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A B S T R A C T

Rankings represent the natural way to access the importance of
a finite set of items. Ubiquitous in real-world applications and
machine-learning methods, they mostly derive from automated or
human-based importance score assignments. Many fields involving
rankings, such as Recommender Systems, feature selection, and
anomaly detection, overlap with human-derived scoring systems,
such as candidate selection and operational risk assessments. Rank-
ings are explicitly hard to evaluate; several challenges derive from
concerned biases, fairness issues, and also from their derivation
and evaluation.

This thesis spins around deriving importance scores and rank-
ings as solutions in various contexts and applications. Starting
from unsupervised feature importance scores based on an uncon-
ventional use of Shapley values for unlabeled data, it will touch a
more applied field with an ad-hoc unsupervised methodology for
reducing the dimensionality of collections of gene sets. We then
focus on feature importance scores in a time-dependent context,
focusing on detecting correlational concept drifts in the univariate
dimensions of unlabeled streaming data. The whole work is com-
monly characterized by seeking to improve abstract concepts of
trustworthiness and reliability, with an open eye on the consistency
of evaluations and methods. In this direction, we add insights into
using saliency importance score assignments for interpreting time
series classification methods and define desirable mathematical
properties for ranking evaluation metrics. Furthermore, we use
Shapley values to interpret unsupervised anomaly detection deep
methods based on features bagging. Lastly, we introduce some
future and current challenges related to fairness issues in rank
aggregations and some possible extensions of the current work.
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1
I N T R O D U C T I O N A N D T H E S I S O V E RV I E W

O rdering items is an intrinsically human task; ordered
lists appear in everyday life, easily understandable and
maneuverable. An ordered list or ranking is easily inter-

pretable, summarizing the relevance of the items in the defined
context straightforwardly. Rankings often appear as a by-product
of given importance score assignments. Given importance or rele-
vance scores, we can easily rank items; however, the contrary does
not usually hold.

Being a powerful tool, we find rankings not only in concrete
everyday applications but also as solutions to complex tasks in
the Machine Learning community; typical examples are Recom-
mender Systems and Information Retrieval techniques [SMR08;
Lin10]. From raising the understanding of black-box models to
ranking candidates in job applications, assigning importance scores
to items has become common and often necessary. The goal is to
create summarizing scores assessing the value of the single items
in finite sets based on their contributions to a task. Scores can
be both the result of human scoring attributions or of complex
machine learning techniques. Once available, as mentioned, scores
can be used to rank elements and obtain an ordered list. We be-
lieve rankings can offer solutions to the most disparate problems.
The present thesis aims to prove this claim in several domains,
from data mining to genetics applications, from time series appli-
cations and explainability needs, where rankings and importance
scores, primarily based on Shapley values assignments, will offer
straightforward solutions. The conducting rope of our work is to be
found in the proposed solutions more than in the addressed prob-
lems, where rankings and importance scores will offer solutions to
challenges deriving from disparate contexts.

Our starting point is a data mining context, where the focus is
often on the data structure. Unlabeled data form a special case
where the input features are available and observed, while no
labels are connected to the data points, thus precluding any pre-
diction model. On the one hand, the spread of sensors, making
collecting time-dependent data points easier and cheaper, offers
a consistent source of unlabeled data; on the other hand, labels
are often hard to obtain, delayed in online data streams, or unde-
fined in multi-objective contexts. Thus, the study of correlations
among variables is particularly interesting in the ever-increasing

1



2 introduction and thesis overview

applications’ setups where data are primarily unlabeled. Our work
addresses several problems raised when dealing with unlabeled
data, going from feature ranking and selection to change point
detection and interpretability of anomaly detection methods. We
particularly focus on Shapley values [Sha+53], an essential tool for
assigning importance scores to items in cooperative contexts that
additionally satisfy desirable mathematical properties. We intro-
duce Shapley values importance scores and their rankings to keep
track of the concept structure in unlabeled data streams [BLM23b],
reduce the dimension of tabular unlabeled data [Bal+22], and rank
pathways in collections of gene sets [Bal+23]. We make sense of
the information conveyed by unlabeled data by quantifying the
“correlation” among groups of univariate dimensions, deriving
Shapley values-based features’ importance scores, and ranking and
selecting features through them.

Shapley values are “interpretable” scores introduced in machine
learning to assess the role of single features in model predic-
tions [LL17]. More generally, Shapley values allow for ranking
the players concerning their influence in a so-called game; although
their acknowledgment is often limited to the interpretable machine
learning community, Shapley values are much more than inter-
pretable scores. We use Shapley values both as importance scores
for explaining anomaly detection scores [KBM24] and also to ex-
tend their application far beyond claiming they are interpretable
scores. However, using Shapley values-based importance scores
to rank items does not arrive without disadvantages. Their in-
trinsic exponential complexity demands approximation methods
whose performance highly differs in the various setups such that
the rankings offered by the approximated scores present slight
differences; these differences proved hard to examine, and the in-
numerable inconsistencies among evaluations represent a second
facet we incur when ground truth labels are unavailable. Namely,
the inconsistencies among metrics are an issue plaguing all the
state-of-the-art literature [TDV21]; using one metric instead of an-
other produces somewhat different evaluations, thus introducing
additional challenges due to a lack of reproducibility and coher-
ence. We further investigate the inconsistency issue in the contexts
of ranking evaluation metrics and saliency importance scores for
time series classification methods.

In conclusion, this thesis discusses the role of importance scores
and rankings in various contexts; through the eyes of Shapley
values scores, we will explore unlabeled time series, unlabeled
tabular datasets, and genetic data. We will then review the traps of
the inconsistencies among evaluation methods, discussing ranking
evaluation metrics [BMM24] and saliency importance scores for
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time series classification methods [BLM23a]. The critic’s eye on
the methods and metrics’ trustworthiness, consistency, and inter-
pretability is a common strand in our work, and, with our last con-
tribution, we introduce Shapley values to interpret bagging models
for unsupervised deep anomaly detection methods [KBM24].

1.1 overview and contributions

We organized this thesis into two main parts: Part I (Chapters 4, 5,
and 6) focuses on unsupervised importance scores; Part II (Chap-
ters 8, 9, and 10) focuses on the consistency of metrics and saliency
interpretation methods and on Shapley values to interpret bagging
models-based anomaly detectors. Chapter 2 contains the descrip-
tion of common notations and fundamental concepts, while Chap-
ters 3 and 7 provide, respectively, the introduction and the related
work necessary to Part I and Part II.

Here, we present an overview of our major contributions and
the general structure of the thesis. Table 1.1 presents a bird’s-eye
view of our contributions. In the challenges we address, we focus
on various aspects: (i) the construction of unsupervised (feature)
importance scores, (ii) the consistency of evaluations and methods,
and (iii) the trustworthiness and interpretability of methods.

core aspects

unsupervised
scores

consistency trustworthiness
and

interpretability

method Chapters 4, 5, 6 Chapter 6,10

application Chapter 5

analysis Chapters 8, 9 Chapters 9

Table 1.1: Overview of the thesis contributions.

1.1.1 Part I: Shapley values-based unsupervised feature importance
scores

In the first part of the thesis, we aim to study the structure of
unlabeled data using its characterizing correlations, with the scope
of reducing their original dimension or detecting change points in
unlabeled data streams. In particular, we work with three different
types of unlabeled data, each introducing its challenges: unlabeled
tabular data sets, collections of gene sets, and unlabeled data
streams. The structure of this first part follows the respective data
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types and correlated challenges. The absence of a prediction goal is
common in our starting setups, and rankings and Shapley values-
based importance scores commonly characterize our solutions.

Unsupervised feature importance scores represent a world rela-
tively unexplored for one main reason: it is hard to get such scores
without a prediction task, as the question “Important for what?” is
not easily answerable. Consequently, in machine learning, feature
importance scores are prevalent in supervised learning to measure
the roles of features for the task at hand. As mentioned, the lit-
erature does not fully cover unsupervised and semi-supervised
cases. Traditional measures, such as pairwise correlation metrics
and pseudo-labels, represent, in most cases, the only alternative to
obtain unsupervised importance scores; however, the first ones are
not sensitive to higher-order interactions, while the second ones
are not intrinsically interpretable. Nevertheless, feature importance
scores represent an extremely useful tool, e.g., in feature selection,
explainable machine learning, recommendations, and information
retrieval tasks. We answer the question “How to quantify the infor-
mation brought by a feature in an unlabeled context?” by relying
on Shapley values, assuming that they offer fair and interpretable
scores’ assignments [Sha+53]. We briefly introduce the structure of
the chapters of the present part.

Chapter 4 focuses on unlabeled tabular data retaining most of
the information conveyed by the original data set; our challenge is
obtaining an unsupervised feature selection approach. We believe
in a ranking-based solution and look for a way to rank features
based on available information. We interpret the unlabeled tabular
data as a “game”, where features collaborate in giving all the infor-
mation they contain and use Shapley values as feature importance
scores. Considering the information theory-based goal, we use the
total correlation as a value function; however, this decision restricts
the approach’s applicability to categorical data. Furthermore, as
using the total correlation as the value function implicitly assigns
prominent positions to features highly correlated with many oth-
ers, by introducing a pruning criterion, we avoid selecting highly
correlated features and favor diversity. Hence, we use the Shap-
ley values scores within a greedy selection algorithm to obtain a
correlation-free ranking of the features and a subset of features
representative of the entire dataset.

We switch then to collection of gene sets, a specific data type
typical of Bioinformatics; the challenge here is the data’s high
dimensionality and low maneuverability. Driven by the necessity
of aggregating genes dependent on their biological and chemical
function, gene sets reflect these relations, grouping genes depend-
ing on their roles. Above gene sets, we find macroscopic structures,
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so-called collections of gene sets that further group the gene sets
based on their biological role [Lib+15]. Collections of gene sets are
generally characterized by a vast size and low interpretability of
the many gene sets, ranging between hundreds to several thou-
sand partly overlapping gene sets; the chances for the human eye
to recollect the information conveyed by the collections and the
contained sets of genes are low. Chapter 5 proposes to solve the
challenge by ranking gene sets based on Shapley values and reduc-
ing the collections to the top k gene sets in the ordered lists. The
setup is general enough to produce importance scores in any fam-
ily of sets. We create a value function to measure the distribution
of genes throughout the whole collection. The obtained Shapley
values are positively correlated with the size of the gene sets, and
they are unaware of intersections among them; hence, overlapping
sets are located in similar ranking positions. A pruning criterion
addresses the issue based on a reformulation of the Jaccard score,
and the sets’ final ranking shows no correlation with the sets’ sizes
and low overlap among similarly ranked sets. Furthermore, the
pruning method also affects the correlation between the size of
gene sets and their position in the rankings, although not directly
meant to solve this issue. The obtained rankings show excellent
behavior in solving a min-max-max problem, i.e., minimizing the
overlap and maximizing both the importance scores assigned by
Shapley values and the coverage of genes. Note that in typical Gene
Set Enrichment Analysis applications, the gene sets are statistically
tested for over- or underrepresented genes for specific phenotypic
traits, and the results are then aggregated through multiple hy-
pothesis correction procedures. Reducing the collections’ sizes is
generally useful to maintain a high significance level, and we do
this independently from a particular phenotype.

Finally, Chapter 6 considers unlabeled data streams and time
series data. Distributional changes or concept drifts are a severe
problem when dealing with time series data [Lu+18]. Supervised
drift detection methods concern changes in the conditional distri-
bution of the label y with respect to the input features X, while
unsupervised drift detection approaches concern only the distribution
of X when the label y is unavailable. In Chapter 6, we focus on
distributional shifts inducing changes in the correlation structure of
multivariate time series; generally, those distributional changes are
hard to visualize within the chaotic behavior of the time series. We
develop a method based on the importance scores from Chapter 4,
here used to obtain a proxy representation of the time series in
terms of its correlation structure, i. e., the slidSHAP series. The
slidSHAP series makes concepts visually detectable, and, using
univariate statistical tests on its univariate dimensions, we can for-
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mally confirm their hypothetical localization. The slidSHAP series
uses the Shapley values as time-dependent functions, thus consider-
ing the changes in the correlation structure along the passing time.
By using a correlation-based approach to create the slidSHAP
series we were able to overcome the challenges of classical change
point detectors; state-of-the-art change detectors fail to analyze
complex correlation structures among the time series input dimen-
sions, limiting to covariance evaluation studies [Qah+15; AK18]
and often missing the complex multivariate interactions [KMB12;
She+17].

1.1.2 Part II: trustworthiness of methods and evaluations

In Part I, we focus on solutions based on rankings and importance
scores. In Part II, we ask whether the evaluation provided by these
scores and the obtained ordering are trustworthy. A key concept
is the one of consistency, which is related to the trustworthiness
of both methods and evaluations; a consistent method or metric
acts or performs in the same way over time or under the same
conditions. In the relative chapters, we will mathematically define
what “consistency” means for ranking evaluation metrics and
saliency importance scores for time series classification approaches.
Furthermore, we will work with Shapley values by providing
interpretable scores for black-box models, particularly for bagging
models-based unsupervised anomaly detectors.

We briefly introduce our next challenges. Scores and rankings
often go one to one. Scores are usually more informative than
rankings but more challenging to compare, particularly in cases
where the arrays of scores are not characterized by similar scale
or variance. Rankings are broadly spread; they derive not only
from importance scores but also from Recommender Systems (RS)
and Information Retrieval (IR) techniques [AT05; SMR08], feature
ranking and selection approaches [KD22], surveys, and question-
naires where scores for single items are not provided as well as
from (fair) rank aggregation methods [Lin10]. The evaluation of
rankings is particularly challenging, with contradictory evalua-
tions being commonplace. Examples are metrics such as recall@k
and NDCG, both used in feature selection approaches but also in
RS- and IR evaluation. Chapter 8 introduces desirable theoretical
properties for ranking evaluation metrics and provides the mathe-
matical framework underpinning each. Since the state-of-the-art
literature predominantly confines itself to narrow, highly specific
contexts, we raise the metrics from the context-specific require-
ments to a general projection on mathematical group structures,
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namely on symmetric groups. This setup allows us to detach from
specific machine learning contexts and prove some general math-
ematical results on the nature of the single metrics. Symmetric
groups are the most general mathematical structure on which we
could represent rankings, thus explaining our choice.

However, the lack of consistent evaluations, approaches, and
methods is not limited to ranking evaluation metrics. In the first
place, in post-hoc explanations, we often find inconsistent behav-
iors [Kri+22] that mine the trustworthiness of both the methods we
are trying to explain and the explanations themselves. Chapter 9

focuses on time series, a data type where most implemented meth-
ods still lack explanations. Here, attention-based models were re-
vealed to help obtain time-dependent explanations [Kaj+19; Son+18;
Cho+16]; initially implemented for images, attention weights are
used as feature-time importance scores and visualized in saliency
maps. However, treating time windows of data streams as im-
ages and applying computer vision explanation methods remains
questionable. Highly relevant for claiming the trustworthiness of
the methods, two main issues arise when using saliency maps
to explain time series data predictions: the consistency and the ro-
bustness of the obtained explanations. The reported experiments
show that saliency explanation methods for time series classifi-
cation do not satisfy these properties. In images, the semantic
meaning of columns and rows is equivalent, and perturbation
methods through data augmentation processes guarantee consis-
tent behaviors; however, in time series, the time structure makes
time series data semantically different and introduces dependence
among the observations in the various timestamps. We examine
saliency explanations from popularly used approaches on multiple
deep classification models [HS97; Lea+17; Vas+17] and study these
issues on various real-world datasets.

Nevertheless, post-hoc explanations and saliency maps revealed
their utility in interpreting black box models, spotting bugs and
fairness-related issues in machine learning models, communicating
their results, and raising user trust. The proof that these explana-
tions are, in most cases, not perfect and that we need to be cautious
when using them is not sufficient to stop working towards more
accessible methods and explainability in AI. By introducing the
bagged Shapley values in Chapter 10, we propose a use case of
Shapley values as interpretable scores for bagging-based unsuper-
vised anomaly detectors; the importance scores represent the role
of the single input features to the deduction of the corresponding
anomaly score. The particular setup avoids the well-known expo-
nential complexity proper of Shapley values; the bagged Shapley

values are computed in polynomial time.





2
B A C K G R O U N D A N D N O TAT I O N

T his chapter establishes the notions and definitions used
in the thesis and reviews the necessary background. We
begin with the basic definitions of cooperative games and

rankings.

2.1 notation and common symbols

Throughout the work, we use bold capital letters or matrices, calli-
graphic lettersM,N for sets, lowercase Greek letters σ, µ, ν, . . . , for
rankings and lowercase letters a, b, c, . . . for scalars and functions.
Some notable symbols and exceptions to these rules are presented
in Table 2.1 below.

Symbol Description

N a set of players, |N | = N
(N , f ) a game, with set of players N and f as value function
i a player of a game
f the value function of a game
ϕ f (i) Shapley value of player i in a game

∆ f (S , i) the marginal contribution of i to S in the game (N , f )

SN symmetric group over N elements
σ a permutation or ranking σ ∈ SN

ts a time stamp
ws a time window

Table 2.1: Common symbols and notation.

2.2 cooperative games

At least half of the thesis revolves around Shapley values, a concept
derived from Cooperative Game Theory (CGT). We first define
what a coalition game is.

Definition 2.2.1. A cooperative (or coalitional) game is a pair (N , f )
where N is a finite set of players N = {1, . . . , N} and f is a function
over the power set of players P(N ), i.e., f : P(N ) 7→ R.

We refer to f as the value function.

9



10 background and notation

The value function assigns to coalitions (or sets) of players a
real number, and it is usually assumed to satisfy the following
properties:

• f (∅) = 0,

• (non-negativity) f (A) ≥ 0 for any A ⊆ N , and

• (monotonicity) for any A,B ⊆ N and A ⊆ B, f (A) ≤ f (B).

Under the monotonicity assumption, the grand coalition N is the set
assuming the maximum of the value function f . We are interested
in assigning each player his worth; these scores should sum up to
f (N ) and be “fair” concerning the actual value brought by each
player to the coalitions. Among various possibilities, a solution to
this allocation problem is represented by the Shapley values; given
a cooperative game (N , f ) and a player i ∈ N , we indicate the
Shapley values of the player i as ϕ f (i). Furthermore, the Shapley
values are the unique allocations that additionally satisfy

1. the Pareto optimality or efficiency property, i.e., ∑i∈N ϕ f (i) =
f (N ),

2. the null-player or dummy property , i.e., given i ∈ N such that
f (A∪ {i}) = f (A) for each A ⊆ N it holds ϕ f (i) = 0,

3. the linearity property, i.e., given two games (N , f ), (N , g) on
N it holds ϕ f+g(i) = ϕ f (i) + ϕg(i),

4. and the symmetry property, i.e., given i, j ∈ N such that f (A∪
{i}) = f (A∪ {j}) for each A ⊆ N implies ϕ f (i) = ϕ f (j).

The formal definition of Shapley values is as follows:

Definition 2.2.2. Given a coalitional game (N , f ) and a player i ∈ N ,
the Shapley value of i is defined by

ϕ f (i) = ∑
A⊆N\i

1

N(N−1
|A| )

[ f (A∪ i)− f (A)] . (2.1)

We refer to the quantity

∆ f (A, i) = f (A∪ i)− f (A)

as marginal contribution of player i to the subset A, c.f.. Figure 2.1.
Note that each player is part of 2N−1 sub-coalitions of players.

The immediate consequence of the exponential number of subsets
of players available is the computational hardness of Shapley val-
ues; thus, it is often required to substitute the full computation of



2.2 cooperative games 11

A

Figure 2.1: Marginal contribution. Given the value function f and a
set of players A, the marginal contributions of player • to A
is given by f (A∪ •)− f (A).

Shapley values with one of their available approximations [Cam+18;
CGT09; BC21]. Furthermore, common characteristics might char-
acterize players, and the Shapley values guarantee that “similar”
players obtain similar scores. We first explain the phenomenon
using a toy example, but we will return to this argument later in
the thesis.

2.2.1 Glove game

A classic example of a cooperative game is the so-called “glove
game”. Consider the set of players {a, b, c}; a and b are right-hand
gloves, while c is a left-hand glove.

A coalition, i.e., a subset of {a, b, c}, gets 1 as a worth if it contains
a pair of gloves (left + right) and 0 if it does not. A person is wearing
one pair of gloves at a time; therefore, adding more gloves to a
coalition already containing a pair of gloves is useless. We represent
this mathematically – any set of gloves already containing a pair
does not increase its worth when including more gloves. The grand
coalition {a, b, c} contains one pair of gloves, i.e., the pair {a, c} or
the pair {b, c}. Therefore, it has a value equal to 1. Note that the
value function assigns 1 to the grand coalition and 0 to the empty
set. After computing the Shapley values, we find

ϕ f (a) = ϕ f (b) =
1
6

and ϕ f (c) =
2
3

.

Players a and b get the same Shapley values since they are es-
sentially indistinguishable. Shapley values scores do not detect
“redundancy” among a and b. After including one element among
a and b, including the other does not yield any advantages. We



12 background and notation

refer to this similarity among players as redundancy, and we say
that the Shapley values are unaware of redundancy among players.

2.3 rankings

Shapley values are assignments of importance scores to the single
players. Having an array of scores makes ordering the players
in the game an immediate task. In Part II, we deal with ranking
evaluation metrics and the consistency of importance scores for
interpreting time series classification methods.

Rankings are mathematically formalized as elements of symmet-
ric groups.

Definition 2.3.1. The symmetric group SN of a set of elements N =
{1, . . . , N} is the set of the bijective functions from N to N and whose
group operation is the function composition.

In the definition, a fundamental role is played by group theory,
a branch of mathematical algebra that is not part of this thesis. We
refer to the literature for additional insights [Dur08]. Notably, SN
has size N!.

Elements of SN are indicated with Greek letters, e.g., σ, ν, . . ..
Permutations, or rankings, are surjective with respect to the ele-
ments in N ; for each i ∈ N , σ(i) ∈ N indicates the element in
which the item i is sent by the function σ. Coherently, we write
σ ◦ µ to indicate the function composition, i.e.,

σ ◦ µ : N 7→ N
i 7→ σ ◦ µ(i) = σ(µ(i)) ∈ N .

The composition of orderings, as well as the one among functions,
is not commutative, i.e., σ ◦ µ ̸= µ ◦ σ.

In some contexts, we are interested in considering only the top k
elements of the rankings. We use the notation

σ|k = (σ(1), . . . , σ(k))

to indicate the ranking of the first k elements and set(σ|k) is the set
of the first k elements ranked regardless of the ordering.

The cycle decomposition theorem states that each permutation
can be rewritten uniquely as the composition of relatively disjoint
cycles1.

1 A cycle σ = (i1, . . . , iN) is a permutation satisfying σ(ij) = ij+1 for 1 ≤ j ≤ N− 1
and σ(iN) = i1. Two cycles are disjoint if they have no common elements.
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Theorem 2.3.2 (Cycle decomposition theorem). Any permutation σ

on a finite set N admits a cycle decomposition, i.e., it can be expressed as
a product of a finite number of pairwise disjoint cycles.

We use the notation of cycles to indicate a (single) swap, i.e., a
permutation σ = (j k) ∈ SN such that

σ(i) =


j if i = k

k if i = j

i if i ̸= j, k

swapping only the two elements j, k in N , i.e., σ(i) = j if i = k,
σ(i) = k if i = j and σ(i) = i if i ̸= j, k.
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B orn in 1947, Shapley values are a popular concept deriving
from Game Theory. A game is the mathematical formal-
ization of the interplay among intelligent items, i.e., the

players. The aim for the players in a game is to obtain a high payoff,
i.e., to maximize their gains. Players can be egoistic and compete
with each other; their behavior is formalized in the Competitive
Game Theory. The other possibility is presented when players coop-
erate by forming coalitions or teams and aim to achieve high payoffs
for the entire team. The two theories are described in entirely dif-
ferent setups. A key concept in Competitive Game Theory is the
Nash equilibrium that determines the strategy of the single players;
in contrast, in Cooperative Game Theory, a key concept is the attri-
bution to the single players of the teams’ payoffs, where Shapley
values play a fundamental role. Recently, Game Theory has been
applied in computer science. The substantial differences between
the two theories are reflected in the types of applications they
have. We find Competitive Game Theory mostly in reinforcement
learning applications and to represent evolutionary behaviors; Co-
operative Game Theory was introduced in the early 2000s through
the fundamental concept of Shapley values [Sha+53] for feature
selection [CDR05] and interpretable machine learning [LL17].

