi;θi, ζ,u, ti)Ψ(θi; ξ)dθi. (2.18)

Dropping the possible item and person covariates in the following for readability, the
marginal likelihood can be written more succinctly as

Lm(ζ;x) =
N󰁜

i=1

󰁝

θi

P (xi;θi, ζ)Ψ(θi; ξ)dθi. (2.19)

Usually, one takes the logarithm of the marginal likelihood for optimization, obtaining
the marginal log-likelihood LLm(ζ;x) = log(Lm(ζ;x)). Maximizing (the logarithm
of) Equation 2.19 in terms of item-specific model parameters ζ – in the sense of es-
timating the item-specific model parameters – constitutes the goal of calibration of
IRT models. For specific count IRT models, such as the RPCM, estimation can also
be tackled via other approaches, for example using a conditional maximum likelihood
approach (Jansen, 1995). Outside of these cases, estimation usually takes a marginal
maximum likelihood (MML) approach. MML is preferable to joint maximum likeli-
hood (JML; i.e., assuming and estimating fixed latent abilities for the set of observed
persons) in this instance, as in JML, the number of model parameters grows with the
number of persons in the sample grows, potentially negatively impacting the estimator’s
consistency. MML instead integrates over the latent abilities, eliminating the problem.
However, MML faces the challenge that the integral in Equation 2.19 is analytically
intractable. It is beyond the scope of this thesis to give a comprehensive overview over
all the possible approaches of how this challenge can be addressed. Instead, in the fol-
lowing, I am only going to briefly give an introduction to the methods we used in the
articles of this thesis to this end.

2.3.1 The Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is a popular
algorithm for marginal maximum likelihood estimation problems such as the one pre-
sented above. For a general introduction, see McLachlan and Krishnan (2007) and for
an IRT-specific discussion, see Baker and Kim (2004). The EM algorithm is a pow-
erful tool in ML estimation whenever the estimation problem can be re-formulated as
an incomplete-data problem (McLachlan & Krishnan, 2007). For instance, in the IRT
context, we can regard the observed responses x as the incomplete data, lacking the (un-
observable) latent trait(s) θ, which together would make up the complete data (x,θ).
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2 Statistical Methods and Background

One can formulate the (log-)likelihood for the complete data (McLachlan & Krishnan,
2007), which I denote here with LLc(ζ;x,θ). In many cases, the complete-data likeli-
hood is easier to maximize than the incomplete-data marginal likelihood (McLachlan &
Krishnan, 2007). The EM algorithm takes advantage thereof as well as of the result that
the same estimates ζ̂ maximize the complete-data likelihood and the incomplete-data
marginal likelihood (McLachlan & Krishnan, 2007). Directly maximizing LLc(ζ;x,θ)

is not possible, as the θ have not been observed. Instead, the EM algorithm takes an iter-
ative approach. Starting with initial values ζ(0) for ζ, which are assumed known for the
time being, the EM algorithm computes the conditional (on x) (posterior) expectation
of LLc(ζ;x,θ) in its initial Expectation (E) step, that is,

Q(ζ; ζ(0)) = Eθ|ζ(0)(LLc(ζ;x,θ)|x) (2.20)

(McLachlan & Krishnan, 2007). In its first Maximization (M) step, the EM algorithm
proceeds to maximize (the assumed given) Q(ζ; ζ(0)) in terms of ζ, obtaining a new
set of current item parameters, ζ(1) (McLachlan & Krishnan, 2007). Subsequently, the
EM algorithm iterates between E and M step, where ζ(0) is replaced by the respective
last obtained item parameter estimates (McLachlan & Krishnan, 2007). That is, in the
ith iteration of the EM algorithm, the E step computes Q(ζ; ζ(i−1)) and the M step
maximizes Q(ζ; ζ(i−1)), until a criterion of convergence is met (McLachlan & Krish-
nan, 2007). A helpful property of the EM algorithm is that each EM iteration either
increases or maintains (but does not decrease) the log-likelihood, which guarantees
convergence as long as the log-likelihood is of such a shape that it can be maximized
(Dempster et al., 1977; McLachlan & Krishnan, 2007).

Evaluating Equation 2.20 requires computing an expectation, i.e., evaluating an inte-
gral. Often, this integral is analytically intractable, requiring a type of numerical ap-
proximation. A popular method to this end is Gauss-Hermite (GH) quadrature (Baker
& Kim, 2004). GH quadrature approximates the integral over a continuous variable
by a sum over discrete points which are weighted according to the distribution of the
continuous variable (Baker & Kim, 2004). The discrete points are called quadrature
nodes and the associated weights, quadrature weights. Gauss-Hermite quadrature is for
example implemented in R in the package fastGHQuad (Blocker, 2018).

For unidimensional logistic IRT models (i.e., the 2PL model and a further generaliza-
tion including a third item parameter), Bock and Aitkin (1981) provided an EM algo-
rithm which simplifies the E step by computing sufficient statistics for the (posterior)
expected complete-data log-likelihood (Baker & Kim, 2004). The E step then consists
of computing these sufficient statistics (Baker & Kim, 2004). Please see Baker and Kim
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2.3 Marginal Maximum Likelihood Estimation in IRT

(2004) for further details and the specific algorithm.

2.3.2 Penalized MML Estimation in IRT

A simple structure for the discrimination matrix α cannot only be obtained through
rotation (see Sections 2.2.3 and 2.2.3). Recently, research in factor analysis (see e.g.,
Trendafilov, 2014, for a review) as well as dichotomous and polytomous IRT (e.g.,
Cho, Xiao, Wang, & Xu, 2022; Robitzsch, 2023; Sun, Chen, Liu, Ying, & Xin, 2016)
has explored an alternative: Obtaining a simple structure for the α via regularization.
Regularization methods were originally developed within the context of variable selec-
tion problems in (generalized) linear models (Hastie, Tibshirani, & Friedman, 2009).
Obtaining a simple structure for the α matrix in IRT can also be viewed as a variable
selection problem: The aim is a sparse discrimination matrix in which only certain
parameters are different from 0 (Scharf & Nestler, 2019; Trendafilov, 2014).

Regularization is a broad research field in the statistical literature, a summary of which
would be beyond the scope of this thesis. For a general introduction, see for example
Hastie et al. (2009). In regularized estimation approaches, one imposes a penalty onto
the likelihood that is to be maximized. Such a penalty is usually a function of all or a
subset of the model parameters and it penalizes larger estimates for these parameters
(Hastie et al., 2009). Thereby, it imposes shrinkage on these parameters: Estimates
are gradually shrunken towards 0. Depending on the specific penalty imposed, pa-
rameters can even be shrunken to exactly 0 (e.g., for the least absolute shrinkage and
selection operator (lasso) penalty; Hastie et al., 2009; Tibshirani, 1996, see also below).
Thus, regularization can serve as a means of variable selection. Originally developed
for regression, regularization methods such as the lasso have grown to be popular in a
wider array of contexts, including generalized linear mixed models (e.g., Groll & Tutz,
2014; Schelldorfer, Meier, & Bühlmann, 2014) and extensions (e.g., Nestler & Hum-
berg, 2022), factor analysis (e.g., Trendafilov, 2014), or structural equation modeling
(e.g., Jacobucci, Grimm, & McArdle, 2016). In the following, I am going to focus on
prior work in lasso-regularized IRT estimation that specifically informed the method
development of this thesis.

For the third article in this thesis, an important prior work is the ℓ1-penalized EM al-
gorithm for dichotomous and polytomous IRT models developed by Sun et al. (2016).
I am going to briefly outline their work with a focus on their algorithm rather than the
models, as those are for binary and ordinal rather than count data. Thus, I am going to
start the description by looking at the marginal log-likelihood for a multidimensional
2PLmodel (Equation 2.11; Birnbaum, 1968; Reckase, 2009) which I denoteLLm(ζ;x)
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in the following. I adapted the notation to align with the notation used throughout this
thesis. Imposing a lasso penalty (Tibshirani, 1996) on the discrimination matrix α

(⊂ ζ), the goal of penalized maximum likelihood estimation is to maximize

LLm(ζ;x)− η||α||1 (2.21)

in terms of ζ (Sun et al., 2016). The hyperparameter η > 0 modulates how strongly
shrinkage is imposed onto the α matrix (Sun et al., 2016). Sun et al. (2016) tune η

using the Bayesian information criterion (BIC; Schwarz, 1978). Note that for η = 0,
the unpenalized ML estimator is obtained (Sun et al., 2016). The lasso penalty ||α||1 is

||α||1 =
M󰁛

j=1

L󰁛

l=1

|αjl| (2.22)

(Sun et al., 2016). For estimation, Sun et al. (2016) employ an EM algorithm (Dempster
et al., 1977) in combination with the coordinate descent algorithm (Friedman, Hastie,
& Tibshirani, 2010) during the M step to implement the penalization. During the E
step, they numerically approximate the (posterior) expectation of the complete-data
(i.e., (x,θ)) log-likelihood through quadrature, while assuming the item parameters
from the previous M step, ζ ′, known (Sun et al., 2016). Denote the approximated
posterior expectation as Q̂(ζ|ζ ′) (Sun et al., 2016). During the M step, Q̂(ζ|ζ ′) is
penalized by substracting the lasso penality, i.e.,

Q̂(ζ|ζ ′)− η||α||1, (2.23)

and this penalized (approximated) expected log-likelihood is in turn maximized with
regard to ζ (Sun et al., 2016). Sun et al. (2016) carry out the maximization per item, as
Q̂(ζ|ζ ′) decomposes into each item’s contribution, and employ Friedman et al. (2010)’s
cyclic coordinate descent algorithm. There are L + 1 parameters associated with each
item. Using a discrimination-difficulty parameterization rather than an intercept-slope
parameterization in the IRT model, Sun et al. (2016) have a difficulty parameter dj and
L discrimination (= slope) parameters αj = (αj1, . . . ,αjL)

T to optimize. Within the
(item-wise) cyclic coordinate descent, they do so by iteratively updating the parameters
through the following updating rules: For dj update through

d̂j = dj −
∂djQ̂(ζj|ζ ′

j)

∂2djQ̂(ζj|ζ ′
j)

(2.24)
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(Sun et al., 2016), and for each αjl update through

α̂jl = −
S(−∂2αjl

Q̂(ζ|ζ ′)αjl + ∂αjl
Q̂(ζ|ζ ′), η)

∂2αjl
Q̂(ζ|ζ ′)

(2.25)

(Sun et al., 2016). The elements in αj are updated successively, with each element pre-
vious to the currently updated element already in its updated form and each subsequent
element still in its previous form (Sun et al., 2016). In Equation 2.25, S is defined as

S(x, η) = sign(x)(|x|− η)+ =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

x− η, if x > 0 and η < |x|,
x+ η, if x < 0 and η < |x|,
0 if η ≥ |x|

(2.26)

(Sun et al., 2016), and is called the soft threshold operator (Donoho & Johnstone, 1995)
through which shrinkage can be imposed on the penalized item parameters. Further de-
tails on how Sun et al. (2016) derive these updating rules are described in the appendix
of their paper.
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3 Summary of the Articles

3.1 Article 1: The Two-Parameter Conway-Maxwell-Poisson Model
(BJSMP, 2022)

The article summarized in the following is published in British Journal of Mathe-
matical and Statistical Psychology: Beisemann, M. (2022). A flexible approach to
modelling over-, under-and equidispersed count data in IRT: The Two-Parameter Con-
way–Maxwell–Poisson Model. British Journal of Mathematical and Statistical Psy-
chology, 75(3), 411–443. https://doi.org/10.1111/bmsp.12273

3.1.1 Motivation

Existing count item response models were limited in their ability to accommodate em-
pirical data settings in which conditional response distributions were underdispersed, at
least for a subset of items (Forthmann et al., 2020b), as Chapter 1 outlined. The intro-
duction of the Conway-Maxwell-Poisson Counts Model (CMPCM; Forthmann et al.,
2020b, see Chapter 2.2.2) allowed to account for item-specific over-, equi-, and also
underdispersion for the first time. A limitation of the CMPCM is that it assumes equal
discrimination or slope parameters across all items. This assumption is empirically
sometimes violated (Myszkowski & Storme, 2021) and should at least be tested. The
aim of this first article was the extension of the CMPCM to allow for modelling item-
specific discrimination or slope parameters. This required the proposal of a correspond-
ing estimation technique, as existing estimation procedures and software implementa-
tions could not accomodate such an extension (Forthmann et al., 2020b). Importantly,
with the addition of discrimination or slope parameters, we leave the GLMM context
and can no longer estimate such a count IRT model with GLMM software.

3.1.2 The Two-Parameter Conway-Maxwell-Poisson Model

The proposed Two-Parameter Conway-Maxwell-Poisson Model (2PCMPM) extends
the CMPCM through the inclusion of item-specific discriminations, or in the param-
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Figure 3.1: Item response curves under the 2PCMPM for items with easiness δ7 = δ9 =
δ11 = δ13 = 1.2 (Items 7, 9, 11, and 13) and items with easiness δ8 = δ10 =
δ12 = δ14 = 1.7 (Items 8, 10, 12, and 14); items 7, 8, 11, and 12 exhibit
conditional overdispersion (ν7 = ν8 = ν11 = ν12 = 0.4) and items 9, 10, 13,
and 14 exhibit conditional underdispersion (ν9 = ν10 = ν13 = ν14 = 1.4)
(shaded ribbons indicate ±1 conditional SD); items 7 – 10 have a very
gentle slope of α7 = α8 = α9 = α10 = 0.1 and items 11 – 14 have a steeper
slope of α11 = α12 = α13 = α14 = 0.4.
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3.1 The Two-Parameter Conway-Maxwell-Poisson Model

eterization used here (see Beisemann, 2022, or Chapter 2.2.2 for details), slope pa-
rameters αj , for items j = 1, . . . ,M . The 2PCMPM assumes that count responses
Xij|θi ∼ CMPµ(µij, νj) for person i ∈ {1, . . . , N} and item j ∈ {1, . . . ,M}, with
item-specific dispersion parameter νj . Further, the expected count response µij for per-
son i to item j is modelled as

µij = exp (αjθi + δj) (3.1)

(Beisemann, 2022). The intercept δj represents the expected log counts for a person of
average ability (i.e., θi = 0) answering item j. Note that with the introduction of the
slope parameter, the intercept δj is no longer directly equivalent to the item easiness.
The slope αj represents the degree to which differences on the latent trait are depicted
in differences on the count responses (similar to a factor loading). Analogously to the
count IRT models described in Chapter 2, the item response curves under the 2PCMPM
for items with varying slopes, intercepts, and dispersions are illustrated in Figure 3.1.
We can see that the 2PCMPM can model item-specific dispersion in the same manner as
the CMPCM (Figure 2.5) and is additionally able to model item-specific differences in
the item’s capability to differentiate between latent trait levels through the added slope
parameter (beyond what is implied through the item intercept).

For the latent trait θi, assume that θi ∼ N (0, 1), for i = 1, . . . , N . The latent trait
variance has to be fixed to 1 for identification purposes when estimating slope param-
eters in IRT models (Baker & Kim, 2004). With the local independence assumption,
the probability for the response vector xi containing the responses of person i to allM
items under the 2PCMPM is

P (xi|θi, ζ) =
M󰁜

j=1

CMPµ(xij;µij, νj) (3.2)

for i ∈ {1, . . . , N} (Beisemann, 2022). Denote the density of the standard normal
distribution as φ. The marginal likelihood for the data x ∈ NN×M

0 (i.e., the responses
of all N participants to allM items) under the 2PCMPM is given by

Lm(ζ;x) =
N󰁜

i=1

󰁝
P (xi|θi, ζ)φ(θi)dθi (3.3)

(Beisemann, 2022).
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3.1.3 Estimation via Expectation-Maximization Algorithm

The integral in Equation 3.3 is analytically intractable, calling for numeric methods of
integration. In this work, I relied on (fixed) Gauss-Hermite quadrature to this end, as it
is a common approach in IRT (Baker & Kim, 2004). Let qk denote the kth quadrature
node and wk the kth quadrature weight. Rewriting Equation 3.3 in quadrature notation,
using K ∈ N quadrature nodes, one obtains

Lm(ζ;x) ≈
N󰁜

i=1

K󰁛

k=1

P (xi|qk, ζ)wk (3.4)

(Beisemann, 2022). Directly optimizing Equation 3.4 in terms of ζ is still challenging.
We can conceive of the estimation problem as an incomplete-data problem: We have
the observed responses to the items, x, but also the latent traits θ, or in quadrature
notation, q, which can be thought of as unobservable and therefore missing data. The
complete data would consist of both, that is, (x,θ) or (x, q). In the article, I show that
the expected complete-data log-likelihood can be expressed as

E(LLc) ∝
K󰁛

k=1

N󰁛

i=1

M󰁛

j=1

[(xij log(λjk)− νj log(xij!)− log(Zjk)P (qk|xi, ζ ′)] . (3.5)

with Zjk = Z(λ(µjk, νj), νj)) and λjk = λ(µjk, νj) for easier readability, and where

P (qk|xi, ζ ′) =

󰁔M
j=1 CMPµ(xij|qk, ζ ′

j)wk
󰁓K

k′=1

󰁔M
j=1 CMPµ(xij|qk′ , ζ ′

j)wk′
(3.6)

are the posterior probabilities for qk, k = 1, . . . , K (Beisemann, 2022). The latter are
computed during each E step using given item parameters ζ ′

j from the previous M step
(or using start values in the first iteration). In each subsequent M step, the expected
complete-data log-likelihood is maximized with respect to ζ, given the posterior prob-
abilities (3.6) from the previous E step (Beisemann, 2022). In the article, I provide
the derivatives required for the M step. E and M steps are iteratively repeated until a
criterion of convergence is met. I implemented the 2PCMPM EM algorithm in R (R
Core Team, 2023) and C++ (tied into R using rcpp; Eddelbuettel et al., 2011) in the R
package countirt (see Chapter 4 for details).

In the article, I obtain standard errors for the model parameters using a numerical
approximation technique to Oake’s identity (Oakes, 1999; Chalmers, 2018; Pritikin,
2017). With regard to measurement, I discuss how expected a-posteriori (EAP) latent
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3.1 The Two-Parameter Conway-Maxwell-Poisson Model

trait estimates can be easily and computationally inexpensively obtained from the EM
algorithm (Beisemann, 2022).

3.1.4 Evaluation in Simulation Studies and Application

In a first simulation study, parameter recovery and reliability of the proposed model and
algorithm was assessed under 32 different simulation conditions, with varying sam-
ple sizes, numbers of items, quadrature nodes, and types of underlying item-specific
dispersions (i.e., all items with conditional equidispersion, all items with conditional
overdispersion, all items with conditional underdispersion, and a set of items in which
each type of dispersion was represented with at least one item). Only a small number of
trials in some of the conditions experienced numerical instabilities; reasons for which
are discussed in the article (Beisemann, 2022). The results in terms of parameter re-
covery were overall satisfactory, with greater number of items and larger samples sizes
unsurprisingly yielding better results. Increasing the quadrature node number above
121 did not improve results notably (Beisemann, 2022). In a second simulation study,
the 2PCMPM was compared to previously proposed count item response models. The
2PCMPM is the most general of the models compared, with all other models consti-
tuting special cases of the 2PCMPM. The comparison was conducted under conditions
where in truth, a 2PCMPM holds, and all existing count item response models were
faced with some or multiple kinds of violations of their assumptions. The compari-
son highlights that in particular in terms of uncertainty quantification, that is, in terms
of standard errors and model-implied reliability estimates, the 2PCMPM can alleviate
problems caused for the other models due to assumption violations (Beisemann, 2022).
However, it is also noteworthy to observe that in terms of point estimates for the latent
trait, differences between all compared models were minimal, especially for the CM-
PCM and the 2PCMPM (Beisemann, 2022). This as well as other emerging patterns
are discussed in the article.

For an empirical illustration of the proposed model, a 2PCMPM was fitted to data from
M = 6 divergent thinking fluency tasks (Silvia, 2008a, 2008b; Silvia et al., 2008;
Silvia, 2013). The resulting parameters indicated that the items varied in their item-
specific discrimination or slope parameters as well as in their item-specific dispersion
parameters (Beisemann, 2022). These patterns were corroborated by likelihood ra-
tio tests testing (1) the constraint of equal dispersion parameters across items (against
item-specific dispersions), and (2) the constraint of equal slope parameters across items
(against item-specific slopes). In both cases, the constraints were rejected, indicating
that the full 2PCMPM fit better to the data than (previously existing) special cases of
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the 2PCMPM (Beisemann, 2022). The example illustrates how special cases, such as
the CMPCM, can easily be obtained by introducing constraints in the 2PCMPM, and
how this allows for testing of the special cases’ assumptions.
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3.2 Explanatory Extensions of the 2PCMPM

3.2 Article 2: Explanatory Extensions of the 2PCMPM (MBR,
2024)

The article summarized in the following has been published as an advance online article
in Multivariate Behavioral Research at the time of submitting this thesis: Beisemann,
M., Forthmann, B., & Doebler, P. (2024). Understanding ability and reliability differ-
ences measured with count items: The Distributional Regression Test Model and the
Count Latent Regression Model. Multivariate Behavioral Research, (Advance Online
Publication), 1–21. https://doi.org/10.1080/00273171.2023.2288577

3.2.1 Motivation

Item response models yield estimates for item-specific characteristics and can be used
to obtain latent trait estimates. Differences between items in their characteristics and
between test takers in their latent trait values can thus be observed. A specific group
of item response models aims to explain these differences: Explanatory item response
models (see e.g., De Boeck & Wilson, 2004), or explanatory extensions of item re-
sponse models, allow the inclusion of item and / or person covariates that might explain
(part of) the differences between items and / or test takers, respectively. Popular ex-
planatory item response models include the Log-Linear Test Model (LLTM; Fischer,
1973) and the Latent Regression Model (LRM; Zwinderman, 1991), both explanatory
extensions of the Rasch model (a one-parameter item response model for binary data;
Rasch, 1960), the former by inclusion of item and the latter by inclusion of person
covariates. Explanatory extensions of count item response models have received com-
paratively less attention. Prior research has focused on explanatory extensions of the
RPCM (e.g., Ogasawara, 1996; Graßhoff et al., 2013, 2020) which – as discussed in the
previous chapters – assumes discriminations to be equal across items and all items’ con-
ditional response distribution to be equidispersed. Differences in item parameters can
thus only be modeled and explained for the item-specific easiness (inverse difficulty)
parameters (compare Chapter 2.2.2). From an implementation stand point, incorporat-
ing covariates into the RPCM has the advantage that such extensions still remain within
the GLMM framework (De Boeck et al., 2011).

The 2PCMPM (Beisemann, 2022), proposed in the first article of this thesis, addi-
tionally allows for modeling of item-specific discrimination or slope parameters and
item-specific dispersion parameter through which the 2PCMPM can account for con-
ditional over-, equi-, and underdispersion. These allow for differences between items
among three groups (rather than one) of item-specific parameters (Beisemann et al.,
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2024a). Explaining such differences can help to understand reliability differences be-
tween items (as reliability in item response models depends on the item parameters),
can inform item construction (if certain item properties can empirically be shown to
influence item parameters in a certain way, they can be chosen purposefully), and guide
item selection (e.g., if certain items empirically demonstrate low discrimination, they
are only capable of capturing latent trait differences poorly and thus are less suitable
for a test assessing the respective latent trait) (Beisemann et al., 2024a). Between-
person differences in latent trait values are commonly a focus of substantive research
on the measured constructs (Beisemann et al., 2024a). To study these differences under
the 2PCMPM allows to account for empirically present complexity of data and thus
enables more accurate uncertainty quantification (Beisemann, 2022). These consider-
ations motivated the aim of this second article: The development of two explanatory
item response models, one to include item and one to include person covariates, as well
as corresponding estimation procedures based on the EM algorithm proposed for the
2PCMPM in the first article. Note that when basing explanatory CIRT models on the
2PCMPM, we leave the GLMM framework.

3.2.2 The Distributional Regression Test Model

In the second article of this thesis, we proposed the Distributional Regression Test
Model (DRTM) which extends the 2PCMPM (Beisemann, 2022) through the inclusion
of item covariates on all three (or a subset of) the item parameters in the 2PCMPM.
For simpler notation, we formulated the following equations using the same I item co-
variates to explain differences on all three types of item parameters (but the DRTM also
allows different item covariates for each item parameter type, or only including item co-
variates on one or two item parameter groups; for details see Beisemann et al., 2024a).
With uj1, . . . , ujI , j ∈ {1, . . . ,M}, denoting the realizations of the I item covariates,
we model

αj = α +
I󰁛

c=1

βαcujc (3.7)

δj = δ +
I󰁛

c=1

βδcujc, (3.8)

under the DRTM, with βαc and βδc for the cth covariate weight in the model for αj and
δj , respectively (Beisemann et al., 2024a). The expected counts µij are in turn modelled
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as

µij = exp

󰀣
δ +

I󰁛

c=1

βδcujc +

󰀣
α +

I󰁛

c=1

βαcujc

󰀤
θi

󰀤
, (3.9)

under the DRTM (Beisemann et al., 2024a), as opposed to as in Equation 3.1.2 under
the 2PCMPM. The dispersion parameters νj are modelled as

νj = exp(ν̃ +
I󰁛

c=1

βνcujc). (3.10)

under the DRTM, with βνc for the cth covariate weight for νj (Beisemann et al., 2024a).
Note the different scales of ν̃ and νj (due to the log link), highlighted in the notation
by writing ν̃ rather than simply ν (as in Equations 3.7 and 3.8). With Equations 3.7–
3.10, the DRTM, as an extension of the 2PCMPM, assumes count responses Xij|θi ∼
CMPµ(µij, νj) for person i ∈ {1, . . . , N} and item j ∈ {1, . . . ,M} (Beisemann et al.,
2024a).

3.2.3 The Count Latent Regression Model

We further propose the Count Latent RegressionModel (CLRM) in the second article of
this thesis. The CLRM extends the 2PCMPM through the inclusion of P person covari-
ates to explain differences in the latent trait values. With ti1, . . . , tiP , i ∈ {1, . . . , N},
denoting the realizations of the P person covariates, we model

θi = θ∗i +
P󰁛

p=1

γptip, (3.11)

where γp, p = 1, . . . , P represent the regression weights for the person covariates
(Beisemann et al., 2024a). We can interpret the term θ∗i as a random intercept with
θ∗i

i.i.d.∼ N (0, 1). We fix the variance to 1 for identification purposes. The expected
counts µij are modelled as

µij = exp

󰀣
δj + αj

󰀣
θ∗i +

P󰁛

p=1

γptip

󰀤󰀤
(3.12)

under the CLRM (Beisemann et al., 2024a). The CLRM assumes count responses
Xij|θi ∼ CMPµ(µij, νj) for person i ∈ {1, . . . , N} and item j ∈ {1, . . . ,M}, with µij
as in Equation 3.12 and item-specific dispersion parameters νj (as in the 2PCMPM).
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As introduced in Equation 3.11, the CLRM can theoretically include continuous and
categorical covariates, but in the article, we discuss the computational challenges of
continuous covariates and how they can be alleviated when including only categorical
covariates. Due to the challenges associated with including continuous covariates, our
implementation and evaluation of the CLRM includes only categorical person covari-
ates (see Chapters 4 and 5 for a further discussion) (Beisemann et al., 2024a).

3.2.4 Estimation via Expectation-Maximization Algorithm

In the second article of this thesis, we outline how the DRTM and the CLRM can be
estimated using adaptations of the 2PCMPM EM algorithm presented in the first article
(Beisemann, 2022). With µij and νj as in Equations 3.9–3.10 and in Equation 3.12 with
item-specific νj for the DRTM and the CLRM, respectively, the marginal likelihood
for the DRTM and the CLRM remains as given in Equation 3.3 for the 2PCMPM.
Following, the EM algorithm to estimate the DRTM and CLRM remains as outlined
in Chapter 3.1.3 for the 2PCMPM, but with the respective specifications for µij and
νj and consequently different gradients for the M step which we provide in the second
article of this thesis (Beisemann et al., 2024a). The EM algorithms for the DRTM and
the CLRM were again implemented in R (R Core Team, 2023) and C++ (tied into R
using rcpp; Eddelbuettel et al., 2011) in the R package countirt (see Chapter 4
for details, also regarding the computational challenge of continuous person covariates
in the CLRM and how computational efficiency was improved for categorical person
covariates). As in the first article, we obtained standard errors for the model parameters
using a numerical approximation technique to Oake’s identity (Oakes, 1999; Chalmers,
2018; Pritikin, 2017).

3.2.5 Evaluation in Simulation Studies and Application

We conducted two simulation studies to assess (I) parameter recovery in the DRTM and
the CLRM, and (II) the power and type I error of the Wald tests for covariate effects.
In the first simulation study, we systematically varied the sample size, the number of
items, and the number and types of covariates, resulting in 28 different simulation con-
ditions. Numerical instabilities were only encountered in a small number of trials in
a few simulation conditions, and results in terms of parameter recovery were mostly
satisfactory. More challenging conditions (particularly for slope parameter estimation)
involved continuous item covariates and smaller numbers of items. Potential reasons
for these and other observed result patterns are discussed in the article. In the second
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simulation study, we varied sample size, number of items, the type of covariate in the
DRTM, and the size of effect, in models with one (either item or person) covariate. In
the resulting 68 simulation conditions, we observed numerical instabilities only in some
trials in one condition. Results in terms of type I error rate and power for covariate de-
tection in the DRTM and the CLRM were overall quite promising but not perfect. We
discuss the result pattern in the second article (Beisemann et al., 2024a).

In two empirical examples, we illustrated how the proposed models can be applied to
real data sets. We used the DRTM to re-analyze divergent thinking task data (Forth-
mann et al., 2016), investigating to what extent item parameter differences under the
2PCMPM can be explained by the instruction used in conjunction with the items, word
frequency of the prompt word in the item, and their interaction. We illustrated how like-
lihood ratio tests and information criteria can be used to compare different DRTMs. We
re-analysed language proficiency test data (Forthmann et al., 2020a; Grotjahn, Schlak,
& Aguado, 2010; Heine, 2017) with the CLRM and investigated to what extent latent
trait differences can be explained by gender, age, and whether the person was a native
speaker. Limitations of this analysis and resulting avenues for future method develop-
ment are discussed in the article (see also Chapter 5) (Beisemann et al., 2024a).

41



3 Summary of the Articles

3.3 Article 3: Multidimensional Count Data Item Response Models
(PsyArXiv, 2024)

The article summarized in the following has been submitted to and is under review with
Psychometrika at the time of publishing this thesis and has been published as a pre-print
on PsyArXiv: Beisemann, M., Holling, H., & Doebler, P. (2024). Every trait counts:
Marginal maximum likelihood estimation for novel multidimensional count data item
response models with rotation or ℓ1–regularization for simple structure. PsyArXiv pre-
print, version 1. https://doi.org/10.31234/osf.io/fqyjs

3.3.1 Motivation

The proposal of the 2PCMPM (Beisemann, 2022) in the first article of this thesis al-
lows to model count responses to items with varying dispersions and varying discrimi-
nations (or slopes). However, the 2PCMPM remains limited in terms of the assumption
that only one latent trait, θ, underlies the count responses. Empirically, psychological
tests and self reports may often require responses to be influenced by more than one la-
tent trait, for example by construction (i.e., when measured constructs are decomposed
into several subfacets) or by test administration (i.e., when internal and external factors
additionally influence responses) (Beisemann et al., 2024b).

In item response theory, the framework of multidimensional IRT (MIRT) allows to
model responses as influenced by L ∈ N latent traits (see e.g., Reckase, 2009, for an
introduction; compare also Chapter 2). For binary and ordinal responses, MIRT models
enjoy great popularity (Chalmers, 2012). For count data, MIRT models have received
comparably less attention (but see Forthmann et al., 2018; Myszkowski & Storme,
2021). Count models with multiple latent traits have been developed in a factor analyti-
cal setting (Wedel et al., 2003), using a Poisson response distribution with different link
functions and truncating the Poisson distribution, which accommodates some extent of
underdispersion. In a different tradition, the generalized linear latent and mixed models
(GLLAMM) framework by Skrondal and Rabe-Hesketh (2004) also allows to fit mul-
tidimensional count models. To the best of my knowledge, prior to this third article of
the thesis, no multidimensional model taking advantage of the dispersion flexibility of
the CMP distribution existed.

The third article of this thesis (Beisemann et al., 2024b) extended the 2PCMPM to mul-
tidimensional count IRTmodels: the class of multidimensional two-parameter Conway-
Maxwell-Poisson models (M2PCMPM). The focus of the article is the exploratory ver-
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sion of M2PCMPMs. We developed a marginal maximum likelihood estimation tech-
nique based on the EM algorithm provided in the first article of this thesis (Beisemann,
2022). For obtaining a simple structure (Thurstone, 1947) for the discrimination matrix
α, we used traditional rotation as well as regularization techniques. For the latter, we
developed a penalized version of the M2PCMPM and a corresponding estimation rou-
tine inspired by prior work by (Sun et al., 2016), using the lasso penalty (Tibshirani,
1996).

3.3.2 Multidimensional Two-Parameter CMP Models

The proposed class of multidimensional two-parameter Conway-Maxwell-Poisson mod-
els (M2PCMPM) generalizes the 2PCMPM from the first article of this thesis to the
multidimensional case with L ∈ N latent traits. For latent traits θ1i, . . . , θli, . . . , θLi,
i = 1, . . . , N , we model the expected count response µij for one person i to one item j

as (Beisemann et al., 2024b)

µij = exp

󰀣
L󰁛

l=1

αjlθli + δj

󰀤
, (3.13)

where αjl denotes the discrimination or slope for the jth item and lth trait and δj denotes
the intercept for the jth item (as in the 2PCMPM). It is immediately clear that the
2PCMPM is contained within the M2PCMPM as a special case for L = 1. All special
cases of the 2PCMPM in turn constitute special cases of the M2PCMPM. With the
assumptions (1) that the latent traits are jointly multivariately normal distributed (with
density ψ, mean vector µθ = 0 ∈ RL, and covariance matrix Σθ ∈ RL×L, with a
diagonal of 1’s for identification and either with orthogonal traits or pre-estimated latent
trait correlations, as discussed in the article), (2) that the responsesXij are conditionally
CMP distributed (i.e., Xij|θi ∼ CMPµ(µij, νj) with µij as in Equation 3.13 and νj
estimated item-specifically), and (3) that the items are locally independent, we obtained
the marginal likelihood for the M2PCMPM as

Lm(ζ;x) =
N󰁜

i=1

󰁝
· · ·

󰁝 M󰁜

j=1

P (xij;θi, ζj)Ψ(θi;µθ,Σθ)dθ1i . . . dθLi, (3.14)

(Beisemann et al., 2024b) where θi = (θ1i, . . . , θLi)
T , for i = 1, . . . , N . Analogously

to the notation in the summaries of the previous two articles, the probability for a count
response Xij = xij under the M2PCMPM is given by P (xij;θi, ζj), where ζj denotes
the vector of all item parameters for item j in the model. It is ζ = {ζ1, . . . , ζM}. In
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the article, we discussed through which constraints on the discrimination matrix α the
exploratory M2PCMPM can be identified (Beisemann et al., 2024b).

3.3.3 Estimation via Expectation-Maximization Algorithm

In the third article of this thesis (Beisemann et al., 2024b), we provided a marginal max-
imum likelihood estimation routine for the M2PCMPMs based on the EM algorithm
for the 2PCMPM developed in the first article (Beisemann, 2022). As in Beisemann
(2022), we relied on (in this case multidimensional) Gauss-Hermite quadrature in esti-
mation. We discussed in the article that this choice is only going to work well for small
numbers of latent traits, as multidimensional quadrature is known not to scale well to
higher numbers of dimensions (Baker & Kim, 2004). Generalizing Equation 3.5, we
obtained

E(LLc) ∝
K󰁛

kL=1

. . .
K󰁛

k2=1

K󰁛

k1=1

N󰁛

i=1

M󰁛

j=1

(xij log(λ(µjk1,...,kL , νj))− νj log(xij!)

− log(Z(λ(µjk1,...,kL , νj), νj)))P (qk1 , . . . , qkL |xi, ζ ′) (3.15)

as the expected complete-data log likelihood for the M2PCMPs, where µjk1,...,kL =

exp(
󰁓L

l=1 αjlθli+ δj) with node index kl ∈ {1, . . . , K} for trait l and (qk1 , . . . , qkL) de-
note a specific combination of quadrature nodes for which the joint posterior probability
is

P (qk1 , . . . , qkL |xi, ζ ′) =

󰁔M
j=1 CMPµ(xij|qk1 , . . . , qkL , ζ ′

j)wk1 . . . wkL󰁓K
k′1=1

· · ·
󰁓K

k′L=1

󰁔M
j=1 CMPµ(xij|qk′1 , . . . , qk′L , ζ

′
j)wk′1

. . . wk′L

(3.16)
(Beisemann et al., 2024b). In each E step of the M2PCMPM EM algorithm, Equa-
tion 3.16 is evaluated using the item parameters ζ ′ determined in the previous M step.
With the posterior probabilities determined in the E step considered given, the M step
consists of determining the item parameters ζ which maximize Equation 3.15. To this
end, we provided the first derivatives of Equation 3.15 in terms of the different item pa-
rameters (Beisemann et al., 2024b). The article also briefly discussed how confirmatory
M2PCMPMs can be fitted with the M2PCMPM EM algorithm.

The EM algorithm for the M2PCMPM was again implemented in R (R Core Team,
2023) and C++ (tied into R using rcpp; Eddelbuettel et al., 2011) in the R package
countirt. Note that at the time of writing this thesis, the M2PCMPM related im-
plementations are only available on the multidimensional branch of countirt
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(see Chapter 4 for details).

In the paper, we explored orthogonal (Varimax; Kaiser, 1958, 1959) and oblique (Oblimin;
Clarkson & Jennrich, 1988) rotation methods to select the rotation matrix V that yields
the simplest structure for α (see Chapter 2 for details).

Following previous research (Cho et al., 2022; Sun et al., 2016), we investigated regu-
larization techniques as an alternative to rotation methods to obtain as simple a structure
as possible for α. In the third article of this thesis (Beisemann et al., 2024b), we de-
veloped a regularized EM algrithm for the M2PCMPM inspired by Sun et al. (2016).
With P (qk1 , . . . , qkL |xi, ζ ′) remaining as in Equation 3.16, for the regularized expected
complete-data log likelihood we obtained

Ereg(LLc) ∝
K󰁛

kL=1

. . .
K󰁛

k2=1

K󰁛

k1=1

N󰁛

i=1

M󰁛

j=1

(xij log(λ(µjk1,...,kL , νj))− νj log(xij!)

− log(Z(λ(µjk1,...,kL , νj), νj)))P (qk1 , . . . , qkL |xi, ζ ′)− ηR(α)

(3.17)

(Beisemann et al., 2024b). The penalty term R(α) ≥ 0 is a function of the parameters
we intend to regularize and is weighted by η, a hyperparameter which determines the
strength of regularization (for η = 0, no regularization is applied). Following Sun et al.
(2016), we used the lasso penalty (Tibshirani, 1996) for the penalty term, that is,

Rlasso = ||α||1 =
L󰁛

l=1

M󰁛

j=1

|αjl|. (3.18)

In each E step of the regularized M2PCMPM EM algorithm, we compute Equation
3.16 (given the item parameters ζ ′ from the previous M step) to be able to optimize
Equation 3.17 in the subsequent M step considering the posterior probabilities given.
Inspired by previous work (Nestler & Humberg, 2022; Schelldorfer et al., 2014; Sun
et al., 2016), we proposed that in each M step, we optimize for the parameter αjl’s
and δj’s on the mean first using (item-blockwise) coordinate descent (Friedman et al.,
2010) and then use the log νj derivative calculated for (unregularized) M2PCMPM EM
algorithm to optimize for the log νj’s. The regularized M2PCMPM EM algorithm was
also implemented in countirt, together with a function that allows to tune the reg-
ularization hyperparameter η based on a user-provided grid and using the BIC as the
tuning criterion. We used warm starts (for details, see Hastie et al., 2009) to increase
computational efficiency (Beisemann et al., 2024b).
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3.3.4 Evaluation in Simulation Studies and Application

We conducted a small simulation study to assess the model’s and the algorithms’ via-
bility (Beisemann et al., 2024b). Generating data under the MCIRT model, we studied
16 different simulation conditions, resulting from fully crossing varied numbers of la-
tent traits, varied latent-trait correlations, varied numbers of items per trait, and varied
true structures of the discrimination matrix. In each condition, we fitted (1) an unpe-
nalized MCIRT model to be rotated (a) orthogonally and (b) obliquely as well as (2) a
lasso-penalized MCIRT with (a) a priori uncorrelated latent traits and (b) a priori cor-
related traits as estimated based on the obliquely rotated unpenalized MCIRT model
(an approach suggested by Sun et al., 2016). Due to the high computational cost, we
only ran a comparatively small number of simulation trials in each condition. We as-
sessed bias and RMSE for the items’ intercepts, log dispersions, and multi-dimensional
discrimination, as well as the correct estimation rate (CER) used by Sun et al. (2016),
which expresses the fraction of correctly freely estimated (as opposed to shrunken to 0)
discrimination parameters.

We found negligible bias for the intercept parameters and – in line with our previous
studies (Beisemann, 2022; Beisemann et al., 2024a) – slightly more bias for the disper-
sion parameters. Bias on the multidimensional item discriminations was overall not too
large, with the penalized models usually performing slightly worse than the unpenal-
ized models. For conditions with overall more model parameters (i.e., as the number
of traits and items per trait grew), parameter recovery declined which we speculated
might have been due to decreasing obervations-to-paramters ratios for these conditions
(Beisemann et al., 2024b). A similar pattern emerged for the CER, although here, it
was the penalized methods that overall performed better than the unpenalized methods
(Beisemann et al., 2024b). In terms of hyperparameter tuning (based on the BIC) for
the regularized models, we found that tuning worked best for more items, more traits,
and when the underlying α structure was simple (Beisemann et al., 2024b). However,
we also observed that hyperparameter tuning on the whole could still be improved upon
in the future.

We illustrated the developed models with a re-analysis of an intelligence test for adoles-
cents. We fitted (1) an unpenalized MCIRT model to be rotated (a) orthogonally and (b)
obliquely as well as (2) a lasso-penalized MCIRT with (a) a priori uncorrelated latent
traits and (b) a priori correlated traits as estimated based on the obliquely rotated unpe-
nalized MCIRT model (an approach suggested by Sun et al., 2016). We observed that
the models estimated α matrices which aligned with theoretical expectations (Beise-
mann et al., 2024b).

46



4 Computational Implementation

The estimation algorithms for the models developed in this thesis were implemented
in the R package countirt (at the writing of this thesis, available via GitHub: https:
//github.com/mbsmn/countirt), with parts of the package written in C++ for computa-
tional efficiency (tied into R with the help of rcpp; Eddelbuettel et al., 2011). The
implementation of these algorithms was associated with certain challenges that arose
from employing the CMP distribution. The first section of this chapter outlines what
these challenges were and how they were addressed in countirt. In the second sec-
tion of this chapter, I provide a brief overview of the user interface countirt offers
to specify count item response models in R.

4.1 Computational Challenges

For all EM algorithms discussed in Chapter 3 and developed in the three articles of
this thesis, we are confronted with computational challenges due to the CMP distribu-
tion. As we can see in Chapter 2.1, for the CMPµ density, the normalizing constant
Z(λ(µ, ν), ν) is an infinite sum, and the rate λ(µ, ν) is implicitly defined, as the so-
lution to an equation also involving another infinite sum. The articles of this thesis
(Beisemann, 2022; Beisemann et al., 2024a; Beisemann et al., 2024b) further include
gradients of the expected complete-data log likelihood required for the M step of the
respective EM algorithms. These gradients include the variance of the CMPµ distribu-
tion, as an expectation over the count distribution also an infinite sum, as well as other
infinite sums (depending on the specific algorithm, see Beisemann, 2022; Beisemann
et al., 2024a; Beisemann et al., 2024b). Any of the EM algorithms require numerous
evaluation of all of these quantities, as they have to be evaluated for each node and item
combination in each E step and multiple times for each node and item combination for
each item parameter as their respective gradients are optimized numerically in the M
step. As the EM algorithm will also evaluate them for every possible node value (com-
bination, in the multidimensional case), these quantities also have to be evaluated in
part for extreme resulting µij’s. Evaluating these infinite sums directly as (truncated) fi-
nite sums based on sufficiently many summands at each of the numerous times required

47

https://github.com/mbsmn/countirt


4 Computational Implementation

would be computationally costly and at times might even lead to numerical instabilities
in unfortunate cases, especially for the more extreme node values.

To alleviate this problem, we opted to use an interpolation-from-grid approach in the
countirt package for some of the quantities associated with the CMP distribution.
The approach is naive and ad-hoc, intended to stabilize and accelerate the estimation
for the settings we studied in the articles of this thesis. This was done to enable the
implementation of the algorithms developed in the works of this thesis, with the imple-
mentation not being the focus of the work (for more sophisticated and systematic work
specifically on using interpolation in a CMP regression setting, see Philipson & Huang,
2023). To this end, we tabled different µjk and νj combinations using internal func-
tions we customized from the glmmTMB R package (Brooks et al., 2017) for the nor-
malizing constant Z(λ(µjk, νj), νj), the rate λ(µjk, νj), and the variance Var(µjk, νj).
Other quantities (also infinite sums) required in some of the gradients used were not
tabled but computed in each function evaluation based on the tabled and interpolated
quantities (which suffices for stabilization in our implementation). For the infinite sum
computation, we implemented functions that were inspired by the series summation in
glmmTMB (Brooks et al., 2017) or rather TMB (Kristensen, Nielsen, Berg, Skaug, &
Bell, 2016): We start the summation at the mode of the series and add increments to the
left and the right until further increments fall beneath a threshold.

In each E step and in each evaluation of the gradient during the M step (in each M step,
the gradient is evaluated multiple times during numerical optimization) in any of the
EM algorithms developed in this thesis, the interpolation from the grid (implemented
in C++) is carried out as follows: We determine the µjk and νj values for all node ×
item combinations. We cap µjk values below a minimum (0.001) and a maximum µjk
(200), to make sure that we stay within the boundaries of the interpolation table (see
Chapter 5 for a discussions of the therewith associated limitations). We then interpolate
the corresponding Var(µjk, νj), logZ(λ(µjk, νj), νj) and log λ(µjk, νj) for all µjk and
νj values from the grid using bicubic interpolation in GSL (Galassi et al., 2010). With
these values, we then compute the posterior probabilities and gradients for the E and M
step, respectively.

This approach is still not without limitations. Critically, for the CLRM (Beisemann
et al., 2024a), the number of µjk values for interpolation grows additionally with the
number of persons (N ). That is, we need to evaluate K (nodes) ×M (items) ×N (per-
sons) combinations for µijk. This renders each EM iteration extremely computationally
costly, even using the interpolation-from-grid approach, to the point where computation
is too slow for any practical purposes. In Beisemann et al. (2024a), we used a computa-
tional trick to speed up the algorithm for categorical person covariates: For categorical
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covariates, there is only a limited number of possible value patterns across covariates,
with each person exhibiting one of these patterns. It thus suffices to compute µijk for
this limited number of patterns, reducing the number of times each CMP quantity has
to be interpolated. For each person, we can then simply match their covariate pattern
to the list of covariate patterns and use the respectively interpolated values. This way,
person covariates can be included as long as they are categorical, either naturally or
through artificial categorization of continuous covariates.

Even using the interpolation-from-grid approach (and not considering continuous per-
son covariates in the CLRM), each EM iteration still remains relatively (to very, de-
pending on the model) costly. An approach to reducing computation times is to reduce
the number of necessary EM iterations. This can for example be achieved if the start
values are chosen well. To this end, start values for slopes and intercepts in Beisemann
(2022), Beisemann et al. (2024a), Beisemann et al. (2024b) are determined by first fit-
ting a Poisson version of the respective model to the data, with the Poisson density al-
lowing for much faster EM iterations. With these start values (and start values for log νj
as described in Beisemann, 2022), the number of EM iterations of the CMP models can
usually be substantially decreased (but note that for the – in particular, exploratory –
multidimensional models, quite a high number of iterations are still required, leading
to long computation times for the exploratory M2PCMPM).

Limitations of our computational approach are discussed further in Chapter 5.

4.2 User Interface of the countirt package

For unidimensional models (Beisemann, 2022; Beisemann et al., 2024a), countirt
provides the model fitting function cirt which allows the user to fit a 2PCMPM,
DRTM, or CLRM as developed in Beisemann (2022) and Beisemann et al. (2024a), as
well as to fit a CMPCM (Forthmann et al., 2020b), 2PPCM (Myszkowski & Storme,
2021), RPCM (Rasch, 1960), or explanatory extensions of these models. The cirt
function takes the model specification via the model argument. The user passes a
string to the model argument that specifies the model using syntax that is inspired (but
not exactly the same and by no means as flexible) by the lavaan package (Rosseel,
2012). If one were to have a data set containing responses to five items, stored in
a data.frame with five columns, named item1, item2, etc., one can specify a
2PCMPM with the following syntax:

1 R> model_2pcmpm <- "theta=~item1+item2+item3+item4+item5;"
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countirt uses "=∼" to indicate "is measured by", as lavaan does. In unidimen-
sional item response models, we measure one latent trait which is commonly denoted as
θ. The model specification in countirt requires the user to write "theta=∼"—that
is, users cannot arbitrarily name latent variables as they can in lavaan syntax. On
the right to "=∼", the user specify the variable names containing the item responses,
separated by "+". Each line of model specification in countirt has to end in ";".

The model specification and the data set, named for example df in this illustration, are
passed to the cirt function for model fitting. The user further needs to specify the
count distribution to be used through the family argument. Currently, the available
options are "cmp" or "poisson". The cirt function allows to control model fitting
parameters via the control argument which takes a list produced by the function
cirt_control. The user fits a 2PCMPM using the following code:

1 R> fit_2pcmpm <- cirt(

2 model = model_2pcmpm,
3 data = df,
4 family = "cmp")

Changing the family argument to "poisson" would result in fitting a 2PPCM instead.
Models that are special cases of the 2PCMPM in other ways than simplifying from
the CMP to the Poisson distribution (e.g., the CMPCM) can be expressed by imposing
constraints in the model specification. For the CMPCM, for instance, the constraint
is equal slope parameters across items. The user can specify this constraint using the
following syntax:

1 R> model_cmpcm <- "theta=~item1+item2+item3+item4+item5;
2 alphas ~ 1;"

The syntax "alphas ∼ 1" indicates that all α parameters should be constrained to
be equal, with one global α estimated by the model. This model specification can be
passed to the cirt function as described above. Analogously, the user can specify the
dispersion parameters to be equal across items by specifying "log_nus ∼ 1". Al-
ternatively, the user could fix the slopes to specific values, by specifying e.g., "alpha1
∼ 0.3, alpha2 ∼ 0.2, ..., alpha5 ∼ 0.4;" (replacing "..." by the
specifications for the omitted items). Analogously, the user could fix the values of
the log dispersion parameters (using log_nu1, log_nu2, etc. instead of alpha1,
alpha2, etc.). Note that the constraints are imposed on the log dispersions so that
fixed values need to be on the log scale. To date, not all combination of constraints
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are supported in countirt (the documentation of the cirt functions gives further
information). Currently, no constraints on the intercept parameters are supported.

After obtaining a cirtfit model object with the cirt function, the user can apply
a set of post-processing functions. If the user is interested in inference, standard errors,
confidence intervals, and z- and p-values can be added to the cirtfit model object
using the add_inference function:

1 R> fit_2pcmpm <- add_inference(fit_2pcmpm)

This was implemented as a separate function as standard error computation for the CMP
models can be costly and users might not want to wait the extra time if they are not
interested in obtaining standard errors and significance tests. The add_inference
function currently only supports cirtfit models of family "cmp".

The user can obtain a summary of the results with the summary function and can
compare two nested models using the anova function. EAP latent trait estimates (as
described in Beisemann, 2022) can be obtained with the abilities function. Item
response curves for the items can be plotted using the item_curves function – either
all in one plot (argument grid=FALSE) or in separate panels for each item (argument
grid=TRUE).

The explanatory extensions of the 2PCMPM, i.e., the CLRM and the DRTM (Beise-
mann et al., 2024a), can be obtained by adding either person or item covariates, respec-
tively, to the model specification (for computational reasons similar to those discussed
for person-by-item covariates in Beisemann et al., 2024a, and Chapter 3.2, a combina-
tion of the two is not available). For the CLRM, the user amends the 2PCMPM model
specification as follows:

1 R> model_clrm <- "theta=~item1+item2+item3+item4+item5;
2 thetas~1+covariate1+covariate2;"

Using this amended model specification, the CLRM can be fit using the same cirt
function call as the 2PCMPM. The cirt function will expect to find two columns
named covariate1 and covariate2 in the supplied data frame containing each
person’s covariate values. The covariate columns can be arbitrarily named in the data
frame, the user only has to give their correct names in the model specification. As
explained in Chapter 3.2 and in Beisemann et al. (2024a), the implementation of the
CLRM in countirt is only recommended for categorical covariates. The user only
has to ensure that the covariate columns in the data frame are of class factor and
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countirt will handle them accordingly and utilize pattern matching for better effi-
ciency (Beisemann et al., 2024a).

To fit the DRTM in countirt, the user needs to restructure the data frame into long
format, with all item responses in an arbitrarily named column, e.g., counts, and item
labels in another arbitrarily named column, e.g., item. The model specification takes
a slightly different form to accommodate this long format structure:

1 R> model_drtm <- "theta=~counts(item::item1)+
2 counts(item::item2)+

3 counts(item::item3)+

4 counts(item::item4)+

5 counts(item::item5);

6 alphas~1+covariate1+covariate2;
7 deltas~1+covariate1;
8 log_nus~1+covariate2;"

The items which measure θ need to be named according to the scheme: column name of
the item column with item responses followed by parentheses in which first, the column
name of the column with item labels is given, followed by two colons, followed by the
item label of the respective item. Item covariates for each item parameter are specified
as shown, analogously to how person covariates are specified. The user can specify
item covariates for any subset or all of the item parameters. The item covariates may
differ for the different parameter types. Currently, interaction terms need to be added
manually to the data frame in their own column. Adding item covariates on some
item parameters can be combined with constraints on other item parameters, albeit not
all combinations are supported yet (the cirt documentation gives more information).
The DRTM can be fitted using the cirt function and only differs from the function
call for the 2PCMPM and CLRM by additionally setting the data_long argument
to TRUE (the arguments defaults to FALSE for wide data sets such as needed for the
2PCMPM and the CLRM) and providing the name of a column with person identifiers
to the person_id argument. In this example, the data frame in long format is called
df_long and the column with person identifiers within that data frame is called ID.
The code for fitting the DRTM is:

1 R> fit_drtm <- cirt(

2 model = model_drtm,
3 data = df_long,
4 family = "cmp",

5 data_long = TRUE,
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6 person_id = "ID")

The post-processing functions described above do not support any of the explanatory
models yet.

For multidimensional models (Beisemann et al., 2024b) – the most recent addition to
the countirt package1 – the user interface is not as far developed at the time of
writing this thesis. An idea for how the user interface can be extended for conve-
nient specification and model fitting of multidimensional models is discussed in Chap-
ter 5. So far, exploratory multidimensional count item response models can be specified
using the mcirt_explore function which takes the arguments nfactors (num-
ber of latent traits), data (data frame with (only) the item responses in columns),
family (count data distribution, can be either "cmp" or "poisson"), penalize (indi-
cates if and how the slope matrix should be penalized, can be either "none" or "lasso"2),
alpha_constraints (a matrix with as many rows as nfactors and as many
columns as the number of items; it imposes constraints on the slope matrix of the
same shape, currently allowing to specify which slopes should be fixed to certain val-
ues, as indicated in the matrix, and which should be estimated freely, as indicated
by a NA entry in the matrix), and control (which takes a list of control param-
eters for estimation as returned by mcirt_control). Currently, subsequent ro-
tation needs to be coded manually, for example using the GPArotation package
(Bernaards & Jennrich, 2005). Lasso-penalized MCIRT models can be tuned using
the mcirt_tune_lasso function which takes the arguments nfactors, data,
family, alpha_constraints, and control (just as mcirt_explore) as
well as the additional arguments penalize_grid (a vector of values to use for the
lasso tuning parameter, i.e., η in Equation 3.17) and tuning_crit (the tuning crite-
rion used to tune the lasso tuning parameter, can be either "BIC" or "AIC"). As of now,
there are no post-processing functions implemented for the multidimensional models,
i.e., functions such as summary or plotting functions are only currently available for
unidimensional models.