Shapley values define importance scores for players in a game,
hence admitting that they can ordered with respect to their impor-
tance. Their definition is flexible and straightforward, particularly
adaptable to various scenarios. In computer science, they are mostly
known in interpretable machine learning, where they have been
broadly used; Lundberg et al. [LL17] was one of the pioneering
works that launched them in the community. Shapley values sat-
isfy the need to interpret black-box machine learning models by
explaining single predictions1 by fairly assigning a score to the in-
put’s features representing their relevance to the model output. The
method was then extended to global explanations in future works.
However, interpretable machine learning is not the only field in
which Shapley values are applied. We find them for supervised
and semi-supervised selection of features [CDR05; Pfa+16] and for
the study of single nodes importance in deep and graph neural
networks [DM21]. All the fields in which Shapley values have been

1 SHAP is a local explanation approach.

17
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introduced are characterized by a concrete prediction model and
labeled data; nevertheless, it is non-trivial to define the value func-
tion2 on unlabelled data without relying on model predictions. In
the state-of-the-art literature, an application of Cooperative Game
Theory to the unsupervised world, where data are unlabeled, was
still missing. We face here the challenges of reducing the dimension
of the unlabeled datasets and detecting possible changes in the
correlation structure of unlabeled time series.

In contexts where high redundancy among features might de-
grade the performance of machine learning or statistical techniques,
unsupervised feature selection and concept drift detectors are
based on the inherent properties of unlabeled data. In Chapter 4,
we create Shapley values-based unsupervised feature importance
scores. Mainly focusing on unlabelled tabular data, where columns
and rows represent the features and the samples collected, we in-
terpret each component as a realization of random variables. This
setup allows us to interpret the features as random variables and
define a meaningful value function that measures the correlation
in subsets of features. Then, we transfer these importance scores
to unlabeled time series. Time series are a special data type where
additional information is added, i.e., the time dimension. The
same observables are tracked through the passing of seconds, min-
utes, and days. Predictor models can provide a forecast for future
time stamps within an interval of confidence [MJK15], anomaly
detectors aim to classify unlabeled observations into anomalous
or normal after the training on historical data [Mal+15], concept
drift detectors point out the timestamps (or time windows) where
significant changes in the dependency among labels and input vari-
ables are observed [Lu+18]. Critical and not yet fairly developed
are unsupervised concept drift detectors aiming to detect changes
only happening in the correlation structure of the univariate input
dimensions of the data stream. Chapter 6 introduces the slidSHAP
series, a proxy representation of the data stream’s time-changing
correlation structure. The slidSHAP series represents how the im-
portance scores introduced in Chapter 4 change over time. We use
the slidSHAP series as a visualization tool [LBM22] and actively
detect concept drifts in the data stream [BLM23b].

Highly specific contexts often require ad-hoc solutions. In Bioin-
formatics, Shapley values offered a tool to point out the most
relevant genes to specific phenotypic traits. Thanks to the microar-
ray games [MPB07], Shapley values’ exact computation is efficient
in this particular setup3. We transfer the problem to the unsuper-

2 Each game is defined with the set of players N and the value function f :
P(N ) 7→ R.

3 Shapley values’ exact computation is a proven NP-hard problem.
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vised case, willing to reduce the dimension of collections of gene
sets by first assigning “importance scores” to the gene sets inde-
pendently from the phenotype of interest and finally ranking them
given the computed scores. Chapter 5 presents the methodology as
a preprocessing to classical Gene Set Enrichment Analysis (GSEA)
methods and as a support to obtain reduced dimensions for the
collections of gene sets.

The following three chapters in this part are based on published
work as cited below:

• Chapter 4, “Unsupervised Features Ranking via Coalitional
Game Theory for Categorical Data”, is based on [Bal+22];

• Chapter 5, “Redundancy-aware unsupervised ranking based
on game theory: ranking pathways in collections of gene
sets”, is based on [Bal+23];

• and Chapter 6, “slidSHAPs– sliding Shapley Values for cor-
relation based change detection in time series”, is based on
the works [BLM23b] and [LBM22].

We now proceed with an overview of the related work relevant to
all chapters.

3.1 related work

The conducting strand of Part I are “unsupervised Shapley values”
in various contexts and applications. Each topic touched on is
characterized by specific and distinguished literature. We distin-
guish several categories of the related work: (i) Shapley values in
machine learning and beyond, (ii) unsupervised feature ranking
and selection, (iii) methodologies to handle redundancy collections
of gene sets, and (iv) concept drift and change point detection in
time series.

We give an overview of each field below.

3.1.1 Shapley values in machine learning and beyond

Shapley values have been introduced in machine learning in 2005

by Cohen et al. [CDR05]. The work proposed using the Shapley
values as importance scores to select the relevant features of a
machine learning prediction model. Successively, the method was
transposed to semi-supervised learning [Pfa+16]. In both cases, the
value function was introduced as the trained model’s accuracy or
generalization error. However, the big breakthrough in computer
science was the debut of Shapley values in interpretable machine
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learning. In 2017, SHAP [LL17] was introduced as a straightfor-
ward and interpretable tool to identify the influence of the input’s
features on a black-box model prediction; aware of the compu-
tational complexity of Shapley values, the authors proposed an
inherent approximation method based on the computations of the
gradient of the model predictions. New insights on Shapley values
and their applications continue appearing in the literature [Cat+21].
We additionally find Shapley values explaining anomaly detection
methods [TC20; Tak19b] and, recently, Shapley values started find-
ing applications in time series data [Gui+20; Ben+21b; Ant+21;
Tak19a]; In 2019, some works [Zhe+19; ZK20] introduced the Shap-
ley values for concept drift detection.

Shapley values sound promising for many applications; the flexi-
ble definition explains their extensive use and applications derived
in machine learning [Roz+22]. As a downside, there is the com-
putational complexity of the Shapley values, a proven NP-hard
problem necessitating the use of appropriate approximations4. Sev-
eral approximations exist [CGT09; BC21] and additionally appear
in the state-of-the-art literature [CKL22], but the problem is only
partly solved. The issue decelerated the development and applica-
tion of Shapley values in high-dimensional contexts. However, in
some applications [MPB07] and game constructions 5, they can be
computed in polynomial time.

3.1.2 Feature importance scores and unsupervised feature selection ap-
proaches

Feature selection methods look for selecting features relevant to
the task at hand, thus reducing the dimensionality of the data
that needs to be handled. Many approaches first compute fea-
ture importance scores and then rank the features based on them.
Feature importance scores are the results of analyzing relation-
ships among features, the class label, and the correlation among
variables [VE14a]; Shapley values have been used as feature impor-
tance scores [Pfa+16; CDR05] for supervised selection. However,
these scores are unaware of correlations among variables [She+17],
thus leading to a necessary integration of a redundancy awareness
concept.

In recent years, unsupervised feature selection methods have
raised strong interest in the community [SCM20; WTL15; Li+17]. As
a representative sample within the vast number of unsupervised
feature selection methods, we find UDFS [Yan+11] that creates

4 The value function f needs to be an exponential number of times as a function
of the number of players.

5 Examples are the airport games, the SOUG games, and the microarray games.
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pseudo-labels to perform a selection of features in unlabelled data;
MCFS and NDFS [CZH10; Li+12] that focus on keeping the clus-
tering structure; LS [HCN05] that selects features by their local
preserving power; and PFA [Lu+07], that tries to eliminate the
downside of PCA while keeping the information within the data.
Most of these algorithms tend to select features as a by-product of
retaining a clustering structure in the data. Finally, PFA [Zhu+19]
is meant to select only non-redundant variables using a new defi-
nition of distance in the k-nearest neighbors approach.

3.1.3 Collections of gene sets- challenges and methods

Collections of gene sets are arbitrarily derived from the biological
function of the gene sets, leading to high-dimensional and overlap-
ping families of sets [Lib+15]; these collections are usually available
on public databases. Two main challenges are evident from the
setup: first of all, often, there is no apparent agreement among the
various online databases [Sto+18], and secondly, the large sizes of
the collections hinder the interpretability and maneuverability in
their use, particularly for GSEA. In the state-of-the-art literature,
several proposals tried to solve the mentioned challenges. Some
visual tools mitigate the lack of interpretability by visualizing the
redundancy among the gene sets and among the collections, while
other tools propose modifying the gene sets and merging them to
obtain a higher agreement among databases and non-redundant,
single and unified collections of gene sets [Bel+15; Ier+08; Dod+12].
Although practically useful, visual tools do not solve the funda-
mental issues, and modifying the gene sets potentially contrasts
with the biological meaning of the collections themselves.

The collections of gene sets are fundamental for GSEA. We recall
Enrich [Che+13; Kul+16; Xie+21] among the enrichment analysis
tools. The GSEA methods commonly aim to assess potential over-
or under-representation in biological contexts of specific genes.

Methods such as [Sub+05; Mat+18] rely on statistical tests, e.g.,
the Fisher exact test, requiring correction for multiple hypothesis
testing; given the high dimensions of the collections of gene sets,
the number of statistically significant gene sets is shrunk to the
bottom, thus cutting out potential important gene sets because of
the low threshold. Notably, using Bonferroni correction [BH95],
the level of significance α is inverse-proportional to the size of
the collections, e.g., α

n , where n is the number of gene sets in the
collection.
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3.1.4 Concept drift detection

Time series data might suffer from distributional changes that can
hinder prediction models, anomaly detectors, and other machine
learning or statistical methods trained on historical data. We find
two types of drifts in time series data, depending on whether they
involve the distribution of the labels and the input variables or only
the univariate dimensions. The second type can also be observed
in unlabeled data.

Concept drift and change point detectors are specific to one of
these scenarios. Common examples of supervised concept drift
detectors are offered by Halstead et al. [Hal+21] and Gama et
al. [Gam+04], while an overview of unsupervised concept drift
detector methods is given in [Gem+20]. Concept drift detectors
often rely on a two-step procedure, i.e., (1) they create a new time
series representation, then (2) they detect changes over the repre-
sentations; however, the first step is optional, as the detection can
often be performed on the original data. Among representation
methods, we find [BG07; CMO16; Cos+17]; other approaches are
based on meta-information vectors [Hal+21]. Typically, the detec-
tion step is performed by comparing the current data distribution
with a reference historical data buffer, where some approaches mea-
sure the distributional discrepancy between data in different time
periods [DP11; Das+06]. Qahtan et al. [Qah+15] propose to track co-
variance changes in a transformed artificial low-dimensional space
obtained by applying PCA on the time series. To overcome the sim-
plificist approach in [Qah+15], [AK18] uses mean and covariance
to represent the concepts in multivariate data streams. However,
the state-of-the-art literature still did not grab the complexity of all
correlations among univariate dimensions; thus, the correlations
among sets of univariate dimensions are still potentially meaning-
ful to detect changes in unlabeled data streams.
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U N S U P E RV I S E D F E AT U R E S R A N K I N G V I A
C O A L I T I O N A L G A M E T H E O RY F O R
C AT E G O R I C A L D ATA

M any algorithms suffer from the curse of dimensional-
ity. As a result, reducing the features in the data to a
smaller set is often of great utility in disparate contexts,

e.g., to increase the interpretability or reduce the runtime of the al-
gorithms. Feature selection aims to reduce the number of features,
often using feature importance scores to quantify the relevance of
single features to the task. Shapley values helped in supervised
contexts, where the importance of the variables could be directly
quantified for specific predictions, and the scores were directly
applied to select “important” features [Pfa+16; CDR05]; the value
function was defined as the accuracy or the generalization error of
the trained model. Unfortunately, the approaches based on Shapley
values are limited to labeled data where the shared information
among predictors and labels can be directly quantified [VE14b].
Unfortunately, not all real-world data are labeled; when labels are
unavailable, obtaining them is either impossible or extremely costly.
For the unsupervised case, an appropriate value function to plug
in the Shapley values can only rely on the probability distribution
of variables and the quantification of their interactions.

We propose the first synergy between Shapley values and un-
labeled data and use Shapley values as feature importance scores
to rank the feature with respect to the information they contain.
The scores directly represent the contribution of single features in
explaining the datasets’ structures. We find the basis in Information
Theory, from which we take the notion of information conveyed
by a feature. The use of the total correlation as a value function
allows for quantifying higher-order interactions among features,
while the Shapley values allow for aggregating these measures as
unique importance scores. Additionally, our feature importance
scores include a notion of redundancy awareness, making them
a tool to achieve redundancy-free feature selection. The previous
literature, mainly investigating anomaly detection and clusters,
either failed to address the redundancy-elimination issue [She+17]
or could not return importance scores for single features [Zhu+19].

Most unsupervised selection methods focus on keeping the orig-
inal clustering structure of the data, e.g., MCFS and NDFS [CZH10;
Li+12], or focus on selecting features dependently on their local

23
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preserving power [HCN05]. Some methods use basic, well-known
approaches to study the unlabelled data and obtain an unsuper-
vised selection of features; PFA [Lu+07] is constructed based on
the principal component analysis PCA, while PFA [Zhu+19] on the
definition of the k-nearest neighbors, with an additional constraint
based on the correlation among data points. Finally, a different
current of works focuses on first creating pseudo-labels, i.e., assign-
ing a label to each data point; adding pseudo-labels transforms
an unlabelled dataset into a labeled one, thus allowing the use of
the most commonly used supervised feature selection approaches.
However, none of the previously proposed unsupervised feature
selection methods offer direct scores for evaluating the value of the
single features. Furthermore, they are either too simple to grab the
whole data structure (e.g., pairwise correlations) or too complicated
to be directly interpretable (e.g., pseudo-labels).

Conversely, our total correlation-based Shapley values offer fea-
ture importance scores that are easily accessible for further analysis.
As already remarked, however, Shapley values are well known to
be computationally expensive. Their exact computation requires 2N

evaluations of a value function where N is the number of players.
The computational complexity of these scores makes their applica-
tion unfeasible as soon as the number of players increases. Several
approximations appeared in the literature, and an easy solution to
reduce the computational runtime of Shapley values is represented
by Castro et al. [CGT09] approximation, i.e., the most common
Shapley values’ approximation that does not rely on additional
assumptions on the players. In the next chapter, we will use it to
accelerate the computation of Shapley values.

In conclusion, our main contributions can be summarized in the
following points:

1. we state the possibility of unconventionally using Shapley
values as unsupervised feature scores;

2. we derive an unsupervised feature ranking and selection
method, lowering the redundancy among features retained
while maximizing the coverage of information originally
contained in the data.

4.1 feature importance measures

Consider a N-dimensional unlabeled dataset containing D in-
stances. We interpret each dimension as the realization set of a
random variable, refer to the set of variables as N = {X1, . . . , XN}
and to each dimension Xi as ith feature or variable. Supervised
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feature selection methods often assign internally to subsets of fea-
tures an importance score and output that subset that maximizes
the mentioned score. We propose to rank features considering their
average contribution to all the possible subsets of features in our
unsupervised setting. The higher the average contribution of a
feature is, the more convenient it is to keep it within the selected
features. Additionally, we will introduce redundancy awareness in
these scores.

Given a function f that assigns a value to each subset of features,
it is not trivial to assess the importance of single features as each
feature belongs to 2N−1 subsets of features. Shapley values offer
summary scores representing the values of the features in the task
at hand; we recall that, in unsupervised contexts, the usefulness of
features is often related to the correlation structure or clustering
properties of the unlabeled data points. Therefore, throughout the
chapter, we stick to a value function f that captures the maximal
information contained in the data. We then compute the Shapley
values feature importance scores and obtain a ranking prioritizing
features highly correlated with the rest of the dataset.

4.1.1 Feature importance scores

We obtain feature importance scores using the fundamentals of
Coalitional Game Theory. As explained in Section 2.2, each game
is fully represented by the set of players N and a set function
f . Each subset A ⊆ N is mapped to f (A) ∈ R where f is the
value function; we assume f satisfies the usual monotonicity and
non-negativity properties.

Working with unlabelled data, we can not rely on ground truth
labels. Hence, we define a value function relying on intrinsic prop-
erties of the dataset; we opt for a value function measuring the
independence of the features in A ⊆ N . One possible initialization
for f is the “total correlation”, a concept deriving from Information
Theory.

Definition 4.1.1. The total correlation C of a set of variables A ⊆ N
is defined as

C(A) = ∑
X∈A

H(X)− H(A). (4.1)

H(A) is the Shannon entropy of the subset of discrete random variables
A, i.e.,

H(A) = − ∑
x⃗∈A

PA(x⃗) log PA(x⃗) (4.2)
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where PA() is the joint probability mass function of thr random vriables
in A. Finally, H(X) is the Shannon entropy of a unique random variable
X, i.e.,

H(X) = − ∑
x∈X

PX(x) log PX(x). (4.3)

We choose the total correlation as it satisfies the monotonicity
and non-negativity properties, and it can be easily extended such
that it satisfies f (∅) = 0; furthermore, it has an intuitive meaning.
Shannon entropy [Cov99] measures the uncertainty contained in a
random variable X considering how uniform data are distributed:
its value is close to zero when its probability mass function PX
is highly skewed while, as the distribution approaches a uniform
distribution, its value increases. Moreover, the Shannon entropy
is a monotone non-negative function and can be extended such
that H(∅) = 0. We assume all features in N are discrete as the
extension of Shannon entropy to continuous variables is not mono-
tone [LR78]. As a consequence of Shannon entropy’s properties,
the total correlation C(A) is close to zero if the variables in A are
independent, and it increases when they are correlated. To study
the impact of adding a feature Y to A ⊆ N , we compute the value
function of the incremented subset f (A∪Y) and compare it with
f (A). The difference

f (A∪Y)− f (A) = H(A) + H(Y)− H(A∪Y)

is non-negative and measures how much A and Y are correlated.
The quantity H(A) + H(Y)− H(A∪Y) is the marginal contribu-
tion of Y to A as defined in Chapter 2; if A and Y are independent,
then the marginal contribution of Y to A equals zero. Vice versa,
the marginal contribution grows the stronger the correlation be-
tween Y and A is. As importance score, we assign to Xi the average
of its marginal contributions, and we indicate it as ϕ(Xi), i.e.,

ϕ(Xi) = ∑
A⊆N\Xi

1

N(N−1
|A| )

[H(A) + H(Xi)− H(A∪ Xi)] (4.4)

corresponding to the Shapley value of the player Xi in the game
(N , f ) when f is the total correlation (cf. Equation (2.1)); we drop
the notation of the Shapley values with f for readability. We under-
line that Shapley values represent a fair (in the sense of individual
fairness) assignment of resources to players based on their contri-
butions to the game. We use the scores ϕ(Xi) to rank the features
in the dataset N ; however, Shapley values do not consider redun-
dancies and, as a consequence of the individual fairness, linearly
dependent features obtain equal Shapley values.
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Figure 4.1: Shapley values consider interactions within all possible play-
ers Xis. Here, each bullet represents a player, and the same
coloring highlights players similarly characterized.

4.1.2 Importance scores of low correlated features

As we have already underlined, correlated features are charac-
terized by similar Shapley values. We use a dataset with three
sets of correlated features, color-coded in Figure 4.1. The aim is
to select features from subsets with different colors; however, the
highest Shapley values may be obtained by correlated features, i.e.,
features with the same colors. Before addressing the problem of
redundancy-awareness inclusion in Shapley values, we show that
the Shapley values rank features that are not correlated with the
rest of the dataset in low positions.

Theorem 4.1.2. Given a subset of features B ⊂ N that satisfies the
following properties

1. for all Xj /∈ B and for all A ⊆ N \ {Xj},

H(A) + H(Xj) = H(A∪ Xj)

2. for all Xi ∈ B and for all A ⊆ N \ {Xi},

H(A) + H(Xi) ≥ H(Xi ∪A)

then ϕ(Xi) ≥ ϕ(Xj) for all Xi ∈ B and Xj /∈ B.

Proof. From 1 we know that, since the marginal contribution of
Xj /∈ B to any A ⊆ N \ {Xj} is equal to zero,

ϕ(Xj) = ∑
A⊆N\{Xj}

1

N(N−1
|A| )

· 0 = 0.
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Algorithm 1 Pseudo-code. The svfs algorithm.

1: procedure svfs(set of features N , parameter ϵ)
2: S = ∅
3: while N ̸= ∅ do ▷ till we did not empty N
4: while X ∈ N do
5: if H(X) + H(S)− H(S , X) > ϵ then
6: N = N \ X
7: end if
8: S = S ∪ arg maxX∈N {ϕ(X)}
9: N = N \ S

10: end while
11: end while
12: end procedure
13: S ▷ the algorithm returns the set of selected features S

Furthermore, for any Xi ∈ N and A ⊆ N , we know that H(A∪
Xi) ≤ H(A) + H(Xi) from Shannon entropy’s properties [Cov99].
Hence, all marginal contributions are non-negative. Hence, ϕ(Xi) ≥
0 = ϕ(Xj) for all Xi ∈ B and Xj /∈ B.

This concludes the proof.

Thus, Shapley values are non-negative and equal to zero if and
only if the feature is non-correlated with any subset of features
when using total correlation as a value function. Moreover, features
highly correlated with other subsets of features get high Shapley
values.

4.2 redundancy removal

As a second step, we address the challenge of adding redundancy
awareness to Shapley values. For this purpose, we develop a prun-
ing criterion based on the total correlation and greedily rank fea-
tures to get a redundancy-free ranking while still looking for fea-
tures with high Shapley values. Based on this ranking, our feature
selection method selects the variables ranked first by Shapley val-
ues, which show little dependencies.

We propose two algorithms. The Shapley value Feature Selection
(svfs) needs a parameter ϵ representing the correlation among
features that we are willing to accept; hence, svfs requires some
expert knowledge of the dataset to specify the parameter ϵ in a
suitable interval. The Shapley value Feature Ranking (svfr) works
automatically with an included notion of redundancy. The two
algorithms lead to consistent results as shown in Section 4.4.5. Both
algorithms select the highest-ranked feature at each step among
the ones left.
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Algorithm 2 Pseudo-code. The svfr algorithm.

1: procedure svfr(N )
2: S ← arg maxX∈N {ϕ(X)}
3: ordered← [ ]
4: ordered[0]← arg maxX∈N {ϕ(X)}
5: j = 1
6: N ← N \ S
7: while N ̸= ∅ && j < N do ▷ till we did not empty N
8: for X ∈ N do
9: rk(X) = ϕ(X)− H(X)− H(S) + H(S , X)

10: end for
11: ordered[j]← arg maxX∈N {rk(X)}
12: S ← S ∪ arg maxX∈N {rk(X)}
13: N ← N \ S
14: j ++
15: end while
16: end procedure
17: ordered ▷ the algorithm returns the array of ordered features

In both algorithms, svfr and svfs, we use a total correlation-
based pruning criterion; H(A) + H(X)− H(A∪ X) represents the
strength of the correlation among a random variable X and a set
of random variables A. It is equal to zero if and only if X and A
are independent.

svfs’s inputs are the set of unordered features N and the param-
eter ϵ > 0; the parameter ϵ, representing the maximum correlation
that we are willing to accept within the set of selected features,
plays the role of a stopping criterion. Whenever ϵ is high, we end
up with the ordering given by Shapley values alone; instead, for
ϵ ≈ 0 the criterion can lead to the selection of the only features
that are uncorrelated with the first one. The optimal range of ϵ

highly depends on the dataset. We show that svfs is robust with
respect to the choice of ϵ. At each iteration, svfs excludes from
the ranking the features Xs that are correlated with the already
ranked features S ⊆ N more than ϵ, i.e.,

H(X) + H(S)− H(S , X) > ϵ,

computes the Shapley values of all remaining features X and adds
to S the feature whose Shapley value is the highest. When no
features are left, it stops and returns S .

svfr takes as an input N and outputs a feature ranking with-
out additional parameters. The ranking is aware of correlations
as each of the Shapley values ϕ(X) is penalized using the corre-
lation measure H(X) + H(S) − H(X ∪ S) where S is the set of
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already ranked features, and Xi is a new feature to be ranked.
This algorithm provides a complete ranking of features and can
be prematurely stopped, including an upper bound of features
we are willing to rank. The absence of the additional parameter
ϵ is the main advantage of svfr over svfs. The pseudo-codes of
the algorithms are represented in Algorithm 1 and Algorithm 2

respectively.