1At the time of writing this thesis, the multidimensional models are available only on the multdimen-
sional branch of the countirt package, available here: https://github.com/mbsmn/countirt/tree/
multidimensional

2And potentially "ridge", but the implementation for ridge penalization is not as well developed and
tested so far.
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Count item response models have received increasingly more attention in psychometric
model development in the recent years (e.g., Forthmann et al., 2020b; Qiao et al., 2023;
Man & Harring, 2019; Man et al., 2022; Tutz, 2022). The challenge of condition-
ally underdispersed count responses was first addressed by Forthmann et al. (2020b)
with a generalization of Rasch’s Poisson Counts Model (RPCM; Rasch, 1960), relying
on the Conway-Maxwell-Poisson distribution (CMP; Shmueli et al., 2005; Conway &
Maxwell, 1962; Huang, 2017) rather than the Poisson distribution for conditional re-
sponses. The CMP distribution allows to estimate the degree and the type (over-, equi-,
or underdispersion) of dispersion in the conditional response distribution. In the three
articles that make up the present thesis, the Conway-Maxwell-Poisson Counts Model
(CMPCM) proposed by Forthmann et al. (2020b) is further generalized (1) to include
an additional item-specific discrimination (or slope) parameter (Beisemann, 2022), (2)
to allow for the inclusion of item or person covariates in (1) to obtain explanatory count
item response models (Beisemann et al., 2024a), and (3) to extend (1) to the multidi-
mensional case with more than one latent trait (Beisemann et al., 2024b). A major focus
of these articles is the maximum likelihood estimation of these proposed models.

5.1 The Two-Parameter Conway-Maxwell-Poisson Model

In the first article of this thesis (Beisemann, 2022), I proposed the Two-Parameter
Conway-Maxwell-PoissonModel (2PCMPM), which extends the CMPCM (Forthmann
et al., 2020b) through item-specific discrimination (or slope) parameters, and devel-
oped a marginal maximum likelihood estimation method based on the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977).

The proposal of a two-parameter count IRT model, which takes advantage of the dis-
persion flexibility the CMP distribution offers in the same way as Forthmann et al.
(2020b)’s CMPCM does, allows to account for count data settings which IRT previ-
ously had not been able to adequately account for. Furthermore, as we can see in the
two subsequent articles of this thesis, the work on an estimation method using the EM
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algorithm lays the groundwork for more methodological developments and extensions
in count IRT.

Two simulation studies assessed the proposed model and estimation algorithm and
found overall satisfactory performance (Beisemann, 2022). In terms of computational
efficiency, the simulations showed that the employed approach to choosing start values
(see Chapter 4) helped to achieve comparably small numbers of EM algorithm iterations
and thereby shorter computation times (Beisemann, 2022). The idea to take advantage
of the Poisson distribution’s greater computational convenience to obtain good start val-
ues for the parameters on the mean of the CMP model is not specific to the 2PCMPM
and could also be employed in estimation routines for other CMP based models, such
as regression and hierarchical regression models.

In terms of parameter recovery, the simulation studies showed that – as one would
expect – increased sample size improved parameter estimation accuracy (Beisemann,
2022). Out of the item parameters, the log dispersion parameters appeared to be the
hardest to estimate, exhibiting more bias in more simulation conditions than the other
two types of item parameters (Beisemann, 2022). Coverage of 95% confidence intervals
(CI) was mostly (but not always) satisfactory and better for larger samples (Beisemann,
2022). As the method for standard error computation (Chalmers, 2012; Pritikin, 2017)
was chosen mostly for computational convenience and CIs simply relied on a normal
approximation, this was quite a promising result which likely could be further improved
upon by trying out different approaches. In the same vein, results in terms of person
parameter estimation (a brief exploration of the measurement perspective which has
overall taken a backseat throughout this dissertation work) were overall satisfactory
despite using the computationally easiest approach of EAP estimation based on the EM
algorithm (Beisemann, 2022).

In the second simulation study, the 2PCMPM was used as the data-generating model
and compared to previously suggested models which are misspecified in that setting.
The results showed showed that parameter point estimation was only slightly improved
upon by the 2PCMPM as opposed to the other models (and for person parameters,
correlations between point estimates were very high, as is not uncommon for one- and
two-parameter IRTmodels, see e.g., Bürkner, 2020; Loken & Rulison, 2010). However,
uncertainty quantification (i.e., 95% CI coverage, model-implied reliability) suffered
from the misspecification (in particular, coverage of the slope parameters) and was im-
proved by using the correctly specified 2PCMPM (Beisemann, 2022). This showcased
that for settings with item-specific discrimination and dispersion, using the (in this case,
correctly specified) 2PCMPM is actually advantageous over using previously existing
models.
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More discussion regarding the 2PCMPM and the results from the simulation studies
assessing the 2PCMPM is provided in Beisemann (2022).

5.1.1 Limitations

The first article (Beisemann, 2022) discusses several limitations and ideas for future
research based on the work presented in the article. To summarize the most important
ones, a limitation with regard to the simulation studies was the relatively low number
of simulation trials due to the computational expensiveness of the 2PCMPM as well
as the limited comparison to other count models (Beisemann, 2022). As discussed in
Beisemann (2022), approaches to further improve computation times, such as EM ac-
celerators (for a recent IRT-specific overview, see e.g., Beisemann, Wartlick, &Doebler,
2020), could be explored in future research to remedy this limitation.

Some numerical instabilities occurred in a small number of simulation conditions in the
first simulation study (Beisemann, 2022). In some cases, these could have been due to
unfortunate start values, which would be easily fixed in practical applications by manu-
ally adjusting the start values (Beisemann, 2022). An even more sophisticated solution
could be to implement a type of screening and if necessary adjusting start values within
the algorithm. Another source of numerical instabilities might be (by chance, not by de-
sign) more extreme data conditions, for example with very high counts. The algorithm
and especially its implementation (see Chapter 4) were not designed for settings such
as these, leaving them untested at best and unsuitable at worst for these settings (see
also below for a further discussion of this issue). Future research could investigate the
algorithm’s and implementation’s behaviour in more extreme data settings and develop
adjustments to adequately handle such settings.

Further limitations are discussed and ideas for future research are suggested in Beise-
mann (2022).

5.2 Explanatory Extensions

The second article of this thesis (Beisemann et al., 2024a) provided two extensions to
the 2PCMPM (Beisemann, 2022): We extended the 2PCMPM to include item covari-
ates on any or all item parameters in the Distributional Regression Test Model (DRTM)
and to include (categorical) person covariates on the latent person parameter in the
Count Latent Regression Model (CLRM). We developed a marginal maximum likeli-
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hood estimation procedure to which end we used the EM algorithm (Dempster et al.,
1977), building upon the work of the first article of this thesis (Beisemann, 2022).

The introduction of two new explanatory IRT models for count data enables researchers
to better understand existing count data generating tests and could inform construction
of new tests. For example, item dispersion has only been flexibly accounted for with
the recent introduction of the CMPCM (Forthmann et al., 2020b). After correctly mod-
elling a mixture of item-specific over-, under-, and equidispersion in a given test, sub-
stantive researchers are most likely interested in understanding what leads to a specific
type of dispersion. With exploratory IRT models, such as the ones we proposed in the
second article of this thesis (Beisemann et al., 2024a), researchers can investigate ques-
tions like these. We illustrated two possible applications in the paper with real-data
examples (Beisemann et al., 2024a).

In Beisemann et al. (2024a), we discussed that the simulation studies revealed overall
satisfactory parameter recovery, with dispersion parameters displaying the most bias
(paralleling previous findings in Beisemann, 2022, for the 2PCMPM). For the DRTM,
it was additionally parameters on the slope that exhibited more bias, in particular in
smaller data sets. For the DRTM, only longer tests displayed satisfactory power across
all parameters (at least in some conditions). For the CLRM, we only observed power
drops for smaller effects in a small sample. Both of which are unsurprising results
patterns. In terms of type I error rate, both models yielded mostly satisfactory results,
but did exhibit some slightly liberal type I error rates in certain conditions. This could
have been caused by the Wald approximations we used for inference. However, we
are also estimating power and type I error rates with a certain amount of imprecision
as we only ran 250 simulation trials due to the computational expense of the models
(Beisemann et al., 2024a).

We discussed the results from the simulation study further in Beisemann et al. (2024a).

5.2.1 Limitations

With regard to the simulation studies, the limitations concerning the data settings stud-
ied and the numerical instabilities from the first article of this thesis (Beisemann, 2022)
could be re-iterated again for the second article (compare Chapter 5.1.1 and Beisemann
et al., 2024a). In the article, we also discuss some limitations to our simulation design
specific to the exploratory extensions, such as the number of covariates included or
the correlation between them (which we did not vary systematically; Beisemann et al.,
2024a).
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An important limitation to our work in the second article (Beisemann et al., 2024a) is a
computational issue (see also Chapter 4 and Section 5.4.1 below): The CLRM requires
interpolating K (number of quadrature nodes) ×M (number of items) ×N (number
of persons) values in each E step and each iteration of each M step, quickly leading
to very large numbers of values that are interpolated which causes computation times
to increase beyond practical feasibility. Our solution to focus on categorical person
covariates with few categories (as we can then use a method of pattern matching, see
Chapter 4) leads to a loss of information (Beisemann et al., 2024a). The same challenge
arises when one considers a future extension of the 2PCMPM to an explanatory IRT
model with person-by-item covariates, as we encounter in differential item functioning
(DIF) models (see e.g., De Boeck & Wilson, 2004, for an introduction). Finding solu-
tions to this issue will enable the development of such DIF models which are popular
among substantive researchers.

We investigated power and type I error rates in covariate detection in our second sim-
ulation study (Beisemann et al., 2024a). We used the same method (Chalmers, 2018;
Pritikin, 2017) to compute standard errors as I used in Beisemann (2022) and relied on
Wald approximations for inference. This approach is easy to implement but resulting
power and type I error rates could probably be improved upon by investigating more
specifically what type of standard error computation methods works best for these mod-
els, and in combination with what type of confidence interval (Beisemann et al., 2024a).
This could be an interesting idea for future research, not just for the DRTM and CLRM,
but also more generally for the 2PCMPM. The topic would both be interesting from a
more mathematical standpoint as well as from a software development standpoint, so
that we could give more options for inference in countirt (see also below).

The second article of this thesis (Beisemann et al., 2024a) discusses further limitations
and ideas for future research.

5.3 Multidimensional Extensions and More General Framework

The third article (Beisemann et al., 2024b) of this thesis extended the 2PCMPM (Beise-
mann, 2022) to a multidimensional count IRT framework, subsumed under the general
multidimensional two-parameter Conway-Maxwell-Poisson model (M2PCMPM). The
M2PCMPM models count responses to items as dependent on one or more latent traits,
while allowing for item-trait-specific discriminations (conceptually comparable to fac-
tor loadings) and flexible item-specific dispersion modeling through the CMP distribu-
tion. The M2PCMPM contains existing models, such as the 2PCMPM (Beisemann,
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2022), CMPCM (Forthmann et al., 2020b), RPCM (Rasch, 1960), and related count
IRT models (e.g., Myszkowski & Storme, 2021), as well as potential new models (e.g.,
with more than one latent trait) as special cases. In the third article (Beisemann et
al., 2024b), we concentrate mostly on the M2PCMPM as an exploratory count IRT
model, allowing to exploratorily (i.e., without prior assumptions) estimate the associa-
tion structure between items and latent traits. Based on the work from the first article
of this thesis (Beisemann, 2022) and similarly relying on the EM algorithm (Dempster
et al., 1977), we developed marginal maximum likelihood estimation methods for the
M2PCMPM. To achieve the in exploratory IRT often pursued goal of a simple struc-
ture of the discrimination matrix (Browne, 2001; Thurstone, 1947), we combined the
developed EM algorithm with traditional rotation methods (Carroll, 1957; Clarkson &
Jennrich, 1988; Kaiser, 1958, 1959) as well as developed a penalized EM algorithm
using a lasso penalty (Tibshirani, 1996), inspired by (Sun et al., 2016).

The development of a multidimensional count IRT framework enables researchers to
propose a number of new (confirmatory) count IRT models that can be expressed in
and estimated with the framework (Beisemann et al., 2024b). Relying on the CMP
distribution helps the framework to flexibly model item-specific dispersions, as pre-
vious research has shown to often be necessary (e.g., Forthmann et al., 2020b). The
exploratory approach predominantly considered in this work is especially helpful in
test construction.

We evaluated the developed exploratory methods, both rotational and lasso-penalized,
in a small simulation study (Beisemann et al., 2024b). As we have come to expect from
the previous two articles of this thesis (Beisemann, 2022; Beisemann et al., 2024a), the
(log) dispersion parameters displayed more bias, while the intercept parameters were
overall estimated quite well (but differences between conditions were observed and dis-
cussed) (Beisemann et al., 2024b). Assessing parameter recovery for the discrimination
parameters was more difficult for the multidimensional models, as there is no unique
solution for the discrimination matrix. Thus, we opted for evaluating parameter recov-
ery for the multidimensional discriminations. We observed satisfactory performance
in several conditions. The rotational approaches tended to perform better than the pe-
nalized approaches (Beisemann et al., 2024b). Conditions in which parameter recovery
performance and performance in terms of correct estimation rate (i.e., correctly estimat-
ing parameters freely as opposed to shrinking them to 0 per regularization) dropped,
were conditions with more items and more traits (Beisemann et al., 2024b). As we
hypothesized and discussed in Beisemann et al. (2024b), we might have observed this
performance pattern because our simulation study held the sample size constant rather
than increasing it with the number of model parameters (which would allow to hold the
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observations-to-model-parameters ratio constant). The simulation study further showed
that tuning the hyperparameter for the lasso-penalized models worked better in some
settings than others, but overall could still be improved in future research (Beisemann
et al., 2024b).

More discussion regarding the M2PCMPM and the results from the simulation study is
provided in Beisemann et al. (2024b).

5.3.1 Limitations

The results from the simulation study are limited in the sense that they can only speak to
the algorithms’ and models’ behaviour in the investigated settings. For the third article
(Beisemann et al., 2024b), the simulation study’s goal was to provide a proof of concept
for our developed methods, we would recommend that future research test the methods
more extensively in more exhaustive settings. For example, a simulation study that
enables required sample size recommendations as well as tests our hypotheses about
performance drops in settings with small parameters-to-sample-size ratios would be
interesting and important (Beisemann et al., 2024b).

The computational burden of the multidimensional CMP models is very high, even for
comparatively small models with only few items and few latent traits in comparably
small samples. This imposed limitations on our simulations, not least in terms of the
number of replications we were able to run, but it is likely also going to be a relevant
limitation in practical applications. For the models with four latent traits in our sim-
ulation study, we decreased the number of quadrature nodes per trait to achieve more
manageable computation times. While this helps in terms of computation times, it
likely impairs accuracy at least a little bit. In line with ideas suggested for the first and
second article of this thesis, future research could investigate how computation times
can be improved (Beisemann et al., 2024b).

For higher numbers of latent traits, Gauss-Hermite (GH) quadrature – upon which our
EM algorithms are based – is known to work less well (Chalmers, 2012), as computa-
tion times drastically increase with the number of traits. An alternative to GH quadra-
ture is Monte Carlo (MC) integration for which the proposed EM algorithms could quite
easily be adapted, as I have already roughly sketched out and crudely implemented to
test. A challenge which arises when switching to MC integration is how to choose the
convergence criterion. This is a general challenge for MC-EM algorithms (McLachlan
& Krishnan, 2007), but a possibly even bigger challenge for the M2PCMPM-EM algo-
rithm in our implementation which uses interpolation for some of the CMP quantities,
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adding another layer of possible inaccuracies.

Our work in this article did not include an approach to calculating standard errors for the
multidimensional count IRT models, as the development of the estimation framework,
including the penalized extension, was already quite work intensive, leaving standard
errors beyond the scope of this work. However, this would be a worthwhile endeavour
for future research, in particular if future research compared different approaches to
recommend the best one for multidimensional count IRT models.

As we compared the developed penalized approaches to the rotation methods for the
developed unpenalized model, we opted for tuning the hyperparameter in the penalized
models on the whole data set (Beisemann et al., 2024b). For hyperparameter tuning –
generally in machine learning approaches, and also specifically for lasso – it is at least
recommended to divide the data into a training data set upon which the hyperparameter
is tuned and then to fit the model again on the test data set with the selected hyperpa-
rameter (Hastie et al., 2009). If we had done this here, then our lasso-penalized models
would have been fit to a subset of the data while our rotated models would have been fit
to the whole data set, making them difficult to compare. However, the approach we have
taken here is going to be prone to overfitting – fitting the data at hand too well, while fit-
ting new data more poorly. Alternatively, we could have carried out the comparison for
all approaches on the test data set, which could be explored for future comparisons. In
general, we observed that hyperparameter could still be improved upon, for example by
choosing different tuning grids or other tuning criteria (Beisemann et al., 2024b). Such
endeavours will also be subject to the challenge described above: the computational
burden of the multidimensional CMP models. Even as it is, hyperparameter tuning
(already using warm starts to increase computational efficiency) was computationally
very expensive. Thus, I would recommend future research address the computational
challenges first to have more freedom in improving hyperparameter tuning.

We discussed these and further limitations as well as ideas for future research in more
detail in the third article of this thesis (Beisemann et al., 2024b).

5.4 The R package countirt

The R package countirt implements the EM algorithms for the count item response
models proposed and developed in this thesis as well as for Poisson variants of these
models. The package is written in R and C++, tied into R using Rcpp (Eddelbuettel
et al., 2011). The main focus in terms of the package development during the time
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working on these thesis projects was to develop reasonably stable and computationally
efficient estimation algorithms (for details, see Chapter 4).

5.4.1 Limitations

Chapter 4 describes and discusses computational challenges related to the CMPµ distri-
bution and how they are addressed in countirt using a naive interpolation-from-grid
approach. For the settings studied in the simulations in Beisemann (2022), Beisemann
et al. (2024a), Beisemann et al. (2024b) this approach yielded quite satisfactory results.
However, it is worth noting that even with this approach, the MCIRT models (Beise-
mann et al., 2024b) still showed considerable computation times. Further, as person
covariates add another index dimension to the quantites that need to be interpolated, the
interpolation-from-grid approach implemented in countirt only allows for categor-
ical person covariates (Beisemann et al., 2024a) and this also poses a challenge to the
development of DIF models in the future. As discussed in Beisemann et al. (2024a),
considering different estimation approaches to the EM algorithm, such as Laplace ap-
proximations (for other IRT models, see e.g., Andersson & Xin, 2021), might be a
possible avenue for future research which aims to increase computational speed.

In future research, the performance of the countirt package could be assessed in fur-
ther simulations to make recommendations for settings other than examined in Beise-
mann (2022), Beisemann et al. (2024a), Beisemann et al. (2024b). In particular, the
implementation was designed for settings such as in Beisemann (2022), Beisemann et
al. (2024a) with small to moderate counts. Large counts are likely going to be less accu-
rately accounted for with this implementation, as the algorithm in countirt truncates
expected µ values above a maximum value (currently, 200) and sets them to the max-
imum value. This is necessary to stay within the bounds of the interpolation grid as
only inter- and no extrapolation is implemented in countirt. It is natural that this
will affect parameter estimation accuracy for larger counts. Similarly, more extreme
parameter values, such as large slope values (which will also naturally lead to larger
counts), might also lead to larger expected µ values, at least for some quadrature nodes,
which will likely again affect parameter estimation accuracy. For other data settings
than those that inspired the models proposed in this thesis and were examined in Beise-
mann (2022), Beisemann et al. (2024a), Beisemann et al. (2024b), one might always
opt to extend the interpolation grid. A drawback of this – and the reason why it was not
chosen larger when the data settings examined here did not require it – is that interpo-
lation and therefore computation time all over will increase.

In general, the interpolation-from-grid approach used in countirt is a naive and
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ad-hoc implementation used to ease the computational burden of the proposed, com-
putationally expensive CMP-based IRT models developed in this thesis. Philipson
and Huang (2023) proposed an interpolation approach for CMP regression models.
Their sophisticated approach uses a specifically developed grid from which they not
only inter- but also extrapolate values. For future development of countirt, one
might consider extending and applying the Philipson and Huang (2023) interpolation
approach to CMP-based IRT models and implementing this in countirt.

The current capabilities and limitations of the user interface for model fitting in the
countirt package are described in Chapter 4. Important limitations include post
processing for explanatory models and the user interface for multidimensional models.
How these can be addressed by possible future developments of the package is outlined
in the following section.

5.4.2 Ideas for Future Development

The countirt package is currently only available from GitHub. The goal of future
developments should be to extend the package to the point where it is more feature
complete, at what point, it can also be submitted to CRAN. The major steps to take
towards that direction are outlined in the following.

The first major idea for future development of countirt concerns the most recent
implementation of the multidimensional count item response models (Beisemann et
al., 2024b). The currently exported multidimensional model fitting functions do not
yet align well with the cirt model fitting function for unidimensional models1. Fu-
ture package development could focus on developing a mcirt model fitting function
which would work analogously to the cirt function for unidimensional models, in-
cluding extended model specification syntax which would allow more than one latent
trait. Either the model specification or the model fitting function would need to allow
users to specify whether they wish to fit an exploratory or confirmatory model.

The post-processing options available in countirt – as described in Chapter 4 – are
furthest developed for the 2PCMPM and constrained versions thereof. In a first step,
these available post-processing options should be extended to support the explanatory
as well as the multidimensional models. In a second step, the post processing available
in countirt could be extended further. For example, functions to calculate model and
item fit statistics could be provided, the options for latent trait estimation and standard

1This is also the reason why the implementation of the multidimensional models has not yet been
merged into the main countirt branch on GitHub.
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error computation as well as model parameter inference tests could be extended, or
functions to calculate and plot item and test information as well as reliability could be
added (see also Section 5.5).

On a more fine-grained level, the flexibility of the cirt and a potentially added mcirt
function in terms of model specification could be extended. For instance, the cirt
function could be extended to allow constraints on the intercept parameters as well as
allow even more combinations of constraints on different parameters. The underlying
implementation for constraints in a potentially added mcirt is already present on the
multidimensional branch of countirt on GitHub. Currently, only constraints in the
shape of fixing parameters to certain values are available. In the future, this could be
extended to also allow equality constraints and combinations of the two.

5.5 General Limitations and Avenues for Future Research

In the following, I am going to discuss limitations to the thesis and the work as a whole,
beyond the more specific limitations discussed in the context of each individual article,
and outline some ideas for how they could be addressed in future research.

With the focus of this work on model calibration, i.e., the estimation of item parameters
in the four different models proposed in Beisemann (2022), Beisemann et al. (2024a),
Beisemann et al. (2024b), a detailed perspective on measurement in count item re-
sponse models was beyond the scope of this thesis. This might constitute an interesting
avenue for future research, especially as measurement and the related concept of (test
and item) information pose interesting challenges in the context of count item response
models. As we briefly touched on in the discussion in Beisemann et al. (2024a), item
information (i.e., the Fisher information with regard to the latent variable θ) for count
item response models (with a log link function) usually grows infinitely with increas-
ing θ. This is challenging to align with the common psychometric understanding of
measurement from a substantial perspective: An infinitely large item information for
an infinitely large θ would mean that the higher the latent ability, the more precisely
it can be measured. This is at odds with the substantial intuition that it is likely diffi-
cult to capture the upper end of the ability spectrum and to construct items which are
able to do so. Future count item response theory research could investigate the item
and test information for different count item response models, including the 2PCMPM
(Beisemann, 2022), and provide an integration with substantial psychometric theory.

The data settings for which the models in this thesis were developed were comparably
“well behaved”, that is, they did not pose extreme challenges to model estimation. As
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I discussed above in Chapter 5.4.1, the developed estimation methods are going to be
challenged in – or in the worst case, unsuitable for – more extreme data settings. This
may include data with large counts (which are not accounted for by the current inter-
polation grid in countirt) or settings in which the latent trait has a notably skewed
distribution. Future research may investigate how the proposed models and estimation
algorithms could be adapted or extended to account for different more extreme data
settings. Ideally, future research could start by reviewing different count data settings
in psychometrics and deriving a set of possible more extreme data patterns which in
turn could be addressed accordingly in method development.

5.6 Conclusion

In summary, the three works that make up the present thesis extended the count item
response theory landscape by (1) introducing a two-parameter count IRT model which
allows for flexible dispersion modelling, along with an estimation method for this model
which was previously not available, and going on to extend the proposed two-parameter
count IRT model (2) to include person or item covariates. We built upon my work in the
first article of this thesis to develop estimation methods for the models proposed in the
second article of this thesis. Finally, the third article contributed (3) a multidimensional
count IRT framework, again building on work from the first article. Along with these
methodological developments, this thesis included (4) the development of an R package
that implements the proposed models and developed estimation methods. With these
contributions, this thesis provides new methods to substantive researchers that help to
analyze their data, and opens up new avenues for future methodological developments
in count IRT.
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A flexible approach to modelling over-,
under- and equidispersed count data in IRT: The
Two-Parameter Conway–Maxwell–Poisson Model

Marie Beisemann
Department of Statistics, TU Dortmund University, Germany

Several psychometric tests and self-reports generate count data (e.g., divergent thinking
tasks). The most prominent count data item response theory model, the Rasch Poisson
Counts Model (RPCM), is limited in applicability by two restrictive assumptions: equal
item discriminations and equidispersion (conditional mean equal to conditional variance).
Violations of these assumptions lead to impaired reliability and standard error estimates.
Previous work generalized the RPCM but maintained some limitations. The two-
parameter Poisson counts model allows for varying discriminations but retains the
equidispersion assumption. The Conway–Maxwell–Poisson Counts Model allows for
modelling over- and underdispersion (conditional mean less than and greater than
conditional variance, respectively) but still assumes constant discriminations. The present
work introduces the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model which
generalizes these threemodels to allow for varying discriminations and dispersionswithin
onemodel, helping to better accommodate data from count data tests and self-reports. A
marginal maximum likelihood method based on the EM algorithm is derived. An
implementation of the 2PCMP model in R and C++ is provided. Two simulation studies
examine the model’s statistical properties and compare the 2PCMPmodel to established
models. Data from divergent thinking tasks are reanalysed with the 2PCMP model to
illustrate the model’s flexibility and ability to test assumptions of special cases.

The Rasch Poisson Counts Model (RPCM; Rasch, 1960) is a one-parameter Item Response
Theory (IRT) model for count data. Several different types of psychometric test generate
count data, for instance reading tests (Rasch, 1960; Verhelst & Kamphuis, 2009). Other
examples include but are not limited to processing speed tasks (Baghaei, Ravand, &
Nadri, 2019; Doebler & Holling, 2016), language tests in the form of C-tests (Forthmann,
Grotjahn, Doebler, & Baghaei, 2020; Forthmann, Gühne, & Doebler, 2020), intelligence
tests (Ogasawara, 1996), verbal fluency tasks and fluency measurement in divergent
thinking tasks (Forthmann, Çelik, Holling, Storme, & Lubart, 2018; Forthmann, Holling,
Çelik, Storme, & Lubart, 2017; Myszkowski & Storme, 2021). Psychometric count data
can also arise from self-reports, for instance of drug use (Wang, 2010) or frequency of
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depressive symptoms (Magnus & Thissen, 2017). Another application of count data IRT
models is the field of text data analysis (Proksch & Slapin, 2009) or the analysis of
bibliometric indicators to assess researchers’ performance (Forthmann & Doebler, 2021;
Mutz & Daniel, 2018). To analyse the properties of these psychometric tests within the
framework of IRT, appropriate models for count data are required. Recent advances have
generalized the RPCM in different directions to address limits imposed by the model’s
assumptions (Forthmann, Gühne, et al. 2020; Myszkowski & Storme, 2021). As the
proposedmodels each only address one assumption, they remain restrictedwith regard to
other assumptions, limiting their flexibility in count data IRTmodelling. The presentwork
aims to fill this gap by generalizing previous work (Forthmann, Gühne, & Doebler, 2020;
Myszkowski & Storme, 2021) further and introducing the Two-Parameter Conway–
Maxwell–Poisson (2PCMP) model.