4.3 scalable algorithms

The size of P(N ) being exponential in N, computing Shapley
values involves 2N evaluations of the value function. We use ap-
proximated Shapley values to obtain scalable versions of svfr and
svfs. We implement three versions of the algorithms that differ
only in the computations of Shapley values used:

• the “full algorithm” uses the full computation of the Shapley
values;

• the “bounded algorithm” considers only subsets up to size k
fixed to compute the Shapley values;

• and the “sampled algorithm” uses the approximation pro-
posed by Castro et al. [CGT09] based on n random sampled
subsets of features.

The time complexity for the sampled algorithm is O(D · n), for
the bounded algorithm is O(D · Nk) while for the full algorithm is
O(D · 2N) where N is the number of features and D the number
of samples in the dataset.

4.4 experiments

We show that our feature ranking method outperforms competing
representative feature selection methods in terms of redundancy
reduction. Metrics such as NMI, ACC, and redundancy rate are of-
ten used in the previous literature to evaluate unsupervised feature
selection methods. NMI and ACC focus on the cluster structure in
the data; as svfs and svfr are not optimizing for retaining the
clustering of the data, we compare our methods with the compet-
ing methods using the redundancy rate. The redundancy rate of
S ⊆ N is defined in terms of pairwise Pearson correlations, i.e.,

Red(S) = 1
2m(m− 1) ∑

X,Y∈S ,X ̸=Y
ρX,Y (4.5)
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UDFS ✗ ✓ ✗ ✓ ✓

MCFS ✗ ✓ ✗ ✓ ✗

NDFS ✗ ✓ ✗ ✓ ✗

SPEC ✓ ✓ ✗ ✗ ✗

LS ✓ ✓ ✗ ✗ ✗

PFA ✓ ✗ ✗ ✓ ✗

FSFC ✗ ✗ ✓ ✓ ✗

our ✓ ✓ ✓ ✓ ✓

Table 4.1: Summary table. Competing methods and our proposed
method.

where ρX,Y ∈ [0, 1] is the Pearson correlation of features X and Y.
It represents the averaged correlation among the pairs of features
in S . It varies in the interval [0, 1]: a redundancy rate close to 1
shows that many selected features in S are strongly correlated.
At the same time, a value close to zero indicates that S contains
little redundancy. In the experiments, we use the redundancy rate
as evaluation criteria, re-scaling it to the interval [0, 100] via the
maximum pair-wise correlation to facilitate the comparison among
different datasets.

4.4.1 Datasets and competing methods

We show comparison against significant unsupervised feature selec-
tion approaches, i.e., SPEC [ZL07], MCFS [CZH10], UDFS [Yan+11],
NDFS [Li+12], PFA [Lu+07], LS [HCN05] and FSFC [Zhu+19].
Table 4.1 illustrates a summary of the properties of the various
methods analyzed in comparison with our approach.

We use various synthetic and publicly available datasets:

• the Breast Cancer dataset [ZS88],

• the Big Five Personalities Test dataset1,

• and the FIFA dataset2.

Generally, we consider subsets of the full dataset to apply the
full versions of the algorithms and investigate the performance of
the approximations of svfr and svfs at the end of the section.

1 Available at kaggle.com/BigFivePersonalitiesTestDatset
2 Available at kaggle.com/FIFA21dataset

https://www.kaggle.com/tunguz/big-five-personality-test
https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset?select=players_20.csv
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NDFS 36.30 22.11 20.75 18.97 1.49

MCFS 20.26 23.59 18.79 20.63 3.74

UDFS 33.59 28.13 35.18 57.73 4.06

SPEC 13.89 39.09 21.46 42.14 29.4
LS 7.05 28.83 58.25 48.28 100.00

PFA 5.10 23.22 34.28 57.42 35.84

PFA 8.74 22.64 20.99 36.45 2.12

svfr 6.68 15.65 18.02 14.79 1.51

Table 4.2: Redundancy rate evaluation. Redundancy rates of the three
selected features using the competing algorithms and svfr on
different datasets. The lowest rates are highlighted .

The datasets are all categorical or discrete. The first 50 features
in the Big Five dataset are the categorical answers to the person-
ality test’s questions and are divided into 5 personality traits (10
questions for each personality trait). We select questions from dif-
ferent personalities to apply the full algorithm and restrict to 10000
instances. We consider the 5000 highest-rated players for the FIFA
dataset by the overall attribute.

4.4.2 Redundancy awareness

We compare the feature selection results of our algorithm against
the competitors by evaluating the redundancy rate in Table 4.2. For
the FIFA dataset, we select 15 features from the entire data that
characterize the “agility”, “attacking” and “defending” skills of the
football players; we keep the whole datasets for Breast Cancer and
synthetic data. In the case of the Big Five Personalities Test dataset,
we select respectively 5 questions from three different personality
traits for the balanced dataset and 9 features from one trait, and
3 from other two personality traits in the case of the unbalanced
dataset. To avoid bias towards the random selection of personality
traits and features in the Big Five data, we average the redundancy
rate over 30 trials on randomly selected personalities and variables
both in the case of the balanced and unbalanced setup.

In each column, bold characters highlight the lowest redundancy
rate. We use svfr to rank the features and select the three highest-
ranked features. Consequently, we specified the parameters of the
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Figure 4.2: Barplot of Shapley values and feature selections. Results
given by svfs (ϵ = 0.3) for the Big Five dataset restricted to
10 features. Different personality traits are color-coded.

competing methods in order to get a selection of features as close
to three features as possible. We use for FCFS, we set k = 4 for the
BC dataset; k = 8 for the FIFA dataset; k = 8 for the synthetic data;
for Big Five dataset, we use different k at each re-run such that
the number of selected variables varies between 2 and 5 and then
we average the redundancy rates. Finally, for NDFS, MCFS, UDFS,
and LS, we used k = 5 (k being the number of clusters in the data);
for the other competitors, we specified the number of features to
be selected.

Table 4.2 illustrates that svfr outperforms the competing meth-
ods in nearly all the cases. In particular, while svfr achieves low
redundancy rates in all datasets, the competing algorithms show
big differences in performance in the various datasets. On the
Breast Cancer data and the synthetic dataset, respectively, PFA
and NDFS slightly outperform svfr. However, they do not keep
an average low redundancy rate on the other datasets. For repro-
ducibility, we make the code on GitHub publicly available3.

4.4.3 Relevance of unsupervised feature selection and effectiveness

In Figure 4.2, each plot corresponds to a subset of features of
the Big Five dataset, i.e., 10 features selected from three different
personality traits. Running svfs with ϵ = 0.3 we detect correlated
features and avoid selecting them together as shown in the plots.
Using the scaled versions of our algorithms from Section 4.3 we
can extend the approach towards the complete Big Five dataset.

Figure 4.3 represents the Shapley values of features in a 12 di-
mensional synthetic dataset where subsets of correlated features
are color-coded. We measure the ability of the algorithm to select

3 Code available at chiarabales/unsupervised_sv

https://github.com/chiarabales/unsupervised_sv
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Figure 4.3: Unsupervised Shapley values-based feature importance

scores. Correlated subsets of features are color-coded; fea-
tures selected by svfs with ϵ = 1 are in red color.
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Figure 4.4: Shapley values for Breast cancer data. in green, the or-
dering of features’ selection by svfs when ϵ = 0.5.

features from different subsets of correlated features; svfs selects
one feature from each subset of correlated features. In particu-
lar, when ϵ = 1, svfs achieves this goal by selecting { f8, f7, f3}
while the ranking given by the Shapley values alone is { f8, f10, f11}
which belong to the same subset of correlated features. This nicely
underlines the inability of Shapley values to detect correlations
and the necessity of integrating correlation awareness to perform a
feature selection.

4.4.4 Interpretation of feature ranking

We apply svfs when ϵ = 0.5 to the Breast Cancer dataset. In
Figure 4.4, the resulting Shapley values and the ordering of selected
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Figure 4.5: Redundancy rates of the selected features’ sets as a function
of ϵ for svfs (bullets points connected by the dashed line)
and for 3, 4, and 5 selected features when using svfr.

features are displayed. The selection resulting from svfs shows
a low redundancy rate while the selected features (e.g., the size
of the tumor, age, and the number of involved lymph nodes) are
clearly in line with domain knowledge on risk factors for disease
progression (label). Furthermore, the comparison with the ranking
without redundancy awareness nicely highlights the importance of
our approach to avoid redundancies when possible.

4.4.5 Comparison among the proposed algorithms

In Figure 4.5, we plot a comparison among svfs and svfr with
respect to the redundancy rate on three datasets with different
values of ϵ. As benchmarks, we use for svfr the selection of 3, 4,
and 5 features, respectively, while for svfs, ϵ varies in the interval
[0, 1.4] with steps of size 0.1.

Using the number of features as a stopping criterion in svfr

would produce consistent results for svfs: as an example, using the
breast cancer data the ranking given by svfr, i.e., [2, 0, 4, 6, 8, 5, 1, 3],
is consistent with the selection given by svfs respectively using
ϵ = 0.2 and ϵ = 0.6, i.e., [2, 0, 8] and [2, 0, 3, 8, 6].

Table 4.3 shows a full comparison among the svfr and svfs on
three representative datasets. We recommend applying svfs when
no previous knowledge of the data is available, and it is hard to
establish an optimal range for ϵ. Vice versa, one could apply svfr

when the expertise in the dataset domain allows determining a
reasonable number of features as a stopping criterion. Observing
the ranking given can provide insights to the non-expert on which
features to keep and which can be discarded for further analysis.
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ϵ Big Five Synthetic Data Breast Cancer

svfs

0.2 [11, 0, 5] [8, 7, 0] [2, 0, 8]
0.3 [11, 0, 10] [8, 7, 2] [2, 0, 4, 6]
0.4 [11, 0, 14] [8, 7, 3] [2, 0, 4, 8, 6]
0.5 [11, 0, 14, 9] [8, 7, 3] [2, 0, 3, 8, 6]
0.6 [11, 0, 14, 5] [8, 7, 3] [2, 0, 3, 8, 6]
0.7 [11, 0, 14, 13] [8, 7, 3] [2, 0, 3, 4, 8, 6]
0.8 [11, 0, 14, 13] [8, 7, 3, 0] [2, 0, 3, 4, 5, 8, 6]

SVFR - [11, 0, 5, 10, 12, 8, 6, 2] [8, 7, 3, 0, 6, 5, 2, 10] [2, 0, 4, 6, 8, 5, 1, 3]

Table 4.3: Rankings by svfs. For various ϵ and first 8 ranked features
by svfr. Features are color-coded in order to simplify the
visualization.
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Figure 4.6: Runtime. Log-log plots of the run-time as a function of the
number of features for the approximated and full svfs (ϵ =
0.5, D = 1000). The full svfs is stopped with 20 features.

4.4.6 Run-time analysis

Due to the full computation of Shapley values, the run-time of
svfr and svfs increases exponentially with the number of fea-
tures as shown by Figure 4.6. Using the approximated algorithms,
this growth turns out to be slower. In particular, when using the
sampled algorithm, the run-time increases only linearly with the
number of features while the growth of the bounded algorithm’s
run-time is polynomial in the number of features. In the additional
material, we show the log-log plot of the run-time for an increased
number of samples in the dataset. For each algorithm, we use
random subsets of the Big Five dataset and average over 10 trails.

We further compare the rankings of the approximated and full
algorithms using the recall@k metric, interpreting rankings of the
full version of svfr as ground truth. We use the Big Five dataset,
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algorithm k = 1 k = 3 k = 5

BI
G

5

random 0.04 0.19 0.33

sampled 0.04 0.37 0.49

bounded 0.08 0.56 0.55

FI
FA

random 0.06 0.24 0.35

sampled 0.00 0.33 0.40

bounded 1.00 0.67 0.80

Table 4.4: recall@k. For k ∈ {1, 3, 5}, recall@k of a random ranking and
the rankings given by svfr using the sampled and bounded
algorithms to the full svfr ranking for 15 features randomly
chosen from the FIFA and Big Five datasets. The best approxi-
mation is highlighted in each column.

randomly selecting 5 questions from 3 different personalities and
average the scores over 100 trails (see Table 4.4). Overall, the results
for the approximated algorithms outperform random ordering –
but still deviate often from the full versions. It is worth noting that
the bounded algorithm using subsets up to size 5 performs better
than the sampled version.





5
R E D U N D A N C Y- AWA R E U N S U P E RV I S E D
R A N K I N G B A S E D O N G A M E T H E O RY: R A N K I N G
PAT H WAY S I N C O L L E C T I O N S O F G E N E S E T S

I n the recent years, we have witnessed an increasing aware-
ness of the importance of understanding data and obtaining
interpretable models in the Machine Learning and Bioinfor-

matics communities. It is often argued that techniques to reduce the
dimensionality of data could increase the maneuverability and, con-
sequently, the understanding of large data. Notably, the Coalition
Game Theory framework led to prosperous developments, where
Shapley values have been extended to feature selection (cf. Chap-
ter 4) and explainable machine learning [LL17]. In Bioinformatics,
importance scores based on Shapley values have been adapted to
study the interaction among genetic and phenotypic characteristics
for gene sets prioritization analysis [Luc+10; Mor+08]. Surprisingly,
these applications are privileged in terms of the usual issue of
computational complexity. In particular, the introduction of mi-
croarray games [MPB07] reduces the computational challenges of
exact Shapley values’ computation to polynomial time; the same
holds whenever the assumption that the game can be written using
only binary relationships is satisfied, e.g., “anomalous” vs. “nor-
mal”, “in” vs. “out” among others. Using microarray games, Sun
et al. [Sun+20] implemented Shapley values to rank genes by their
relevance concerning the individual genes’ synergistic influence in
a gene-to-gene interaction network.

We focus on collections of gene sets, aiming to reduce their size
in an unsupervised fashion; given the multiple label goals charac-
terizing their application, they can be assimilated into an unlabeled
setup. In Genetics, gene sets, or pathways, are grouped in collec-
tions concerning their biological function, leading to the birth of
several collections of gene sets’ databases. These high-dimensional,
overlapping, and redundant families of sets [Lib+15] preclude
immediate maneuverability and a straightforward interpretation
of the biological meaning and the bioinformatic technologies ap-
plied to them. The overlaps among pathways in collections of
gene sets are a well-known problem: biologically, genes participate
in numerous pathways representing various biological processes.
On the one hand, techniques exist to aggregate overlapping gene
sets to create larger pathways. Stoney et al. [Sto+18] point out
the lack of agreement among the various collections of gene sets’

39
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databases and proposed methods to aggregate them, maximizing
the gene coverage and not altering the gene sets themselves. Sadly,
this method does not apply to inter-database applications, and
including information on the interactions among gene sets within
the single collections has yet to be tackled in the literature. On
the other hand, some recent solutions proposed tools for visual-
izing redundancy among pathways, merging gene sets based on
their similarity, and integrating them into a non-redundant single
and unified pathway [Bel+15; Ier+08; Dod+12]. While aggregation
methods could partly solve the problem of the large size of the
collections, modifying biological pathways is hardly justifiable in
this biological context; hence, the results that have been proposed
so far have proved to be insufficient.

We aim to order and select gene sets from the collections of gene
sets independently from any prediction goals, i.e., in an unsuper-
vised fashion. We use Shapley values, thus relying on theoretical
properties of fair allocation of resources, and propose a method
to rank sets within a family of sets based on the distribution of
the singletons and their sizes. We obtain sets’ importance scores
by implementing microarray games without incurring the typical
exponential computational complexity. Moreover, we address the
challenge of constructing redundancy-aware rankings where, in
our case, redundancy is a quantity proportional to the size of in-
tersections among the sets in the collections. We use the obtained
rankings to reduce the dimension of the families, therefore show-
ing lower redundancy among sets while still preserving a high
coverage of their elements.

We evaluate our approach for collections of gene sets and ap-
ply GSEA techniques to the now smaller collections. One of the
main applications of collections of gene sets is enrichment analyses,
e.g., the assessment of the potential over-representation or under-
representation of the analyzed genes in specifically biologically an-
notated gene sets via Fisher tests and the GSEA algorithm [Sub+05;
Mat+18]; among the enrichment analysis tools, we recall Enrich
[Che+13; Kul+16; Xie+21], a web-based tool that provides various
types of visualization summaries of collective functions of gene
lists. GSEA methods perform a statistical test for each gene set in
predefined collections in relation to single phenotypic traits. Due
to the multiple hypothesis tests setup and the overlap among path-
ways, genes belonging to several pathways are tested several times;
hence, the multiple testing naturally quickly becomes a major chal-
lenge [DVL08; Nob09] in high-dimensional collections. Among
the various multiple test corrections, we recall the Bonferroni cor-
rection and the less conservative false discovery rate FDR [BH95;
BY01]. As expected, reducing the high dimensionality of collections
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of gene sets could increase their maneuverability and interpretabil-
ity, as well as the statistical power retained after correcting for
multiple tests. In the classical supervised setup, selecting gene sets
from these collections is possible only once the phenotypic trait
for which we are willing to test has been fixed. On the contrary,
our unsupervised approach allows for unremarkable differences
in the number of significant gene sets for specific phenotypic traits,
and the number of statistical tests performed can be drastically
reduced.

In summary, our contributions can be summarized in the follow-
ing points:

1. we propose unsupervised gene sets’ importance scores based
on the distribution of genes;

2. the defined setup solves the problem of the exponential com-
putational complexity of Shapley values representing the
family through a binary schema;

3. we show that the dimensionality-reduced collections are char-
acterized by similar statistical significances for GSEA appli-
cations.

5.1 methods

In this section, we first introduce some basic notions of Coalitional
Game Theory (CGT) and highlight some definitions we will use.
An introductory toy example, e.g., the “glove game”, for these
rather abstract concepts can be found in Section 2.2.1.

5.1.1 Cooperative Game Theory

We introduced the basics from CGT and Shapley values in Section 2.
We refer to Coalitional Games using the usual notation (N , f ).

As already stated, the exact computation of Shapley values be-
comes infeasible as the number of players N increases. Recalling
the definition of Shapley values from Equation (2.1), i.e.,

ϕ f (i) = ∑
A⊆N\i

1

N(N−1
|A| )

[ f (A∪ i)− f (A)] , (5.1)

it is evident that the value function needs to be computed 2N times.
Due to the exponential complexity, computational problems arise
when the number of players increases. However, one particular
class of games, the Sum-Of-Unanimity Games (SOUG) [Sha+53],
admits a polynomial closed-form solution, and microarray games
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are a special case of SOUG games. First, we will give a brief
introduction to SOUG.

5.1.2 Sum-Of-Unanimity Games (SOUG)

Consider a set of players N and a coalition T ⊆ N ; we can define
the associated unanimity game uT by

uT (S) =

1 if S ⊆ T

0 otherwise
for any S ⊆ N .

It can be proved that given any cooperative game (N , f ), the value
function f can be written as the linear combination of unanimity
games in a unique way, i.e.,

f (·) = ∑
T ∈P(N )

λT ( f )uT (·),

where λT ( f ) ∈ R are called unanimity coefficients and are deter-
mined by the formula

λT ( f ) = ∑
S∈P(N )

(−1)t−s f (S).

As we see, the computation of λT ( f ), as well as the one of ϕ f (i)
becomes intractable if N increases.

On the other side, the SOUG allows for polynomial time compu-
tation of Shapley values. In particular, the computation in terms of
the unanimity coefficients λT ( f ) is reduced to

ϕ f (i) = ∑
T ⊆N\{i}

λT ( f )
|T |

for each player i in N .
It can be proven that any cooperative game (N , f ) has a unique

formulation as a sum of unanimity games. However, finding the
equivalent SOUG of a game (N , f ) is computationally equivalently
hard as computing the Shapley values. Using SOUG brings the
essential advantage of polynomial run-time when dealing with big
families of sets, e.g., gene sets and pathways.
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5.1.3 Microarray games

Let us consider N = {P1, . . . , PN} the set of players; each Pi ∈ N
is a set of elements and N , i.e., the set of players, is a family of sets.
We denote with

G = {g ∈ Pi | Pi ∈ N} =
⋃

i∈{1,...,N}
Pi

the elements belonging to at least one set Pi and M = |G|. Starting
from N and G, we build a binary matrix B ∈ {0, 1}N×M where
Bij = 1 if gj ∈ Pi and Bij = 0 otherwise. Transposing the definition
given by Moretti et al. [MPB07], for each element gj ∈ G, we look at
the set of sets in which gj is present; we call this set the support of
gj and denote it with sp(gj). Mathematically, we obtain the support
of gj from the matrix B. The information about gj is conveyed by
the column Bj of B, and, by abuse of notation, we write sp(gj) or
sp(Bj) interchangeably. We define sp(Bj) as the set

sp(Bj) = {Pi ∈ N | Bij = 1}
= {Pi ∈ N | gj ∈ Pi},

i.e., the set of the sets containing gj. The microarray game is then
defined as the cooperative game (N , f ∗) where, for each T ⊆ N ,

f ∗(T ) = |Θ(T )|
|G| =

|{gj ∈ G | sp(gj) ⊆ T and sp(gj) ̸= ∅}|
|G| .

(5.2)
Here the adapted value function f ∗ computes the ratio between
the number of genes’ supports that T contains and the number
of elements in G. As |G| is fixed, we can simply say that f ∗(T )
is proportional to the number of supports contained in T ; higher
scores are achieved by sets covering the full distribution among
sets of a high number of elements.

Following Sun et al. [Sun+20], we can easily express the value
function as a linear combination of unanimity games where each
column is interpreted as a unanimity game. Using this formulation
of the value function, the computation of Shapley values is reduced
to polynomial time.

5.1.4 Computation of Shapley values and definition of the game

As discussed in Chapter 4, Shapley values are a common solution
to assign fair scores to players within a cooperative game. How-
ever, they show an inherent problem: redundant players get similar
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scores, thus implying that they are ranked in close positions. The
“glove game” example in Section 2.2.1 clearly illustrates the prob-
lem. To solve this, we integrate a redundancy-awareness concept
into Shapley values to rank players, taking possible overlapping
among them into account. In particular, the player ranked at the
(i + 1)-th place should be the least overlapping possible with the
first i-ranked players {P1, . . . , Pi}. To achieve such a redundancy-
aware ranking, we introduce different pruning criteria for players
similar to the ones previously ranked.

Each set Pi contains a variable number Mi of elements, i.e.,
Pi = {g1, . . . , gMi}, and the sets in N are arbitrarily large and
can overlap. We construct a microarray game based on the binary
matrix B ∈ {0, 1}N×M where N = |N | and M = | ∪N

i=1 Pi|. Each
row of B represents a set Pi and Bij = 1 if gj ∈ Pi while Bij = 0 if
gj /∈ Pi. Each column Bi represents the partial ordering relationship
of the element gj belonging to the set Pi.

Given a set Pi ∈ N , the Shapley value of Pi is computed following
these two steps as proposed in [Sun+20]:

1. from the matrix B, we get the dictionary A as

A = {sp(Bj)}j∈M ⊆ P(N ). (5.3)

Each set in A represents the support of the corresponding
element gj ∈ G.

2. each Shapley value is computed through the formula:

ϕ f ∗(Pi) =
1
M
·

M

∑
j=1

(
1(Pi ∈ sp(Bj)) ·

1
|sp(Bj)|

)
, (5.4)

where 1 is the standard indicator function returning 1 if the
argument is satisfied, i.e., if Pi ∈ sp(Bj), and 0 otherwise.
We drop here the notation ϕ f ∗(Pi) as Equation (5.4) is a
reformulation of the Shapley values in terms of microarray
games; from here on, we simply write ϕ(Pi).

Once computed, we can then use the Shapley values to order
the sets Pis: the higher the Shapley value of a set Pi, the more im-
portant the set is in the microarray game defined. The importance
scores measure the number of elements g contained in Pi re-scaled
with the size of their supports. If Pi contains elements g rarely
included in other sets, it will get a higher score. Each ϕ(Pi) is a
real number in [0, 1] and from Shapley values’ properties we know
that ∑N

i=1 ϕ(Pi) = 1. However, as already mentioned, the ranking
of sets given by the Shapley values alone is unaware of a possible
“overlap” among players.
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5.1.5 Definition of goals: redundancy and coverage

Different “redundancies” can appear among players in a coopera-
tive game depending on the game’s structure. When using random
variables, “redundancy” often refers to the correlation among sets
of variables (cf. Chapter 4); here, we aim for a redundancy-aware
ranking in families of sets. We state that two sets are redundant if
they share a large number of elements, i.e., if the size of their inter-
section is large compared to the size of their union. To measure the
redundancy among sets, we use the Jaccard index J [Jac01]; given
two sets A and B two sets, their Jaccard index is

J(A, B) =
|A ∩ B|
|A ∪ B| . (5.5)

The Jaccard index is a real number in [0, 1] where J(A, B) = 0
if and only if A ∩ B = ∅ and J(A, B) = 1 if and only if A = B.
Thus, the Jaccard index is direct proportional to the size of the
intersection among the sets A and B.

Having set the reduction of redundancy within importance
scores-based rankings as a goal, we still do not want to com-
promise with the coverage of G. We hereby define various types of
pruning criteria and will compare them with respect to coverage
and redundancy.

1. Redundancy – as redundancy measure, we assign to a family
of sets S the Jaccard rate or Jaccard score Jscore(S), i.e.,

Jscore(S) =
1

|S|(|S| − 1) ∑
Pi,Pj∈S ,i ̸=j

J(Pi, Pj). (5.6)

The Jaccard score Jscore(S) represents the average Jaccard
index among pairs of sets in S ; it is a non-negative real
number in [0, 1] and Jscore(S) = 0 if and only if all pairs of
sets in S do not overlap.

2. Coverage – per definition, the family of players N represents
one possible coverage of G since each element g ∈ G is
contained at least in one set Pi ∈ N . Given a family of sets
S ⊆ P(N ), the quantity

cG(S) = | ∪Pi∈S Pi|·
100
|G| (5.7)

measures the coverage of G given by S , i.e., the percentage of
elements g ∈ G that are included at least in one set in S .
There is an obvious trade-off between the coverage given by
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S and its dimension. In the application to collections of gene
sets, we will investigate our methods’ success in preserving
the entire set’s coverage while reducing the dimension of N .

Rankings based on Shapley values show a clear tendency to rank
bigger sets first. This is reasonable, as the Shapley value counts the
number of times the argument of the indicator function is satisfied;
sets with larger sizes are, hence, the ones for which the indicator
function arguments’ are most often satisfied. However, these bigger
sets are more likely to overlap as they probably contain elements
over-spread through the sets in the family. Hence, when looking
for rankings with low redundancy, we will also affect this tendency
to rank smaller sets later and bigger ones first.

5.1.6 Different pruning criteria and different rankings

Given the definition of Shapley values as in Equation 5.4, we
obtain importance scores for each of the sets in the family N in
polynomial time. We can use these scores to rank the sets in N
in a naive manner and refer to this ranking as sv. As mentioned
in the previous section, this ranking favors larger sets: a set Pi
is contained in a larger number of supports if its size is larger,
i.e., the expression 1(Pi ∈ sp(gj)) assumes more often value 1 for
larger sets. Moreover, it is worth noticing that given two sets Pi
and Pj with equal size, the importance score of Pi is larger than
that of Pj if Pi contains rarer elements than Pj. On the other hand,
as the Shapley values tend to rank larger sets first, we expect a
high coverage of G when selecting even a small number of sets.
Moreover, the value function does not include any awareness of
overlap among sets, and the ranking sv allocates sets Pi, Pj in
similar ranking positions when J(Pi, Pj) ≈ 1.

We introduce various pruning criteria to penalize overlapping
sets and not rank them similarly. The introduced pruning criteria
are functions of the Jaccard index among sets, such that low Jaccard
rates characterize pairs of subsequently ranked sets. We provide
a detailed comparison of the obtained rankings in Section 5.2.
Using the application to collections of gene sets, we illustrate the
properties of each of the obtained rankings and how to select the
most useful for the purpose at hand. An overview of the proposed
methods highlights that

• the proposed pruning criteria are rather flexible and can be
adapted to optimize specific properties and

• there is not a perfect and unique choice fulfilling all goals.
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The obtained rankings are constructed one on top of the other.
Moreover, the rankings are constructed using a greedy approach
that selects one set at a time; as the computation of the Shapley
values using the constructed microarray game is not computation-
ally expensive, this still leads to feasible run times for the entire
ranking. The Shapley values need to be re-computed after each
iteration as, after selecting some pathways, they no longer sum
to 1. Moreover, removing one set can change the ordering of the
other sets as the Shapley values depend on the distribution of the
elements among the sets.

1. Penalized Ordering (po) – the Shapley values are used to
obtain the first ranked set P̃1, i.e., the one whose Shapley
value is the highest.
In the second step, all Shapley values are re-computed for
the not-yet ranked sets, and we subtract to them J(P̃1, P), i.e.,
the Jaccard index among P̃1 and the to-be-ranked set P. For
each set P ̸= P̃1, the importance score S2(P) at the second
step reads

S2(P) = ϕ(2)(P)− J(P̃1, P). (5.8)

The penalty score aims to penalize highly overlapping sets
with P̃1. The set arg maxP S2(P) obtains the second position
and the process restarts. The penalty grows at each step as
we add it to the Jaccard index with the last ranked pathway:
in particular, after selecting the first n sets, the score Sn+1(P)
obtained by the set P (where P has not been ranked yet at
step n + 1) is given by the following recursive formula

S1(P) = ϕ(1)(P)
Sn+1(P) = ϕ(n+1)(P)−∑n

i=1 J(arg maxP̄ Si(P̄), P),
if n ≥ 1

and, at the step n + 1, the algorithm ranks the set P̃n+1 =
arg maxP Sn+1(P).

We underline that the Shapley values are re-computed af-
ter each iteration, and ϕ(n)(·) represents the Shapley value
function at iteration n. Recomputing the Shapley values is
necessary for two main reasons: first, to satisfy the efficiency
property, i.e., ∑Pi

ϕ(m)(Pi) = 1 for each m where the sum is
computed over the sets which have not been ranked yet; sec-
ond, the set of sets “not yet ranked” changes at each iteration,
implying a (possible) different order of the sets when the
Shapley values are re-computed.
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2. Penalized Ordering with Rescaling (por) – por ranking adds
to po a rescaling of the penalty; the ordering obtained using
po automatically increases the penalty after each iteration.
After a sufficiently large number of iterations, this process can
lead to penalties larger than the Shapley values themselves
and sets end up being assigned negative importance scores.
Two major issues are connected with this:

a) negative importance scores are hardly interpretable, and

b) the pruning criteria can become too harsh with respect
to the Shapley values.

Thus, we propose to re-scale the penalty: to compute the por

ranking, the term ∑n
i=1 J(arg maxP̄ Si(P̄), P) is re-scaled to the

interval [0, maxP{ϕi(P)}] at each iteration. The importance
scores are defined as follows:

S1(P) = ϕ(1)(P)

Rn = maxP ϕ(n)(P)
maxP ∑n

i=1 J(arg maxP̄ Si(P̄),P)

Sn+1(P) = ϕ(n+1)(P)−∑n
i=1 J(arg maxP̄ Si(P̄), P) · Rn,

if n ≥ 1.

The complexity of the algorithm proposed does not change.

3. Artificial Ordering (ao) – the introduction of an artificial set
represents our attempt to avoid penalizing each set multiple
times for containing the same elements. The artificial set APn
is updated in each iteration n. It is initialized at step 1 to
AP1 = arg maxP ϕ(1)(P). At the nth iteration, APn is updated
with the elements of the last ranked set

APn = ∪n
i=0 arg max

P
Si(P);

hence, at each n, APn includes all genes belonging to one of
the previously selected pathways. The importance score is
defined as in po, but penalizing with a unique Jaccard index
with the set APn instead of using the sum of Jaccard indices
with previously ranked sets, i.e., the scores are computed as

S1(P) = ϕ(1)(P)
Sn+1(P) = ϕ(n+1)(P)− J(APn, P), if n ≥ 1.

In ao the penalty depends on the elements in G that the first
n ranked sets have covered. This avoids multiple penalties
for the same overlapping elements; thus, the penalties will
be softer with respect to these.
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4. Artificial Ordering with Rescaling (aor) – as in the re-scaled
version of po, the re-scaling is done for ao on the term
J(APn, P) to the interval [0, maxP{ϕi(P)}]. Again, the aim
is to avoid too harsh penalties, eventually causing negative
importance scores. The scores look like the following:

S1(P) = ϕ(1)(P)

Rn = maxP ϕ(n)(P)
maxP J(APn,P)

Sn+1(P) = ϕ(n+1)(P)− J(APn, Pj) · Rn, if n ≥ 1.

As in por, the complexity of the algorithm proposed does
not change.

The sv ranking is not functional for both maximizing the im-
portance scores given by the Shapley values and lowering the
redundancy among the subsequent pairs of ranked sets. Thus, we
introduced four different pruning criteria for constructing final
rankings. The two pruned rankings, po and por, consider only
overlappings among pairs of sets. The penalty is increased at each
step by adding the Jaccard rate among the last pair of sets; thus,
if elements are contained in multiple family sets, these elements
will affect the penalty terms multiple times. As this might be prob-
lematic for small sets containing some of these often-appearing
elements in the long run, we introduced the artificial set AP to
create the ao and aor rankings. Using the artificial pathways, we
solve the problem of multiple punishments as the overlaps with
single elements are penalized exactly once. In both aor and por,
the re-scalings attenuate the effect of the pruning criteria, such that
the scores are kept positive for the sets whose penalties are higher
than the Shapley values. Note that each penalty still orders the set
with the highest Shapley value first. The orderings start to differ
from each other in the second-ranked set.

The pseudo-code is available for reproducibility while the imple-
mented code is publicly available at github1.

5.2 ranking pathways in collections of gene sets

Implementing our game-theoretic concept provides a new frame-
work to reduce the dimension of families of sets. The obtained
rankings are used to select the first n ranked sets, allowing for a
lower overlap among sets and high coverage of the elements with
a lower number of sets, thus increasing the interpretability of the

1 Code available at chiarabales/geneset_SV

https://github.com/chiarabales/geneset_SV
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correlation with
pathways’ sizes redundancy coverage

sv positive correlation reference level reference level
po negative correlation much less same
por no correlation less less
ao negative correlation much less same
aor no correlation less less

Table 5.1: Comparison. Original sv ranking and pruned rankings.

families of sets. Moreover, unlike previously introduced methods,
our approach does not alter the sets.

Collections of gene sets are a promising application of our rank-
ings and the source of inspiration for the proposed method. In
particular, the collections of gene sets F are sets of pathways, and
pathways Pi are sets of genes gj. We use these collections as a show
case for our method.

We use this application to illustrate that the rankings proposed

• provide a ranking of the original pathways in the collections
of gene sets without modifying them;

• reduce the redundancy among subsequently ranked pathways;

• maintain a high coverage of the genes in the collection of gene
sets when selecting the first n ranked pathways;

• do not favor larger gene sets;

• reduce the size of the collections of gene sets, thus increasing
interpretability.

The experiments emphasize that the choice of which pruning crite-
rion to use highly depends on the goal, and there is not a unique
correct way of choosing which ranking to use.

In Table 5.1, we summarize the properties of the different rank-
ings based on the analysis of different data sets. We present the
results for four collections of gene sets, i.e., the KEGG, CGN, CM,
and TFT LEGACY. To complete our analysis, we investigate the
effects of the different pruning criteria and descending pathways
selections on the gene set enrichment analysis, looking for the
significance of pathways for different association traits.

We included additional analyses comparing our game theoretic
approach with more classical enrichment analysis methods in Ta-
ble 5.3. There, we also focused on the ability to detect significant
pathways after reducing the gene set with respect to 38 phenotypic
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sv po por ao aor

KEGG 0.49 -0.21 0.15 0.23 0.19

CGN 0.43 -0.51 0.019 -0.702 -0.041

CM 0.759 -0.531 0.019 -0.702 -0.041

TFT LEGACY 0.679 -0.460 0.354 -0.828 0.458

Table 5.2: Correlation among pathway’ size and position. Kendall’s
τ coefficients among the position in the ranking and the size of
the gene sets.

traits. Given that we present arbitrary choices both for collections
of gene sets and phenotypic traits, our experiments and analy-
ses should be seen as exploratory in the spirit of illustrative case
studies. We explicitly do not claim the generalizability of these
results.

5.2.1 Correlation with the size of pathways

The Shapley value function assigns to a set P ∈ F a positive
real number incorporating information on the distribution of its
elements in the other sets of F . This leads to a positive correlation
with the size of pathways, i.e., larger sets are more likely to get a
higher Shapley value. In Table 5.2, Kendall’s τ scores measure the
ordinal association between the size of pathways and their position
in the rankings. The table clearly displays that when ranking the
pathways using sv, we tend to rank larger pathways first. Using
ao and po, this effect is reversed in most collections of gene sets;
in particular, ao and po rankings select small pathways first while
larger ones are ranked last in the orderings. In aor and por, there
is no clear tendency of a correlation between the dimension of
pathways and the position in the ranking.

Our goal was to reduce the redundancy among subsequently
ranked pathways. Hence, we indirectly affect the strength of the
correlation between ranking position and size as larger pathways
are more likely to show overlapping among them. The rankings
sv, po, and ao, show similar behaviors across the different studied
collections of gene sets, while the re-scaled pruning criteria show
no clear tendency.

5.2.2 Redundancy awareness

The introduced pruning criteria ensure rankings that consider
the overlap among subsequent ranked gene sets. We evaluate the
redundancy using the Jaccard score defined in Equation (5.6). To
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get comparable numbers throughout different collections of gene
sets, we re-scale the Jaccard scores to the maximum Jaccard score, i.e.,
the maximum Jaccard index among any pairs of pathways within
the collection of gene sets. In Figure 5.1, we plot the re-scaled
Jaccard scores as a function of the number of pathways. We first
compute the rankings, then select the respective first n ranked
gene sets and compute the Jaccard rate of the obtained set. The
lower the Jaccard rate, the better the ranking performs in selecting
non-overlapping pathways.

The table in Figure 5.1 shows the re-scaled Jaccard rates for some
reference values (10, 20 and 40% of the pathways). The ranking
achieved the lowest Jaccard rates is po; ao performed well in
(almost) all collections of gene sets. po and ao use strong penalties
such that highly overlapping pathways were ranked far from each
other. Moreover, we note that the classical sv ordering performed
the worst in all but one case as it is unaware of redundancies.

5.2.3 Coverage of gene sets

We investigate the ability of our methods to cover the genes using a
limited amount of pathways. In Figure 5.2, we plot the coverage of
the genes in percentage when only considering the first n ranked
pathways. The sv ranking gets a generally high coverage of genes
in the collections of gene sets. We note that the orderings sv, por,
and aor clearly outperform the rankings given by po and ao.

Moreover, we compare the different rankings using some ref-
erence levels: in particular, the table in Figure 5.2 gives insights
into the proportions of the genes that can be covered using only a
limited percentage of pathways (10, 20 and 40% of the pathways).
The high coverage achieved by sv is due to the correlation be-
tween the size of the pathways and their positions in the ranking;
however, not the same can be argued about por and aor as we
demonstrated that the correlation with the gene sets’ sizes had
been reduced. Maximizing Shapley values while minimizing re-
dundancy achieves outstanding performances in both cases. The
lower performances of po and ao are explained by the pruning
criteria, which are generally harsh for overlapping gene sets; hence,
they select first small pathways ranked in the lowest positions by
Shapley values alone, as already argued (cf. Table 5.2).

On the other hand, we observe that the rankings do not outper-
form the original sv ordering in covering the entire gene set; the
advantages of the penalized orderings are evident when consid-
ering that the performances of the newly proposed rankings are
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KEGG CGN CM TFT LEGACY

% 10 20 40 10 20 40 10 20 40 10 20 40

sv 1.95 2.11 1.37 3.73 3.11 2.75 3.87 4.13 2.16 4.31 3.10 2.80

po 0.02 0.04 0.21 0.14 0.42 0.72 0.02 0.08 0.21 0.39 0.65 1.09

por 0.49 0.47 0.46 0.79 1.07 1.45 0.51 0.90 1.37 3.5 2.51 2.22

ao 0.15 0.19 0.38 1.21 1.97 1.36 1.19 0.80 0.63 0.56 0.81 1.36

aor 0.49 0.45 0.77 5.82 2.97 2.20 2.56 2.00 1.25 1.70 2.39 2.43

Figure 5.1: Redundancy awareness. The plots show the average re-
scaled Jaccard scores of sets of pathways ranked up to j-th
position (x axis); we select up to 100 pathways in each collec-
tion. The table shows the re-scaled Jaccard scores of the first
10, 20, and 40% of the collections of gene sets. The minimum
Jaccard score in each column is highlighted .

close to the original sv ranking while retaining a much smaller
amount of redundancy and not preferring large pathways.

5.2.4 Number of significant pathways

Finally, we investigate how the proposed rankings relate to gene
set enrichment analysis using only the first n ranked pathways.
We use Fisher’s exact test [Fis35; Agr18] to determine whether a
pathway is significant or not to a specific phenotypic trait and apply
multiple hypothesis testing corrections for the p-values (Bonferroni
or FDR correction [BH95; DVL08]). Using the proposed method
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sv 52.7 68.4 86.2 61.3 79.3 93.4 75.4 85.6 95.9 88.2 93.3 97.0
po 37.0 52.4 74.7 42.6 62.7 81.6 28.0 44.2 73.2 32.3 55.1 78.6
por 50.0 67.7 84.6 68.0 82.9 93.5 68.9 87.9 96.2 87.5 91.8 96.1
ao 43.7 63.0 81.2 25.0 36.3 57.7 19.1 24.5 35.6 27.4 44.7 70.7
aor 50.0 67.6 85.9 28.0 46.4 77.9 68.9 82.7 91.7 66.1 91.0 96.6

Figure 5.2: Cumulative coverage of gene sets. The plots show the
genes’ coverage as functions of the number of pathways using
the different rankings. The table shows the genes’ coverage
when selecting the 10, 20, and 40 % of the pathways respec-
tively. In each column, the highest coverage is highlighted .

of ranking and selecting, we obtain smaller collections of gene
sets; afterward, we test for associations with specific phenotypic
traits and compare the number of significant pathways found in
the original collections of gene sets and in the reduced ones.

Figure 5.3 illustrates for each collection of gene sets the number
of statistically significant pathways founds for some association
traits, i.e., blood platelet count, blood white count and sitting height. The
plots refer to the FDR correction for multiple hypotheses testing.
The number of significant pathways in each collection of gene
sets is represented in each plot as a blue dashed line. We observe
that the number of significant pathways found when limiting the
number of tested pathways using the introduced rankings highly
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Figure 5.3: Significant pathways detected. In each plot, the x-axis rep-
resents the number of pathways included in the multiple
statistical testing; the y-axis represents the number of statis-
tically significant pathways found. The plots refer to FDR
correction for multiple testing with α = 0.05 for three selected
association traits an for four collections of gene sets.

depends on the collection of gene sets and the particular trait. In
some settings using only a limited number of pathways may lead to
a higher number of pathways reaching significance. In contrast, we
detected fewer significant pathways in other settings. This happens
when significantly associated pathways are not ranked among the
first n, which obviously can occur when applying our unsupervised
feature selection techniques. Similarly, Table 5.3 shows the number
of significant gene sets when applying Enrich on two additional
reduced collections of gene sets.

In conclusion, the number of significant pathways discovered
when using the proposed rankings remains, on average, the same
as using the whole collection of gene sets. Reducing the collections
of gene sets to a limited amount of pathways using unsupervised
approaches like the one we propose might lead to better inter-
pretability and handling of gene sets but not necessarily to a higher
statistical power in enrichment analyses. Whether the number
of significant gene sets found is increasing or decreasing highly
depends on the phenotypic trait and the collection of gene sets
used.
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height - 7 - 7 7 7 - - 2 2 2 - 2 2

bl. platelet count - - - 1 - 1 - - - - - - - -
standing height - - - - 3 3 - - 2 2 2 - 2 -
bl. red count - - 1 1 - 1 - - - 2 2 - 2 11

heel tscore - - 3 - - 3 4 - - - 2 2 1 1

bl. white count - - - - - 1 - - - - - - - -
bl. eosinophil count - - - - - - - - - - - - 3

sitting height - - - - - - - - - - - - - -
trunk fat free mass - - - - - 1 - - - - - - - -
trunk pred. mass - - - 8 8 8 - - 1 - 1 - - -
body fat free mass - - - - - - - - - - - - - -
body water mass - - - - - - - - - - - - - -
systolic bl. pressure - - - - - - - - - - - - - -
basal metabolic rate - - - - - - - - - - - - - -
impedance body - - - - - - - - - - - - - -
bmi - - - - - - - - - - - - - -
height-size@10 - - - - - - - - - - - - - -
arm pred. mass r - - - - - - - - 1 - 1 - - -
arm fat free mass r - - - - - - - - - - - - - -
leg fat free mass r - - - - - - - - - - - - - -
leg pred. mass r - - - - - - - - - - - - - -
lung fev1fvc ratio - - - - - - - - - - - - - -
impedance leg r - - - - - - 1 - - - - - - 1

impedance arm r - - - - - - - - - - - - - -
lung fvc - - - - - - 1 - - - - - - 1

weight - - - - - - - - - - - - - -
whratio - - - - - - - - - - - - - -
hair pigment - - - - - - - - - - - - - -
hip circumference - - - - - - - - - - - - - -
trunk fat mass - - - - - - - - - - - - - -
body fat mass - - - - - - - - - - - - - -
arm fat mass r - - - - - - - - - - - - - -
leg fat mass r - - - - - - - - - - - - - -
trunk fat % - - - - - - - - - - - - - -
body fat % - - - - - - - - - - - - - -
arm fat % r - - - - - - - - - - - - - -
leg fat % r - - - - - - - - - - - - - -
cardiovasc. disease - - - - - - 2 - - - - - - 2

Table 5.3: Number of significant pathways detected in the first 40%
of the various rankings and the complete collection ALL (with
Fisher Exact Test and FDR correction) against the Enrich
method ENR.
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5.3 discussion

Shapley values are often used to assign a fair value to players
based on their contribution to the game. We often mentioned how
they ignore eventual redundancies among players, hindering their
performance and possibly inducing a bias in the resulting scores
towards redundant players.

In this chapter, we proposed a game-theoretical approach to
incorporate redundancy-awareness into Shapley values to rank
gene sets in an unsupervised fashion. In particular, we proposed
different ways to penalize the overlapping sets so they are not
progressively selected.