1.1. Prior research: The RPCM and other count IRT models
The RPCM – for an introduction see, for example, Baghaei andDoebler (2019) or Verhelst
and Kamphuis (2009) – models a participant’s response on their latent ability and an
item’s difficulty. Different estimation methods and extensions have been developed for
theRPCM(e.g., Jansen, 1995, 1997; Jansen&vanDuijn, 1992;Ogasawara, 1996;Verhelst
& Kamphuis, 2009). The RPCM assumes that for each item, the distribution of responses
(conditional on aperson’s latent ability) follows a Poissondistributionwith rate λ. The rate
is modelled to depend on difficulty and latent ability θ and determines both the location
and the spread of the conditional distribution of responses X, so that  Xjθð Þ ¼ ar Xjθð Þ
(equidispersion assumption). Conceptually, the spread of the conditional distribution of
responses is linked to an item’s measurement precision. But as the same parameter
determines both location and spread, the RPCM links an item’s difficulty deterministically
with its measurement precision (for constant ability). This is empirically not always a
plausible assumption. For instance, Forthmann, Gühne, et al. (2020) found that divergent
thinking tasks showed over- and underdispersion depending on the item, and Forthmann
and Doebler (2021) found similar phenomena for items measuring researchers’ capacity.
A violation of the equidispersion assumption results in impaired standard error andmodel-
implied reliability estimation (Forthmann, Gühne, et al., 2020). If  Xjθð Þ<ar Xjθð Þ the
conditional response distribution exhibits overdispersion, and if  Xjθð Þ>ar Xjθð Þ it is
underdispersed, with overdispersion leading to liberal and underdispersion to conser-
vative standard errors (Faddy & Bosch, 2001; Forthmann, Gühne, et al., 2020;
Hilbe, 2011). Different extensions of the RPCM have been proposed that are able to
account for overdispersion – for example, a negative binomial regression model (NBRM;
Hung, 2012), a Poisson mixture model (Verhelst & Kamphuis, 2009), a Bayesian Poisson
Raschmodel (Mutz &Daniel, 2018), a zero-inflated Poissonmodel (IRT-ZIP;Wang, 2010)
and the ICC Poisson counts model (Doebler, Doebler, & Holling, 2014). The recently
proposed Conway–Maxwell–Poisson Counts Model (CMPCM; Forthmann, Gühne,
et al., 2020), based on the Conway–Maxwell–Poisson (CMP) distribution (Huang, 2017;
Shmueli, Minka, Kadane, Borle, & Boatwright, 2005), is the only count data IRT model as
of yet which is able to account for both over- and underdispersion. Just as the Poisson
distribution is a special case of the CMP distribution, so the RPCM is a special case of the
CMPCM.

The CMPCM – like the RPCM – assumes all items to be equally discriminant of the
underlying latent ability. That is, each item is assumed to reflect differences in latent ability
equally well in the responses to the item. Unless a test has been explicitly constructed to
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satisfy this assumption, which is not necessarily very common for count data generating
tasks, it is likely to be violated (Myszkowski & Storme, 2021). This limits the applicability
of the CMPCM. Take, for instance, the example used in thiswork, divergent thinking tasks
(see also Section 5). The ability to think divergently (i.e., to generate many different ideas
in response to a stimulus; Guilford, 1967) can be measured, for example, with items that
ask participants to give alternative uses for everyday objects or with items where
participants have to imagine many different consequences of a change in everyday life.
There is no guarantee that these two types of tasks discriminate equally well between
participants. In any case, it is at least desirable to be able to test that assumption, especially
for existing count data tasks which were not developed to be analysed within an IRT
framework. Further, estimating item discriminations can help to inform item selection.
Previous research has laid the ground work to include discrimination parameters in the
RPCM – for example, in a count data factor analysis framework (Wedel, Böckenholt, &
Kamakura, 2003), or within the generalized linear latent and mixed models (GLLAMM)
framework as PoissonGLAMM (Skrondal & Rabe-Hesketh, 2004) – leading to recent work
on the Poisson GLAMM special case in an IRT context with the Two-Parameter Poisson
Counts Model (2PPCM; Myszkowski & Storme, 2021). As an extension of the RPCM, the
2PPCM contains the former as a special case. Work on including discrimination
parameters in count IRT models without the equidispersion assumption is limited to
models able to account for overdispersion (Doebler et al., 2014;Wang, 2010). This limits
the applicability of two-parameter count IRTmodels as psychometric tasksmight produce
not only equi- or overdispersed but also underdispersed data (Forthmann, Gühne,
et al., 2020).

1.2. The present work
The present work introduces a model that is a natural extension of both the 2PPCM and
the CMPCM: the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model. It models
item-specific discrimination as well as item-specific dispersion parameters (the latter
allow for modelling underdispersion as well as over- and equidispersion). The 2PCMP
model contains the 2PPCM and the CMPCM as special cases, allowing for easy testing and
loosening of their assumptions. The 2PCMP model is thus able to address two major
limitations of the RPCMwithin the samemodel,which has previously not been possible. A
limiting factor for the introduction of a model like the 2PCMP model has been a lack of
appropriate estimators (Forthmann, Gühne, et al., 2020). The present work fills this gap
by deriving a marginal maximum likelihood estimation method for the 2PCMP model
based on the expectation–maximization (EM) algorithm. The paper is accompanied by an
R implementation of the 2PCMP model. The 2PCMP model’s statistical properties are
examined and compared to those of established models in two simulation studies. I
further reanalyse a divergent thinking fluency task data set with the 2PCMPmodel to give
an empirical illustration of the model.

2. The two-parameter Conway–Maxwell–Poisson model

Under the 2PCMP model (as under the 2PPCM; Myszkowski & Storme, 2021), one
assumes that the expected number of counts μij given by person i in response to an item j
depends on the item parameters αj and δj and the person’s latent ability θij (all on the log
scale) as follows:

The two-parameter Conway-Maxwell-Poisson model 413
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μij ¼ exp αjθi þ δj
! "

: (1)

The parameterization in Equation (1) is referred to as the intercept–slope parameter-
ization, with αj as the slope and δj as the intercept. It is often used in IRT for its
computational advantages (Baker & Kim, 2004). An alternative common parameteriza-
tion is the discrimination–difficulty parameterization (i.e., μij ¼ exp aj θi%dj

! "! "
), which

can be obtained by substituting aj ¼ αj for the discrimination and dj ¼ %δj=αj for the
difficulty in Equation (1) and rearranging (the computational disadvantage of this
parameterization is caused by the multiplicative association between aj and dj, resulting
in a trade-off between the two parameters in estimation). Under typical distributional
assumptions for the latent ability θi (i.e.,  θið Þ ¼ 0), the intercept δj indicates the log
counts one would expect from a person of average ability (i.e., θi ¼ 0). With a decrease
in the difficulty dj, a person of the same ability is expected to respond with a larger
number of counts, that is, the item is easier. The slope quantifies how strongly a person’s
latent ability influences the expected response for them. A larger αj indicates that a
person’s response to an item is more representative of their latent ability. Figure 1, as an
illustration, shows the item response curves (expected responses μij plotted against
different latent abilities θi) under the 2PCMP model for six divergent thinking items (see
Section 5 for more details). One can see that the item response curves differ in their
steepness, which indicates differences in the slopes αj. Items which differentiate better
between persons with regard to their latent ability (e.g., item 5) have steeper curves,
indicating that the same difference in θi (x-axis) leads to greater differences in the
expected response μij (y-axis) compared to items with less discriminatory power and
flatter response curves (e.g., items 3 and 6). This information about items can be helpful
to know for researchers in terms of item selection and in terms of weighting items to
build a total score that best measures the latent ability.

As the 2PCMPmodel predicts the expected number of counts, that is, the mean of the
corresponding probability distribution, the model requires a parameterization of said
distribution in terms of its mean. For a long time, such a parameterization of the CMP
distributionwas not available. Recently, Huang (2017) provided amean parameterization
of the CMP distribution which also builds on the foundation of the CMPCM (Forthmann,
Gühne, et al., 2020). The CMPCM is contained in the 2PCMP model as a special case by
imposing the constraint that the slopes are equal across items, α1 ¼ . . . ¼ αM . The density
function for themean parameterization of the CMP distribution is denoted by CMPμ in the
following and is given by

CMPμ x; μ, νð Þ ¼ λ μ, νð Þx

x!ð Þν
1

Z λ μ, νð Þ, νð Þ
, (2)

where μ∈ %∞,∞ð Þ is the mean of the distribution and ν∈ 0,∞½ Þ is the dispersion
parameter which controls the spread of the distribution. Z λ μ, νð Þ, νð Þ ¼ ∑∞

x¼0

λ μ, νð Þx= x!ð Þν is a normalizing constant (Huang, 2017). The rate λ μ, νð Þ is a function of μ
and ν, given by the solution to (Huang, 2017)

0 ¼ ∑
∞

x¼0
x%μð Þ λx

x!ð Þν
: (3)
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Overdispersion (underdispersion) occurs if ν< 1 (ν> 1). For ν ¼ 1, the case of
equidispersion is obtained and Equation (2) simplifies to the Poisson density. This makes
it immediately clear that the 2PCMP model contains the 2PPCM as a special case. The
dispersion parameter ν can be modelled either as equal across items or as item-specific.
Here, I formulate the 2PCMP model in the most general form with item-specific
dispersions νj, j ¼ 1, . . . ,M. A model with equal dispersion across items can be obtained
by imposing the constraint that ν1 ¼ . . . ¼ νM .

Combining Equations (1) and (2), the probability of a person i respondingwith a count
xij to item j, given a latent ability θi for person i and item parameters αj and δj as well as an
item-specific dispersion νj, is then given by

10

20

30

−2 0 2
θ

µ j
(e

xp
ec

te
d

co
un

ts
) Item

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Figure 1. Item response functions (i.e., plotting latent ability θ against the predicted counts μj for
item j) of the 2PCMPmodel for six divergent thinking items (application example). Items are colour-

coded and represented by different line types as indicated on the right-hand side.
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P Xij ¼ xijjθi, αj, δj, νj
! "

¼ CMPμ xij; μij, νj
# $

, (4)

with μij as in Equation (1). Under the assumption of conditional independence, the
probability of observing the response vector xi for a person i to allM items is given by the
product over items j ¼ 1, . . . ,M, that is,

P Xi ¼ xijθi,α, δ, νð Þ ¼
YM

j¼1

CMPμ xij; μij, νj
# $

, (5)

with α ¼ ðα1, :::, αMÞT , δ ¼ ðδ1, :::, δMÞT and ν ¼ ðν1, :::, νMÞT . For ease of reading, the
vector concatenating item and dispersion parameters for all items (α, δ, and ν) will be
denoted by ζ. In terms of maximum likelihood estimation, the marginal maximum
likelihood (MML) method represents the most viable approach for the 2PCMP model, as
the joint maximum likelihood method could result in an inconsistent estimator (because
with each additional observation, we would have to include an additional parameter for
the person’s ability) and the conditional maximum likelihoodmethod is not an option for
two-parameter IRT models (Baker & Kim, 2004).

For MML estimation, assume that the latent ability parameters θ1, . . . , θN are
independent and identically standard normally distributed as θi ∼ N 0, 1ð Þ, i ¼ 1, . . . ,N .
Note that in two-parameter IRTmodels, the latent ability variance needs to be fixed to 1 to
ensure identification of the model (Baker & Kim, 2004). Denote the density function of
the standard normal distribution by ϕ. The joint probability of observing a person iwith a
latent ability θi and a response vector xi is given by P xi, θijζð Þ ¼ P xijθi, ζð Þϕ θið Þ.
Consequently, the marginal likelihood of the item and dispersion parameters under the
data x (across all N persons and all M items) is given by

Lm ζ;xð Þ ¼
YN

i¼1

Z
P xijθi, ζð Þϕ θið Þdθi: (6)

The goal is to obtain the parameter estimates for ζ which maximize the marginal
likelihood in Equation (6) (or rather, the logarithm of Equation (6)). Due to the integral in
Equation (6) which does not exist in closed form, this is challenging to do directly. An
elegant way to solve this issue is to employ the EM algorithm.

3. Marginal maximum likelihood estimation with the EM algorithm

The EM algorithm (Dempster, Laird, & Rubin, 1977; for a general introduction see, for
example, McLachlan & Krishnan, 2007; for an IRT-specific introduction see Bock &
Aitkin, 1981) is an algorithm for iterative maximum likelihood (ML) estimation. This
section introduces an EM algorithm for the 2PCMP model in a compact and computa-
tionally advantageous representation. The corresponding derivation (which first derives a
different representation and shows that it is mathematically equivalent to the more
compact and computationally advantageous one) is shown in Appendix A.

The EM algorithm for the 2PCMP model uses fixed Gauss–Hermite quadrature to
numerically approximate the integral in Equation (6) that does not exist in closed form.
Gauss–Hermite quadrature tends to be a sensible choice in lower-dimensional IRTmodels
for binary and ordinal data (Chalmers, 2012). The integral over a continuous variable (in
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this case, θi) is approximated by a sum over a discretized version of the variable (which I
denote by Qi). The levels of the discretized variable are referred to as quadrature nodes,
denoted by q1, . . . , qk for K nodes. Increasing the number of nodes yields better
approximations, but increases the computational cost. The quadrature nodes are
weighted according to their probability of occurrence with quadrature weights, denoted
by wk for nodes k ¼ 1, . . . ,K . Rewriting the marginal likelihood in Equation (6) in
quadrature notation yields

Lm ζ;xð Þ≈
YN

i¼1

∑
K

k¼1
P xijqk, ζð Þwk, (7)

where the expected counts implied by Equation (7) are μjk ¼ exp αjqk þ δj
! "

.
In MML estimation problems like in IRT, one can consider responses x as observed

data and the latent abilities θ (¼ θ1, . . . , θNð ÞT ) as unobserved data, together forming the
complete data x, θð Þ. The EM algorithm, built for this type of incomplete-data problem,
maximizes the complete-data (log) likelihood. It iterates between two steps: In each
expectation (E) step, the parameters (ζ) sought are assumed to be known and the
expected complete-data (log) likelihood is determined. In each maximization (M) step,
the expected complete-data (log) likelihood from the previous E-step is maximized in
terms of ζ (under the parameter estimates from the previous M-step ζ0). The EM algorithm
oscillates between E- and M-steps until a convergence criterion is met. Each EM cycle
increases the marginal likelihood until the fixed point of the algorithm is reached
(McLachlan & Krishnan, 2007).

To be able to take the expectation in each E-step, one needs to calculate the probability
distribution over θ given ζ0 from the previous M-step and the observed data x. One
employs Bayes’ theorem to this end and approximates the posterior distribution of θi by
the posterior probabilities of the quadrature nodes q1, . . . , qk. The posterior probability
for node k and item j given a response vector xi is

P qkjxi, ζ0ð Þ ¼

QM

j¼1
CMPμ xijjqkζ0j

# $
wk

∑K
k0¼1

QM

j¼1
CMPμ xijjqk0ζ0j

# $
wk0

, (8)

where ζ0j denotes the set of item and dispersion parameters for item j from the previousM-
step. The quadrature weights wk constitute the prior probabilities for the quadrature
nodes, approximating the prior distribution for θi, which is assumed to be N 0, 1ð Þ for
i ¼ 1, . . . ,N under the 2PCMP model.

For the 2PCMP, the expected complete-data log likelihood,  LLcð Þ, is proportional to
the following expression (see Appendix A for the derivation):

 LLcð Þ / ∑
K

k¼1
∑
N

i¼1
∑
M

j¼1
xijlog λ μjk, νj

# $# $
%νjlog xij!

! "
%log Z λ μjk

###
, νjÞ, νjÞÞ

# $
P qkjxi, ζ0ð Þ

h i
:

(9)

Equation (9) can then be maximized in terms of the item parameters for each item
j ¼ 1, . . . ,M during the followingM-step, where one assumes the P qkjxi, ζ0ð Þ to be given.
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Any omitted terms in Equation (9) are constant with respect to ζ, so that they can be
disregarded when optimizing for ζ. The maximization is carried out by iteratively finding
the roots of the first derivatives with respect to the item parameters. For each αj, the
gradient is given by

∂ LLcð Þ
∂αj

¼ ∑
K

k¼1
∑
N

i¼1

μjkqk

V μjk, νj
# $ xij%μjk

# $
P qkjxij, ζ0j
# $

, (10)

where

V μjk, νj
# $

¼ ∑
∞

x¼0

x%μjk
# $2

λ μjk, νj
# $x

x!ð ÞνjZ λ μjk, νj
# $

, νj
# $ (11)

denotes the variance of the CMPμ distribution (Huang, 2017), and for each δj,

∂ LLcð Þ
∂δj

¼ ∑
K

k¼1
∑
N

i¼1

μjk
V μjk, νj
# $ xij%μjk

# $
P qkjxij, ζ0j
# $

: (12)

For the dispersion parameters νj, it is advantageous in terms of both estimation and
interpretation (Forthmann, Gühne, et al., 2020) to optimize for the log dispersions logνj.
The estimation-related advantage is an unconstrained parameter space. For each logνj, the
gradient is

∂ LLcð Þ
∂logνj

¼ ∑
K

k¼1
∑
N

i¼1
νj A μjk, νj

# $ xij%μjk
V μjk, νj
# $% log xij!

! "
%B μjk

##
, νjÞÞ

0

@

1

AP qkjxij, ζ0j
# $

, (13)

where one can utilize the results by Huang (2017) that A ¼ X log X!ð Þ X%μð Þð Þ and
B ¼ X log X!ð Þð Þ. From the gradients of all three types of parameters, it is easy to see that
gradients for the 2PCMP model with equality constraints (i.e., α1 ¼ . . . ¼ αM or
ν1 ¼ . . . ¼ νM) are simply obtained by taking the derivative in terms of a constant (across
items) α or logν which merely adds a sum over M to the gradients shown above.

As explained in more detail in Appendix A, the expression in Equation (9) for the
expected complete-data log likelihood and the resulting gradients for the M-step
(Equations (10–13)) offer computational advantages. They allow one to express the EM
equations, in particular the derivatives for the dispersion parameters, in efficient terms
with regard to computational costs and numerical stability.

3.1. Standard errors for model parameters
MMLestimationwith the EMalgorithmhas the disadvantage that standard errors are not as
immediately available as they are from Newton–Raphson type estimation procedures
(McLachlan&Krishnan, 2007), as the observed-data log likelihood LLm ¼ LLm ζ;xð Þ is not
maximized directly. Instead, the expected complete-data log likelihood  LLcð Þ is
maximized. The observed informationmatrix (fromwhich one can obtain the asymptotic
covariance matrix of the model parameters) can be expressed in terms of the expected
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complete-data log likelihood (Oakes, 1999). To express the fact that the  LLcð Þ, which is
maximized with respect to ζ, depends on the parameter estimate ζ0 from the previous M-
step,write LLc ζjζ0ð Þð Þ. Then, Oakes’s identity (Oakes, 1999) states that at the fixed point
(when ζ ¼ ζ0),

∂2LLm ζ;xð Þ
∂ζ∂ζT

¼ ∂2 LLc ζjζ0ð Þð Þ
∂ζ∂ζT

þ ∂2 LLc ζjζ0ð Þð Þ
∂ζ∂ζ0T

%%%%%

%%%%%
ζ¼ζ0

: (14)

Chalmers (2018) provided a finite-differences based numerical approximation technique
to Oakes’s identity. With this method, one numerically approximates the two summands
in Equation (14). This method does not require any additional results to those in
Equations (10–13).

3.2. Estimation of ability parameters
Once itemparameter estimates have been obtained, onemay also use the 2PCMPmodel to
estimate person parameters. To this end, one assumes the item parameters as known. An
ML ability estimation technique is given in Appendix B. Under the assumptions of this
method, ability parameters are estimated separately for each person. For the CMPμ
distribution this can quickly become computationally expensive for larger samples. A
Bayes EAP ability estimation method based on the last E-step is computationally much
cheaper in this case and will be used both for the simulation studies and the empirical
example below.

The EM algorithm for the 2PCMP model estimates an approximation to the posterior
distribution of θ, given the data and the item parameters, in each E-step (Equation (8)).
From the (approximative) posterior distribution of the last E-step at the point of
convergence, one can estimate the ability of a person i, i∈ 1, . . . ,Nf g, as the posterior
mean (known as the EAP estimator; Baker & Kim, 2004),

θ̂i,EAP ¼ ∑
K

k¼1
qkP qkjxi, ζð Þ, (15)

where ζ are assumed as known (in actuality, one uses the model parameter estimates at
convergence). As the (final) E-step yields an approximation of the full posterior, one can
just as easily estimate a corresponding standard error,

ŜE θ̂i,EAP
! "

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
K

k¼1
qk%θ̂i,EAP
! "2

P qkjxi, ζð Þ

s

, (16)

and determine the .025 and .975 quantiles to obtain a 95% credible interval. As the
posterior probabilities can be saved from the last E-step, this estimation requires only
negligible additional computation time.

3.3. Computational aspects and implementation
The algorithm for the estimation of the 2PCMPmodel as well as themethods for obtaining
standard errors and ability estimates outlined above have been implemented in R and
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C++, integrated into the R code with the help of the Rcpp package (Eddelbuettel
et al., 2011). The code is available in the R package countirt available on GitHub (https://
github.com/mbsmn/countirt). Details of the computational implementation are given in
Appendix C. The two main challenges in the numerical implementation of the EM
algorithm for the 2PCMPmodel are numerical stability and computational efficiency. The
algorithm repeatedly requires a number of approximations of several infinite series and
the solving of Equation (3) for each item and quadrature node combination. For extreme
quadrature node, slope, and dispersion values, thismay result in numerical instability and/
or noticeably increased computation time. To circumvent this, I tabled the most
important statistics (λ μ, νð Þ, Z λ μ, νð Þ, νð Þ and V λ μ, νð Þ, νð Þ) for a fine grid of μ and ν values.
Values for these statistics are interpolated from the grid using two-dimensional bicubic
interpolation. Computation time can also be reduced by cutting down the number of
iterations until convergence with the choice of starting values. Starting values for slope
and intercept parameters of the 2PCMPmodel are determined by fitting a 2PPCM using a
comparatively fast Poisson density based EM algorithm (also implemented in countirt; see
the Online Supplementary Materials for details on the algorithm). With this method of
choosing starting values, the EM algorithm for the 2PCMP model requires only relatively
few EM iterations, as illustrated in the following two sections.

4. Simulation studies

For the first simulation study, the aim was to examine the 2PCMP model’s statistical
properties, primarily in terms of parameter recovery, in different data settings. For the
second simulation study, I wanted to compare the 2PCMP model’s performance in a
realistic data setting to the performance of established methods which are generalized by
the 2PCMP model. Both simulation studies were conducted in R (R Core Team, 2021).
Details of the implementation of the simulation studies are given in Appendix C. This
work is accompanied by an OSF repository with supplementary materials (https://osf.io/
hx5js/). All scripts used to run the simulations and to prepare the results, the simulation
results (rds files) as well as additional tables and figures (in the Online Supplementary
Materials) are available on the OSF repository.

4.1. Simulation study I

4.1.1. Design and data generation
The design of the first simulation study was inspired by Forthmann, Gühne, &
Doebler, (2020). In alignment with their simulations, the number of items simulated in
this studywas eitherM ¼ 4 orM ¼ 8 and the sample sizes (number of persons) simulated
were eitherN ¼ 100 orN ¼ 300. I set the number of quadrature nodes to eitherK ¼ 121
or K ¼ 201 so that I could assess the speed–accuracy trade-off due to the number of
quadrature nodes used. I simulated four different kinds of item sets: all items
equidispersed, all items overdispersed, all items underdispersed, or a combination of all
three types of dispersion among the items (referred to asmixed items). The levels of these
design factors were fully crossed to yield 32 different simulation conditions. The true
parameter values were inspired by Myszkowski and Storme (2021) as well as my
reanalysis of the same data set (see Section 5); they are shown for all conditions with four
items in Table 1 (see the Online Supplementary Materials for details). For conditionswith
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eight items, I duplicated the four items with the parameter combinations as shown in
Table 1.

I set the number of simulation trials per condition to 250. Note that due to the
numerical complexity of the CMP density, estimation of the 2PCMP model as well as
standard error computation are computationally expensive, thus limiting the number of
simulation trials feasible. For each simulation trial in each condition, I randomly drew N
person ability parameters from a standard normal distribution. Using code from
Forthmann, Gühne, et al., (2020), I then simulated a data set from a CMPμ distribution
under the respective parameter constellations for the condition (see Forthmann, Gühne,
et al., 2020 for details). I fitted a 2PCMP model to the data set and computed standard
errors for the item parameters as well as Bayes EAP ability parameter estimates. I recorded
all computation times.

4.1.2. Performance criteria
To assess the 2PCMP model’s performance in the different simulation conditions, I
used the following criteria. Denote a simulation trial by t and the number of simulation
trials by T.

Bias. For each model parameter p, I estimated the bias as Biasp ¼ mean p̂tð Þ%p, that is,
the difference between the mean of estimates p̂t across trials t ¼ 1, . . . , T and the true
parameter p.

Rootmean squared error (RMSE). For eachmodel parameter p, I estimated the RMSE

as RMSEp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T ∑

T
t¼1 p̂t%pð Þ2

q
, that is, the average squared difference between the

estimates p̂t (for t ¼ 1, . . . , T ) and the true parameter p. In comparison to the bias, the
RMSE additionally takes the variance of the estimator into account, with smaller values
indicating that the estimator showed little bias and had small variance.

Coverage of the 95% confidence intervals (CIs). This is the percentage of simulation
trials for which the 95% CI for parameter p covered the true value of p. If the nominal α-
level of .05 is retained, the coverage should be .95. Using aWald approximation, the lower
boundary of the CI for parameter p in simulation trial t is given by
CIlower ¼ p̂t%1:96 SE p̂tð Þ and the upper boundary by CIupper ¼ p̂t þ 1:96 SE p̂tð Þ, where

SE p̂tð Þ denotes the respective estimator’s standard error.
Ability parameters. For each simulation trial, I computed the correlation between

the true ability parameters in that trial and the ability parameter estimates. To
compare performance across conditions and to account for the potential lack of
interval scaling of correlations, I computed the median correlation for each condition.
Furthermore, I computed (model-implied) empirical reliability estimates of the
2PCMP model as described in Forthmann, Gühne, et al., (2020), that is, as

Table 1. True parameter values for simulation study I

j αj δj
Equidispersion Overdispersion Underdispersion Mixed dispersion

νj (log(νj)) νj (log(νj)) νj (log(νj)) νj (log(νj))

1 0.33 2.40 1.00 (0.000) 0.40 (−0.916) 1.60 (0.470) 1.00 (0.000)
2 0.47 1.80 1.00 (0.000) 0.50 (−0.693) 1.87 (0.626) 2.40 (0.875)
3 0.60 1.50 1.00 (0.000) 0.60 (−0.511) 2.40 (0.875) 0.30 (−1.204)
4 0.20 2.10 1.00 (0.000) 0.30 (−1.204) 2.13 (0.756) 1.00 (0.000)
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bRel ¼ 1%mean bSE θ̂i
! "2# $

=bVar θið Þ, where bSE θ̂i
! "

denotes the estimate of the standard

error for the latent ability estimator for person i and bVar θið Þ denotes the estimate of
the latent ability variance. In each condition, I calculated the median across trials for
the empirical reliability estimates. To be able to evaluate the results, I also calculated

the (model-implied) true reliability as Rel ¼ Cor θi, θ̂i
! "2

(Embretson & Reise, 2013),

that is, the variance of the estimated abilities (θ̂i) explained by the true abilities (θi),
in each trial. Again, I calculated the median across trials.1

Additionally, I examined the numerical stability and convergence, average computa-
tion time across trials and average number of EM iterations required to reach convergence.
I recorded the computation times, including the computation of the initial values.

4.1.3. Results
All models in all trials converged once their estimation started properly. However, in
certain conditions, the situation arose in a very small number of trials (depending on the
condition, between 0.4% and 6.8%) that the model estimation fell victim to numerical
instability. That is, certain parameter value combinations did not allow for the gradient to
be computed numerically stably. This occurred early on in the estimation process, mostly
in the first iteration. The conditions concernedweremostly thosewith underdispersed or
mixed items (see the Online Supplementary Materials on OSF for more detailed
reporting). In all other trials across conditions, the model estimation started and
converged properly.

Computation times and number of EM iterations. In terms of computation times and
number of iterations until convergence (shown in detail in the Online Supplementary
Materials on OSF), as expected, settings with equidispersed items exhibited faster
computation times and required fewer iterations than settings with the other item types
(equidispersed items, Mct ¼ 418:110%1656:076 s and M iter≈17%20 iterations; overdis-
persed items, Mct ¼ 637:754%3324:056 s and M iter≈22%28 iterations; underdispersed
items, Mct ¼ 682:159%4287:334 s and M iter≈40%69 iterations; mixed items,
Mct ¼ 1042:459%3673:292 s and M iter≈29%54 iterations). An increase in the number
of items tended to lead to a decrease in the number of iterations (especially for settings
withmixed items), but to an increase in computation time. This means that each iteration
was computationally a lot more expensive for M ¼ 8 due to the greater number of
gradients for which roots need to be found. The number of quadrature nodes tended not
(or only slightly) to affect the average number of iterations, but, as expected, it made each
iteration more expensive, leading in part to considerable increases in computation times.
Note that computation times depend on and will differ between machines.

Bias and RMSE for item parameters. Bias and RMSE estimates are shown for
conditions with equidispersed (top row) and underdispersed (bottom row) items in
Figure 2 and for conditions with overdispersed items (top row) andmixed items (bottom
row) in Figure 3. Only values smaller than 1 in absolute value are shown; all exact values
are shown in the Online Supplementary Materials on OSF. The results showed that across
conditions, bias was very small for the slope and intercepts parameters. RMSE estimates

1Note that a comparison with reliability estimators such as Cronbach’s coefficient α is not useful here as one of
themain assumptions of Cronbach’s coefficient α, equal slope parameters, is violated by the 2PCMPmodel, from
which data are simulated.
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for these parameters tended to be smaller than 0.1 across conditions. The RMSE estimates
for slopes and intercepts tended to decrease for conditions with N ¼ 300. This effect of
the sample size was even more evident for the dispersion parameters. For these, the
results showed more noticeable bias for N ¼ 100, which was visibly reduced for
conditions with N ¼ 300. The same pattern emerged for the RMSE. The RMSE estimates
for dispersions even exceeded values in absolute magnitude larger than 1 (compare the
Online Supplementary Materials). This only occurred for conditions with four items for
under- and overdispersed items, and happened for more conditions with four than with
eight items for mixed items. These large RMSE estimates predominantly occurred for
N ¼ 100, and at the very least stabilized for larger N and more quadrature nodes. It is also
interesting that these are the only cases where increasing K had any noticeable effect.
Otherwise, K ¼ 121 seemed to suffice. This is clearly advantageous in terms of
computation time.

Coverage of 95% CI for item parameters. Results for the coverage of the 95% CI are
shown in the Online Supplementary Materials on OSF. The exact values are also listed in
the Online Supplementary Materials. Overall, the results in terms of coverage were
promising. Across all conditions, coverage estimates tended to be very close to the
nominal level, but note that they were still sometimes slightly liberal (see the Online
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Figure 2. Bias (dots) and RMSE (triangles) for each parameter of each item for all conditions with

equidispersed items ((a) four items, (b) eight items) and underdispersed items ((c) four items, (d)

eight items). Each column within each plot shows the results for a different parameter

(alpha = slope, delta = intercept, log disp = log dispersion). The rows within each plot indicate

the sample size (N) and the number of nodes (K). The item number is shown on the x-axis. The

horizontal lines indicate 0. Only values less than j 1 j are shown; see the Online Supplementary

Materials for all values.
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Supplementary Materials). Coverage tended to improve with larger N, but did not
generally tend to benefit from more quadrature nodes.

Person parameter estimates. Person parameter estimateswere assessed usingmedian
correlations between the true and the estimated abilities (shown in detail in the Online
Supplementary Materials on OSF). These were higher for settings with underdispersed
(median r values from .940 to .969) and mixed items (median r values from .910 to .953)
and reached the lowest values for overdispersed items (median r values from .831 to .908).
Equidispersed items showedmedian correlations between .897 and .946.Otherwise, only
the number of items had a clearly noticeable effect (e.g., for mixed items, N = 100,
K = 121: .910 for M = 4 and .952 for M = 8). As the (median) model-implied true
reliabilities are closely related to the (median) correlations between true and estimated
abilities, they showed a very similar pattern of results (see the Online Supplementary
Materials onOSF). In terms ofmedian (model-implied) empirical reliabilities, those tended
tomore noticeably underestimate the true reliabilities in settingswith only four items. But
there were differences between item groups in this regard, with better results for the
underdispersed items (e.g., for N = 300, K = 121: .887 for the true and .877 for the
estimated reliability) and less favourable results for the overdispersed items (e.g., for
N = 300,K = 121: .703 for the true and .597 for the estimated reliability). For eight items,
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Figure 3. Bias (dots) and RMSE (triangles) for each parameter of each item for all conditions with

overdispersed items ((a) four items, (b) eight items) and itemswith different types of dispersion ((c)

four items, (d) eight items). Each columnwithin eachplot shows the results for a different parameter

(alpha = slope, delta = intercept, log disp = log dispersion). The rows within each plot indicate

the sample size (N) and the number of nodes (K). The item number is shown on the x-axis. The

horizontal lines indicate 0. Only values less than j 1 j are shown; see the Online Supplementary

Materials for all exact values.
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model-implied reliabilities were estimated quite well (at least in the median) for all item
groups except overdispersed items (e.g., forM = 8, N = 300, K = 121: .823 for the true
and .795 for the estimated reliability).

A summary of the main conclusions from simulation study I is provided in Discussion.

4.2. Simulation study II
The aim of the second simulation study was the comparison of the 2PCMP model to
established methods in a realistic data setting where the complexity of the 2PCMP is
warranted (i.e., a setting with varying slopes and varying dispersions). The models I
included for comparisonwere the 2PPCM (Myszkowski & Storme, 2021) and the CMPCM
(Forthmann, Gühne, et al., 2020). I estimated them both once as described by the
respective authors and once as constrained 2PCMP models to examine any potential
differences in estimation algorithms. By design, all models in this study but the full 2PCMP
model are misspecified. The aim of the study was to examine how impaired performance
of the established models is by realistic misspecification and thus what advantage the
2PCMP model can offer.

4.2.1. Design
For the realistic data setting, I used parameter estimates obtained by reanalysing divergent
thinking tasks data (Silvia, 2008a, 2008b; Silvia et al., 2008) made available by the author
with permission to reanalyse (Silvia, 2013) (for the parameter estimates, see Table 5).
Mimicking the real data, I simulated M ¼ 6 items and N ¼ 242 participants in each
simulation trial. As in simulation study I, I drew the underlying abilities of the participants
(θi, i ¼ 1, . . . ,N) from a standard normal distribution and then simulated data from a
CMPμ distribution based on code by Forthmann, Gühne, et al., (2020) with

μij ¼ exp ~αjθi þ ~δj
! "

and νj ¼ exp ~νlog,j
! "

, where ~αj, ~δj, and ~νlog,j are the parameter

estimates for the slopes, intercepts, and log dispersions, respectively, obtained through
the reanalysis (Table 5). I ran 500 simulation trials.

4.2.2. Models for comparison and performance criteria
I fitted the 2PCMP model using the EM algorithm presented above with 121 quadrature
nodes (as the first simulation study indicated that these would suffice in most cases). I
further included theCMPCM(Forthmann,Gühne, et al., 2020)which constitutes a special
case of the 2PCMP, with slope parameters constrained so that α1 ¼ . . . ¼ αM . I fitted the
CMPCM using two different implementations: (1) with the EM algorithm for the 2PCMP
presented above, and (2) as described in Forthmann, Gühne, et al., 2020 using the
glmmTMB package (Brooks et al., 2017). These implementations differ not only with
regard to the algorithm used for model estimation, but also slightly in the model
formulation. Yet they both constitute a one-parameter CMP model. For the first
implementation, the latent ability variance is fixed at 1 and I estimate one slope
parameter (constrained to be the same across items). With the second implementation,
the slope parameters of all items are fixed at 1 and I estimate the latent ability variance
freely (see Forthmann, Gühne, et al., 2020, for details). In order to compare dispersion
estimates from these two implementations, I inverted the estimates provided by
glmmTMB.
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The third model included is the 2PPCM (Myszkowski & Storme, 2021). This model is
contained as a special case within the 2PCMPwith the constraint that ν1 ¼ . . . ¼ νM ¼ 1.
There are existing estimation algorithms and corresponding software implementations
for the 2PPCM – for example with the software MPlus (Muthén & Muthén, 1998, see
Myszkowski & Storme, 2021, for an overview) – but for convenience I also implemented
an EM algorithm for the 2PPCM based on the Poisson density in the countirt package (see
the Online Supplementary Materials on OSF for details). I fitted the 2PPCM oncewith that
Poisson-density-based EM algorithm and once using the EM algorithm for the 2PCMP
based on the CMP density under the constraint that ν1 ¼ . . . ¼ νM ¼ 1. For an explanation
regarding the relation between the EM algorithms based on the Poisson and CMP density,
see the Online Supplementary Materials.

I used the same performance criteria as in simulation study I. Additionally, I computed
the median (across trials) correlations between the ability scores as produced by the five
models.

4.2.3. Results
None of themodels experienced any numerical instability in any of the 500 trials. They all
converged in each trial.

Computation times and number of EM iterations. On average across trials, the
computation time was longest for the CMPCM fitted with glmmTMB (Mct = 1372.287 s).
The (full) 2PCMP took on average the second longest time (Mct = 714.221 s) and on
average requiredM iter≈20 iterations until convergence. This was followed closely by the
2PCMPwith equal slopes (i.e., CMPCMwith alternative formulation;Mct = 711.903 s and
M iter≈26 iterations), the 2PCMPwith dispersions fixed at 1 (i.e., a 2PPCM;Mct = 403.988
s and M iter≈47 iterations), and the 2PPCM (Mct = 10.542 s and M iter ¼ 46 iterations).
These results reflect that the Poisson density and gradients are much easier and less
computationally expensive to evaluate than the CMP density and gradients. The starting
value determination approach for the full and the equal slopes 2PCMP model led to
considerably smaller numbers of iterations (as compared to the two 2PPCMs which use a
different approach). Note that computation times depend on and will differ between
machines. Standard deviations for computation times and number of iterations are
presented in the Online Supplementary Materials on OSF together with additional
considerations.

Bias, RMSE, and coverage of 95% CIs for item parameters. Table 2 displays the
estimates for the bias, the RMSE and the coverage of the 95% CIs. As in simulation study I,
the bias for the (full) 2PCMP was small to negligible across parameters (with
comparatively larger biases for the dispersion parameters). As expected, bias tended to
be greater for the fourmisspecifiedmodels. In particular, at least for some parameters and
models, the bias tended to be larger than the average standard error for the respective
parameter, while for the parameters in the full 2PCMPmodel, the bias was always smaller
(in absolute magnitude) than the average standard error (see the Online Supplementary
Materials on OSF for more details and standard error ranges). This pattern was more
pronounced for slope and dispersion parameters than for intercepts which were overall
the least inflicted parameters in regard to impaired performance (i.e., the biases on the
intercepts were mostly smaller than the respective average standard errors). RMSE
estimates also tended to be larger for themisspecifiedmodels. The coverage of the 95%CI
was overall quite good for the 2PCMP model, with coverage estimates for the intercepts
and slopes very close to the nominal level for the majority of items. For the dispersion
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parameters, the nominal level was exactly met for the fifth item and slightly undercut for
the other items, but still above 0.93 for all items. For the misspecified models, coverage
overall tended to be lower, but was generally less impaired for the intercepts and log
dispersions (but see more detailed descriptions and considerations in the Online
Supplementary Materials). Coverage on the slope parameters in the misspecified models
(if estimated) was in part very poor (in particular, for the 2PCMPwith ν1 ¼ . . . ¼ ν6 ¼ 1).
The pattern with regard to bias and standard errors offers a possible explanation for these
results, as they occur in particular for item and model combinations where the bias is
substantially larger than the average respective standard error.

Person parameter estimates. Table 3 shows that the highest median correlation
between the true and the estimated person parameters was achieved by the (full) 2PCMP
model, followed by the two versions of the CMPCM and the two versions of the 2PPCM,
respectively. Note that due to the simulation design, the (model-implied) true reliability of
the 2PCMP model constitutes the ground truth in this simulation study. The (median)
model-implied true reliability is therefore already negatively biased for the misspecified
models, more so for the 2PPCMs than for the CMPCMs. Further, the (full) 2PCMP and the
two versions of the CMPCM slightly underestimated their respective model-implied true
reliabilities in themedian across trials. Different results for the twoCMPCMs are likely due
to the different estimation procedures. As expected, the two versions of the 2PPCM
showed the same result for the median model-implied estimated reliability. They slightly
overestimated their model-implied true reliability in the median across trials, but still
underestimated the median reliability implied by the true underlying model.

Table 4 shows the median correlations (across trials) between the ability scores as
produced by the fivemodels. The pattern of results alignswith that seen in Table 3. Those
models which are equivalent exhibited perfect correlations as one would expect. The
correlations of the 2PCMP model ability estimates with those of the other models were

Table 3. Evaluation of person parameter and reliability estimates in simulation study II

Model med Cor θ, θ̂
! "! "

med Relð Þ med R̂el
! "

2PCMP .921 .848 .826
2PCMP, α1 ¼ . . . ¼ α6 .915 .838 .799
2PCMP, ν1 ¼ . . . ¼ ν6 ¼ 1 .891 .794 .805
PPCM .891 .794 .805
CMPCM .915 .838 .827

Note. Median correlations between the true and the estimated person parameters
med Cor θ, θ̂

! "! "! "
, the (model-implied) true reliability (med Relð Þ), and the (model-implied)

empirical/estimated reliability (med R̂el
! "

) for all models in simulation study II.

Table 4. Median correlations between models’ ability estimates in simulation study II

1 2 3 4 5

2PCMP (1) 1.000 .993 .966 .966 .993
2PCMP, α1 ¼ . . . ¼ α6 (2) 1.000 .954 .954 1.000
2PCMP, ν1 ¼ . . . ¼ ν6 ¼ 1 (3) 1.000 1.000 .954
2PPCM (4) 1.000 .954
CMPCM (5) 1.000
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very high, especially between the one-parameter (i.e., the two versions of the CMPCM)
and the two-parameter 2PCMPmodels. This pattern is also found for other comparison of
one- and two-parameter models (see, for example, Bürkner, 2020; Loken & Ruli-
son, 2010) and will be discussed in Section 6.

5. Application example

For an empirical application example of the 2PCMP model, I reanalysed divergent
thinking fluency tasks data as published in Silvia (2008a, 2008b) and Silvia et al. (2008)
and made available by Silvia via OSF (https://osf.io/8vrck/) together with permission for
the reanalysis (Silvia, 2013).Myszkowski and Storme (2021) recently reanalysed the same
data using, among other models, the 2PPCM. They also assessed whether the
equidispersion assumption was justified and found evidence to the contrary for the
2PPCM. This makes this data set particularly interesting for reanalysis with the 2PCMP
model which loosens the equidispersion assumption of the 2PPCM.

For a detailed description of the data set, see Silvia et al. (2008). In short, the data set
contains response data from N ¼ 242 college students on M ¼ 6 items. The items were
divergent thinking fluency tasks which instruct participants to provide as many creative
responses as possible to a prompt. Three different types of tasks were employed. They
were alternate use uses tasks (AUT), where participants name alternate uses for everyday
objects (a brick in item 1 and a knife in item 4), instances tasks, where participants are
asked to name instances of a more general class (round things in item 2 and things that
makenoise in item5), and consequences tasks,whereparticipants list consequences of an
event (no more sleep in item 3 and 12 inches height in item 6). The items were
administered with a time limit of 3 min per item. Tasks like this can be scored in different
ways to assess different underlying abilities (Silvia et al., 2008). For the 2PCMP model, I
simply computed the number of responses given by each participant to each item. This is
in line with the data preparation performed by Myszkowski and Storme (2021) and is
considered to measure fluency.

I fitted the 2PCMP model to the data using 121 quadrature nodes (see the OSF
repository for the R code). The model converged after 15 iterations. The parameter
estimates are presented in Table 5. The model estimated the reliability at .821 (see
Section 4.2 for how the reliability is estimated from the 2PCMP model). The slope
parameters αj (which are equal to item discriminations aj) represent howwell differences
in latent ability (i.e., divergent thinking fluency) are depicted by differences in responses.2

Item 2 (an instances task) displayed the highest discrimination, indicating the best ability
to differentiate between participants in terms of their divergent thinking fluency. Items 5
(also an instances task) and 4 (AUT) followed in terms of their discriminatory ability. The
other AUT (item 1) was slightly less discriminatory. The two consequences tasks (items 3
and 6)were leastwell able to differentiate betweenparticipants in terms of their divergent
thinking fluency. This pattern is visualized in Figure 1 which depicts the item response
functions. The better the discrimination of an item, the steeper the item response curve –
implying larger differences in expected responses (y-axis) for different latent ability (x-
axis). Difficulties (dj) can be obtained from slopes (αj) and intercepts (δj) as dj ¼ %δj=αj.

2 Note thatwith a latent variance fixed at 1 (as is the case here for identification purposes), due to the exponential
response function in the 2PCMPmodel, onewould not necessarily expect discrimination values close to or even
larger than 1. This would imply quite large expected counts for higher latent abilities quite quickly. Of course,
whether this is sensible depends on the type of data at hand.
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The itemwith the largest difficulty in absolute value is themost difficult,which in this case
are the consequences items (item 3 with d3 ¼ %8:713 and item 6 with d6 ¼ %7:560).
They are followed by item 1 (AUT, d1 ¼ %6:513) and item 5 (instances, d5 ¼ %6:227),
and then item 2 (instances, d2 ¼ %5:345). Item 4 (AUT) was the easiest, with
d4 ¼ %4:947. The log dispersion parameters indicate howmuch responses are expected
to vary, given a certain latent ability (i.e., due to randomness). Looking at Figure 1, that
would mean how much one expects responses for one given person (with one value on
the x-axis) to vary from the expected response based on item difficulty and discrimination
as shown by the item response curves. Here, items 2 and 5 (instances tasks)were themost
dispersed (they were the only two items with overdispersion). The least dispersed
(implying responses conditional on latent ability varied least around the expected
response) were items 1 and 4 (AUT) which exhibited underdispersion. Items 3 and 6
(consequences tasks) fell in the middle in terms of dispersion (for item 3, equidispersion
cannot be rejected). These results can inform researchers’ item selection. It is not
uncommon to only use one type of task tomeasure divergent thinking (e.g., only AUT) in a
study (e.g., Beisemann, Forthmann, Bürkner, & Holling, 2020). Analyses of different
divergent thinking items with the 2PCMP model can indicate which items are best at
discriminating between divergent thinking abilities. They can also help to further
psychometric understanding of these different items which were not constructed in an
IRT framework.

Within the 2PCMP model, it is easy to test the assumptions of the established models
containedwithin the 2PCMPmodel as special cases – the 2PPCMand theCMPCM. Starting
with the 2PPCM, I fitted a 2PCMP model with the constraint that ν1 ¼ . . . ¼ νM ¼ 1.
Comparing the two models with a likelihood ratio test (i.e., testing the equidispersion
assumption of the 2PPCM), I found evidence of a significantly better fit of the (full) 2PCMP
model, χ2 6ð Þ ¼ 87:903, p< :001. This result is also reflected by the 95% CI for the log

Table 5. Parameter estimates of the 2PCMP model for six divergent thinking items (application
example)

Item Parameter Estimate SE 95% CI

1 Slope 0.296 0.024 [0.249, 0.344]
Intercept 1.930 0.027 [1.877, 1.984]
Log dispersion 0.548 0.114 [0.324, 0.772]

2 Slope 0.396 0.035 [0.327, 0.466]
Intercept 2.116 0.039 [2.040, 2.193]
Log dispersion −0.531 0.121 [−0.768, −0.295]

3 Slope 0.216 0.027 [0.163, 0.269]
Intercept 1.879 0.028 [1.825, 1.933]
Log dispersion 0.148 0.102 [−0.052, 0.347]

4 Slope 0.378 0.026 [0.327, 0.429]
Intercept 1.871 0.030 [1.812, 1.930]
Log dispersion 0.863 0.152 [0.564, 1.162]

5 Slope 0.377 0.033 [0.312, 0.442]
Intercept 2.347 0.037 [2.276, 2.419]
Log dispersion −0.596 0.120 [−0.830, −0.361]

6 Slope 0.244 0.024 [0.197, 0.292]
Intercept 1.846 0.026 [1.796, 1.897]
Log dispersion 0.515 0.106 [0.308, 0.722]
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dispersions in Table 5. Based on the marginal log likelihood which is evaluated in each
iteration of the EM algorithm, the test statistic for the likelihood ratio test is
%2 LLm0%LLm1ð Þ (with LLm0 as the marginal likelihood of the constrained model and
LLm1 as the marginal likelihood of the unconstrained model, both at convergence). This
test statistic is approximately χ2 distributed with as many degrees of freedom as we have
constrained parameters. Testing the assumptions of the CMPCM, I also fitted a 2PCMP
model with the constraints that α1 ¼ . . . ¼ αM . The comparison via the likelihood ratio
test (i.e., testing the assumption of equal slopes of the CMPCM) indicated significantly
better fit of the 2PCMP model, χ2 5ð Þ ¼ 43:550, p< :001. Note that we here have five
constrained parameters, as one slope parameter is estimated for all six items. For both the
2PPCM and the CMPCM, the respective assumptions were violated for this data set,
requiring the model complexity offered by the 2PCMP model.

6. Discussion

The present work introduces the 2PCMP model, a two-parameter count IRT model. The
model allows item discriminations to be varied, which can help researchers with item
selection. With the use of the mean parameterized CMP distribution (Huang, 2017), the
model can account and test for over-, under- and equidispersion at an item-specific level.
The model constitutes a generalization of the recently introduced CMPCM (Forthmann,
Gühne, et al., 2020) as well as the 2PPCM (Myszkowski & Storme, 2021), both of which
extend the RPCM (Rasch, 1960). All three of these models are contained within the
2PCMPmodel as special cases, so that the 2PCMPmodel offers an easy approach of testing
(and if necessary loosening) their respective assumptions. Since, to the best of my
knowledge, no estimation methods for the 2PCMP model were previously available
(Forthmann, Gühne, et al., 2020), I derived an MML estimation method based on the EM
algorithm (Dempster et al., 1977) for the 2PCMP model. Simulation studies showed
promising performance of the 2PCMP model. The empirical example illustrated how
easily the assumptions of the CMPCM and the 2PPCM can be tested within the 2PCMP
model, and that this constitutes a realistic concern.

6.1. Evaluation of the 2PCMP model and recommendations
The simulation study results revealed overall satisfactory performance in terms of
parameter recovery and reliability in a number of different settings varying with regard to
the number of items, the type of underlying item-specific dispersion, the sample size, the
number of quadrature nodes, and under realistic parameter values. Based on the results, I
would recommend larger sample sizes than N ¼ 100 for the 2PCMP model and
administration of more than four items, especially if one is interested in very accurate
estimates of the dispersion parameters. Not surprisingly, a greater number of items also
results in better, and in fact quite good, estimates of model-implied reliability. These
recommendations should minimize the risk of encountering numerical instabilities,
which were overall relatively rare and in practice might be addressed by varying the
starting values slightly. Numerical instabilities may likely be caused by certain parameter
constellations, especially in terms of slopes and log dispersions, when both tend to larger
(absolute) values. A second simulation study comparing the 2PCMP in a realistic data
setting to the CMPCM and the 2PPCM showed that the use of the 2PCMP model is
beneficial in a setting where the assumptions of established methods are violated. This is
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true for parameter estimation accuracy, but in particular in terms of coverage of the 95%
confidence intervals which in some cases falls drastically below the nominal level in the
misspecified models, especially for the slope parameters.

In terms of the ability parameter and reliability estimation, one could also see an (albeit
only slight) advantage of the 2PCMP model. Ability point estimates for the compared
models were strongly correlated, in particular between the one- and two-parameter
version (CMPCM and 2PCMP). This is a common pattern also found in comparisons of the
one-parameter logistic (1PL) and two-parameter logistic (2PL)models for binary data (see,
for example, Bürkner, 2020; Loken & Rulison, 2010). While point estimates tend to be
very similar even if the 2PL model holds and the 1PL is violated, the differences between
one- and two-parameter models are still reflected elsewhere, for example in the standard
errors and the reliability estimates. As the 2PL model can be considered a border case of
the 2PCMPmodel (the binomial distribution is a border case of the CMP distribution), it is
unsurprising to observe similar results for the 2PCMPmodel. For the setting in the second
simulation study, no numerical instabilities were observed. The comparison of compu-
tation times showed that the EM algorithm for the 2PCMP model is not only competitive
compared to other software, but even showed faster computation time on average for the
CMPCM than glmmTMB (Eddelbuettel et al., 2011) (which, however, is much more
general software). The method employed for choosing starting values for the 2PCMP
model proved advantageous in terms of average number of iterations.

6.2. Limitations
Notwithstanding promising results in terms of statistical properties from the simulation
studies and in terms of numerical stability and relative computational efficiency of the
proposed EM algorithm, the present work is also subject to certain limitations. The
number of trials in the simulation studies was limited by the computation costs of fitting
the 2PCMPmodel, so that only 250 or 500 simulation trials were run per scenario. For the
item parameters’ standard errors, only one method was used (based on a numerical
approximation to Oakes’s identity; Chalmers, 2018). Corresponding 95% confidence
intervals were constructed using a Wald approximation. This may leave results for the
coverage of the 95% confidence intervals confoundedwith themethods used for standard
error and CI computation and does not allow any specific weaknesses of the methods to
be deduced. Thus, this work cannot offer specific recommendations as towhichmethods
to use for standard errors and CIs. Due to computation costs, only one method for person
parameter estimation was evaluated, a Bayes EAP estimator (see Appendix B for an
alternative ML method). The comparison of the 2PCMP model with established methods
was focused on models which are special cases of the 2PCMP model and on a setting in
which the assumptions of the establishedmethodswere violated. Thus, the comparison is
unable to offer insights about comparative performance of other count IRT models (e.g.,
for overdispersion, the negative binomial model; Hung, 2012) or about the compared
models’ performance in different types of settings. As only one set of parameter valueswas
used in the second simulation study, the strength of the violation of assumptions of the
established methods was not systematically varied.