We proposed four different pruning criteria, and we were able
to show that the orderings obtained are

• not favoring larger players – applying the redundancy-aware
pruning criteria avoids that larger gene sets are ranked first;

• redundancy free – the combination of Shapley values with
the redundancy reduction criteria shows high effectiveness
in maintaining the importance of sets given by Shapley val-
ues while reducing the redundancy among the first-ranked
pathways;

• achieving high coverage – the obtained rankings still lead to
high coverage of genes. We showed that a positive correlation
with the size of sets is not the unique solution to achieve
high coverage of the genes, i.e., the original Shapley values
ranking is not performing much better than the orderings
which rank first small sets, keeping low redundancy rates;

• on average do not have a high influence on the number of detected
significant pathways - having fixed the collection of gene sets,
the number of significant pathways detected when applying
GSEA techniques with multiple hypotheses testing correc-
tions increases and decreases compared to the full gene set,
depending on the phenotype.

5.3.1 Comparison among pruning criteria

In light of the results in Figure 5.1 and Figure 5.2, we conclude
that ao leads to the least favorable ranking in covering the genes.
In contrast, the two re-scaled orderings together with sv are the
best-performing ones regarding coverage. Regarding reducing re-
dundancy among pathways, all penalized orderings can achieve
this goal by outperforming the sv ranking. Lastly, when comparing
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the different methods with respect to the correlation with the size
of pathways, we see that only aor and por do not lead to any
specific correlation.

Hence, we conclude that por is the best ordering one could
choose when the aim is to optimize the ranking for redundancy
elimination and cover the genes without incurring specific correla-
tions with the gene sets’ sizes.

5.3.2 Limitations

Our results suggest that using our tool as a pre-processing step
for collections of gene sets, we get similar numbers of significant
pathways when checking for association with phenotypic traits
(although relying on much fewer pathways). In other words, we
evaluated the significance of the top-ranked pathways with respect
to phenotypic traits, yielding results that were very similar to those
of the unfiltered collections of gene sets. In some cases, however,
we observe fewer significant pathways than when considering the
whole collection. If the interest is increasing the statistical power
for specific collections of gene sets and phenotypic traits, and if
possible, we still suggest using a supervised method to reduce
the number of pathways. It is fundamental to remember that our
rankings based on Shapley values are unsupervised. They are based
on the structure of the collections of gene sets and pathways and
their overlaps; thus, they are not meant to necessarily “increase” the
number of significant pathways detected in supervised contexts.
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S L I D S H A P S – S L I D I N G S H A P L E Y VA L U E S F O R
C O R R E L AT I O N - B A S E D C H A N G E D E T E C T I O N I N
T I M E S E R I E S

F or volatile multivariate time series, variations in the distri-
butions of the input dimension and the correlation structure
present an open challenge. The different distributions be-

fore and after a change-point hinder the performance of most of
the predictive methods, mostly requiring re-training of the models.
State-of-the-art change point detectors are based on the prediction
error rate of online classifiers, assuming that distributional drifts
appear in P(y|X) [Hal+21; BG07; Gam+04]. The detection of these
last change points represents a severe problem, as volatile data
labeling is often either expensive or delayed in streaming data,
and the increasing number of scenarios where time series data
are collected without labels and the necessity of dealing with dis-
tributional changes on input variables forced the development of
unsupervised concept drift detection methods [Gem+20]. Those
methods find change points by comparing the current data distri-
bution with a reference historical data buffer; they rely on two main
steps, i.e., (1) a new time series representation and (2) the detection
of changes over the representations. Several approaches exist in
the literature: some using the mean values of adaptive windows
to represent the univariate dimensions [BG07], linear and non-
linear features representing the whole time series [CMO16] and
multidimensional Fourier transformation to get information from
the frequency domain [Cos+17]. Recently, combinations of mul-
tiple statistical features have been proposed as meta-information
vectors [Hal+21]. Other approaches measure the distributional dis-
crepancy between data in different time periods, e.g., the Hellinger
distance between two distributions [DP11] and data partition via
Kdq-Tree and generalizations of the Kulldorff’s spatial scan statis-
tic [Das+06]. Unfortunately, they all do not monitor the correlation
changes among input variables, and, as a consequence, feature
correlation remains mainly studied using simple covariance. Track-
ing covariance changes in a transformed artificial low-dimensional
space obtained by applying PCA on the time series [Qah+15] has
been used to detect concept drifts; however, the approach limits to
tracking covariance changes in the extracted space. To overcome
this limitation, [AK18] uses mean and covariance to represent the
concepts in multivariate data streams. Generally, however, clas-
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sical concept drift detectors struggle with detecting changes in
correlations of multivariate time series’ input variables.

We focus on unsupervised change detection, tracking correlation
changes in the input variables without class labels using Shap-
ley values. As already seen, Shapley values are not limited to
trustworthy machine learning. Their popularity derives from the
flexible definition of the value function based on which they are
computed. However, as time dependency represents an additional
challenge, applying Shapley values in time series data is still not
fairly explored. Only recently, they started finding applications
in time series data; they appeared to explain black-box models
on time series data [Gui+20] or as an extension of the classical
SHAP [Ben+21b], for anomaly detection through the reconstruction
error of autoencoders [Ant+21], single instances studies [Tak19a],
or analyzing the gradients to identify the main features affecting
the anomalies [Ngu+19]; they further appeared in consulting and
business applications [Sal+21]. We further recall some works apply-
ing Shapley values for drift detection. Among them, we find Zheng
et al. [Zhe+19] using Shapley values for drift detection for labeled
series and Zhao et al. [ZK20], that employ Wasserstein and Energy
distances to detect feature drifts without labels; SHAP [LL17] and
LIME [RSG16] are here used as post-hoc interpretation for the de-
tected drifts. All the mentioned works rely on labeled data streams
or represent a pure transposition of time-independent methods to
the time series context; again, state-of-the-art literature misses an
approach able to handle unlabeled streaming data.

Our work represents the first attempt to study concept drifts
in unlabeled data using Shapley values as a fully unsupervised
change points detector for multivariate time series. The slidSHAPs

method detects correlation-based changes through a representa-
tion of the correlation structure of the input data. Our approach
underlines distributional changes even in a few univariate input
variables, thus being more sensitive to changes than any prior
change point detection method; in contrast to covariance-based
approaches, Shapley values aggregate in N scores the correlations
scores in any subsets of the input variables (see Table 6.1). The
slidSHAP series clearly outlines that changes in a single or a few
input variables potentially affect the correlation structure of the
whole time series dimensions.

We use this foundational game-theoretic concept to extrapo-
late information on the correlation structure of data streams and
achieve higher sensitivity towards multiple changes in the empiri-
cal evaluation of both synthetic and real-world data. We summarize
the advantages of slidSHAPs in two main points:
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supervised methods [Gam+04; Bae+06; Fri+14] ✗ ✗ ✗ ✓

covariance-based [AK18; Qah+15] (✓) ✓ ✗ ✗

Shapley value-based [Ben+21b; ZK20; Zhe+19] (✓) ✗ ✗ ✓

slidSHAPs [BLM23b] ✓ ✓ ✓ ✓

Table 6.1: Comparison among change point detection methods.

1. slidSHAPs is a change point detector for unlabelled data that
only relies on the correlations among univariate dimensions
of the time series;

2. the slidSHAP series allows for visualizing whether a change
in the underlying distributional concepts happens.

6.1 methods

We introduce slidSHAPs to visualize and detect correlation changes
in unlabelled multivariate discrete time series. As we hypothesized,
even distributional changes happening only in a few univariate
dimensions can drastically change the correlation structure among
all univariate dimensions. We map the time series into the slid-
SHAP series, where we implicitly encode correlations among the
time series’ input variables as a function of time; the resulting
time series has a different dependency on time from the original
timestamps. We use the slidSHAP series to detect change points
through statistical tests, and we finally relocate the found points to
the original time notion.
Figure 6.1 provides an overview of our method; we go through
each step in the following sections.

6.1.1 Time series and sliding windows

We indicate with X = (X1, . . . , XN) a multivariate N-dimensional
discrete time series where Xi is the i-th univariate dimension; we
currently restrict the approach to time series whose dimensions
assume only a finite number of values, i.e., either categorical or
discrete and finite.

With t0, we indicate the first timestamp on which the time series
is defined. For each timestamp tk > t0, X(tk) is a N-dimensional



62 slidshaps– sliding shapley values

Figure 6.1: Schematic visualization. The slidSHAPs approach for un-
labelled time series data.

vector of discrete values, i.e., Xi(tk) ∈ Di and |Di| is finite. Using
this notation, we define the “overlapping sliding windows” series
{ws}s∈N as a series of time windows dependent on two parameters,
i.e., the window length d ∈ N and the overlap a ∈ N among
adjacent windows. Each window ws contains d timestamps, it is
written as

ws = {ts(d−a), . . . , ts(d−a)+d−1}, (6.1)

and a is the number of timestamps lying in the overlap among
adjacent windows, i.e., |ws ∩ws+1| = a for all s ∈N. At the current
timestamp tT we have created

M(T) =
⌊

T − d + 1
d− a

⌋
+ 1

time windows.
Sliding windows are commonly used in concept drift detec-

tors [BG07; Bae+06; Das+06]; however, most existing approaches
focus on specific statistical features of the sliding windows, leading
to an intrinsic inability to detect changes in feature correlations. We
aim to create a feature extraction function over the sliding windows
that outputs representative features with more easily detectable
change points. The following sections introduce the slidSHAP
series, a novel feature extractor for unlabeled streaming data based
on sliding windows.
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Algorithm 3 Pseudo-code. slidSHAP series computation.
1: procedure slidSHAPs(X, d, a, T) ▷ N-dimensional time series

X, sliding window length d, overlap among adjacent sliding
windows a, current timestamp T

2: s← 0
3: S← [ ]

4: while s ≤
⌊

T−d+1
d−a

⌋
+ 1 do ▷ sliding on windows

5: for i ∈ {1, . . . , N} do ▷ iterate over dimensions of X
6: ws = {ts(d−a), . . . , ts(d−a)+d−1}
7: Si(s) = ϕ(Xws

i )
8: S← Si(s)
9: end for

10: s← s + 1
11: end while
12: end procedure
13: S ▷ return the slidSHAP series

6.1.2 slidSHAP series creation

Given a multivariate time series X with N-dimensions, we can
interpret the value Xi(tk) as the realization of a discrete ran-
dom variable Xi; given the set of timestamps {t0, . . . , tT}, the
set {Xi(t0), . . . , Xi(tT)} contains T + 1 independent realizations
of the random variable Xi. Similarly, {X(t0), . . . , X(tT)} is the set
of realizations of a N-dimensional discrete random variable. This
interpretation allows us to study the correlations among the input
variables of the time series and does not consider the temporal
dependency among timestamps.

Given a game, Shapley values represents a way of fairly distribut-
ing resources among players [Sha+53] and, as already argued, can
be used in contexts unrelated to interpretable machine learning.
Given a set of players N = {X1, . . . , XN} and a value function f ,
recall the Shapley values’ definition (2.1) , i.e.,

ϕ f (i) = ∑
A⊆N\Xi

kA · [ f (A∪ {Xi})− f (A)] (6.2)

where kA depends on the number of players N and the size of the
set A [Sha+53].

We proposed Shapley values within an unsupervised feature
selection method in Chapter 4. Given a set of N discrete random
variables N = {X1, . . . , XN}, we interpreted N as a set of players
and encode the correlations within subsets of features of an unla-
belled tabular data set with categorical entries using the Shapley
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values by using the total correlation as value function1; to sim-
plify the notation we denote the Shapley values simply with ϕ(Xi).
The proposed encoding enables extracting information from the
data set based on the correlation structure. Features obtaining high
Shapley values are highly correlated with subsets of other variables,
while features with lower Shapley values are uncorrelated with the
resting variables. We used the Shapley values to rank the features
with respect to their ability to represent the correlation structure of
the entire data set.

Now, we interpret the realizations of a time series on a time win-
dow {tk, . . . , tk+d−1} as a discrete tabular data set with N columns
and d rows; this allows us to compute a Shapley value for each
column, i.e., for each univariate dimension of the time series using
the total correlation. We aim to detect change points appearing in
the input dimensions of the time series. We trace the distributional
changes during the time using the Shapley values of the time series’
input variables when restricted to the sliding windows {ws}s∈N

from Equation (6.1); in each window ws, we deal with d observa-
tions of the N-dimensional random variable X, thus working with
a discrete (categorical) tabular data set with N columns and d rows.
For each dimension Xi, we get the Shapley value Si(s) = ϕ(Xws

i ),
i.e., the Shapley values of the input variable Xi when we restrict
the observations to the time window ws. ϕ(Xws

i ) considers the
correlations of Xi with the other dimensions Xj of the time series
in ws; for each ws, we obtain a N-dimensional real-valued vector
S(s) = [S1(s), . . . , SN(s)] and refer to it as the slidSHAP value; we
define the sequence {S(s)}s∈N the slidSHAP series.

In Section 6.1.1, we have introduced the time-dependent slid-
ing windows {ws}s∈N; the slidSHAP series inherits the time-
dependency from the windows and not the same time notion
as the original time series. Figure 6.1 represents a visual schema
for the slidSHAP series construction process while Algorithm 3

shows the pseudo-code; the implementation is available online2.
We extrapolate information about the input dimensions correlation
structure from the original discrete time series X with discrete
finite values and transfer the change point detection problem to a
new N-dimensional real-valued series. We interpret the slidSHAP
series as a projection of the time-dependent correlation structure of
the original time series. Note that the sliding windows are partly
overlapping. Given two indices i, j, the intersection wi ∩ wj is non-
empty if they are sufficiently close; hence, the information covered
by S(i) and S(j) relates to X on partly overlapping time windows.

1 The definition reads f (A) = H(A)− ∑X∈A H(X) where H(·) is the discrete
Shannon entropy.

2 Code available at chiarabales/slidSHAPseries

https://github.com/chiarabales/slidSHAPseries
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The setup of the parameters a and d is essential to modulate the
granularity of the slidSHAP series.

6.1.3 Change point detection

The slidSHAP values are based on the distributions and the corre-
lations among the univariate dimensions of the time series and are
label-independent. When dealing with real-world time series, often
only a few input variables are subject to distributional changes;
however, those distributional changes could affect the correlation
structure of the whole input variables. Moreover, the change points
are often hardly visually detectable, especially when they do not
directly affect specific statistical features in which the variables
vary.

We expect that distributional changes in the input variables mod-
ify the correlation structure of X on the sliding time windows, and
the slidSHAP values encode the correlations among the univariate
dimensions of X through the time; eventually, the slidSHAP series
reflects these distributional changes, allowing us to use it to detect
change points in X. We target change point detection using statis-
tical tests under the assumption of i.i.d. of the slidSHAP values.
As well as on the original time series X, the slidSHAP series is
unlabeled; therefore, we have only access to its dimensions’ distri-
butions to detect change points. We employ two statistical tests to
look for distributional changes on each dimension Si

• the Student’s t-test

• and the Kolmogorov-Smirnov test (or KS test) [Con99; Rei+16].

We analyze their performances in the empirical evaluation. Both
tests check whether statistical significance exists for two sam-
ples drawn from the same distribution. We consider a reference
sequence of slidSHAP values Sref of length m ending at s ∈
{0, . . . , M(T)} and a new sequence Snew with length n precedent
to it, i.e.,

Snew = {S(s) | s ∈ {s− n + 1, . . . , s}} (6.3)

Sref = {S(s) | s ∈ {s−m− n, . . . , s− n + 1}}; (6.4)

We call the two data sequences of slidSHAP values buffers. Fref
and Fnew are respectively the empirical cumulative distribution
functions of Sref and Snew and we test whether there is statistical
significance of Snew and Sref to be drawn from the same probability
distribution function. The user can define the sizes of the new and
reference buffers.
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We deal with multiple testing corrections by performing a num-
ber N of statistical tests, i.e., one for each univariate dimension
of the slidSHAP series. Among the various multiple hypothesis
corrections available, we choose to stick to the Bonferroni correc-
tion [BA95; BH95; RGL19], where the null hypothesis is rejected if
the minimum p-value among all N tests is smaller than α

N . For each
s ≥ min{m, n}, we conduct a set of such dimension-wise statistical
tests and compare the performances using the two statistical tests
in Section 6.3.8. For drift detection, statistical tests are commonly
applied on the original time series [Das+06; Rei+16; YWP18]; the
inventive step we have introduced is detecting the change points in
the slidSHAP series and then relocating them to the original times-
tamps of the time series data. The following section presents how
to transfer the detected change points to the original timestamps.

6.1.4 Change points aggregation and re-location

Due to the construction of the windows, each change point in
X is covered by multiple sliding windows. Hence, we need to
aggregate the detected change points on the slidSHAP series to
rebuild the single change event on X; the change point detection
over the slidSHAP series results in alarms on the corresponding
sliding windows, not single timestamps. Our ultimate goal is to
relocate the change point positions to the timestamps where they
initially took place. In this section, we introduce aggregation and
re-location.

The sliding windows have length d and overlap a; given a change
point tchange in X, the windows containing information about

tchange are
⌊

d
d−a

⌋
> 1 and the corresponding change points in

the slidSHAP series is going to be tested in⌊
d

d− a

⌋
+ m + n

statistical tests by moving Sref and Snew one step forward a time
on each univariate dimension. Being aware that it is less likely
to detect statistical significance for the presence of distributional
change when testing the first and last slidSHAP values involved
in the change event, we first detect alarms on each univariate
dimension of the slidSHAP series then we aggregate the alarms
using multiple testing corrections. At this point, for each window
ws, we have detected an aggregated p-value; due to the dilating
effect of change events in slidSHAP series, we check for sequences
of p-values being below the significance level α, i.e., we trigger the
change point alarm if and only if we find a continuous sequence
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of (m + n) · γ corrected p-values below α. The parameter γ ∈ R+

scales the number of sequential corrected p-values to be below α

before producing an alarm on X and typically ranges in
[

1
2 , 1
]
;

when (m + n) · γ rejections of the null-hypothesis are detected in
sequence, we get an alarm at the current time window wT. Finally,
we relocate the last timestamp t̃change of wT as the corresponding
change point in the original time series data X.

We underline that we only consider abrupt drifts in the time
series, i.e., the distributional changes happen in specific timestamps
that need to be located. The dilating effect makes change points in
X incremental changes in the slidSHAP series. The same holds for
gradual and incremental drifts in the original time series, such that
our model is easily extendable to non-abrupt concept drifts.

6.2 run-time analysis

The slidSHAP series computation inherits the exponential runtime
from the Shapley values computation. From a complexity analy-
sis point of view, the computation of the slidSHAP series has a
complexity of O

(
d · 2N · T−d

d−a

)
where T is the number of instances

to be processed, N is the number of input variables, d and a are
the length and overlap of the windows. The complexity O

(
d · 2N)

derives from the Shapley values’ computation [Bal+22]. However,
several approximation techniques can be applied [CGT09; Mit+22;
Cam+18; BC21; CKL22] thus accelerating the computation of the
entire slidSHAP series to polynomial time O

(
d · N · T−d

d−a

)
. On the

other hand, multivariate time series data in real-world scenarios
usually either do not contain a large number of dimensions or are
easily reduced to a lower dimensionality [Hal+21; Qah+15].

6.3 empirical evaluation

We evaluate slidSHAPs on both change point detection and visu-
alization of correlation changes. We compare our model against a
set of selected representative unsupervised concept drift detection
methods. We consider several synthetic and real-world time series
datasets with discrete values. We use ground-truth labeling for the
allocation in time of the concept changes. We acquire a binary set
of change point alarms after fixing the significance level α, and we
compare them with the real change point timestamps. In summary,
we evaluate (1) the change point detection performance and delay
in Section 6.3.5, and (2) the visualization of the change events in
the slidSHAP series in Section 6.3.6.
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instances variables discrete values change points

LED 90000 7 2 9

ADD 30000 5 10∗ 5

MUL 30000 5 10∗ 5

COE 30000 5 10∗ 5

AND 30000 5 10∗ 5

OR 30000 5 10∗ 5

XOR 30000 5 10∗ 5

MIX 30000 10 10∗ 5

BC 286 9 2∼11 3

PH 33659 10 4∼13 5

KDD 16000 40 1∼7 7

MSL 9809 54 1∼2 4

Table 6.2: Datasets summary. The number of discrete values indicated
with ∗ refers to the range in which the independent input
variables are sampled; the other variables’ ranges depend on
the type of correlation with the ones sampled.

6.3.1 Datasets description

We created synthetic datasets with correlation changes in the input
variables. We construct various concepts, i.e., distributions and
correlations among the input variables, and concatenate them at
specific timestamps tchange such that the input variables follow a
correlation structure till tchange and another from tchange + 1 for
each change point. The various correlation changes in the input
variables are meant to evaluate the sensitivity of slidSHAPs in
detecting different kinds of correlation changes. We constructed
two types of synthetic datasets: the first type includes datasets with
only 5 features, where the correlations are of a specific type; the
second type includes one dataset with random types of correla-
tion changes at the change points and contains 10 features. Each
synthetic dataset is constructed as follows: we generate 6 differ-
ent distributions, each containing 5000 instances, and concatenate
them to simulate 5 change points.

I type datasets. For each distribution, we select 2 or 3 variables
to be involved in the change event, while at least one variable
always follows the same distribution. Each random sampled vari-
able varies in the set of integers {1, . . . , 10}. In ADD, initially
X3 = X1 + X2, while X1, X2, X4 are independently randomly
sampled; after each change point, the relation among X1, X2, X3
changes, e.g., to X2 = X1 + X3. MUL contains only multiplicative
relation among X1, X2 and X3; and changes in a multiplication
relations, e.g., X3 = X1 · X2. In COE, we included linear combi-
nations, e.g., X3 = c1X1 + c2X2 where c1 and c2 assume various
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values. Furthermore, we create some datasets, including logical
feature correlations. In AND, OR and XOR, one binary variable
depends on the value of the other two variables; after fixing a value
c, we include correlations of the type

• X3 = 1[(X1 > c)&(X2 > c)] in AND,

• X3 = 1[(X1 > c) | (X2 > c)] in OR,

• X3 = 1[(X1 > c) ̸= (X2 > c)] in XOR

where 1 is the usual Boolean function that returns 1 in the case the
condition is satisfied and returns 0 otherwise.

II type datasets. The dataset MIX contains 10 input variables
where X1, X2, X3 are randomly sampled from {1, . . . , 10}. For each
distribution, all the other variables are constructed using one ran-
domly chosen correlation function of X1, X2, X3 among “addition”,
“multiplication”, “linear combination”, “and”, “or” and “xor”.
Thus, MIX contains a mixture of the correlation above changes.
In addition to these synthetic datasets, we also consider one com-
monly used synthetic dataset in literature, containing changes in
the data distribution instead of explicitly in feature correlation; the
LED dataset [Fri+14; PVP18] is a commonly used synthetic dataset
describing the digit displayed on a seven-segment LED display. A
binary 7-dimensional binary vector represents a digit; it contains a
total of 9 change points, one for every 10000 instance. Each subset
contains the vectorial representations of the 10 single digits except
one; the change events consist in changing absent digits.

Real-world datasets. Finally, we included some real-world
datasets, interpreting them as time series data and including
change points by concatenating different subsets [Ho05]. As real-
world datasets, we used the following publicly available categori-
cal datasets: the Breast Cancer dataset (BC) [DG17], the Poker Hand
dataset (PH) [DG17], the KDD Cup 99 dataset (KDD) [DG17] and
the Mars Science Laboratory dataset (MSL) [Hun+18]. BC contains
purely categorical features describing breast tumors of patients. We
concatenate subsets of patients in different age groups to simulate
concept drifts. PH contains one million randomly drawn poker
hands. Five features describe the 4 possible suits and another five
features describe the 13 possible ranks. We create virtual drift as
in [Bif+13] by sorting the ranks and suits and taking a subset with
33659 instances for our experiments. KDD contains both numerical
and categorical features describing instances of network intrusion
records. We use all features in our experiments and discretize
the numerical features into five categories. A subset with 16000
instances from HTTP and SMTP services is selected, and concate-
nating instances create the concept drifts from the two services.
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Finally, MSL contains telemetry data from the NASA Curiosity
Rover on Mars. We discard the numerical telemetry value and
only consider the 54 remaining binary features. Data are collected
from different channels, and we consider the channels’ changes as
concept drifts.

6.3.2 Evaluation metrics and competitors

We evaluate the performance of slidSHAPs compared to competi-
tors for unsupervised concept drift detection. The actual change
points’ timestamps tchange are known in each dataset, while t∗change
represent the detected change point’s timestamps. Following Pe-
saranghader et al. [PV16; PVP18], we introduce an acceptable de-
lay length ∆ to determine the true positive TP, false positive FP,
and false negative FN detected change points. Whether t∗change
is a TP, FN, or FP is determined by the relative position of the
labeled change point tchange and the detected position t∗change.
A change point alarm is a TP if it belongs to the interval set
{tchange, . . . , tchange + ∆}, i.e., the delay characterizing its detection
is smaller or equal to the accepted delay ∆.

As evaluation metrics, we used some change detection perfor-
mance metrics, such as precision, recall, and F1-score, and the
average delay, defined as

avgDELAY = ∑
change point∈ TP

t∗change − tchange

number of TP
. (6.5)

We compare slidSHAPs with the principal unsupervised and
classifier-free drift detection approaches, e.g., HDDDM [DP11],
ADWIN [BG07], PCA-CD [Qah+15] and Kdq-Tree [Das+06] and
reported their performances. Various univariate unsupervised drift
detectors exist based on statistical features or distribution discrep-
ancies. Among them, PCA-CD [Qah+15] detects drifts computing
the divergence metrics on the data’s principal components. First,
the principal components are computed on a reference window,
and samples from a new window are projected onto them. The
result of the divergence metric between the reference and test win-
dow scores is used as a discriminator factor: if a fixed threshold is
reached, a concept drift is detected. Based on the Kullback-Leibler
divergence, the Kdq-Tree concept drift detection method [Das+06]
partitions data via constructing a Kdq-Tree; the output score of the
comparison between the reference window and the test window is
also here compared to a threshold. Finally, ADWIN [BG07] uses
sliding windows to detect changes by keeping updated statistics.
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The discriminator factor here is the difference among the averages
of the collected statistics over the reference and new buffers; the
obtained score is compared against a threshold. However, all these
univariate drift detector methods often fail to detect correlation
drifts without significant deviations in the specific statistical fea-
tures they track (e.g., mean and variance, among others). We only
report the results of ADWIN to represent their similar performance.

6.3.3 Parameters setups

HDDDM is a batch-based approach. We set the data batch size
to be two time windows for each dataset. Looking at the perfor-
mances, we noticed that HDDDM showed a generally large delay
in detecting changes; therefore, for HDDDM, we implement a
relaxation of the criterion, such that true positives are detected
using ∆ = 10 · d. ADWIN works uniquely by detecting drifts on
univariate time series. Therefore, we train one model for each input
data dimension and let them run in parallel for the N dimensions
of the time series data. A change point alarm is triggered if one
change point is detected on at least one dimension. For the other
competitors Kdq-Tree and PCA-CD, we use the default parameter
setting from the GitHub implementation3.

6.3.4 Experiment setup

In the statistical test, we set the reference and the new buffer sizes
m = n = 10 and γ = 1.0, such that the statistical tests are based on
sufficient data instances while keeping the prediction delay low.
The significance level is set to α = 0.01 and the acceptable delay
length ∆ to 5 · d where d is the sliding window length, namely all
change point alarms within 5 window size after the real change
point are considered as true positives. The parameter setups for
the competing methods are summarized in Setion 6.3.3. In all
experiments, we implemented the t-test and the KS-test; by default,
we opted to report the results obtained using the t-test. Section 6.3.8
compares the two tests.

In slidSHAPs, the two parameters window length d and overlap
a influence the construction of the sliding windows and are set
through an empirical evaluation of the data stream; we conducted
experiments using {10%, ..., 90%} as nine different overlap rates
a
d and fixed windows length d. The empirical evidence suggests
keeping the overlap rate in the range 50− 80%. Further details can
be found in Section 6.3.7. In the experiments, we constructed the

3 mitre/menelaus

https://github.com/mitre/menelaus
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slidSHAPs HDDDM ADWIN

P R F1 P R F1 P R F1

sy
nt

he
ti

c

LED 0.333 0.667 0.444 0.063 0.556 0.114 0.111 0.111 0.111

ADD 0.800 0.800 0.800 0.200 0.200 0.200 - 0.000 -
MUL 0.571 0.800 0.667 - 0.000 - - 0.000 -
COE 0.800 0.800 0.800 0.111 0.200 0.143 - 0.000 -

AND 0.667 0.400 0.500 0.222 0.400 0.286 - 0.000 -
OR 1.000 0.400 0.571 0.167 0.200 0.182 - 0.000 -

XOR 1.000 0.400 0.571 0.250 0.200 0.222 - 0.000 -
MIX 0.714 1.000 0.833 0.143 0.400 0.211 - 0.000 -

re
al

w
or

ld BC 0.750 1.000 0.857 1.000 0.667 0.800 1.000 0.667 0.800

PH 1.000 0.400 0.571 0.133 0.400 0.200 - 0.000 -
KDD 0.800 0.571 0.667 0.350 1.000 0.519 0.064 1.000 0.121

MSL 0.500 0.250 0.333 0.333 0.250 0.286 0.667 0.500 0.571

Table 6.3: Performance summary - precision, recall and F1 score.
For each dataset, the largest F1 score is highlighted . In the
gray-shaded area, ADWIN can not detect any change point.

slidSHAP series using a fixed window length d = 100 and overlap
a = 70; for the small dataset BC instead, we used d = 10 and over-
lap a = 8. For the real-world high-dimensional datasets KDD and
MSL, we computed the slidSHAP series using the approximation
described in Section 6.3.10.

6.3.5 Overall performance

Tables 6.3 and 6.4 show the overall performance comparison. The
slidSHAPs outperform the competitors with respect to the F1 score
in all datasets except MSL; slidSHAPs also show dominating per-
formance on average delay in most synthetic datasets. Moreover,
slidSHAPs appears more sensitive in detecting different types
of correlational changes than the other distribution-based detec-
tors. Since there is no change in the mean value, ADWIN fails to
find any change point in each synthetic dataset except LED, i.e.,
where the recall equals 0. On the other hand, ADWIN outperforms
the slidSHAPs on the MSL dataset, which inherently contains
correlation and distributional changes with respect to other statisti-
cal features. HDDDM only shows comparable results on BC and
performs significantly worse on other datasets.

Regarding the average delay of the various methods, ADWIN
predicts every incoming instance, generally showing a low average
delay. Instead, the slidSHAPs detect the change on every incoming
slidSHAP value, which intrinsically has a delay given by the
sliding windows of length d; this mechanism causes our approach
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slidSHAPs HDDDM ADWIN

sy
nt

he
ti

c

LED 424 ± 47 199 ± 0 167 ± 0

ADD 384 ± 55 599 ± 0 -
MUL 369 ± 70 - -
COE 399 ± 40 559 ± 0 -

AND 359 ± 0 599 ± 0 -
OR 299 ± 0 559 ± 0 -

XOR 329 ± 0 399 ± 0 -
MIX 399 ± 91 199 ± 0 -

re
al

w
or

ld BC 37 ± 2 34 ± 18 16 ± 16

PH 382 ± 10 427 ± 235 -
KDD 455 ± 50 143 ± 90 36 ± 11

MSL 487 ± 0 117 ± 0 237± 96

Table 6.4: Performance summary - average delay. The minimum detec-
tion delay in each dataset is highlighted . In the gray-shaded
area, ADWIN can not detect any change point.

to detect change points with a larger delay. HDDDM waits for each
batch of data; consequently, it shows the largest average delay.

6.3.6 slidSHAP series analysis and visualization

After fixing the length and the overlap among the sliding windows,
the slidSHAP series represents the correlations among univariate
dimensions of the time series; the univariate dimensions of the slid-
SHAP series follow more distinguishable trends than the original
time series. Although we do not claim that slidSHAPs is an inter-
pretable feature extraction approach, the slidSHAP series gives a
visual hint to users on where the change points could potentially
be located before statistically checking for their existence.

We used the MIX dataset for exploring the slidSHAP series
(d = 1000 and a = 900) as a visualization tool; Figure 6.2a, 6.2b
and 6.2c show the behavior changes in the slidSHAP series before
and after distributional changes. In Figure 6.2b, solid lines are the
univariate dimensions of the slidSHAP series and the purple areas
are the windows in which the concept changes are mapped using
the slidSHAP. Note that the MIX dataset only contains abrupt dis-
tributional changes. However, the slidSHAP series shows smooth
changes between one distribution and the next: abrupt changes
are expanded in the slidSHAP series to multiple subsequent time
windows.

Furthermore, as the slidSHAP values are an aggregation of
the correlation structure in subsets of the time series dimensions,
changes in the slidSHAP series dimensions are observed for all
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(a) Evolution of the slidSHAP values. The color bar indicates the average
values of the corresponding dimension in the time series, and the x axis
represents the distribution of the slidSHAP values; the deviating points are
due to the smoothness of the changes.
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Figure 6.2: MIX dataset visualization with d = 1000, a = 900.
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Figure 6.3: MIX dataset - first change point. Solid lines are the
univariate dimensions of the slidSHAP series (d = 1000,
99%, 90%, 50% overlap rate); dashed grey lines indicate the
change points.

the dimensions and also the ones not affected by significant modi-
fication drifts (e.g., X1, X2 and X3). Figure 6.3 shows the evolution
of the slidSHAP values around the first change point in the MIX
dataset. We keep using d = 1000 and vary the overlap rate a

d
among the sliding windows in {99%, 90%, 50%}. Although the
overall behavior of the slidSHAPs is similar using the various
parameter settings, a difference in the smoothness in the slidSHAP
series in the changing area is immediately noticed. The setting
of the parameters d and a also influences the computation time
of the whole slidSHAP series (cf. Section 6.2). It is worth noting
that, to compute the Shapley values using the total correlation, the
number of instances per time window should not be too low, e.g.,
under 100 instances. On the other hand, as the KS-test checks for
samples drawn from equal distributions, if the changes in the slid-
SHAPs are too smooth, i.e., highly overlapping sliding windows,
the KS-test loses statistical power, provoking a higher number of
false positives. Selecting a balanced ratio among a and d (cf. Sec-
tion 6.3.7), we can maximize the KS-test’s statistical power to get
the highest accuracy.

Following the style of [LL17], Figure 6.2a represents how the
slidSHAP values change in the different distributions. We plotted
the slidSHAP values against the average value assumed by the orig-
inal time series univariate dimensions. Intuitively, a distributional
change in the input space causes a change in the slidSHAPs value,
which can be detected as a distributional change. The slidSHAP
series also show some unobservable input space change points,
where the amplitude of features stays in the same range while the
feature correlation changes. In such cases, significant changes can
still be observed in the slidSHAPs values. The changes in the time
series are highlighted in the slidSHAP series and the evolution of
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Figure 6.4: MIX dataset - slidSHAP tSNE plot. A color per concept,
while the red crosses are the slidSHAPs of the change events.

its univariate dimensions can be used to simplify the detection of
such change points in the time series data.

In Figure 6.2c, we plot the different distributions of the time
series data before and after the first change for each univariate
dimension of the time series X. Finally, Figure 6.4 visualizes the
10-dimensional slidSHAP values of the MIX dataset in a two-
dimensional space using tSNE. As depicted by the color-coded
dots, data from different distributions are well-separable using
their slidSHAP series. The slidSHAP values, whose correspond-
ing sliding window overlaps the change position, i.e., red crosses,
lie mostly apart from any cluster. Some are not well-distinguishable
from the clusters, as they correspond to the change event’s begin-
ning and ending sliding windows and, therefore, do not show a
significant difference to the previous or upcoming distribution.

6.3.7 Parameter sensitivity

The window length d and the overlap a are the two influential
parameters for constructing the sliding windows in slidSHAPs. In
practice, the sliding window length can be determined empirically
by the dataset’s size or prior knowledge of the data, e.g., an hour,
a day. Moreover, the overlap a directly impacts the generated
slidSHAP series. We conducted experiments using {10%, ..., 90%}
as nine different overlap rates a

d and same window length d as
in Section 6.3.5. Figure 6.5, shows the counts of TP, FP, FN, and
the average delay for the various setups. Generally, the model
detects more TP with increasing overlap rate, i.e., fine-granular
slidSHAP series. However, the FP also explosively increases due
to the enormous increase of slidSHAP values under a high overlap
rate. Exploring using the different datasets introduced through the
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Figure 6.5: Parameter sensitivity. We study the impact of the overlap
rate by fixed window length d = 100 (d = 10 for BC).

paper, we conclude that it is often reasonable to keep the overlap
in the range 50− 70%; furthermore, the window length can be set
up differently to detect change points located with various inter-
spaces among each other. Finally, the average delay fairly reflects
that with a larger overlap rate, we need to conduct the statistical
tests more often. Therefore, it ends up with less detection delay; we
do not observe average delay rates below 60% due to the absence
of true positives.

6.3.8 KS-test versus t-test

We tested our method using the KS-test and the t-test.
Student’s t-test. We restrict to the case when dealing with two

separate sets of independent and identically distributed samples,
thus looking for statistical significance of equality for one variable
from each population. The two-sample t-test takes the null hypoth-
esis that the means of two populations are equal. The t-test assumes
that the variances of the two populations are equal (although this
assumption can be dropped).

Kolmogorov-Smirnov test. The KS-test is a non-parametric
and distribution-free statistical test to compare continuous one-
dimensional probability distributions. In the case of the two-sample
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Figure 6.6: Critical difference diagram. F1 score comparison using
the Nemenyi test with a 95% confidence interval; lower ranks
are better.
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Figure 6.7: Visualization of concept drifts. On the left, 4-dimensional
time series example with a change point at timestamp 3000.
On the right, our slidSHAPs with blue-colored concept drift.

KS-test, it can be used to compare two sample sets. Given two
samples and their empirical cumulative distribution functions F1
and F2, the KS-test assumes as null hypothesis that the two samples
are drawn from the same distribution; thus, given a significance
level α, the null hypothesis is rejected if

sup
x
|F1(x)− F2(x)| > c(α)

√
m + n
m · n (6.6)

where c(α) =
√
− ln( α

2 ) ·
1
2 , m and n are the sizes of the two sample

sets.
We replaced the default t-test with the KS-test (significance level

α = 0.05) in slidSHAPs. We refer to the new variant as slidSHAPs-
KS and report the average ranking of F1 scores among competitors
on all datasets. As shown in Figure 6.6, the slidSHAPs (with t-test)
and slidSHAPs-KS (with KS-test) rank in first places.
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6.3.9 A remark on the change point visualization

Visualization tools help the human eye understand what is hap-
pening in the data; having a visual grasp helps users to validate
their assumptions and the outcomes of black-box models. However,
the visualization of the time series’ evolution through time is often
not helpful: the human eye can not easily grasp the structure and
the correlation changes among several observations at each times-
tamp. After fixing the length and the overlap among the sliding
windows, the slidSHAP series represents the correlations among
univariate dimensions of the time series. Although we do not claim
slidSHAPs to be an interpretable feature extraction approach, the
univariate dimensions of the slidSHAP series follow more dis-
tinguishable trends than the input variables of the original time
series. To this end, Figure 6.7 gives an example of the contrast
between the pretty chaotic behavior of the time series data and
the smooth sequence of the slidSHAP values. Figure 6.7 shows
a 4-dimensional time series with a distributional change at times-
tamp 3000. The change is hard to spot in the original time series.
However, it is clearly visible in the lower plot where we represent
how the correlation structure evolves through our slidSHAPs. It
is clear that the correlation structure among the dimensions is
strongly affected by the change point in a few dimensions. Such
complex behavior of multivariate time series makes visualization
of streaming data hard to interpret. Similarly, change detectors fail
to analyze complex correlation structures among the time series
input dimensions. Furthermore, all the slidSHAP series dimen-
sions change when a change point appears in the time series input
variables. We can visually distinguish distributional changes of
the original time series in the slidSHAP series. The slidSHAP
values can give a visual hint to users on where the change points
could potentially be located before statistically checking for their
existence.

6.3.10 slidSHAPs approximations

The computation of Shapley values is a well-known NP-hard prob-
lem that involves evaluating the value function on each possible
subset of players. The exact computation of Shapley values be-
comes soon unfeasible due to the exponentially growing number
of evaluations involved. Several approximations appeared in the
literature. In Chapter 4, we suggested that defining an “upper
bound” for the subsets’ size on which the value function will be
evaluated achieves better results than using randomly sampled
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2 3 4 5 6 7 8 9

LED 318.9 611.0 945.8 1223.1 1283.7
ADD 50.3 63.8 68.9
MIX 145.4 433.2 852.4 1344.8 1725.7 1860.6 1987.6 2046.0
AND 51.8 61.5 65.9
COE 50.4 63.0 68.5
MUL 50.3 61.0 68.5
OR 49.8 60.8 67.6
XOR 51.0 60.6 65.9

Table 6.5: Runtime. Average runtime in seconds for the slidSHAP series
(d = 100 and a = 70) over 10 trials. Each column represents a
different upper bound.

subsets; we implemented the same approximation for the compu-
tation of our slidSHAP series. The upper bound defined by the
user influences the quality of the approximation for the Shapley
values; for a N-dimensional time series, an upper bound equal to
N represents the non-approximated computation of the Shapley
values. We generally use the non-approximated version of the slid-
SHAPs, except in the two high-dimensional real-world datasets
KDD and MSL, where we use the approximated version with an
upper bound equal to 2.

We conducted experiments using various upper bounds on the
synthetic datasets to evaluate the runtime of the slidSHAP series’
computation; Table 6.5 contains the runtimes in seconds to compute
the slidSHAP series for d = 100 and overlap a = 70 when using
the different upper bounds and for the various synthetic datasets.
All the experiments were run on Intel Xeon CPU E5-2640 v4 @
2.40GHz with 10 cores.
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I N T R O D U C T I O N A N D R E L AT E D W O R K

T he spread of machine learning techniques to safety-critical
applications has raised major concerns about model in-
terpretability, fairness, and trustworthiness. From an eth-

ical perspective and socially acceptable guarantees of well-used
technologies, ensuring that metrics, methods, and technologies
are fair and interpretable became necessary. The use of black-box
models for critical applications, e.g., health and societal impactful
applications, is limited by the lack of trust and understanding of
the (over)complicated machine learning models. Although pretty
obsolete and often outperformed by more advanced methods, tech-
nologies such as simple linear models are still used daily because
of their clarity, straightforwardness, and ease of use. Increasing
trust and understandability for the general public is, therefore,
essential. Furthermore, consistent evaluations are often far from
achieved. The results reported by practitioners in statistics and
machine learning are mostly data- and metrics-dependent; this
renders the correct assessment of the methods’ performances, the
reproducibility, and the credibility of the reported achievements
complex.

In the second part of this thesis, we will focus on the consistency
of a specific category of metrics and interpretability methods and
on proving a new intepretable method for unsupervised anomaly
detection. The trustworthiness of machine learning is fundamen-
tally based on the understanding and the reliability of methods.
The Oxford dictionary defines “trustworthiness” as “the ability to
be relied on as honest or truthful”. Can we rely on the results of a
machine learning method? (Probably) yes, if it is transparent, fairly
tested, understandable, and coherent. Trust is hard to evaluate, and
building trust in new technologies is often tackled collaboratively
by machine learning researchers and psychologists. Assuring in-
creased fairness, transparency, coherence, and interpretability of
methods boosts the trust in black-box models.

Here, we follow the common thread on rankings from the per-
spective of results’ consistency. We consider the consistency of
rankings’ evaluation metrics and the consistency among relative
importance scores derived from saliency explanations for time
series classification. Furthermore, we provide a new application
of Shapley values for interpreting bagging models-based anomaly
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detectors. The following three chapters are based on published or
under-review work as cited below:

• Chapter 8, “A group-theoretic perspective on ranking evalua-
tion metrics” is based on [BMM24],

• Chapter 9, “On the consistency and robustness of saliency
Explanations for time series classification methods”, is based
on the collaborative work [BLM23a], and

• Chapter 10, “On the efficient Explanation of Outlier Detection
Ensembles through Shapley values ”, extends [KBM24].

We now proceed with an overview of the related work relevant to
all chapters.

7.1 related work

Costlier, more complicated, advanced machine learning prediction
models often outperform straightforward linear regression meth-
ods. This trade-off between intepretability and model performance
has increased the interest in post-hoc explanations techniques, ide-
ally model-agnostic, straightforward, and robust. Few exceptional
models are inherently interpretable. Examples are shallow models;
although broadly applied, they often lack accuracy compared to
more sophisticated prediction models whose predictions’ interpre-
tation is far from obvious. Among explanation methods, saliency
explanation recently gained traction and succeeded in various
computer vision [Pil+22; SGK17] and natural language processing
tasks [TYR23; Rus19]. We have already recalled SHAP [LL17], a
successful attempt to introduce Shapley values [Sha+53] in ma-
chine learning aiming at assigning importance scores to features
for local explanations of black-box models’ predictions. On the one
hand, Shapley values offer mathematical guarantees of fairness
that make them an attractive choice in many contexts; on the other
hand, their practical application poses a significant challenge due
to the requirement of training an exponentially large number of
models.

Explaining time series models and outlier detection methods
still faces challenges. Time series data structure has generated in-
terest in directly applying saliency maps to obtain meaningful
explanations for classification models [Ism+20]. However, images
and time series represent fundamentally different types of data.
On the one hand, the temporal dependency in time series leads
to time-dependent changes in feature attribution. On the other
hand, explanation approaches are often not directly applicable
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to time series models with recurrent- or attention-based compo-
nents [Cho+16; JW19]. Deep time series analysis models usually
consider sliding windows as basic input units to capture temporal
information. Analog to saliency maps that visualize image pixel im-
portance, similar saliency maps are generated for time series frames
with feature-time pixel importance. Current research on explanation
approaches for time series data can be classified into two categories.
The first category contains methods treating sliding windows as
frames of images and applying classical image explanation meth-
ods, e.g., SHAP [LL17], LIME [RSG16], and DeepLIFT [SGK17].
Those methods extract local feature information while disregarding
the time series data’s typical time structure. The second category
contains methods considering the time dimension as an additional
feature for joint explanation [Ben+21b; Ism+20]. Another thread of
approaches using attention-based models obtains time-dependent
explanations by attention weights [Kaj+19; Son+18; Cho+16]. The
acquired feature and time attribution to the prediction can be vi-
sualized in saliency maps, which are initially implemented for
images [Bac+15], and are a current trend in obtaining explana-
tions for importance scores of timestamps and features. Among
them, we find gradient-based and perturbation-based feature im-
portance scores [ZF14; Sur+17]. For anomaly detectors, making the
models interpretable often goes hand in hand with determining
the importance of single input features in the prediction of the
anomaly scores. Also, here, feature importance analysis plays an
essential role [LZV23]; an example is offered by Dissanayake et
al. [Dis+20], introducing a technique based on feature attributions.
Additionally, rule-based models [Mül+12], decision trees [PK21],
and the usual model-agnostic techniques [RSG16; LL17] are used to
explain anomaly detection methods. Visualizing the explanations
is essential for both time series and anomaly detector explanations;
heat maps, scatter plots and saliency maps offer a concrete boost
of users’ trust in complex models’ scenarios [KB01].