6.3. Avenues for future research
With the 2PCMPmodel, future research can analyse count-data-generating psychometric
tasks and self-report items with regard to their discriminatory power, difficulty, and
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measurement precision. Such investigations can help inform item selection. Future
research could also address some of the limitations of the present work. The 2PCMP
model could be compared to other existingmodels – for example, for overdispersed count
data, the IRT-ZIP (Wang, 2010) or theNBRM (Hung, 2012) –under different conditions. A
model comparison via information criteria such as Akaike’s might be helpful to this end;
best fit for the 2PCMPmodel amongmodels examinedwouldprovide strong validation for
the 2PCMPmodel. In the future, differentmethods for standard error aswell as confidence
interval computation could be compared to allow for recommendations of the best
methods for the 2PCMP model. The performance of other person parameter methods
(such as ML; see Appendix B, but note computational cost) could be examined and
compared to the Bayes EAPmethodused in thiswork. Computation time efficiency for the
2PCMP model EM algorithm could be further improved with the use of EM accelerators
(for a recent review of available state-of-the-art methods, see Beisemann, Wartlick, &
Doebler, 2020, who also compared the methods for binary IRT models). This could help
to makemore simulation trials feasible in future simulation studies to reduce Monte Carlo
standard errors. ThederivedMMLestimation technique for the 2PCMPmodel is based on a
fixedGauss–Hermite quadrature EMalgorithm.Other EMvariants such as adaptiveGauss–
Hermite quadrature EM (see Schilling & Bock, 2005, for the binary case) could be
explored. In general, other estimation techniques might be investigated, such as a
Bayesian estimation approach which might be particularly helpful for smaller sample
sizes. An extension of the 2PCMP model to include an offset would allow for modelling
time limits imposed for the items which is not unusual for psychometric tests generating
count data (e.g., in Silvia et al., 2008, a time limit of 3 min per itemwas used). The 2PCMP
model itself might be extended, for example to a multidimensional 2PCMP model or to
allow for the inclusion of covariates. For instance, by including item covariates on
dispersion parameters, researchers could investigate sources of under- and overdisper-
sion. More complex extensions could include options to model multilevel count data or
more complex factorial designs.
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Appendix A:

Derivation of the EM algorithm for the 2PCMP model
To derive the complete-data log likelihood for the 2PCMP model, the complete data are
chosen to be x, θð Þ, where x are the responses and θ are the latent abilities. To find the
corresponding likelihood, assume that each latent ability θi can be divided up into a finite
set ofK discrete categories, denoted by qk, k = 1, . . .K, yielding the discrete variableQ=
(Q1, . . . QN)

T. With  :f g as the indicator function, let f k ¼ ∑N
i¼1 Qi¼qkf g (k = 1, . . . K)

denote the number of participantswith discrete latent ability of level qk in our sample ofN

participants. Note that ∑K
k¼1f k ¼ N . Denote by f ¼ f 1, . . . , f Kð ÞT the vector containing

the number of participants in each of theK latent ability categories. Under the assumption
that the N discrete latent abilities (i.e., the N participants) are sampled pairwise
independently, one can assume a multinomial distribution for the discrete latent abilities,
with probabilitiesw1, . . .,wk for each of theK categories, as given in the following. Thus,
the probability of f is given by

P f ;w1, . . . ,wKð Þ ¼ N !

f 1! . . . f K !

' (YK

k¼1

w
f k
k : (17)

The two-parameter Conway-Maxwell-Poisson model 437

 20448317, 2022, 3, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12273 by C
ochrane G

erm
any, W

iley O
nline Library on [11/03/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



This same assumption is also made in the derivation of the EM algorithm for other IRT
models, for example for binary data (Baker & Kim, 2004). The notation in this section is
deliberately similar to that used in Baker and Kim (2004) to highlight similarities and
differences. For better readability, define Fk ¼ 8i : Qi ¼ qkf g as the set of person indices
where the persons have latent ability level qk. Note that each set Fk has f k elements. Let
r'ijk (j ¼ 1, . . . ,M, k ¼ 1, . . . ,K) denote the response given by a person i of discrete latent

ability qk to item j, that is, r'ijk ¼ i∈ Fk
xij. For an arbitrary but fixed ability level qk

(k∈ 1, . . . ,Kf g), write r'k to denote the response vector r'11k, . . . , r
'
f kMk

# $T

of all persons

i∈ Fk answeringM items. Then the probability of observing r'
k under the 2PCMPmodel is

given by

P r'
k; ζ, qk

! "
¼
YM

j¼1

Y

i∈ Fk

λ μjk, νj
# $r'ijk

r'ijk!
# $νj

1

Z λ μjk, νj
# $

, νj
# $

0

B@

1

CA (18)

¼
YM

j¼1

λ μjk, νj
# $∑i∈ Fk

r'ijk

exp νj∑i∈ Fk
log r'ijk!

# $# $ 1

Z λ μjk, νj
# $

, νj
# $f k

: (19)

Define rjk≔∑i∈ Fk
r'ijk ¼ ∑N

i¼1i∈ Fk
r'ijk (i.e., the sum of the responses of all f k participants

with ability levelqk on item j) andhjk≔∑i∈ Fk
log r'ijk!

# $
¼ ∑N

i¼1i∈ Fk
log r'ijk!

# $
, and obtain

P r'
k; ζ, qk

! "
¼
YM

j¼1

λ μjk, νj
# $rjk

exp νjhjk

! " 1

Z λ μjk, νj
# $

, νj
# $ f k

: (20)

Denote the vector r'111, . . . , r
'
f KMK

# $T

of all responses by r'. The probability of observing

r' is given by
QK

k¼1P r'k; ζ, qk

! "
. Consequently, the joint probability of f and r', that is, the

complete-data likelihood Lc, is given by

Lc ¼ P f , r'; ζð Þ ¼
YK

k¼1

YM

j¼1

λ μjk, νj
# $rjk

exp νjhjk

! " 1

Z λ μjk, νj
# $

, νj
# $ f k

0

B@

1

CA
N !

f 1! . . . f K !

' (YK

k¼1

w
f k
k

 !

:

(21)

From the factorization of the likelihood, one can see that f k, rjk, and hjk, for all
j∈ 1, . . . ,Mf g, for all k∈ 1, . . . ,Kf g, constitute sufficient statistics for the complete data
under the 2PCMP model. Taking the logarithm and omitting constants,
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logP f , r'; ζð Þ ¼ LLc

/ ∑
K

k¼1
∑
M

j¼1
rjklog λ μjk, νj

# $# $
%νjhjk%f klog Z λ μjk

###
, νjÞ, νjÞÞ

 !

þ ∑
K

k¼1
f klog wkð Þ

) *

/ ∑
K

k¼1
∑
M

j¼1
rjklog λ μjk, νj

# $# $
%νjhjk%f klog Z λ μjk, νj

# $
, νj

# $# $
:

The right summand which is omitted above from the second to the third line does not
depend on ζ and thus will not influence the optimization in terms of ζ. As this is what the
log likelihood is used for here, any terms not dependent on ζ (i.e., which do not have an
index j) can be ignored. Take the expectation overQ given the observed datax and ζ0. The
expected complete-data log likelihood is proportional to (and equal to save for constant
terms)

Qjx ,ζ0 LLcð Þ ¼  LLcð Þ

/ ∑
K

k¼1
∑
M

j¼1
Qjx ,ζ0 rjk

! "
log λ μjk, νj

# $# $
%νjQjx ,ζ 0 hjk

! "

%Qjx ,ζ0 f kð Þlog Z λ μjk, νj
# $

, νj
# $# $

≕ ELLc:

(22)

With the posterior probability of node qk,P qkjxi, ζ0ð Þ, as defined in Equation (8),wehave

Qjx,ζ0 f kð Þ ¼ Qjx,ζ0 ∑
N

i¼1
 Qi¼qkf g

) *
(23)

¼ ∑
N

i¼1
Qjx,ζ0  Qi¼qkf g

! "
(24)

¼ ∑
N

i¼1
P qk j xi, ζ0ð Þ≕fk, (25)

for all k2 1, . . . ,Kf g.With analogous operations and using the definitions of rjk and hjk one
obtains

Qjx,ζ0 rjk
! "

¼ ∑
N

i¼1
xijP qkjxi, ζ0ð Þ≕rjk (26)

and
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Qjx,ζ0 hjk

! "
¼ ∑

N

i¼1
log xij!

! "
P qk j xi, ζ0ð Þ≕hjk (27)

for all k∈ 1, . . . ,Kf g, for all j∈ 1, . . . ,Mf g. Using these and Equation (22) for the E-step
(as one can and as EM algorithms for, for example, logistic IRT models typically do with
analogous equations; see Baker & Kim, 2004), results in gradients with numerically
challenging terms for the M-step (compare Equations (29–31), with, in particular,
challenging terms in the gradients for the dispersion parameters, see Equations (32–34)).
To alleviate this problem, I substitute the definitions of f k, rjk, and hjk into Equation (22)
and rearrange in the search for a more compact formulation of the expected complete-
data log likelihood (andespeciallymore compact expressions of the resulting gradients for
the M-step). It is easy to show that this expression can be rearranged into Equation (9):

ELLc ¼ ∑
K

k¼1
∑
M

j¼1
rjklog λ μjk, νj

# $# $
%νjhjk%f klog Z λ μjk, νj

# $
, νj

# $# $

¼ ∑
K

k¼1
∑
M

j¼1
∑
N

i¼1
xijP Qk j xi, ζ0ð Þ

) *
log λ μjk, νj

# $# $

%νj ∑
N

i¼1
log xij

! "
P Qkð j xi, ζ0Þ

) *

% ∑
N

i¼1
P Qk j xi, ζ0ð Þ

) *
log Z λ μjk, νj

# $
, νj

# $# $

¼ ∑
K

k¼1
∑
N

i¼1
∑
M

j¼1
xijlog λ μjk, νj

# $# $
%log xij

! "
νj%log Z λ μjk

###
, νjÞ, νjÞÞ

# $
P Qk j xi, ζ0ð Þ

h i
,

(28)

thereby showing that the EM algorithms based on Equations (22) and (9) are equivalent
representations of the same algorithm which maximizes the same expected complete-
data log likelihood in each M-step. In fact, Equation (9) is a simplification of Equation (2),
giving the justification for Equation (9). The advantage of the substitution of f k, rjk, andhjk

in Equation (22) and subsequent rearrangement is – as mentioned above – that the
resulting term yields much more compact representations of the derivatives (note that if
one were to first take the derivatives of Equation (22) and then substitute the respective
definitions for f k, rjk, and hjk, one should arrive at the same representations as
Equations (22) and (9) are equivalent). To illustrate this point, I provide the derivatives of
Equation (22) in terms of the itemparameterwithout substituting f k, rjk, andhjk. They are

∂ LLcð Þ
∂αj

¼ ∑
K

k¼1

qkμjk
V μjk, νj
# $ rjk%μjk f jk

# $
, (29)

for the αj, for all j∈ 1, . . . ,Mf g,

∂ LLcð Þ
∂δj

¼ ∑
K

k¼1

μkj
V μjk, νj
# $ rjk%μjk f jk

# $
(30)

for the δj, for all j∈ 1, . . . ,Mf g, and
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∂ LLcð Þ
∂logνj

¼ ∑
K

k¼1
νj

rjk

W jk
%hjk þ f jkRjk

) *
(31)

for the logνj, for all j∈ 1, . . . ,Mf g, with

Rjk ¼ ∑
∞

x¼0

λ μjk, νj
# $x

x!ð ÞνjZ λ μjk, νj
# $

, νj
# $ x

Wjk
%ln x!ð Þ

) *
(32)

and

Wjk ¼ ∑
∞

x¼0

x%μjk
# $2

λ μjk, νj
# $x

x!ð Þνj Sjk
, (33)

where

Sjk ¼ ∑
∞

x¼0
ln x!ð Þ

x%μjk
# $

λ μjk, νj
# $x

x!ð Þνj : (34)

One can immediately see, in particular, that the derivatives for the log dispersions contain
more complicated terms than in the previous section. In any implementation, the series
Rjk, Sjk, and Wjk need to be numerically approximated, adding potential sources of
numerical instability.

Appendix B:

Maximum likelihood ability estimation
Assume the item parameters ζ as known, and that the responses of N participants are
pairwise independent and conditionally independent between items given the partici-
pant’s latent ability. The probability of the response vector for a participant i,
i∈ 1, . . . ,Nf g arbitrary but fixed, given their latent ability θi under the 2PCMP model is

P xijθi, ζð Þ ¼
YM

j¼1

CMPμ xij; μij, νj
# $

: (35)

As one assumes one participant’s responses independent of other participants’
responses, ML estimates of their ability may be found for one person at a time. To obtain
theML estimate of person i (i∈ 1, . . . ,Nf g), one takes the logarithm of Equation (35) and
iteratively optimizes the result with respect to the participant’s ability θi. To this end, the
first derivative of the logarithm of Equation (35), which is given by

∂logP xijθi, ζð Þ
∂θi

¼ ∑
M

j¼1

∂logCMPμ xij; μij, νj
# $

∂θi
¼ ∑

M

j¼1

xijαjμij
V μij, νj
# $%

αjμ2ij
λ μij, νj
# $ , (36)
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is set equal to 0 and then one iteratively solves for θi, for arbitrary but constant
i∈ 1, . . . ,Nf g. To this end, Newton–Raphson typemethods or similar alternatives can be
employed. These methods usually require second derivatives, which, if not provided
analytically, are approximated numerically. In either case, the estimation is carried out
separately for each person, leading to a large number of evaluations of the gradient in
Equation (36) which may quickly lead to long computation times.

Appendix C:

Details of the computational implementation

2PCMP model EM algorithm
I generated grids for using λ μ, νð Þ, Z λ μ, νð Þ, νð Þ, and V λ μ, νð Þ, νð Þ using TMB Kristensen,
Nielsen, Berg, Skaug, & Bell, 2015) via code I modified from glmmTMB (Brooks
et al., 2017). I used the GSL library (Galassi et al., 2014) from C++ to interpolate values
from the grid using two-dimensional bicubic interpolation, tied into the R code with the
help of RcppGSL (Francois, Eddelbuettel, & Eddelbuettel, 2010). I still numerically
approximate other infinite series (A and B from Equation (13)) in C++ using the same
method as Kristensen et al. (2015), where I start evaluating the series at its mode and add
increments in either direction of the mode until the absolute increments fall below a very
small value ε∈R, ε> 0.

I chose starting values for the α and δ parameters in the 2PCMP model by fitting a
2PPCM to the data. For the 2PPCM, I used part-whole corrected correlations to determine
starting values for the slope parameters and logarithms of the item means for the
intercepts. For the starting values for the log dispersions of the 2PCMP model, I use the
starting values of the slopes and intercepts to generate a number of observations under the
2PPCM (with 1,000 as the default). The logarithms of item-specific ratios of the variance of
the simulated responses to the variance of the observed responses are used as starting
values for the log dispersions.

The fixed Gauss–Hermite quadrature was in part implemented with the help of the R
package fastGHQuad (Blocker, 2018), that is, fastGHQuad was used to generate the
quadrature nodes and weights. Weights were then adjusted to be appropriate for the
standard normal distribution, and sums over the quadrature nodes were implemented in
C++. In simulation study I, I investigated what number of nodes would be a good
recommendation. Prior trial simulations had already shown that it is strongly recom-
mended to use at least 100 quadrature nodes to achieve satisfactory accuracy in parameter
estimation. The iterative root finding of the gradients in eachM-step is carried outwith the
Broyden method as implemented in the R package nleqslv (Hasselman, 2018).

Simulation studies
In both simulation studies, the 2PCMPmodel and constrained versions of it as well as the
2PPCM in simulation study II were fitted using the countirt package. In both simulation
studies, ability parameters for the 2PCMP model were estimated with the Bayes EAP
estimator for better computational efficiency for the simulations. Further R packages used
were the glmmTMB package Brooks et al., 2017) to fit the CMPCM (Forthmann, Gühne,
et al., 2020), the doParallel package (Microsoft Corporation & Weston, 2020) and the
doRNG package (Gaujoux, 2020) to implement parallel computation of simulation trials,
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the tidyr (Wickham, 2021) and the dplyr (Wickham, Francois, Henry, & Müller, 2021)
packages to prepare the simulation results, and the ggplot2 (Wickham, 2016) as well as
the xtable (Dahl, Scott, Roosen, Magnusson, & Swinton, 2019) packages to create the
tables and figures.
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Please note that a corrigendum to this article has been published since the article’s
initial publication, correcting a typographical error in Equation (36) in Appendix B:

(2024). Corrigendum. British Journal of Mathematical and Statistical Psychology,
(77), 237–237. https://doi.org/10.1111/bmsp.12312

https://doi.org/10.1111/bmsp.12312
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Abstract

The framework of multidimensional item response theory (MIRT) o�ers psychometric

models for various data settings, most popularly for dichotomous and polytomous data.

Less attention has been devoted to count responses. A recent growth in interest in count

item response models (CIRM)—perhaps sparked by increased occurrence of psychometric

count data, e.g., in the form of process data, clinical symptom frequency, number of ideas

or errors in cognitive ability assessment—has focused on unidimensional models. A few

recently proposed unidimensional CIRMs rely on the Conway-Maxwell-Poisson distribution

as the conditional response distribution which allows to model conditionally over-, under-,

and equidispersed responses. In this article, we generalize one of those CIRMs to the

multidimensional case, introducing the Multidimensional Two-Parameter

Conway-Maxwell-Poisson Model (M2PCMPM) class. Using the Expectation-Maximization

(EM) algorithm, we develop marginal maximum likelihood estimation methods, primarily

for exploratory M2PCMPMs. The resulting discrimination matrices are rotationally

indeterminate. We pursue the goal of obtaining a simple structure for them by (1) rotating

and (2) regularizing the discrimination matrix. Recent IRT research has successfully used

regularization of the discrimination matrix to obtain a simple structure (i.e., a sparse

solution) for dichotomous and polytomous data. We develop an EM algorithm with lasso

(¸1) regularization for the M2PCMPM and compare (1) and (2) in a simulation study. We

illustrate the proposed model with an empirical example using intelligence test data.

Keywords: Item Response Theory, count data, Conway-Maxwell-Poisson

distribution, 2PCMPM, multidimensional IRT, EM algorithm, lasso regularization
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Every Trait Counts: Marginal Maximum Likelihood Estimation for Novel

Multidimensional Count Data Item Response Models with Rotation or

¸1–Regularization for Simple Structure

Multidimensional item response theory (MIRT) provides a framework in which

responses to a set of items are explained by the items’ relation to a number of latent traits

(Reckase, 2009). We assume that person i’s response to item j is influenced by L latent

traits ◊1i, . . . , ◊Li, where the influence strength is determined by discrimination parameters

–j1, . . . ,–jL similar to factor loadings in linear factor analysis. The discrimination

parameters for all items and all traits are contained in the discrimination matrix –. The

assumption of a number of latent traits—rather than just one, as in more traditional

unidimensional item response models—is often considered more realistic in psychological

research. Psychological constructs are often by definition composed of multiple

subcomponents, or response behavior is assumed to be complex and multifactorial.

Multidimensional item response models can be divided into confirmatory and

exploratory models, analogous to the factor analytical tradition (McDonald, 1999). While

confirmatory models test the fit of a pre-specified item-trait relationship structure to the

data, exploratory models aim to determine which items stand in relation to which factors,

for instance through rotation of the discrimination (or factor loadings) matrix –. A

common goal of this popular method is to find a simple structure, that is, an item-trait

relationship structure where each item loads primarily onto one factor and not (or only to

a small extent) on the remaining factors (Browne, 2001; Thurstone, 1947). An alternative

strategy to this end—which has only recently gained popularity in the context of MIRT—is

regularization (Cho, Xiao, Wang, & Xu, 2022; Sun, Chen, Liu, Ying, & Xin, 2016).

Regularization includes techniques often originally developed for variable selection in

(generalized) linear models (Hastie, Tibshirani, & Friedman, 2009). By including a penalty

term in the model likelihood, sparse parameter estimates with many zeroes can be

enforced. In comparison to unpenalized estimation, parameter values are shrunken towards
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0, often improving predictive performance and model interpretation. In the context of

MIRT, this leads to more parsimonious estimates of discrimination matrices – by selecting

only notable item-trait relationships and shrinking the rest towards 0 (see also Trendafilov,

2014).

Research into regularization as a tool to find simply structured discrimination

matrices – in MIRT models has so far focused on models for binary and ordinal response

data. But some psychometric tests and self-reports generate another type of response data:

counts. For instance, divergent thinking and verbal fluency tasks (Forthmann et al., 2016;

Myszkowski & Storme, 2021), or processing speed tasks (Baghaei, Ravand, & Nadri, 2019;

Doebler & Holling, 2016). Psychological count responses also occur among self-reports

(e.g., in clinical psychology; Magnus & Thissen, 2017; Wang, 2010), or as biometric

indicators (e.g., number of fixations in eye-tracking; Man & Harring, 2019). Count data

naturally occur in text data analysis (Proksch & Slapin, 2009). Corresponding count data

item response models have received increasingly more attention in the psychometric

literature in recent years (e.g., Beisemann, 2022; Forthmann, Gühne, & Doebler, 2020;

Graßho�, Holling, & Schwabe, 2020; Man & Harring, 2019).

The simplest count data item response model, Rasch’s Poisson Counts Model

(RPCM; Rasch, 1960; see also e.g., Holling, Böhning, & Böhning, 2015; Jansen, 1994, 1995;

Jansen & van Duijn, 1992; Verhelst & Kamphuis, 2009), models the expected count

response µij for person i to item j as µij = exp(”j + ◊i), where ”j is the item easiness and ◊i

is the sole latent trait.1 Conditional (upon ◊i) responses are assumed to follow a Poisson

distribution. Extensions of the RPCM provided more general models, for example by

substituting the log-linear relationship in the RPCM by a sigmoid curve (Doebler, Doebler,

& Holling, 2014), or by addressing the conditional equidispersion implied by the Poisson

1 For consistency and readability, we use a parameterization and notation here which is going to most

easily generalize to the multidimensional case in the following sections. The original parameterization by

Rasch (1960) is not log-linear but multiplicative.
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distribution. Conditional equidispersion leads to the strong assumption that

E(Xij|◊i) = Var(Xij|◊i). Early extensions of the RPCM allowed overdispersed (i.e.,

E(Xij|◊i) < Var(Xij|◊i)) conditional response distributions (e.g., Wang, 2010; Hung, 2012).

More recently, models for item-specific conditional equi-, over-, or underdispersion (i.e.,

E(Xij|◊i) > Var(Xij|◊i)) were proposed by employing the more general

Conway-Maxwell-Poisson (CMP) distribution (Conway & Maxwell, 1962; Huang, 2017;

Shmueli, Minka, Kadane, Borle, & Boatwright, 2005). The Conway Maxwell Poisson

Model (CMPCM; Forthmann et al., 2020) has no discrimination parameters like a Rasch

model, while the Two Parameter Conway Maxwell Poisson Model (2PCMPCM;

Beisemann, 2022) includes discrimination parameters. Qiao, Jiao, and He (2023) propose a

CMP-based joint modeling approach. Tutz (2022) provides an alternative approach all

together for dispersion handling. Regardless of the approach, the adequate consideration of

dispersion for count data is important to ensure proper uncertainty quantification, i.e.,

correct standard errors and model-implied reliability (Forthmann et al., 2020).

These generalizations have focused on unidimensional count item response models.

Apart from bidimensional extensions of RPCM (Forthmann, Çelik, Holling, Storme, &

Lubart, 2018 for a model without discrimination parameters, and Myszkowski & Storme,

2021 for a two-parameter Poisson model), multidimensional count data models have mostly

been developed within the frameworks of generalized linear latent and mixed models

(GLLAMM; Skrondal & Rabe-Hesketh, 2004) or factor analysis (Wedel, Böckenholt, &

Kamakura, 2003) rather than within MIRT. These works have primarily relied on the

Poisson distribution, with Wedel et al. (2003) accomodating some flexibility through

truncation of the Poisson distribution leading to underdispersion, and allowing di�erent

link functions.

With the present work, we aim to generalize the 2PCMPM (Beisemann, 2022) to a

multidimensional count data item response model framework which o�ers the advantages of

multidimensional item response modeling for count data in conjunction with the dispersion
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flexibility of the CMP distribution. The framework contains a number of existing count

data item response models as special cases, allowing for easy testing of assumptions by

means of model comparisons. Our goal is further to provide marginal maximum likelihood

estimation methods for the framework, with a focus on exploratory models. For these,

interpretability of the discrimination matrix – is a crucial goal and is aided by pursuing a

simple structure for –. To this end, we explore both traditional rotation techniques

(Browne, 2001), and more novel regularization approaches (Hastie et al., 2009). The

remainder of the paper is structured as follows: In the next section, we introduce and

formulate the proposed multidimensional count data item response model framework. We

proceed to present marginal maximum likelihood estimation methods for the framework,

based on the Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).

We present both unpenalized and penalized estimation methods. Afterward, we assess the

proposed models and algorithms in a simulation study and illustrate the framework with a

real-world application example. Finally, a discussion of the presented work is provided.

Multidimensional Two-Parameter Conway-Maxwell-Poisson Models

The tests and self-reports for which methods are developed in this article consist of

count data items. Item scores are calculated by counting events or by aggregating across a

large number tasks each with a binary score. From each participant i œ {1, . . . , N} we

obtain a response xij to each item j œ {1, . . . ,M}, where xij œ N0, ’i œ {1, . . . , N},

’j œ {1, . . . ,M}. An example of such count data tests in the psychological literature are

tests in the creative thinking literature which ask participants for di�erent associations in

response to items (e.g., the alternate uses task, AUT, to assess divergent thinking; see e.g.,

Forthmann et al., 2016, 2020; Myszkowski & Storme, 2021 for psychometric analyses of

AUT items). The associations given by each person i to each item j can be counted,

resulting in the count response xij.

To model these count responses in an item response theory framework, we assume

that the responses depend on item characteristics and L di�erent latent traits ◊li for person
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i and trait l œ {1, . . . , L}. When L > 1, the model is multidimensional. This assumption

grants more flexibility as (1) unidimensional models are contained as special cases (for

L = 1), and (2) the assumption of more than one latent trait is often frequently more

realistic and is often empirically supported. An overarching latent trait can be made up of

di�erent subdomains which influence item responses di�erently. Items may also share

commonalities beyond the unidimensional trait they measure, violating the local

independence assumption in unidimensional models (in the AUT example, this could be

di�erent domains the items tap into like figural or verbal; Forthmann et al., 2018;

Myszkowski & Storme, 2021). In a multidimensional framework, this can be accounted for

by modeling the item domains as di�erent latent traits.

We propose to extend the recently proposed Two-Parameter

Conway-Maxwell-Poisson model (2PCMPM; Beisemann, 2022)—which models di�ering

item discriminations and dispersions in a unidimensional model—to the multidimensional

case. The proposed Multidimensional Two-Parameter Conway-Maxwell-Poisson Models

(M2PCMPM) assumes a log-linear factor model for the expected count response µij;

µij = exp (–j1◊1i + · · ·+ –jL◊Li + ”j) = exp
A

Lÿ

l=1
–jl◊li + ”j

B

. (1)

In this extension of the slope-intercept parametrized 2PCMPM, we denote by –jl the slope

for item j and trait l, which quantifies the extent to which di�erences in the latent trait l

are reflected in the expected responses to item j. The parameter ”j is the intercept for item

j, which is related to—but does not directly correspond to—item j’s easiness. Analogously

to the 2PCMPM, we then assume that responses follow a Conway-Maxwell-Poisson (CMP)

distribution conditional on the L latent traits. We use the mean parameterization of the

CMP distribution (Huang, 2017), denoted as CMPµ. Thus, we assume that

P (xij;◊i, ’j) = CMPµ(xij;µij, ‹j) =
⁄(µij, ‹j)xij

(xij!)‹j

1
Z(⁄(µij, ‹j), ‹j)

, (2)

with ◊i = (◊1i, . . . , ◊Li)T denoting the L latent traits of person i, µij as in Equation 1 and

‹j as the item-specific dispersion parameter (‹j < 1 implies overdispersed, ‹j > 1
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underdispersed, and ‹j = 1 equidispersed conditional responses). In Equation 2 the

expression Z(⁄(µij, ‹j), ‹j) =
qŒ

x=0 ⁄(µij, ‹j)x/(x!)‹j is the normalizing constant of the

CMPµ distribution (Huang, 2017). For simpler notation, we denote all item parameters –jl,

’l, ”j, and ‹j, for one item j concatenated in one vector with ’j. As Huang (2017) showed,

we obtain the rate ⁄(µij, ‹j) by solving

0 =
Œÿ

x=0
(x ≠ µij)

⁄x

(x!)‹j
(3)

for ⁄(µij, ‹j).

With the assumption of conditional independence given all L latent traits, the

probability of the response vector xi = (xi1, . . . , xiM)T of person i is the product of

Equation 2 for each item. The L latent traits ◊i for each person i jointly follow a

multivariate normal distribution with mean vector µ◊ = 0 œ RL and covariance matrix �◊,

where �◊ is a full rank L ◊ L matrix with all diagonal entries equal to 1 for model

identification purposes (more details on assumptions for �◊ follow in section Latent Trait

Covariance Matrix). Assuming that persons respond independently of each other, we

obtain

Lm(’;x) =
NŸ

i=1

⁄
· · ·

⁄ MŸ

j=1
P (xij;◊i, ’j)�(◊i;µ◊,�◊)d◊1i . . . d◊Li (4)

as the marginal likelihood for the data x of all N respondents, where � denotes the density

of the multivariate normal distribution and ’ denotes the item parameters {’1, . . . , ’M} for

all M items.

Special cases

The M2PCMPM contains a number of count data item response models as special

cases. For L = 1, the M2PCMPM simplifies to the 2PCMPM (Beisemann, 2022) and with

the additional constraint that –11 = · · · = –1M the model further simplifies to the

Conway-Maxwell-Poisson Counts Model (CMPCM; Forthmann et al., 2020). For L > 1,

but equal slope parameters across items and traits, the M2PCMPM simplifies to a

multidimensional CMPCM. Whenever all item-specific dispersions are fixed to be equal to
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1 (i.e., ’j œ {1, . . . ,M} : ‹j = 1), the CMP density simplifies to the Poisson density.

Consequently, the M2PCMPM also contains the RPCM (Rasch, 1960), the Two-Parameter

Poisson Counts Model (2PPCM; Myszkowski & Storme, 2021), and multidimensional

extensions of the RPCM and the 2PPCM (Forthmann et al., 2018; Myszkowski & Storme,

2021). Thereby, the M2CMPM o�ers the possibility of a comprehensive framework for

count data item response modeling which subsumes a number of existing count data item

response models.

Model identification

The full M2PCMPM as presented in Equation 1 constitutes an exploratory

multidimensional item response model: Any item can be associated by any degree with any

latent trait. For this reason, the full M2PCMPM as in Equation 1 is not uniquely identified;

it is rotationally indeterminate. To enable estimation, we thus need to impose identification

constraints on the discrimination matrix –. A common constraint is a triangular

(L ≠ 1) ◊ (L ≠ 1) submatrix of zeroes in the discrimination matrix (as we believe is for

example implemented in the mirt package; Chalmers, 2012), i.e., we impose constraints to

L ≠ 1 out of the M items to fix rotational indeterminacy. W.l.o.g., let these be the first

L ≠ 1 items. –j1 on the first trait is estimated freely and ’–jlÕ = 0, lÕ œ {2, . . . , L}. For the

following items j œ {2, . . . , L ≠ 1}, the first j discriminations are free and we constrain

’–jlÕ = 0, lÕ œ {j + 1, . . . , L}. In the following, this constraint will be referred to as the

upper-triangle identification constraint. See e.g., Sun et al., 2016, for examples of

alternative constraints. Note that imposing too strong or empirically insensible constraints

may impact the model fit (negatively) (Sun et al., 2016). Identification constraints are

imposed upon initial estimation to enable finding a likelihood mode. When rotating the

initial solution, constraints are lifted, and the discrimination matrix – is rotated freely.

Marginal Maximum Likelihood Estimation Methods for the M2PCMPM

The goal of (frequentist) model estimation of the M2PCMPM is to maximize the

model’s marginal likelihood (Equation 4) in terms of item parameters ’. An elegant and
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popular approach to marginal likelihood estimation in the context of item response models

is the Expectation-Maximization (EM) algorithm (Dempster et al., 1977; for an

introduction see McLachlan & Krishnan, 2007; see Bock & Aitkin, 1981 for the first IRT

application). The expected complete-data likelihood—rather than the observed marginal

likelihood—is determined in each Expectation (E) step. It includes unobservable

parameters, i.e., the latent traits. The expected complete-data likelihood is maximized in

each Maximization (M) step. E and M steps are repeated until a convergence criterion is

met.

Expectation-Maximization Algorithm

As the M2PCMPM is an extension of the 2PCMPM, estimation methods for the

2PCMPM can be extended to develop estimation methods for the M2PCMPM. Beisemann

(2022) provided an EM algorithm for the 2PCMPM which we use as the basis for

proposing EM algorithms for the M2PCMPM. The integral in Equation 4 does not exist in

closed form and thus has to be approximated in estimation, for example by Gauss-Hermite

quadrature with fixed quadrature points. Relying on such a Gauss-Hermite quadrature for

the integral approximation with KL quadrature points, we generalize the expected

complete-data log likelihood of the 2PCMPM (Beisemann, 2022) to L Ø 1 latent traits for

the expected complete-data log likelihood of the M2PCMPM:

E(LLc) Ã
Kÿ

kL=1
. . .

Kÿ

k2=1

Kÿ

k1=1

Nÿ

i=1

Mÿ

j=1
(xij log(⁄(µjk1,...,kL , ‹j)) ≠ ‹j log(xij!)

≠ log(Z(⁄(µjk1,...,kL , ‹j), ‹j)))P (qk1 , . . . , qkL |xi, ’
Õ), (5)

where LLc denotes the complete-data log likelihood, and

µjk1,...,kL = exp(–j1q1k1 + · · ·+ –jlqlkl + · · ·+ –jLqLkL + ”j) (6)

with kl œ {1, . . . , K} as the node index for trait l. Here, the joint posterior probability of

the multidimensional quadrature point (qk1 , . . . , qkL) is given by

P (qk1 , . . . , qkL |xi, ’
Õ) =

rM
j=1 CMPµ(xij|qk1 , . . . , qkL , ’

Õ
j)wk1 . . . wkLqK

kÕ
1=1 · · ·

qK
kÕ
L=1

rM
j=1 CMPµ(xij|qkÕ

1
, . . . , qkÕ

L
, ’ Õ

j)wkÕ
1
. . . wkÕ

L

, (7)
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where wkl , kl œ {1, . . . , K}, denote the nodes’ quadrature weights. The E step consists of

computing Equation 7. In the subsequent M step, we maximize Equation 5 iteratively as a

function of the item parameters ’. To this end, we need to take the derivatives of Equation

5 with respect to the item parameters. We optimize in log ‹j rather than ‹j to search on an

unconstrained parameter space (compare Beisemann, 2022). Similar to the techniques in

Beisemann (2022) and Huang (2017), we form derivatives (using some results from Huang,

2017), resulting in gradients

ˆE(LLc)
ˆ–jl

=
Kÿ

kL=1
· · ·

Kÿ

k1=1

Nÿ

i=1

qklµjk1,...,kL

V (µjk1,...,kL , ‹j)
(xij ≠ µjk1,...,kL)P (qk1 , . . . , qkL |xi, ’

Õ) (8)

for slopes –jl (note that qkl in the numerator of the fraction does not loop over all trait

dimensions 1 to L, but instead is specific to dimension l œ {1, . . . , L} for the slope –il we

are considering),

ˆE(LLc)
ˆ”j

=
Kÿ

kL=1
· · ·

Kÿ

k1=1

Nÿ

i=1

µjk1,...,kL

V (µjk1,...,kL , ‹j)
(xij ≠ µjk1,...,kL)P (qk1 , . . . , qkL |xi, ’

Õ) (9)

for intercepts ”j, and

ˆE(LLc)
ˆ log ‹j

=
Kÿ

kL=1
· · ·

Kÿ

k1=1

Nÿ

i=1
‹j

A

A(µjk1,...,kL , ‹j)
xij ≠ µjk1,...,kL

V (µjk1,...,kL , ‹j)
≠ (log(xij!) ≠ B(µjk1,...,kL , ‹j))

B

◊ P (qk1 , . . . , qkL |xi, ’
Õ) (10)

for log dispersions log ‹j, with A(µjk1,...,kL , ‹j) = EXj(log(Xj!)(Xj ≠ µkj)) and

B(µjk1,...,kL , ‹j)) = EXj(log(Xj!)) (Huang, 2017). Furthermore,

V (µjk1,...,kL , ‹j) =
Œÿ

x=0

(x ≠ µjk1,...,kL)2⁄(µjk1,...,kL , ‹j)x
(x!)‹jZ(⁄(µjk1,...,kL , ‹j), ‹j)

(11)

(Huang, 2017) is the variance of the CMPµ distribution which depends on µjk1,...,kL and ‹j.

A known limitation of quadrature is its poor scaling to high dimensions (McLachlan

& Krishnan, 2007); that is, in the context of the M2PCMPM, settings with greater

numbers of latent traits. However, as illustrated with our example, in count data item

response settings a smaller number of latent traits is frequently realistic.
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Simple Structure via Rotation

After obtaining an initial solution with the EM algorithm described above, the

classical approach for interpretable results is to apply a rotation to the discrimination

parameters. Lifting the identification constraints after the initial solution is obtained, we

have an infinite number of alternative solutions which can be obtained via rotation (i.e.,

rotational indeterminancy) (Scharf & Nestler, 2019). That is, there is an infinite number of

rotation matrices V œ RL◊L for which –�T = –V V ≠1�T = (–V )(V ≠1�T ), where

– œ RM◊L is the discrimination matrix and � œ RN◊L the latent trait matrix (Scharf &

Nestler, 2019; Trendafilov, 2014). A preferred rotation matrix V has to be selected, usually

one optimizing a specific criterion such as indicating a simple structure (Browne, 2001;

Thurstone, 1947) of – (Scharf & Nestler, 2019). Rotation techniques di�er in the employed

criterion and in whether they allow latent traits to be correlated (i.e., oblique methods) or

not (i.e., orthogonal methods) (Scharf & Nestler, 2019; Trendafilov, 2014). Popular

rotation techniques are for instance Varimax (Kaiser, 1958, 1959), which is an orthogonal

rotation method, and Oblimin (Carroll, 1957; Clarkson & Jennrich, 1988), which is an

oblique rotation method.

Simple Structure via Regularization

Recently, a simple structure has also been obtained with regularization techniques

(Cho et al., 2022; Sun et al., 2016; Trendafilov, 2014). A perfect simple structure is a

sparse matrix: Each item loads on exactly one latent trait, and the other loadings are zero

(Scharf & Nestler, 2019; Trendafilov, 2014). Finding a sparse solution to an optimization

problem is one aim of regularization (Hastie et al., 2009). By imposing a penalty term R

onto the likelihood, regularization methods shrink parameter estimates toward 0 (Hastie et

al., 2009). R is a function of all parameters to be regularized and grows as the absolute

value of each parameter estimate grows (Scharf & Nestler, 2019). As a result, only

substantial parameters (in our case, loadings or discriminations) remain notably di�erent

from 0, essentially encouraging a (more) simple structure of the discrimination matrix –
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(Scharf & Nestler, 2019). As opposed to rotation methods, which are implemented after

finding an initial estimate with the M2PCMPM EM algorithm, regularization methods

modify the likelihood and have to be integrated into the EM algorithm. In general, the

regularized estimates cannot be rotated without changing the value of R; they are hence

rotationally determined in this sense.

As we maximize the expected complete-data log likelihood in each M step, we

subtract the penalty term R Ø 0 from it, weighted with a hyperparameter ÷ (notation here

inspired by Scharf & Nestler, 2019; Sun et al., 2016 and in line with Beisemann, 2022). The

penalty term R is a function of all slopes –11, . . . ,–jl, . . . ,–ML, as contained in –. We aim

for a sparse solution specifically for – (ideally a simple structure), which is why we only

impose the penalty term over –. We obtain

E(LLc)reg Ã
Kÿ

kL=1
. . .

Kÿ

k2=1

Kÿ

k1=1

Nÿ

i=1

Mÿ

j=1
(xij log(⁄(µjk1,...,kL , ‹j)) ≠ ‹j log(xij!)

≠ log(Z(⁄(µjk1,...,kL , ‹j), ‹j)))P (qk1 , . . . , qkL |xi, ’
Õ) ≠ ÷R(–), (12)

with P (qk1 , . . . , qkL |xi, ’
Õ) as in Equation 7. We can immediately see that for ÷ = 0, the

unregularized maximum likelihood estimate is optimal. The hyperparameter ÷ Ø 0 should

be tuned, i.e., selected from a grid of possible values to provide the best result in terms of a

tuning criterion (Hastie et al., 2009). We are going to return to this point further below.

Depending on the penalty term R, di�erent regularization methods are implemented

(for an introduction and an overview, see Hastie et al., 2009). In this work, we employ the

lasso (Tibshirani, 1996) penalty,

Rlasso(–) = ||–||1 =
Lÿ

l=1

Mÿ

j=1
|–jl|. (13)

For binary and polytomous MIRT models, the lasso penalty has yielded promising results

as a method to find a well-fitting discrimination matrix – with a (rather) simple structure

(Cho et al., 2022; Sun et al., 2016).
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Lasso Penalty

Integrating the lasso penalty (Tibshirani, 1996) into the M2PCMPM EM algorithm

requires an extension of the algorithm. We plug Equation 13 into Equation 12 and we

observe that the E step of the M2PCMPM algorithm remains unaltered by the penalty

term. In the M step, we are confronted with the problem that due to the ¸1 norm, the

gradient only exists for –jl ”= 0. To solve this issue for binary and polytomous MIRT

models, Sun et al. (2016) employed the coordinate descent algorithm (Friedman, Hastie, &

Tibshirani, 2010) in the M step (see also Cho et al., 2022, for a related approach using

variational estimation). Binary and polytomous MIRT models have an estimation

advantage over count MIRT models in that they require only the estimation of

discrimination and location parameters (e.g., item intercepts or threshold parameters) since

the conditional variance is implied by the location parameters. The M2PCMPM

additionally requires estimation of the dispersion parameters. A strategy in the context of

(generalized) linear mixed models optimizing penalized (fixed) e�ects in one step, and then

optimizing remaining model parameters in another step, alternating the steps until

convergence (note that random e�ects are estimated in yet another step, but this is not of

interest to us here; Nestler & Humberg, 2022; Schelldorfer, Meier, & Bühlmann, 2014).

Inspired by these approaches, we propose the M2PCMPM lasso-EM algorithm (see

Algorithm 1) that—during each M step—first optimizes –’s and ”’s using item-blockwise

coordinate descent, and then optimizes dispersion parameters using Equation 10.

Taking an item-blockwise optimization approach as in Sun et al. (2016), we exploit

that the expected complete-data log likelihood decomposes into the sum of the item

contributions (immediately observable in Equation 5). During each M step of the EM

algorithm, we further assume (as is common in EM algorithms) the posterior probabilities

from the previous E step for latent traits to be known (via the quadrature approximation).

Thus, the (penalized) optimization problem during each M step and for each item j is that

of a generalized linear model (GLM) with intercept ”j and (penalized) slopes –j. Note that
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Algorithm 1 Lasso EM with Blockwise Coordinate Descent during M Step
(0) Choose start values and ÷ value

(1) EM cycle:

while not converged do Û EM algorithm

(a) E step: Equation 7

(b) M step:

(i) Optimization of slopes –j and intercept ”j

for j = 1, . . . ,M do Û Blockwise cyclic coordinate descent

while not converged do

(i’) Update ”j using Equation 14

(ii’) Update –j:

for l = 1, . . . , L do

(i*) Update –jl with Equation 15

(ii*) Update –j with new –jl value

end for

end while

end for

(ii) Optimization for remaining parameters ‹j with Equation 10

end while

CMPµ-regression is a "bona fide GLM[...]" (Huang, 2017, p. 365). This allows the use of

algorithmic techniques developed for ¸1-regularization in GLMs, such as coordinate descent

(Friedman et al., 2010).

As we can see in Algorithm 1, we need updating rules for ”j and the –j within the

blockwise coordinate descent during the M step. To this end, we follow Sun et al. (2016):

They approximate the expected complete-data log likelihood for item j (i.e., item-specific

increment in Equation 5 in our case) as a univariate function of each item parameter,

respectively, with a local quadratic approximation. Using this approximation, the resulting
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lasso update (with tuning parameter ÷) takes the following shape (Sun et al., 2016;

adapted to our model and parameterization):

”̂j = ”
Õ

j ≠
ˆE(LLc)j

ˆ”j
ˆ2E(LLc)j

ˆ2”j

(14)

(Sun et al., 2016) for each ”j and

–̂jl = ≠
S(≠ˆ2E(LLc)j

ˆ2–jl
–

Õ
jl +

ˆE(LLc)j
ˆ–jl

, ÷)
ˆ2E(LLc)j

ˆ2–jl

(15)

(Sun et al., 2016) for each –jl.2 Here, S denotes the soft thresholding operator (Donoho &

Johnstone, 1995) which is defined as

S(x, ÷) = sign(x)(|x| ≠ ÷)+ =

Y
________]

________[

x ≠ ÷, if x > 0 and ÷ < |x|,

x+ ÷, if x < 0 and ÷ < |x|,

0 if ÷ Ø |x|

(16)

(Sun et al., 2016). We substitute the M2PCMPM specific terms. ˆE(LLc)j/ˆ”j and

ˆE(LLc)j/ˆ–jl are given in Equations 8 and 9. Using the second derivatives of the variance

V (µjk1,...,kL , ‹j) in terms of ”j and –jl (see Appendix A) and results from Huang (2017), we

obtain the following second derivatives in terms of ”j and –jl,

ˆ2E(LLc)j
ˆ2–jl

=
Kÿ

kL=1
· · ·

Kÿ

k1=1

Nÿ

i=1

q2klµjk1,...,kLP (qk1 , . . . , qkL |xi, ’
Õ)

V (µjk1,...,kL , ‹j)2
C(µjk1,...,kL , ‹j) (17)

and
ˆ2E(LLc)j

ˆ2”j
=

Kÿ

kL=1
· · ·

Kÿ

k1=1

Nÿ

i=1

µjk1,...,kLP (qk1 , . . . , qkL |xi, ’
Õ)

V (µjk1,...,kL , ‹j)2
C(µjk1,...,kL , ‹j), (18)

where

C(µjk1,...,kL , ‹j) = V (µjk1,...,kL , ‹j)(xij ≠ 2µjk1,...,kL)

≠ µjk1,...,kL(xij ≠ µjk1,...,kL)
A
EX(X3 ≠ µjk1,...,kLX

2)
V (µjk1,...,kL , ‹j)

≠ 2µjk1,...,kL

B

.

(19)

2 Following our understanding of the notation in Sun et al. (2016), in each iteration of (1)(b)(i) in

Algorithm 1, we update ”j one-step late in (ii’). That is, we update ”j in (i’) on the basis of the at that

point most up-to-date –j , but use the previous ”j in (ii’). Please compare the appendix in Sun et al. (2016).
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Latent Trait Covariance Matrix

In the M2PCMPM EM algorithm (including the regularized variants), we assume

the latent trait covariance matrix, �◊, fixed. The diagonal of �◊ is fixed to the canonical

value 1 œ RL for identification purposes in this model with discrimination parameters—this

is analogous to the identification assumption made in the unidimensional case in Beisemann

(2022). A convenient choice for the o�-diagonal is to assume orthogonal latent traits

during estimation (i.e., fix all o�-diagonal elements of �◊ to 0). If the latent traits are in

fact correlated, pronounced double loadings of items can result. For the classical rotation

approach, an oblique rotation can find a correlated solution with fewer double loadings.

In the case of strong(er) correlations between latent factors, this may put the

regularized approach at a disadvantage as a sparse solution will not fit well when double

loadings are required to account for latent factor correlations. Sun et al. (2016) approach

this problem by first estimating an unpenalized MIRT model to obtain latent factor

correlation estimates from this model, which they plug into �◊ for the respective

o�-diagonal estimates. We use the same approach in this work, but we obtain the latent

factor correlation from oblique rotation of the – matrix. Note that an alternative would be

to estimate the latent factor correlations within the EM algorithm, albeit this would

require adjustments to the algorithm as well as the model identification constraints

(compare Sun et al., 2016).

Confirmatory Models by Imposing Constraints

While not a focus of the present work, we wanted to note that with the M2PCMPM

EM algorithm, one can also fit confirmatory multidimensional count data item response

models. That is, one can impose constraints on the item parameters (in particular but not

exclusively, the slope parameters) and evaluate the specified model’s fit to the data.

Confirmatory models should be identified by the imposed constraints. For instance, the fit

of a perfect simple structure to the data can be evaluated by imposing constraints which

imply single loadings of each item onto only one trait l (for a fixed l) of the latent traits,



MULTIDIMENSIONAL COUNT DATA ITEM RESPONSE MODELS 20

respectively, and –jlÕ = 0 ’lÕ ”= l.

Computational Aspects

The M2PCMPM EM algorithms are computationally expensive. Thus, we dedicated

some e�ort to improving computational e�ciency, as outlined below.

Start Values

In line with the start value approach Beisemann (2022) uses for the 2PCMPM, we

set starting values for the M2PCMPM by fitting multi-dimensional two-parameter Poisson

models to the data and compute starting values for the dispersion parameters as described

in Beisemann (2022). Fitting these Poisson variants first saves computation time as each

Poisson iteration of the EM algorithm is much less expensive than a CMP iteration, the

obtained start values are already quite close to the CMP solution for the –jl and the ”j,

and therewith reduce the number of required iterations of the M2PCMPM EM algorithm

(compare Beisemann, 2022).

Regularization tuning and warm starts

For the lasso-penalized M2PCMPM EM algorithm, the hyperparameter ÷ requires

tuning to be optimally chosen. To this end, we use a grid of ÷ values to assess. Values of

the grid are chosen equidistantly on the log scale (Hastie et al., 2009). To increase

computational e�ciency when fitting a penalized M2PCMPM for each ÷ value on the grid,

we implemented warm starts (Hastie et al., 2009), that is, we used the model parameter

estimates of the previous model as start values for the subsequent model. To select the

optimal ÷, one has to impose a criterion which ÷ has to optimize. Traditionally, one may

use cross-validation and optimize the RMSE of model predictions (Hastie et al., 2009).

However, due to the high computational cost of the M2PCMPM EM algorithm and in line

with prior research (Sun et al., 2016), we opted to use the Bayesian Information Criterion

(BIC) as a criterion to optimize instead. Following Sun et al. (2016), for the lasso penalty,
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we computed the BIC (Schwarz, 1978) dependent on ÷ as

BIC÷ = pú logN ≠ 2LLm(’̂÷;x), (20)

where LLm(’̂÷;x) is the unpenalized marginal log-likelihood for the penalized model

parameter estimates (using hyperparameter value ÷), and pú is the number of parameters

”= 0, i.e., the number of parameters for which the estimate is neither shrunken to 0 nor

constrained to 0. We select the ÷ value minimizing BIC÷.

Implementation

We implemented M2PCMPM EM algorithm (with and without penalities) in the R

package countirt (https://github.com/mbsmn/countirt; please consult the package’s

GitHub page for more information on the implementation and its limitations)3. For

computational e�ciency, the algorithm was implemented in R and C++, using among others

the package GSL (Galassi et al., 2010), tied into R using Rcpp (Eddelbuettel et al., 2011).

Multidimensional Gauss-Hermite quadrature was implemented using MultiGHQuad

(Kroeze, 2016). For e�ciency, quadrature grid truncation is used per default (i.e.,

quadrature points with very low quadrature weights are precluded from the grid).

Simulation Study

In this small simulation study, we aimed to validate the proposed algorithms, and

illustrate the viability of their usage in di�erent psychometric settings. The simulation

study was run in R (R Core Team, 2023), using the package countirt to fit the

M2PCMPMs. The code for the simulations as well as rds files of the saved simulation

results are available at https://osf.io/n5792/.

3 At the time of writing this manuscript, the M2PCMPM related algorithms are implemented on

multidimensional branch: https://github.com/mbsmn/countirt/tree/multidimensional. In the

future, this branch is going to be merged into the main branch.
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Design

In line with previous simulations regarding regularized item response models (Sun

et al., 2016), we varied the number of latent traits between L = 3 and L = 4. Further, we

varied the correlation between these latent traits (fl = 0 vs. fl = .3). For the model

parameters, we used the same range of ”j and ‹j values across all conditions. For ”j, we

used values between 1.5 and 3.5, and for log ‹j, we used values between -0.8 and 0.8 (i.e.,

implying—not very large—over- and underdispersion of varying degree), assigned randomly

to the items. These values are empirically realistic for CMP-based count item response

models (but not extreme, cf. Beisemann, 2022; Beisemann, Forthmann, & Doebler, 2024;

Forthmann et al., 2020; see also Application Example). The true –j values depended on the

simulation condition: Apart from the number of latent traits, we also varied the number

number of items per trait (m = 3 vs. m = 5). To the best of our knowledge, settings with

small(er) numbers of items are realistic for count tests, with count tests often being

comprised of less items than binary tests. We further varied the type of structure of the –

matrix (simple vs. slightly complex). With regard to the – matrix structure, simple

implies only single loadings of items on their assigned traits. Slightly complex implies that

a quarter of the items for each trait additionally—but to a lesser extent—load onto at least

one of the other traits. For the simple structure, non-zero discriminations –jl were chosen

between 0.2 and 0.3. For the slightly complex structure, one quarter of zero-elements in the

simple structure discrimination matrix of the same dimensions were randomly replaced

with values of 0.05 or 0.1 (each with probability p = .125). Ranges for the discrimination

parameters were again chosen to be empirically realistic (cf. Beisemann, 2022; Beisemann

et al., 2024; Forthmann et al., 2020, but not extreme; see also Application Example). All

true parameter values for the respective conditions can be reproduced from the R code on

the OSF repository (https://osf.io/n5792/). The described design factors were fully
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crossed to yield 16 simulation conditions. We ran T = 40 simulation trials per condition.4

Data Generation and Model Fitting

In each trial in each respective condition, we generated (inspired by our application

example) N = 1200 responses to M = L ◊ m items under the M2PCMPM with the

condition-specific model parameters. With regard to simulating item response data from

the CMP distribution, we followed prior simulation studies on CMP-based item response

models, using and adapting code from Forthmann et al. (2020) and Beisemann (2022). In

each trial, we first fitted an exploratory M2PCMPM with upper-triangle identification

constraint. The obtained solution was rotated once using the orthogonal Varimax

criterion(Kaiser, 1958, 1959) and once using the oblique Oblimin (Clarkson & Jennrich,

1988), relying on the GPArotation package (Bernaards & Jennrich, 2005). Then, we fitted

the lasso-penalized M2PCMPMs for hyperparameter tuning with regard to the BIC.5 We

used a 12-value penalization grid of [0, 1000] with values chosen equidistantly on the log

scale (compare Hastie et al., 2009). We tuned the lasso-penalized M2PCMPMs once with

the orthogonal latent trait assumption and once with a latent trait covariance matrix

which incorporates the latent traits correlations obtained from the obliquely rotated

M2PCMPM (see Latent Trait Covariance Matrix). All M2PCMPMs were fitted using the

countirt package (see Computational Aspects).

We enhanced computational e�ciency through several techniques. First, we used

4 Note that with these models and the hyper parameter tuning for the regularization, each trial is

computationally very expensive. For computational feasibility and as we simulated for a large sample of

N = 1200, we were only able to run 40 simulation trials. This is in line with prior research (e.g., Sun et al.,

2016 ran only 50 trials).

5 Here, we opted for fitting the penalized models for the di�erent ÷ values on the entire data set and

selected the best fitting one. This approach is more comparable to the rotated models. However, note that

in the machine learning literature, it would be preferred to tune the hyperparameter first on a training

data set (i.e., a sub-sample of the sample) and then fit the model with the selected ÷ on the remaining test

data set. The latter approach will be less prone to overfitting than the first.
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warm starts in tuning ÷ with regard to the BIC for the penalized M2PCMPMs (see

Computational Aspects). Second, we used the parameter estimates obtained from the

unpenalized exploratory M2PCMPM as start values for ÷ = 0 (which should result in

immediate convergence as ÷ = 0 is the unpenalized case). Third, we adjusted the number

of quadrature nodes per trait, in relation to the number of latent traits (with 10 nodes per

trait for L = 3, and 4 nodes per trait with L = 4).