Although progress is not neglectable, the explanations provided
by the most recent works are mostly not quantitatively measurable,
thus still raising trust issues in users [Zha+19]. Few recent works
focus on the quality of the explanation methods; Dombrowski et
al. [Dom+19] showed that explanations for image classification are
non-robust against possible visually hardly detectable manipula-
tions, and additional works focus on the disagreements among
explanation methods [Kri+22]. Furthermore, the interest in choos-
ing proper and fair evaluation metrics in computer science has
grown fast in recent years. It is often the case that newly proposed
methods optimize for maximizing or minimizing specific metrics,
inevitably inducing a relative evaluation of the methods, eventually
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outperforming competitors on specific datasets or with respect to
selective metrics. The first issue is partly solved by benchmarking
studies, aiming to compare methods under the same and bright
conditions and on various datasets. Some contemporary works in
the state-of-the-art literature [Gös+21; GTP21] have started defining
essential properties for metrics in specific contexts. However, the
conclusion remains always the same: one metric fitting all purposes
probably does not exist and trust in machine learning methods is
far from being fully achieved.
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A G R O U P - T H E O R E T I C P E R S P E C T I V E O N
R A N K I N G E VA L UAT I O N M E T R I C S

S earching for better-performing machine learning tech-
niques requires comparing them with well-established meth-
ods. While facing the challenges of finding the right metric

to prove the strengths of the proposed models, choosing one over
another is non-straightforward. Comparing rankings introduces its
formidable challenges; additionally, metrics to compare rankings
strictly meant for specific contexts spread to other areas, sometimes
without a complete understanding of their inner functioning. This
leads to unexpected results and misuses, and, as distinguished
metrics focus on different facets of the rankings, comparisons of
models’ results frequently appear contradicting. We are not the
first one to raise the importance of the issue; among others, Tamm
et al. [TDV21] harshly criticized the comparisons’ reliability of
some often-used ranking evaluation metrics.

We observe a notable gap in the literature concerning the limited
exploration of standard Recommender Systems (RS) and Informa-
tion Retrieval (IR) evaluation metrics in contexts beyond RS and
IR. The literature focusing specifically on Recommender Systems
and Information Retrieval is extensive, where several works ex-
plore the relationships among the various metrics [Val+18; GSY12;
Sil+19]. We recall [Her+04], where the authors propose a theoretical
division of the metrics for comparing collaborative filtering Rec-
ommender systems, and [Liu+09], describing most of the metrics
typically used for RS and IR techniques. Jarvelin et al. [JK02] focus
on various metrics based on cumulative gain, highlighting their
main advantages and drawbacks. The work by [Hoy+22] intro-
duces a theoretical foundation for rank-based evaluation metrics,
and [ASC18] defines a set of properties for IR metrics and shows
that none of the existing ones satisfy all the properties proposed.
Other works focus on metrics for RS and their intrinsic properties
or ranking metrics for the top-k recommendations [BV04; Val+20].

However, the applicability of these metrics and other error met-
rics is not limited to Recommender Systems. Real-world applica-
tions such as the design of strategies based on customers’ feedback
and allocation of priorities in R&D extended the interest in defin-
ing distances among rankings in [Dwo+01; Scu07; Kim+13], where
the problem statement focuses on rank aggregation. Examples of
similarly scoped works are [CKS86; FV86]. However, no available
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attempts go beyond specific contexts; all literature focuses on con-
crete applications.

We propose to theorize rankings using the mathematical formal-
ism of symmetric groups. We reveal that pairs of metrics often
yield contradictory evaluations. We introduce the “agreement ra-
tio” to quantify the frequency of such disagreements and formally
establish essential mathematical properties for ranking evaluation
metrics. Lastly, we investigate whether the metrics can be con-
sidered “distances” in the mathematical sense. In conclusion, our
analysis sheds light on the causes of the inconsistencies in ranking
evaluations by comparing the metrics purely based on mathemat-
ical concepts. The unique, similar approach was introduced by
Diaconis [Dia88], who focuses on six metrics on symmetric groups,
among them Kendall’s τ and Spearmann’s ρ, and studies them from
a statistical and theoretical perspective. [Dia88] defines theoretical
properties for the metrics. Among them, we find “interpretabil-
ity”, “tractability”, “sensitivity” defined as the ability of one metric
to range among the available counter-domain, and “theoretical
availability”.

To sum up, our main contributions are:

1. transferring the problem of evaluating ranking to metrics on
symmetric groups,

2. defining desirable theoretical mathematical properties, de-
sirable both from a theoretical point of view as well as for
applications,

3. proving which of them are satisfied by the metrics, thus
justifying the appearance of inconsistent evaluations.

8.1 ranking evaluation metrics

In the state-of-the-art literature, we find various metrics to evalu-
ate ranking in specific contexts. This is the case for most offline
Recommender Systems metrics, some evaluation metrics for pre-
diction models, and rank aggregation approaches. Some of these
metrics started spreading to other domains following the need to
evaluate rankings. However, this is not always a good idea as the
domain defines the evaluation’s exigencies. In our work, we con-
sider metrics evaluating full rankings that can be easily transferred
to adjacent domains and cut out from the analysis all those metrics
that require context-specific information, e.g., “diversity” in Rec-
ommender Systems. We refer to the group as ranking evaluation
metrics; a complete list is summarized in Table 8.1.
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Ranking aware
metrics nDCG, DCG, meanRank, GMR, MRR

Metrics assigning equal
importance to each position

SMAPE, MAPE, MAE, RMSE, MSE, R2 score, NDPM,
Spearmann ρ, Kendall’s τ

Set based metrics
markedness, PT, recall, LR+, Jaccard index, F1 score, FDR,
accuracy, MCC, TNR, fallout, FNR, LR- informedness,
NPV, FOR, BA, FM, precision

Table 8.1: List of considered metrics. Bold, italic, wind, and plain text
indicate CGB, EB, CMB, and CB metrics. Other metrics are
blue color-coded.

metrics

ranking
aware

flat

all elements 
have same
importance

set based
metrics

Figure 8.1: Theoretical subdivision of the metrics.

We categorize the ranking evaluation metrics under two different
theoretical aspects. One subdivision derives from their “awareness”
of the position of single items in the rankings: ranking aware metrics
satisfy this criterion, while flat metrics do not. In this second group,
we find the set-based metrics and those assigning equal importance
to each position. The subdivision is shown in Figure 8.1. From their
theoretical definition, we individuate four main groups: confusion
matrix-based CMB metrics focus on the number of correctly retrieved
elements and are essentially set-based metrics; correlation-based CB
metrics quantify the ordinal association between the two rankings
from a statistical perspective; error-based EB metrics are often used to
analyze the performance of predicting models and are flat metrics
assigning equal importance to each position; finally, cumulative
gain-based CGB metrics focus on the rankings of the single elements.

8.2 ranking evaluation metrics on symmetric groups

To generalize the metrics over an abstract structure, we introduce
the symmetric groups SN . Given a finite set N = {1, . . . , N}, the
symmetric group SN is the set of bijective functions from N to N ,
i.e., the rankings or permutations of elements in N ; SN has size
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Figure 8.2: Agreement ratio among metrics. Heatmap of the disagree-
ment ratios among pairs of ranking evaluation metrics.

N!. Permutations are designed with lowercase Greek letters, i.e.,
σ ∈ SN ; exceptionally, id indicates the group identity or identity
function. σ(i) indicates the position in which item i is sent by σ and,
given σ, ν ∈ SN , σ ◦ ν ∈ SN is a new ranking defined by σ ◦ ν(i) =
σ(ν(i)), ∀i ∈ {1, . . . , N}; ◦ is the group operation and it is not
commutative, i.e., generally σ ◦ ν ̸= ν ◦ σ. σ|k = (σ(1), . . . , σ(k))
indicates the ranking of the first k elements; metrics@k consider
exclusively the first k ranked elements. Finally, a (single) swap is a
permutation σ = (j k) ∈ SN , swapping only the two elements j, k
in N ; [HM14] refers to them as “transpositions”.

8.2.1 Clustering by agreement

Our work is mainly justified by the lack of “consistent” evaluation
of rankings when using different metrics. A ranking evaluation metric
is a function m : SN × SN → R+, taking two permutations as input
and returning a real number. In some cases, metrics take only one
ranking as input; all the given definitions work correspondingly
for one-input metrics.

Definition 8.2.1. Two metrics m1, m2 are non-consistent if there exists
σ, µ, ν ∈ SN such that the following two conditions hold:

m1(id, σ) ≤ m1(id, µ) ∧ m2(id, σ) ≤ m2(id, µ)
m1(id, σ) ≤ m1(id, ν) ∧ m2(id, σ) > m2(id, ν)

(8.1)
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Otherwise, we say that m1, m2 are consistent.

The first line of (8.1) guarantees that the reversed metric m̃2 =
−m2 is still non-consistent with m1. Proving consistency between
two metrics is much trickier than finding three rankings satisfying
the inconsistency condition; therefore, rather than classify them,
we estimate the degree of inconsistency among pairs of metrics by
introducing the agreement ratio. The coefficient provides an esti-
mate of the extent to which two metrics disagree in the evaluation
of rankings over symmetric groups.

Definition 8.2.2. For any σ ∈ SN fixed, the σ agreement ratio among
two ranking evaluation metrics, m1 and m2 is

ARσ
m1,m2

=
1

|P(SN)|(|P(SN)| − 1) ∑
µ,ν∈P(SN)

f m1,m2
σ (ν, µ)

where f m1,m2
σ (ν, µ) = 1{µ, ν are consistent w.r.t. σ} and 1 is the indica-

tor function.

As the size of P(SN) grows exponentially, we randomly sample
a subset T of P(SN) thus obtaining an estimate of the number
of inconsistencies existing among two metrics. The agreement
ratio equals 1 if m1 and m2 are consistent and goes to zero with
increasing inconsistencies found; furthermore, the agreement ratio
is a symmetric metric.

The color-code heatmap in Figure 8.2 highlights, respectively, in
green and pink, the existence of a high agreement and disagree-
ment; a partial agreement is represented in white. It is visible that
theoretical similar metrics tend to have an agreement ratio closer
to 1. The agreement ratio represents an estimate of the number of
inconsistencies among metrics; Figure 8.2 refers to rankings in S100,
where T contains 10000 random rankings. For CMB metrics, we
fixed to 30 the number of retrieved and relevant elements.

8.3 properties for ranking evaluation metrics

Most pairs of metrics are affected by frequent inconsistent evalua-
tions (cf. Section 8.2.1). We list essential mathematical properties
to highlight the peculiarity of each metric and give the chance
to properly select one or another based on them for a context-
dependent evaluation. The properties in question are: (1) identity of
indiscernibles (IoI); (2) symmetry (or independence from a ground truth);
(3) robustness (Type-I and Type-II); (4) stability with respect to k; (5)
sensitivity and width-swap-dependency; (6) (induced) distance. Some
of them have been defined in other domains, e.g., [GTP21; Gös+21;
HM14; CKS86; FV86], often under different names.
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10 5 id (1 2) id ◦ • • • • • • • • • • • • • •
10 5 id (1 2) (3 4) ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦
10 5 id (1 2) (2 4) ◦ • • • ◦ ◦ • • • • • ◦ ◦ • ◦

Table 8.2: IoI property. Examples of rankings that metrics cannot dis-
tinguish. We compare for each evaluation metric m the values
m(id, σ) and m(id, τ). If the metric fails in distinguishing the
two rankings, we impute a ◦; else, a •.

For each property, we will highlight in which context and why it
is important. Table 8.3 and Table 8.4 help the reader to keep trace
of the mentioned results; the code is available on GitHub1.

8.3.1 Identity of indiscernibles

Ideally, a metric m quantifies how “close” or “similar” two rank-
ings σ and τ are. However, situations may arise where σ and τ are
“so” similar to be practically indistinguishable by some metrics.
This effect might be undesired in some fields, such as (fair) rank
aggregation, where even small differences, especially in the pres-
ence of protected groups, make the difference between fair and
unfair rankings.

Definition 8.3.1. A metric m satisfies the identity of indiscernible
(IoI) property if, ∀σ ∈ SN fixed, the following holds

m(σ, τ) = m(σ, ν)⇔ τ = ν, ∀τ, ν ∈ SN . (8.2)

Up to renaming the elements, we can rewrite Equation (8.2) as
m(id, τ) = m(id, ν)⇔ ν = τ where id is the usual identity of SN .

Almost all metrics do not satisfy the IoI property; for set-based
metrics and metrics@k, clear examples not satisfying (8.2) are rank-
ings σ that can be written as a disjoint composition of cycles of
permutations of elements before and after k. Table 8.2 illustrates
examples for each metric where the IoI is not satisfied. It can be
proven that

Proposition 8.3.2. DCG and nDCG satisfy the Identity of Indiscernibles
property.

1 Code available at chiarabales/rankingsEvaluMetrics

https://github.com/chiarabales/rankingsEvaluMetrics
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Proof of Proposition 8.3.2. As DCG and nDCG differ only for a con-
stant multiplicative factor, we prove the claim only for DCG. As we
deal with pure rankings on symmetric groups, we use the conven-
tion reli = σ(i) representing a rescaling of the relevance score to
distinguished integer numbers; given σ ∈ SN , we use the following
definition DCG(σ) = ∑N

i=1
σ(i)

log2(i+1) .
The goal is proving that for any σ1, σ2 ∈ SN ,

DCG(σ1) = DCG(σ2)⇔ σ1 = σ2.

Without loss of generality, we prove that DCG(id) = DCG(σ) ⇔
σ = id for any σ ∈ SN , i.e.,

N

∑
i=1

i− σ(i)
log2(i + 1)

= 0.

As this is not straightforward, we prove instead a stronger version

N

∑
i=1

i− σ(i)
log2(i + 1)

< 0⇔ σ ̸= id ∈ SN . (8.3)

We base our proof on induction over N.

Base case. The base case N = 2 is trivial as S2 = {id, σ = (1 2)};
in particular, DCG(id) = 0 while

DCG(σ) =
1− σ(1)

log2 2
+

2− σ(2)
log2 3

= − 1
log2 2

+
1

log2 3
< 0

Inductive case. The claim holds for N − 1 and we prove it for N;
consider σ ∈ SN . We distinguish two cases.

One element is fixed by σ. Up to renaming the elements, we
suppose that N is fixed by σ, i.e., σ(N) = N. Given N, k ∈ N, we
can construct an immersion

iN,k : σ ∈ SN 7→ iN,k(σ) ∈ SN+k

of SN in SN+k, such that iN,k(σ)(j) = σ(j) if j ≤ N otherwise
iN,k(σ)(j) = j; iN,k is injective and surjective on

A = {σ ∈ SN+k | σ(j) = j, ∀j > N + k}

and σ fixes N, σ belongs to SN−1 (as the counter-image of iN,1).
Therefore, the claim holds.

No element is fixed by σ. It holds σ(N) ̸= N and we can rewrite
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σ as the composition of two permutations, i.e., σ = τ ◦ µ such that
τ = (j N) for some fixed j and µ such that µ(s) = σ(s) if s ̸= N, k∗,
µ(s) = j if s = k∗ and µ(s) = N if s = N where we named

k∗ = µ−1(j) = σ−1(N).

We can now rewrite σ in terms of τ ◦ µ:

N

∑
i=1

i− σ(i)
log2(i + 1)

=

N−1

∑
i=1,i ̸=k∗

i− σ(i)
log2(i + 1)

+
k∗ − σ(k∗)

log2(k∗ + 1)
+

N − σ(N)

log2(N + 1)
=

N−1

∑
i=1,i ̸=k∗

i− µ(i)
log2(i + 1)

+
k∗ − τ ◦ µ(k∗)
log2(k∗ + 1)

+

N − σ(N)

log2(N + 1)
+

k∗ − µ(k∗)
log2(k∗ + 1)

− k∗ − µ(k∗)
log2(k∗ + 1)

=

N−1

∑
i=1

i− µ(i)
log2(i + 1)

+
k∗ − τ(j)

log2(k∗ + 1)
+

N − σ(N)

log2(N + 1)
− k∗ − µ(k∗)

log2(k∗ + 1)

We note that ∑N−1
i=1

i−µ(i)
log2(i+1) is negative for the inductive hypothesis

and we assume that µ ̸= id ∈ SN−1.
By substituting σ = τ ◦ µ, we conclude the proof if we can upper

bound their sum with 0.

k∗ − τ(j)
log2(k∗ + 1)

+
N − σ(N)

log2(N + 1)
− k∗ − µ(k∗)

log2(k∗ + 1)
=

k∗ − N − (k∗ − µ(k∗))
log2(k∗ + 1)

+
N − σ(N)

log2(N + 1)
=

µ(k∗)− N
log2(k∗ + 1)

+
N − σ(N)

log2(N + 1)
<

µ(k∗)− N
log2(k∗ + 1)

+
N − σ(N)

log2(k∗ + 1)
= 0

where we used

log2(N + 1) > log2(k
∗ + 1)

σ(N) = τ ◦ µ(N) = τ(N) = j
µ(k∗) = j.

Thus, the claim is proved for µ ̸= id.
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recall ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
FNR ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
fallout ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
TNR ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
precision ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
FDR ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
NPV ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
FOR ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
alluracy ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
BA ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
F1 score ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
FM ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Mll ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Jallard index ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
markedness ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
LR- ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
informedness ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
PT ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗
LR+ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗
MSE ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗
RMSE ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
MAE ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗
MAPE ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗
SMAPE ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗
R2 score ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗
Kendall’s τ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓
Spearmann ρ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗
NDPM ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗
DCG ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓
nDCG ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
MRR ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗
IGMR ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
meanRank ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Table 8.3: Summary table. Properties satisfied by the metrics.

In the case µ = id: Then it holds σ = τ and DCG(σ) reads

N

∑
i=1

i− σ(i)
log2(i + 1)

=
N

∑
i=1

i− τ(i)
log2(i + 1)

=

j− τ(j)
log2(j + 1)

+
N − τ(N)

log2(N + 1)
=

j− N
log2(j + 1)

+
N − j

log2(N + 1)
<

j− N + (n− j)
log2(j + 1)

= 0

This concludes the proof.
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8.3.2 Symmetry property

Often, guarantees that the evaluation is symmetric with respect
to input items are desirable [Gös+21; GTP21], particularly when
the interest is in having a sort of mathematical distance, e.g., for
rank aggregation. However, as usual, the context rules the need for
a symmetric evaluation. The symmetry property studies whether
the metric’s evaluation is independent of the order in which the
rankings are compared. In RS and IR, the common presence of a
“ground truth order” makes the symmetric property impossible.

Definition 8.3.3. A metric m : SN × SN → R is symmetric if

m(σ, ν) = m(ν, σ), ∀σ, ν ∈ SN . (8.4)

8.3.3 Robustness

The Identity of Indiscernibles property studies whether metrics can
distinguish rankings, regardless of their similarity. On the other
side, the similarities among rankings should be projected on the
evaluations: small differences in rankings should result in small
differences in the evaluation scores. Under the assumption that a
single swap represents a small difference between two rankings,
the Type I robustness property assesses how sensitive a ranking
evaluation metric is to single swaps in the compared rankings.

Definition 8.3.4. A metric m is Type I Robust if a single swap in one
of the rankings implies small changes in its evaluation, i.e.,

|m(σ, ν)−m(σ, ν ◦ (i j))| < ϵ. (8.5)

We compute the average of the results of Equation (8.5) evaluated
on 1000 different randomly drawn pairs of rankings in S100 and
round it to two decimal numbers. We state that the metric satisfies
the Type I Robustness if the resulting average is 0.

For completeness, we define a second type of robustness that
studies the effect of renaming the items in the rankings. [Dia88]
mentions Type II Robustness as “right-invariance” and [HM14] as
“resistance to item relabeling”.

Definition 8.3.5. A metric is Type II Robust if it is an invariant w.r.t.
the composition of permutations, i.e., it holds

m(µ, σ) = m(µ ◦ ν, σ ◦ ν), ∀σ, ν ∈ SN .

Type II Robustness property investigates whether applying the
same change in both rankings affects the evaluation. The property
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is essential in contexts where the numbers appearing in the rank-
ings have to be considered as proper “items” or “items’ names”;
this is often the case in rank aggregation approaches, Recommender
Systems, and Information Retrieval techniques. However, it does
not apply when dealing with importance scores. We claim the
following:

Proposition 8.3.6. MSE, RMSE, MAE, MAPE, R2 score, Kendall’s τ

score and Spearmann’s ρ are the only considered metrics satisfying the
Type II Robustness.

Proof of Proposition 8.3.6. MSE, RMSE, MAE, MAPE, R2
score. De-

composing the sum in the definition of MSE(σ ◦ (j k), ν ◦ (j k))
among addends involving k or j and others, it is easy to get to
MSE(σ, ν). Similarly, for the other metrics.
Kendall’s τ. It is enough to note that the number of discordant
and concordant pairs does not change when applying a swap to
both the rankings σ and ν.
Spearmann’s ρ. Similarly to the case of the error based metric,
we decompose the sum defining the Spearmann’s ρ in elements
involving j and k and others; manipulating the definition, we even-
tually get the thesis.

Unicity: For all the other metrics, finding pairs of rankings provid-
ing counterexamples is trivial. For cumulative gain based metrics,
the swaps change the association between the position in the rank-
ing and the relevance score. For confusion matrix based metrics,
swaps change both the set of relevant and retrieved elements (but
not equally); thus, the evaluation is different after applying swaps
in both rankings.

8.3.4 Sensitivity

The sensitivity property is valuable for a metric, particularly in the
case of Recommender Systems and Information Retrieval, where
high dimensional rankings may not be fully explored. Under the
assumption that a full exploration of the rankings is not possible,
sensitive metrics assign more weight to the first part of the rank-
ings, considering whether the first k items are “correctly” ranked.
Mathematically, we define:

Definition 8.3.7. Given i < j < k < l ∈ {1, . . . , N} and (i j), (l k)
having the same width. A ranking evaluation metric m is sensitive if the
swap (i j) has a different impact on the evaluation than (k l).

As the evaluation of the property is far from easy, we introduce
the width swap dependency, formalizing a property that prevents the
metrics from being sensitive.
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Definition 8.3.8. Given a swap (i j) ∈ SN and |i − j| its width, m
is width swap dependent (WSD) if it evaluates swaps with the same
width equally; otherwise, it is called non-width swap dependent.

The WSD property cuts out some of the metrics from being
sensitive. From their definitions, it can be proven that

Lemma 8.3.9. Kendall’s τ, Spearmann ρ, NDPM are width swap
dependent.

Proof of Proposition 8.3.9. Spearmann’s ρ. It has an equivalent for-
mulation that depends only on the differences di = σ(i) − ν(i);
the fact that the elements appearing in the ranking are all distinct
implies the WSD property directly.
Kendall’s τ and NDPM. To prove the claim for Kendall’s τ

(NDPM is similar), we fix an arbitrary N and a swap (i j) ∈ SN of
width d. We proceed by induction on d and prove that Kendall’s τ

is based only on d, independently from i and j. If d = 1, then the
swap is of the form (i i + 1); in this case, the number of concordant
pairs is (N

2 )− 1, and the only discordant pair is given by (i i + 1).
Recalling the definition of Kendall’s τ, we want to prove that

Kτ =
|{concordant pairs}| − |{discordant pairs}|

(N
2 );

=

(N
2 )− 4|i− j|+ 2

(N
2 )

.

This holds for d = 1 as Kτ(id, (i j)) =
(N

2 )−1+((N
2 )−((

N
2 )−1))

(N
2 )

=
(N

2 )−2
(N

2 )
.

We now suppose that it holds for d and prove it for d + 1; the
number of discordant pairs in a swap of length d + 1 equals the
number of elements that are not anymore concordant with i, i.e.,
d+ 1, plus the number of elements that are not anymore concordant
with j minus 1, i.e., d. Summing up we get

Kτ(id, (i j)) =

(N
2 )− (2d + 1) +

(
(N

2 )−
(
(N

2 )− (2d + 1)
))

(N
2 )

=

(N
2 )− 4(d + 1) + 2

(N
2 )

.

We conclude that Kendall’s τ is width-swap-dependent.

For the other metrics, we evaluate if pairs of disjoint swaps had
different effects in the final evaluation when happening at various
positions within the rankings.
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8.3.5 Stability

We introduce the stability property for those metrics that can
be applied on “rankings@k”. We recall that a ranking@k is the
ranking of the items in the first k positions. To evaluate rankings@k,
it is essential that the difference between evaluations “@k” and
“@(k + 1)” is not significant, i.e., that the choice of k does not
highly impact the result; this guarantees a trustworthy evaluation.