Evaluation Criteria

For the penalized M2PCMPMs, we evaluated the models for the ÷ value selecting

during hyperparameter tuning. Following Sun et al. (2016), we evaluated the correct

estimation rate (CER) which we adapted to the upper-triangle identification constraint

used here. The CER (adapted from Sun et al., 2016) is defined here as

CER =
qL

l=1
qM

j=1 I(⁄̂jl = ⁄jl) ≠ c

L ◊ M ≠ c
, (21)

with c is the number of constraints imposed on – for identification, L ◊ M the number of

elements in –, and ⁄jl = I(–jl ”= 0) and ⁄̂jl = I(–̂jl ”= 0), where I(.) denotes the indicator

function. Note that we defined the CER slightly di�erently than Sun et al. (2016) to better

accommodate our identification constraint. The CER helps to assess whether the variable

selection in the lasso-penalized models worked correctly, or to what extent. Performance of

the BIC-based tuning for the lasso-penalized models was assessed by comparing the two ÷s

selected by minimizing BIC and maximizing CER (Sun et al., 2016).

Further, we assessed bias and RMSE for the intercept and (log-)dispersion

parameters, as well as for the multidimensional discrimination parameters. As there are an

infinite number of rotated solutions, bias and RMSE on each single discrimination

parameter are less meaningful for rotated exploratory item response models.

Multidimensional discrimination instead assesses the impact of all factors onto each item j

at once. We computed the item-specific multidimensional discrimination as

Aj =
ı̂ıÙ

Lÿ

l=1
–2
jl. (22)
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(Reckase & McKinley, 1991).

Results

All trials were completed without any numerical instabilities and the EM

algorithm(s) converged for all models in all trials and conditions. Bias and RMSE

estimates for the multidimensional discriminations across trials and items are displayed in

Figure 1. As the x-axes show, the range of bias and RMSE estimates is rather small for

most conditions. Conditions with simple as opposed to more complex – structure showed

less bias and RMSE, with less variation between items. Generally, the M2PCMPM EM

algorithm in conjunction with rotation performed most often well in terms of bias and

RMSE on multidimensional discrimination parameters. In any conditions where the

M2PCMPM EM algorithm in conjunction with rotation performed very well, the

lasso-regularized M2PCMPM EM algorithm also performed decently in terms of bias and

RMSE, albeit slightly less well than the rotation approach. We observed more bias and

larger RMSE estimates for conditions with four (as opposed to three) latent traits, more so

for five than for three items per trait. This result is likely explained by the number of

observations to number of parameters ratio which decreases as the number of parameters

grow with L and m, while the number of observations N remained the same in our

simulation.

Figure 2 shows the average CER per condition and per method or model used. In

the first two rows of Figure 2, we see the results for the simple – structure, and in the last

two rows, the results for the complex – structure are displayed. There was a clear

di�erence in performance between the two di�erent – structures. For the simple –

structure, in line with expectations, we see poor performance of the rotation methods

(which are not able to shrink estimates down to exactly 0, putting them at a disadvantage

in general in terms of CER). In conditions with complex – structure, the rotation methods

performed better in these conditions as we would expect when there are fewer parameters

that require shrinkage to exactly 0. In conditions with correlated latent traits, we can see
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that only the oblique lasso model showed decent performance (in most but not all

conditions) in terms of CER. Especially for correlated latent traits, performance fell o� for

four latent traits in conjunction with five items per trait, even for the oblique lasso. For

L = 3 latent traits, more items per trait tended to increase performance (at least for

complex – structure), but for L = 4 latent traits, more items tended to decrease

performance (for both – structures). One can again speculate that these last two observed

patterns in the results might be due to the number of observations to number of

parameters ratio which is considerably decreased for 4 traits and 5 items per trait.

Figure 3 plots the (condition average) CER for the tuning parameter ÷ selected via

the BIC (on the y axis) against the maximum (condition average) CER obtained by any of

the models on the ÷ grid, i.e., the model we would have selected based on the CER. Figure

3 shows the two di�erent lasso models in two separate panels. Figure 3 describes how well

the BIC performed in terms of parameter tuning (Sun et al., 2016). Ideally, the

BIC-selected ÷ is the CER-selected ÷ which would mean that the condition’s point in

Figure 3 would lie on the diagonal black line. In Figure 3, we can see that this is the case

for one condition for the oblique lasso (L = 4, fl = 0.3,m = 3 with simple – structure), and

for four conditions for the orthogonal lasso (L = 3, fl = 0.3,m = 3, L = 3, fl = 0.3,m = 5,

L = 4, fl = 0.3,m = 3, and L = 4, fl = 0.3,m = 5 with simple – structure, and

L = 3, fl = 0.3,m = 5 with complex – structure). For either method, conditions with

simple – structure, more items, and/or more traits tended to exhibit better accuracy of

BIC-based ÷ tuning with points in proximity of the line. For complex – structure

(compared to the other conditions), the CER were lower even when ÷ was selected based

on the CER. Figure 3 shows here that for complex – structure (compared to the other

conditions), BIC-based tuning works notably better (with points closer to the diagonal line)

for more items per trait (and even better if that is in conjunction with more latent traits).

Bias and RMSE estimates for the remaining item parameters (”j’s and log ‹j’s) are

shown in Tables 1 and 2, respectively. We can see that the intercept parameters can be
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estimated very well with very little bias (Table 1). For the dispersion parameters, we have

slightly larger bias and RMSE estimates (Table 2), but overall still satisfactory

performance. In particular for L = 4 traits, performance is better for larger m, that is, for

more items per trait. Settings with L = 3 traits yielded better performance than those

with L = 4, likely as the number of observations to number of items ratio is smaller in the

latter case for constant N = 1200.

Application Example

To illustrate the application of an exploratory M2PCMPM together with a

comparison of the two regularization based approaches with the traditional rotation based

approach, we re-analyze data (N = 1318 adolescents, including 434 adolescents diagnosed

as highly gifted) from a German intelligence test (Berliner Intelligenzstrukturtest für

Jugendliche: Begabungs- und Hochbegabungsdiagnostik, BIS-HB; Jäger et al., 2006). The

BIS-HB is an operationalization of the Berlin model of intelligence structure (Jäger, 1967,

1982, 1984). In line with this model, the BIS-HB assesses intelligence across four

operational abilities (each measured in three content domains: figural, verbal, and

numerical): processing capacity, creativity, memory, and processing speed. We re-analyze

the responses for the two operational abilities, creativity and processing speed, which

generate count responses. Processing speed is assessed using nine items (also re-analyzed in

Doebler et al., 2014), creativity (in terms of idea flexibility) with five.

In our re-analysis, we investigate in how far we can recover the theoretical factor

structure of two latent traits in an exploratory M2PCMPM. We fit the two variants (i.e.,

lasso and rotation) of the exploratory two-factor M2PCMPM with the upper-triangle

identification constraint to the data and 12 quadrature nodes per trait, using the countirt

package (see Computational Aspects). For the M2PCMPM in conjunction with rotation, we

used an orthogonal Varimax (Kaiser, 1958, 1959) and an oblique Oblimin rotation

(Clarkson & Jennrich, 1988). For the lasso-penalized M2PCMPM, we fitted one model

with a priori orthogonal (i.e., uncorrelated) latent factors and one with a priori oblique
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(i.e., correlated) latent factors. For the latter, latent factor correlations obtained from the

obliquely rotated M2PCMPM were used (compare Sun et al., 2016). We tuned the

lasso-penalized M2PCMPMs using a 20-value penalization grid of [0, 1000] with values

chosen equidistantly on the log scale (cf. Hastie et al., 2009) and used warm starts in

÷-tuning (see Computational Aspects). As in the simulation study, start values for the first

M2PCMPMs on the tuning grid (i.e., for ÷ = 0) were the parameter estimates from the

unpenalized M2PCMPM (before rotation).

The results are shown in Table 3. While we do not obtain a pattern of perfect –

simple structure for any of the methods, we can see that in particular for the approaches

with oblique latent traits, the estimates for the – matrix align well with theoretical

considerations. That is, for the Oblimin-rotated unpenalized M2PCMPM, we can see that

the processing speed items load mostly on the first trait (i.e., processing speed), while the

creative thinking items load mostly on the second trait (i.e., creative thinking). Only the

processing speed items BD and OE load overall rather weakly onto either factor, with a

small preference for the processing speed factor. A similar pattern of results emerged for

the lasso-penalized M2PCMPM with oblique latent traits, with the penalty-imposed

shrinkage amplifying the theoretically implied loading structure further. For the creative

thinking items AM and ZF as well as for the processing speed item UW, the discrimination

parameters were even shrunken to 0. We can see that the assumption that the latent traits

are uncorrelated (i.e., Varimax-rotated unpenalized M2PCMPM and lasso-penalized

M2PCMPM with orthogonal latent traits) yielded a less di�erentiated loading structure, in

particular for the creative thinking items which still load highest onto the second trait but

also less negligibly onto the first, especially for the lasso-penalized M2PCMPM with

orthogonal latent traits. Intercept (”j) and log-dispersion (log ‹j) estimates were—as we

would expect—very similar across methods. Note the rotated M2PCMPMs have only one

set each as they are both based on the same unpenalized M2PCMPM for which we only

rotate the – matrix, leaving the other parameters unchanged. Items exhibited a mix of
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over- and underdispersion, with some even close to equidispersion (i.e., 0 for log ‹j as

log(1) = 0), highlighting the strength of the CMP distribution to account for such a

variation of dispersion across items.

Discussion

This work proposes a novel multidimensional count item response model with

flexible dispersion modeling: the multidimensional two-parameter Conway-Maxwell-Poisson

model (M2PCMPM). A number of existing count item response models (Beisemann, 2022;

Forthmann et al., 2018, 2020; Myszkowski & Storme, 2021; Rasch, 1960) can be

understood as special cases of the M2PCMPM, rendering the M2PCMPM a general

overarching model class. The M2PCMPM can be employed in an exploratory

manner—which this work primarily focused on—but also in a confirmatory manner by

imposing constraints on model parameters. As a consequence, even more special cases of

count item response models can be obtained and formulated as well as estimated within

the M2PCMPM framework. We derived marginal maximum likelihood estimation methods

based on the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). For

exploratory M2PCMPMs, we investigated using rotation methods (e.g., Carroll, 1957;

Clarkson & Jennrich, 1988; Kaiser, 1958, 1959) in conjunction with the proposed

M2PCMPM-EM algorithm for obtaining a simple structure solution for the discrimination

parameter matrix. Alternatively, we developed a ¸1-penalized (i.e., lasso-penalized;

Tibshirani, 1996) variant of the M2PCMPM-EM algorithm which can be used to the same

end. We explored versions of this algorithm with a priori uncorrelated latent traits and

with a priori correlated latent traits. In a simulation study and an application example, we

assessed and compared the two proposed algorithms for fitting exploratory M2PCMPMs.

Performance Patterns from the Simulation Study

The conducted simulation study showed stable numerical performance for the

developed algorithms in the investigated simulation settings. Bias and RMSE on the

intercept and (log) dispersion parameters were overall satisfactory, with di�erences in
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performance between conditions in line with prior research on CMP-based count item

response models (Beisemann, 2022; Beisemann et al., 2024). In conditions with more latent

traits, we tended to observe more bias, in particular for the (log) dispersion parameters.

Due to rotational indeterminacy, we assessed bias and RMSE on the discrimination

parameters for the multidimensional discriminations. For a number of the conditions, we

observed decent performance here, with the rotation approach performing slightly better

than the lasso approach. Conditions in which bias and RMSE were more pronounced were

those with more traits, especially in conjunction with more items per trait. This pattern

also emerged when we assessed the rate of parameters which was correctly estimated to be

di�erent from 0 (compare Sun et al., 2016): Even though especially the lasso-penalized

M2PCMPM-EM algorithm which accounted for a priori correlated latent traits performed

quite well in a number of conditions, performance for it as well as all other variants of the

M2PCMPM-EM algorithms decreased for conditions with more traits in conjunction with

more items per trait, that is, for conditions with overall larger number of items (and

therewith model parameters). This may be a suprising pattern at first glance as

regularization may be expected to o�er more advantages for larger – matrices.

We speculate that this pattern of results for intercept, (log) dispersion, and

discrimination parameters might be explained by the ratio of number of observations to

number of model parameters. As the sample size was held constant in the simulation

study, this ratio decreased for conditions with more traits and more items per trait, that is,

more model parameters. For larger sample sizes where the ratio of number of observations

to number of model parameters is similar to conditions with fewer traits in our simulation

study, we would hypothesize that performance should be improve for more traits and items

per trait. Further, to be able to achieve acceptable (albeit still long) computation times, we

used a comparably low number of quadrature nodes per trait for conditions with four

latent traits. This may also have a�ected parameter estimation accuracy.

In terms of BIC-based hyperparameter tuning for the lasso-penalized
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M2PCMPM-EM algorithm (with either a priori correlated or a priori uncorrelated latent

factors), we found performance di�ered notably depending on the condition. Assessing

tuning performance following Sun et al. (2016), we found that performance was in general

better for an underlying simple structure of the – matrix. Unsurprisingly, more complex

structures of the – matrix were more challenging as these are less clearly variable selection

problems. With more items and/or more traits, the accuracy of the BIC-based

hyperparameter tuning tended to improve. Compared to Sun et al. (2016)’s assessment of

BIC-based hyperparameter tuning for lasso-penalized binary models, we observed overall

(more or less pronounced) worse performance for count models (not just of the BIC tuning,

but also of the CER based tuning which is perhaps surprising at first glance). It is worth

pointing out that the direct comparison to the models in Sun et al. (2016) is not entirely

appropriate as Sun et al. (2016) defined the CER slightly di�erently to us (see above). The

observed pattern may also be confounded with the number of penalized parameters—in our

simulation, the smallest setting only included nine items, which leaves (with identification

constraints) only six freely estimated, penalized parameters. In this instance, a

misclassification equates to a change of 1
6 in the CER, while in a setting with for example

20 freely estimated, penalized parameters, it would equate to only 1
20 . As Sun et al. (2016)

studied settings with far more items—as is realistic for binary data, but not for count

data—this means that single or small numbers of misclassifications a�ected the CER

estimates less drastically than in our simulation. As discussed further below, these results

suggest that while the BIC-based hyperparameter tuning appears to work decently for

some conditions, hyperparameter tuning for the lasso-penalized M2PCMPM-EM algorithm

could still be improved by future research. These results also suggest that future research

might wish to consider alternatives to the CER for performance evaluation. For example,

one could extract the model-implied item covariance matrix and compare it to the observed

item covariance matrix using matrix norms.
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Limitations and Further Avenues for Future Research

Our simulation study was designed to provide a proof of concept for the proposed

model and algorithms. As such, and as guided by previous research (Sun et al., 2016), it

focused on scenarios with three or four latent traits. Future research could explore higher

dimensional scenarios. In such settings, the Gauss-Hermite quadrature based M2PCMPM

EM algorithm is likely going to reach its limitation, as Gauss-Hermite quadrature is known

not to scale well to high-dimensional problems (Chalmers, 2012). Thus, future research in

this regard could explore alternative integral approximations, such as Monte Carlo based

methods. Further, the maximum test length investigated in our simulation study was 20

items. Future research could investigate more extensive tests. An important point to

address in corresponding future research would be the ratio of the number of observations

to the number of model parameters. With its fixed sample size, the simulation study

cannot su�ciently speak to sample size recommendations—albeit observed results patterns

suggest that estimation performance may su�er from too low ratios of the number of

observations to the number of model parameters.

We implemented the proposed algorithms in R and C++ within the countirt

package. To this end, we built upon implementations of the 2PCMPM (Beisemann, 2022)

and related models (Beisemann et al., 2024) in countirt. These implementations all use a

naive interpolation-from-grid approach for some of the CMP distribution related quantities

to stabilize, facilitate and fasten computations. This approach worked well in our

simulation study and its settings, but can be expected to work less well in settings where

the data do not align well with the interpolation grid (see

https://github.com/mbsmn/countirt for details). In a regression framework, Philipson

and Huang (2023) developed a sophisticated and theory-based interpolation approach for

CMP models which allows not only inter- but also extrapolation from a specifically

designed grid. Future research could aim to apply and extend their work to the

(multidimensional) IRT context for CMP models.
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For comparability with the rotation approach and for computational reasons, we did

not tune our lasso penalty term on a training data set. However, for regularization

methods that would be the recommended approach (Hastie et al., 2009) and is what we

would recommend for high-stakes applications. This approach should prohibit over-fitting

to the data more aptly. In general, our tuning for the lasso penalty term simply used a grid

with equidistant tuning parameter values on the log-value space (as is typically

recommended; Hastie et al., 2009) and was based on the BIC. As we saw in the simulation

study results, for certain settings, the selection of the tuning parameter could still be

improved. In fact, sometimes the correct estimation rates were even low when they were

used to choose the tuning parameter value. Future research might research how parameter

tuning can be improved for the M2PCMPM lasso-EM algorithm and what computationally

equally economical alternatives to the BIC as a tuning criterion could be used. Further,

more investigation of tuning and the tuning grid used could also be interesting and helpful.

Such investigations are going to have to face the computation time challenge that these

computationally expensive models pose. Other than the warm starts already used in this

work, other avenues such as EM algorithm accelerators might be explored (see Beisemann,

Wartlick, & Doebler, 2020, for a recent overview of state-of-the-art methods).

Using the lasso penalty in the M2PCMPM not only encourages a sparse solution for

the discrimination matrix –, but it also imposes a certain degree of shrinkage onto each

discrimination estimate in –. To avoid shrunken estimates, future research could explore

the relaxed lasso (Meinshausen, 2007): The lasso-penalized M2PCMPM can be fitted to

the data for model selection, and afterwards an unpenalized M2PCMPM with appropriate

constraints (as selected by the lasso) can be fitted to the data for interpretation of the

model parameters.

For the penalization, we focused on the lasso (Tibshirani, 1996) which aligns with

other research on penalization in item response models (Cho et al., 2022; Sun et al., 2016).

However, lasso penalization is known to perform less well in settings with correlated
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variables (Hastie et al., 2009), which corresponds to latent factor correlations in item

response model settings. However, as we can see from our application example, such

settings are empirically realistic. Future research could address such limitation by

extending the lasso-penalized M2PCMPM EM algorithm to penalties such as the elastic

net (Zou & Hastie, 2005) which adaptively combines properties of the lasso and the ridge

(Hoerl & Kennard, 1970) penalty. Alternative penalties such as the smoothly clipped

absolute deviation (SCAD; Fan & Li, 2001) could also be explored (for an application of

SCAD in IRT, see e.g., Robitzsch, 2023). Other ways in which the penalized algorithms

themselves could be extended by future research would be for example the incorporation of

latent factor correlation estimation into the algorithm, rather than the two-step method by

Sun et al. (2016) that we used here to have the algorithm account for a priori expected

correlated factors. In the unpenalized M2PMCPM, such extensions would not be as

necessary as factor correlations can be accounted for by oblique rotations (e.g, Clarkson &

Jennrich, 1988).

Finally, the M2PCMPM framework proposed in this work can also in itself be a

stepping stone for future research. That is, the M2PCMPM framework o�ers researchers

the opportunity to propose, fit, and investigate a number of new count item response

models that can be accomodated by the M2PCMPM framework as special cases. This can

be achieved by exploring the confirmatory side of the M2PCMPM framework which the

present work only briefly touched on. Future research could suggest new constraints

through which new count item response models can be obtained from the M2PCMPM.

Furthermore, for the M2PCMPM framework to be complete and applicable in practice, it

needs to be enriched in the future by developing multi-group and di�erential item

functioning extensions within the framework as well as by deriving person parameter

estimators, item fit, and person fit measures.
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Table 1

Average bias (between-item SD in parentheses) and RMSE (between-item SD in

parentheses) on ”j parameters across all items per condition

Design Bias (SD) RMSE (SD)

L – structure fl m Lasso (obli) Lasso (ortho) Rotate Lasso (obli) Lasso (ortho) Rotate

3 simple 0 3 0.001 (0.002) 0.001 (0.002) -0.001 (0.002) 0.011 (0.002) 0.011 (0.002) 0.011 (0.002)

3 simple 0 5 0.002 (0.003) 0.002 (0.003) -0.001 (0.002) 0.012 (0.004) 0.012 (0.004) 0.012 (0.004)

3 simple .3 3 0.002 (0.002) -0.000 (0.001) -0.001 (0.001) 0.012 (0.003) 0.012 (0.003) 0.012 (0.003)

3 simple .3 5 0.003 (0.003) 0.000 (0.002) -0.001 (0.002) 0.014 (0.004) 0.013 (0.004) 0.013 (0.004)

3 complex 0 3 0.002 (0.002) 0.002 (0.002) 0.001 (0.002) 0.011 (0.002) 0.011 (0.002) 0.011 (0.002)

3 complex 0 5 0.000 (0.002) 0.002 (0.002) -0.000 (0.002) 0.013 (0.004) 0.013 (0.004) 0.013 (0.004)

3 complex .3 3 0.003 (0.001) -0.000 (0.001) -0.001 (0.001) 0.013 (0.003) 0.012 (0.003) 0.012 (0.003)

3 complex .3 5 0.002 (0.002) 0.000 (0.002) -0.000 (0.002) 0.014 (0.003) 0.012 (0.003) 0.012 (0.003)

4 simple 0 3 0.006 (0.005) 0.006 (0.004) 0.002 (0.003) 0.013 (0.004) 0.014 (0.003) 0.013 (0.002)

4 simple 0 5 0.006 (0.002) 0.009 (0.003) 0.004 (0.002) 0.014 (0.003) 0.016 (0.003) 0.015 (0.003)

4 simple .3 3 0.008 (0.006) 0.005 (0.004) 0.003 (0.003) 0.015 (0.005) 0.014 (0.003) 0.013 (0.003)

4 simple .3 5 0.007 (0.003) 0.006 (0.002) 0.005 (0.002) 0.015 (0.003) 0.014 (0.002) 0.014 (0.002)

4 complex 0 3 0.005 (0.003) 0.005 (0.004) 0.003 (0.003) 0.014 (0.004) 0.013 (0.004) 0.013 (0.004)

4 complex 0 5 0.006 (0.002) 0.008 (0.002) 0.005 (0.002) 0.015 (0.003) 0.016 (0.003) 0.014 (0.002)

4 complex .3 3 0.007 (0.002) 0.005 (0.003) 0.005 (0.003) 0.015 (0.003) 0.014 (0.003) 0.014 (0.003)

4 complex .3 5 0.003 (0.003) 0.005 (0.003) 0.004 (0.003) 0.018 (0.003) 0.017 (0.004) 0.016 (0.004)

Notes. Note that rotated models have the same ”j estimates regardless of rotation methods as

those only a�ect –̂. obli = oblique (latent traits are a priori assumed to be correlated). ortho =

orthogonal (latent traits are a priori assumed to be orthogonal). L = number of latent traits. fl =

true latent trait correlation. m = number of items per trait.
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Table 2

Average bias (SD in parentheses) and RMSE (SD in parentheses) on log ‹j parameters

across all items per condition

Design Bias (SD) RMSE (SD)

L – structure fl m Lasso (obli) Lasso (ortho) Rotate Lasso (obli) Lasso (ortho) Rotate

3 simple 0 3 -0.007 (0.013) -0.007 (0.014) 0.007 (0.017) 0.084 (0.029) 0.084 (0.029) 0.082 (0.030)

3 simple 0 5 -0.006 (0.009) -0.010 (0.027) -0.004 (0.031) 0.060 (0.018) 0.062 (0.022) 0.061 (0.022)

3 simple .3 3 -0.007 (0.014) 0.010 (0.012) 0.013 (0.013) 0.071 (0.020) 0.075 (0.025) 0.076 (0.026)

3 simple .3 5 -0.013 (0.022) -0.002 (0.020) -0.001 (0.022) 0.061 (0.023) 0.060 (0.019) 0.060 (0.019)

3 complex 0 3 0.006 (0.013) 0.012 (0.015) 0.015 (0.015) 0.075 (0.023) 0.076 (0.022) 0.077 (0.022)

3 complex 0 5 -0.005 (0.008) -0.010 (0.021) -0.005 (0.019) 0.056 (0.013) 0.058 (0.017) 0.055 (0.014)

3 complex .3 3 -0.007 (0.012) 0.011 (0.010) 0.013 (0.011) 0.068 (0.018) 0.074 (0.025) 0.075 (0.024)

3 complex .3 5 -0.014 (0.019) -0.001 (0.012) -0.000 (0.011) 0.059 (0.018) 0.056 (0.015) 0.056 (0.014)

4 simple 0 3 -0.076 (0.148) -0.106 (0.214) -0.071 (0.165) 0.126 (0.134) 0.156 (0.194) 0.132 (0.144)

4 simple 0 5 -0.069 (0.095) -0.077 (0.104) -0.068 (0.106) 0.095 (0.087) 0.102 (0.096) 0.098 (0.095)

4 simple .3 3 -0.077 (0.142) -0.064 (0.147) -0.057 (0.138) 0.125 (0.124) 0.122 (0.129) 0.115 (0.120)

4 simple .3 5 -0.059 (0.098) -0.049 (0.088) -0.048 (0.089) 0.093 (0.088) 0.085 (0.075) 0.086 (0.075)

4 complex 0 3 -0.068 (0.135) -0.073 (0.209) -0.066 (0.206) 0.120 (0.122) 0.133 (0.186) 0.132 (0.182)

4 complex 0 5 -0.064 (0.093) -0.065 (0.093) -0.064 (0.096) 0.097 (0.081) 0.096 (0.081) 0.096 (0.082)

4 complex .3 3 -0.067 (0.146) -0.060 (0.173) -0.060 (0.173) 0.122 (0.131) 0.126 (0.151) 0.126 (0.150)

4 complex .3 5 -0.059 (0.080) -0.053 (0.076) -0.053 (0.076) 0.091 (0.071) 0.086 (0.064) 0.086 (0.064)

Notes. Note that rotated models have the same ”j estimates regardless of rotation methods as

those only a�ect –̂. obli = oblique (latent traits are a priori assumed to be correlated). ortho =

orthogonal (latent traits are a priori assumed to be orthogonal). L = number of latent traits. fl =

true latent trait correlation. m = number of items per trait.
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Figure 3

Condition average CER for the BIC-selected model (y-axis) against condition average CER

for the CER-selected model (x-axis), shown in two separate panels (lasso with oblique latent

covariance matrix on the left and lasso with orthogonal latent covariance matrix on the

right). Simulation conditions (in terms of number of latent traits (L), latent factor

correlation (r), and number of items per trait (m)) are shown in di�erent colours as

indicated by the legend on the right-hand side (under "Condition"). Di�erent – structures

are represented by di�erent shapes as indicated by the legend on the right-hand side (under

"Structure").
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Appendix

First derivative of the CMP Variance

For the second derivatives in terms of ”j and –jl in Equations 17–18, we need the derivative

of the variance V in terms of ”j and –jl. That is,

ˆV (µjk1,...,kL , ‹j)
ˆ–jl

= ˆEX(X2)
ˆ–jl

≠
ˆµ2

jk1,...,kL

ˆ–jl
(A1)

= µjk1,...,kLqkl
V (µjk1,...,kL , ‹j)

EX(X3 ≠ µjk1,...,kLX
2) ≠ 2qklµ2

jk1,...,kL , (A2)

and

ˆV (µjk1,...,kL , ‹j)
ˆ”j

= ˆEX(X2)
ˆ”j

≠
ˆµ2

jk1,...,kL

ˆ”j
(A3)

= µjk1,...,kL

V (µjk1,...,kL , ‹j)
EX(X3 ≠ µjk1,...,kLX

2) ≠ 2µ2
jk1,...,kL . (A4)

The first equality in both equation holds because for any random variable W it holds that

V(W ) = E(W 2) ≠ E(W )2. Taking the derivative of µ2
jk1,...,kL with regard to –jl and ”j is

trivial. To take the derivative of EX(X2) with regard to –jl and ”j, we used results

provided in Huang (2017) and derivation rules.
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