Definition 8.3.10. A ranking evaluation metric m is stable if, for any
two rankings σ, ν ∈ SN , it holds

|m@k(σ, ν)−m@k+1(σ, ν)| < ϵk (8.6)

with ϵk small. Moreover, the sequence {ϵk}k satisfies limk→n ϵk = 0.

The property is again essential for extremely long rankings and
for contexts where rankings are not fully explored. We evaluate
the stability by randomly drawing 1000 pairs of rankings in S100,
computing the absolute differences of Equation (8.6), and counting
the number of times that Equation (8.6) holds with ϵk =

1
k .

We state that a metric is stable if the criterion is satisfied in at
least 97.5% of the cases.

8.3.6 Distance

In mathematics, the terms metric and distance are synonyms. How-
ever, when it comes to evaluation metrics, most of them are not
“distances” on SN in the mathematical sense. Whether a metric is a
mathematical distance or not is often insignificant for the final eval-
uations; however, being aware of this fundamental mathematical
difference can avoid incomprehension and misuses.

Definition 8.3.11. A distance on a set X is a function fm : X× X →
[0, ∞) : (x, y) 7→ fm(x, y) ∈ R+ that, for all x, y, z ∈ X, satisfies:

1. fm(x, y) = 0⇔ x = y,

2. the positive definiteness, i.e., fm(σ, ν) ≥ 0, ∀σ, ν ∈ X,

3. the symmetry property and

4. the triangle inequality, i.e., fm(x, y) ≤ fm(x, z) + fm(z, y).

Some ranking evaluation metrics are distances; in [HM14; Dia88],
it is proven that Kendall’s τ is a distance. However, a ranking
evaluation metric that does not satisfy some of the properties
mentioned in Definition 8.3.11 is not a distance.
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We investigate if we can induce distances from single input
metrics. Given a metric m : SN → R, we consider two options
as potential induced distances, i.e., fm(σ, ν) = m(σ) − m(ν) or
f̃m(σ, ν) = |m(σ)−m(ν)|. DCG and nDCG are the only two metrics
satisfying the Identity of Indiscernibles property that, for metrics
with one unique argument, is equivalent to Property (1) for fm. We
can easily prove that

Proposition 8.3.12. fm is not a distance while f̃m is a distance with the
Identity of Indiscernibles property, where m is either DCG or nDCG.

Proof of Proposition 8.3.12. We must prove the three properties defin-
ing a distance for m = DCG (similar to nDCG, that differs only by
a multiplicative factor).
Identity Property. Proposition 8.3.2 states that DCG satisfies the
IoI property. Furthermore, it follows that fm(σ, ν) = 0 ⇔ σ = ν;
Similarly, f̃m(σ, ν) = 0⇔ ν = σ.
Symmetry property. It is easy to find pairs of permutations σ, ν ∈
SN such that fDCG(ν, σ) = fDCG(σ, ν); in particular, fDCG satisfy
the anti-symmetric property, i.e.,

fDCG(ν, σ) = DCG(ν)− DCG(σ) =

− [DCG(σ)− DCG(ν)] = − fDCG(σ, ν).

On the other hand, f̃DCG satisfies the symmetry property.
Triangle inequality. The triangle inequality property is satis-
fied if ∀ν, σ, µ ∈ SN holds fDCG(σ, µ) ≤ fDCG(σ, ν) + fDCG(ν, µ).
Expanding the formula of DCG we get

fDCG(µ, σ) = DCG(µ)− DCG(σ) =

DCG(µ)− DCG(ν) + DCG(ν)− DCG(σ) =

fDCG(µ, ν) + fDCG(ν, σ).

The equality holds ∀ν, σ, µ ∈ SN ; for f̃DCG, the property still holds
with the inequality:

f̃DCG(µ, σ) = |DCG(µ)− DCG(σ)| =
|DCG(µ)− DCG(ν) + DCG(ν)− DCG(σ)| ≤
|DCG(µ)− DCG(ν)|+ |DCG(ν)− DCG(σ)| =
f̃DCG(µ, ν) + f̃DCG(ν, σ).

Positive definiteness. f̃DCG is defined as an absolute value; the
claim obviously holds. Instead, fDCG can assume both positive and
negative values.

This concludes the proof.
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8.4 are the metrics interpretable?

Given the importance of trust, fairness, and explainability for ma-
chine learning methods, one could then ask how “interpretable”
the scores assigned by the metrics are. We first need some defini-
tions.

Definition 8.4.1. A ranking evaluation metric m is said to satisfy the
maximal agreement property if

(a) m(σ, σ) = mmax, ∀σ ∈ SN and

(b) m(σ, ν) ≤ mmax, ∀ν, σ ∈ SN .

We say that m is lower-bounded if it exists a real number mmin such
that m(σ, ν) ≥ mmin, ∀ν, σ ∈ SN . An evaluation metric that admits a
lower bound is said to satisfy the minimal agreement property.

For a metric to be “interpretable” we expect that

1. each ranking is maximally similar to itself and, given N ∈N,
this value is constant, i.e., m(σ, σ) = mmax, ∀σ ∈ SN and ∀N;

2. m satisfies the maximal agreement property;

3. there exists a lower bound mmin for any possible pair of
rankings, i.e., m(σ, µ) ≥ mmin, ∀σ, µ ∈ SN .

The maximal agreement property says that each ranking is maxi-
mally similar to itself, and no other ranking can achieve a higher
score than mmax; furthermore, ideally, mmax is independent of the
length of the rankings. Properties 1 and 2 imply that a ranking
evaluation metric is a monotone increasing function of the similar-
ity of two rankings: the more similar two rankings are, the higher
the score they get when evaluated using an “interpretable” metric.
If mmax is independent of N, the evaluation of rankings is indepen-
dent of N. However, this is hardly satisfied by any metrics, and
only after introducing a normalization score do the metrics satisfy
the requirement. Furthermore, the lowest scores are assigned by
some metrics to maximally similar pairs of rankings, e.g., error-
based metrics. The only metrics, among the ones considered in this
paper, automatically satisfying this property are Kendall’s τ score
and Spearmann ρ.

A ranking evaluation metric satisfying the maximal agreement
property is also upper-bounded. For the sake of interpretability, we
could check whether a metric m satisfies m(ρ−1, ρ) = mmin where
ρ−1 indicates the inverse ranking. How do we define the “inverse
of a ranking”? Kendall’s τ satisfies this property, given that the
inverse of one ranking σ is the ranking τ assigning the highest
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description domain

Identity of
Indiscernibles

in highly sensitive evaluations,
where detecting tiny differences
among rankings is essential

(Fair) rank aggregation
Recommender Systems
Feature ranking/selection

Symmetry ensures that the input rankings
have an equal role in the evaluations

Rank aggregation
Contexts independent from
ground truths

Robustness I
ensures that small changes
influence proportionately
the evaluations

Information Retrieval
Rank aggregation

Robustness II ensures independence from
items renaming

Information Retrieval
Feature ranking
Rank aggregation

Sensitivity
for not fully explored rankings,
when the interest is on
to the top part of the rankings

Information Retrieval
Recommender Systems

Stability ensures trustworthiness
in evaluations @k

Information Retrieval
Recommender Systems

Distance
ensures that the metric in questions
respect the definition
of distance on SN

(Fair) rank aggregation

Table 8.4: Summary.

position to the last element of the ranking σ; however, this does
not correspond with the inverse of the ranking in the symmetric
group. Assessing whether metrics for permutations are humanly
interpretable is not new and has already been discussed in [Dia88].
However, then, as well as now, the concept of interpretability lacks
a unified definition. Thus, we leave this section open and do not
argue further on the interpretability of the considered metrics.

8.5 discussion

We explored metrics for comparing and evaluating rankings and
analyzed their theoretical properties. All the mentioned metrics are
widely used in the literature to evaluate Recommender Systems,
Information Retrieval, feature ranking, rank aggregation methods,
and items’ score assignments. Each property is highly desirable
in some contexts and less in others. The IoI property is desirable
in highly sensitive evaluations, where detecting tiny differences
among rankings is essential; fair ranking aggregation is an exam-
ple, where swapping items can make the difference between fair
and unfair rankings. Conversely, robustness ensures that small
changes influence the evaluations proportionately in a one-to-one
fashion. A metric that satisfies both the IoI and the robustness
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properties ensures contemporaneously that small changes are not
overlooked but do not significantly impact the evaluations. The
symmetry property ensures that the input rankings have an equal
role in the evaluations. This is essential in most domains unless
ground truth ranking is available. Note that non-symmetric metrics
are also not distances. Rank aggregation is again an example of
use for the symmetry property, where the consensus ranking is di-
rectly compared with the original rankings provided. Sensitivity is
crucial when rankings are not fully explored. This is often the case
for Recommender Systems and Information Retrieval techniques’
evaluations. With the same applicability, the stability property en-
sures trustworthiness in evaluations @k, which is again highly
relevant for Recommender Systems and Information Retrieval tech-
niques. To assure stable evaluations, we recommend considering
evaluating the impact @k and @(k + i) with i arbitrarily chosen, in
particular when k << N. Finally, the distance property is defined
to complete the proposed analysis and highlights the chance that
mathematical terms are misused in machine learning contexts. Ta-
ble 8.4 summarizes the properties’ descriptions and application
domains.





9
O N T H E C O N S I S T E N C Y A N D R O B U S T N E S S O F
S A L I E N C Y E X P L A N AT I O N S F O R T I M E S E R I E S
C L A S S I F I C AT I O N

I ntrinsic and post-hoc explanations have become essential in
many applications and a core topic for machine learning re-
search. Time series represents one niche data type where most

implemented methods still lack explanations. One of the reasons
for the poor literature on the explainability of time series data is the
additional challenges brought by the time-dependent structure. Ex-
planations often reduce to applications of model-agnostic post-hoc
explanations for general data samples to time-dependent data; the
time structure is often disregarded, and the timestamps are treated
as independent samples on which the model is learned [Ben+21b;
Sch+19]. Overall, explanation methods on time series data consider
the time dimension either jointly with the other features [Ben+21a]
or separately [Ism+20] by sequentially considering time and fea-
tures. In both cases, the explanation is limited to one single “frame”,
i.e., a sliding window. Hence, both categories are insufficient for
interpreting the overall temporal information over a long time
span. Another thread of approaches using attention-based models
obtains time-dependent explanations by attention weights [Kaj+19;
Son+18; Cho+16]. The acquired feature and time attribution to the
prediction can be visualized in saliency maps, which are initially
implemented for images [Bac+15] and are a current trend in obtain-
ing explanations for importance scores of timestamps and features;
saliency explanations rely on the creation of heatmaps, represent-
ing the importance of pixel-like features that can be easily inter-
preted, visually identifying the most relevant areas for the given
task. The quality of explanations derived from treating windows
of time series as images and applying vision explanation meth-
ods is often questionable. Among typical image explanation ap-
proaches, we find gradient-based [Bae+10; STY17; Smi+17; SGK17]
and perturbation-based feature importance scores [ZF14; Sur+17].
Gradient (GRAD) was introduced by Baehrens et al. [Bae+10] in
2010 as a post-hoc model agnostic interpretation tool that can ex-
plain nonlinear classifiers at a local level. The explanations measure
how each data point must be moved to change the predicted la-
bel. The local scores derive from the direct computation of the
local gradients (or their estimations) for the given model. Similarly,
Integrated Gradients [STY17] is also a gradient-based feature im-
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t1 t2 t3 t4t0 t5

t1 t2 t3 t4 t2 t3 t4 t5t1 t2 t3t0

Figure 9.1: Representation of inconsistencies among saliency maps of
adjacent sliding windows (x-axis: time, y-axis: features, color:
importance attribution).

Figure 9.2: Representative drawings of time series data as 2D data frames.

portance attribution method and builds up on [Bae+10] and two
axioms, i.e., the “sensitivity” and “implementation invariance”.
Ismail et al. [Ism+20] pointed out how these methods often lack
understanding of the time-feature structures, allowing them to
achieve only good performances at the time or at the features level.
The authors propose an alternative two-step approach to saliency
explanations for time series, where the time structure is consid-
ered first, and the importance of the features is considered only in
the second step. The explanation quality of such a method is still
understudied in the time series domain.

We study saliency maps to explain time series data predictions by
introducing two main concerns, i.e., the saliency maps’ consistency
and robustness. We report experiments showing that the typical
attribution approaches used for time series are neither robust nor
consistent. We claim that explanations over the intersection of
sliding windows should exhibit “consistent” behaviors, and we
identify such a flaw in current time series saliency explanations.
We admit that in adjacent sliding windows, different temporal con-
texts may lead to different absolute feature attributions; hence, we
pursue “relative consistent attributions” in local sub-windows. Fig-
ure 9.1 illustrates the meaning of “consistency” among overlapping
time windows. In addition to the saliency explanation consistency,
the “robustness” of saliency maps against feature perturbation is
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another essential factor in ensuring explanation quality. In images,
the semantic meaning of columns and rows is equivalent, while in
time series, the time structure makes time series data semantically
different and introduces dependence among the observations in
the various timestamps. In images, swaps of rows and columns of
pixels affect the semantic structure of the original data. In contrast,
in time series, only the swaps affecting the temporal orders of the
observations are semantically meaningful. In contrast, the order in
which input values are collected has no effects. The phenomenon
is illustrated in Figure 9.2 where the x-axis corresponds to the
time, and the y-axis to the input variables. When saliency maps
are applied to time series, the salient features should be insensitive
to the order of the input features. When feature columns in the
time series frame are swapped, essential areas in the saliency map
should stay salient in the corresponding swapped areas. We call
this the robustness of saliency explanations.

We examine saliency explanations from popularly used ap-
proaches on multiple deep classification models [HS97; Lea+17;
Vas+17] and show on five real-world datasets that the studied
saliency explanation suffers from inconsistency and non-robustness
issues. These preliminary results underline the encountered prob-
lems as a motivating example of further research on developing
robust and consistent saliency explanations for time series.

To summarize, this chapter contributes to several major points:

1. we provide a theoretical, well-founded definition of consis-
tency

2. and a definition of robustness among saliency explanations
for time series classification methods;

3. we empirically show how the blind use of saliency explana-
tions for time series classification methods does not satisfy
any of the defined desirable properties.

9.1 open issues on saliency explanations

This section formally defines the consistency and robustness of
the saliency explanation for time series classification. We indicate
with X = (X1, . . . , XN) a multivariate N-dimensional discrete time
series where Xi is the i-th univariate dimension; t0 is the first
timestamp on which the time series is defined. For each times-
tamp tk > t0, X(tk) is a N-dimensional vector of real values, i.e.,
X(tk) ∈ RN . We study the consistency and robustness of saliency
explanations for classification models trained on time series data.
We draw upon the concept of consistency proposed by Pillai et
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al. [Pil+22], and define consistency of saliency explanations over
adjacent sliding windows of time series. Additionally, regarding
robustness, we consider the influence of swaps of features, i.e., of
input variables observations, in explanations using saliency maps.

9.1.1 Consistency

As in Chapter 6, we define time windows {wd
s}s∈N dependent on

the window length d ∈N and the starting timestamp ts, i.e.,

wd
s = {ts, . . . , ts+d−1}. (9.1)

For each time window and given a fixed saliency map method
assignation of importance score S, we get

S(wd
s ) = Sd

s

a matrix in RN×d such that (Sd
s )n,t is the importance scores assigned

to the input variable Xn at time t. Saliency maps are transposed
from image (pre)processing applications to explain time series
classification predictions.

We examine the consistency of saliency maps defined over
overlapping windows. Given two windows wd

s and wd̄
s̄ such that

|wd
s ∩ wd̄

s̄ | ̸= ∅ and the respective saliency maps Sd
s and sd̄

s̄ , the
saliency explanations are inconsistent at timestamp t, if t, t̄ ∈
wd

s ∩ wd̄
S̄ such that

(Sd
s )n,t > (Sd̄

s̄ )n,t and (Sd
s )n,t̄ < (Sd̄

s̄ )n,t̄, (9.2)

i.e., the importance scores assigned to features and timestamps
are “relatively” inconsistent among overlapping time windows.
The phenomenon is illustrated in Figure 9.1: the saliency map in
the top shows the overall attribution from t0 to t5 where colors’
distribution represents the importance of the timestamps and input
variables. The bottom row shows the saliency maps relative to three
adjacent sliding windows (from left to right, in the interval [t0, t3],
[t1, t4] and [t2, t5]). It is easy to spot the different cuts of the time
windows are characterized by different color distributions than the
saliency map in the first row; in particular, the colors’ distributions
in the overlapping window [t2, t3] in the four cases are different.

9.1.2 Robustness

Although similarly structured, we mentioned that images and time
series intrinsically include a different semantic meaning due to the



9.2 experiments 109

time dependency. However, the time series explanation should be
insensitive to the feature ordering. A saliency explanation is con-
sidered robust if the saliency scores change accordingly when the
features are swapped. We define the feature swapping operation
on data window wd

s and observe the effect in the corresponding
saliency explanation Sd

s . Concretely, we swap random pair of fea-
tures Xi and Xj (i ̸= j) in wd

s for all timestamps from ts to ts+d−1.
Their feature attribution in Sd

s are (Sd
s )i and (Sd

s )i. After features
swapping, the data window is denoted by w∗d

s , and the newly
learned saliency explanation is S∗d

s . (Sd
s )i corresponds to (S∗d

s )j

while (Sd
s )j corresponds to (S∗d

s )i. The saliency explanations are
robust if ∀t1, t2 ∈ wd

s ∩ wd
s , it holds

(Sd
s )i,t1 > (Sd

s )i,t2 =⇒ (S∗d
s )j,t1 > (S∗d

s )j,t2 , (9.3)

i.e., important feature-time pixels maintain relative importance
after swapping the feature of the data window. The phenomenon
is illustrated in Figure 9.2. The position of a pixel in an image is
defined by row and column numbers, while in time series data, it
is defined by input variables and timestamps. Swaps of rows and
columns of pixels in images may affect the semantic meaning of
the entire data frame. For time series, this may happen only when
swapping observations at different timestamps.

9.2 experiments

We perform experiments on time series classification on real-world
datasets. We generate various types of explanations in the form of
saliency maps for the predictions made by the model to examine
their consistency and robustness. We incorporate artificial padding
into the input sequences to precisely control the feature’s impor-
tance and simulate the sliding window mechanism commonly used
in time series analysis tasks. This section presents our findings on
identifying inconsistency and non-robust saliency explanations
across multiple datasets.

9.2.1 Datasets

We consider five real-world univariate time series datasets: Power
Demand (PD), Wine (WIN), Italy Power Demand (IPD), Two Lead
ECG (ECG) and Mote Strain (MS). PD derives from Keogh et
al. [KLF05], while the others are available online in the UCR
Archive [Che+15]. We preprocess all datasets by dividing them
into non-overlapping windows a priori; the class labels of each
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window are available. However, the ground truth data does not
include the attribution of the prediction. In Sections 9.2.3 and 9.2.4,
we introduce artificial padding with random noise to each input
window and assign equal importance to the area of the original
input.

9.2.2 Experimental setup

For our experiments, we select three representatives from the com-
mon saliency explanation approaches [Ism+20] for time series
data. We employ Feature Permutation (FP) and Feature Ablation
(FA) [Sur+17], which are perturbation-based methods, and Inte-
grated Gardients (IG) [STY17], which is a gradient-based method.
We use the implementation provided by Ismail et al. [Ism+20].

We investigate the behavior of saliency explanations on three
types of network structures: Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), and attention-based net-
works. To this end, we picked three implementations commonly
used for time series data classification: LSTM [HS97], TCN [Lea+17],
and Transformer [Vas+17]. We configure these models with a Soft-
max output layer for classification and train the models on all the
padded variants of the input windows, including top, middle and
bottom padding. During the test phase, we generate saliency maps
and analyze the effect of each group of padding variants separately.

9.2.3 Consistency evaluation

We apply artificial padding to each univariate time window to eval-
uate the explanation consistency over sliding windows. Specifically,
we expand each univariate data window wd

s ∈ Rn×d to a matrix

m ∈ Rα×⌊β·d⌋(α > n, 1 < β < 3).

The data window wd
s is placed on d consecutive dimensions of m,

and the other dimensions are filled with randomly sampled noise
from a normal distribution. The effect of a sliding window can be
simulated by placing wd

s at different rows in m. Specifically, we
allocate wd

s at the top, middle, and bottom third of m to generate
three overlapping sliding windows, i.e., three variants of each input
window. We call the area in the saliency map corresponding to the
input window wd

s , the “area of interest”. We show the experimental
results by setting α = 4 and β = 5

3 . An example of the padded data
window is shown in Figure 9.3. In the proposed construction, we
get that each padding variant group (top/middle/bottom) contains
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Figure 9.3: IPD dataset, saliency explanations. In the first line, the
blue heatmaps denotes the variants of one input frame, where
rows are timestamps and columns are features; the real data
window is located in the frame’s top, middle, and bottom
third. In the second line, the remaining elements are random
noise. The saliency maps are the attributions respectively by
FP, FA, and IG.

the same input window, only located differently. To examine the
consistency of the saliency explanations, we compare the feature
ranking of the obtained attributions in corresponding locations in
each padding variant. As a showcase, we visualize the result of one
window from the IPD dataset in Figure 9.3. The left three columns
of Figure 9.3 represent the saliency explanations in the various
padded input windows, the y-axis being the time and the x-axis
being the input features. Only the second feature contains essential
information to be learned by the classifiers (cf. first column in
Figure 9.3). The saliency maps on the right side correspond to the
three explanation models FP, FA, and IG. We expect the second
feature column’s top, middle, and bottom third to be marked as
salient. However, as Ismail et al. [Ism+20] have already shown,
classical saliency methods might fail on time series data due to
the temporal feature, and our experiments confirm their results;
Figure 9.3 also nicely underlies that the latest timestamps play
more important roles in the prediction. The various explainers can
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(a) Kendall’s tau absolute value.

(b) Pearson correlation absolute value.

Figure 9.4: Violin plots. Each row contains three plots, i.e., from left to
right, LSTM, TCN, and Transformer architecture; the colors
code for the various explanation methods.

detect the important timestamps and suffer from distinguishing
important features for TCN and Transformers.

Despite the sub-optimal saliency explanations, we analyze the
consistency between the padding variants. We evaluated the dis-
agreement empirically on the saliency explanations using Kendall’s
τ and Pearson correlation; Kendall’s τ measures the smallest num-
ber of swaps of adjacent elements that transform one ranking into
the other while the Pearson correlation coefficient measures the
covariance of the two random variables divided by the product
of their standard deviations (cf. Chapter 8). All quantities can be
estimated using finite samples.

We calculate the importance scores for each timestamp and
input feature, obtaining the importance ordering of the “area of
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PD
LSTM 0.041 0.000 0.000 0.072 0.000 0.000 0.165 0.268 0.268
TCN 0.227 0.216 0.216 0.454 0.320 0.320 0.103 0.206 0.206
Transf. 0.258 0.258 0.258 0.825 0.928 0.928 0.351 0.330 0.330

WIN
LSTM 0.064 0.051 0.051 0.103 0.060 0.060 0.244 0.248 0.248
TCN 0.256 0.269 0.269 0.500 0.487 0.487 0.286 0.295 0.295
Transf. 0.333 0.812 0.812 0.949 0.962 0.962 0.389 0.385 0.385

IPD
LSTM 0.250 0.250 0.250 0.625 0.708 0.708 0.375 0.458 0.458
TCN 0.250 0.250 0.250 0.875 0.958 0.958 0.292 0.375 0.375
Transf. 0.250 0.250 0.250 0.750 0.708 0.708 0.167 0.292 0.292

ECG
LSTM 0.171 0.171 0.171 0.341 0.244 0.244 0.256 0.268 0.268
TCN 0.256 0.256 0.256 0.634 0.634 0.634 0.329 0.305 0.305
Transf. 0.256 0.256 0.256 0.780 0.829 0.829 0.244 0.293 0.293

MS
LSTM 0.250 0.262 0.262 0.536 0.560 0.560 0.357 0.321 0.321
TCN 0.250 0.262 0.262 0.750 0.798 0.798 0.298 0.381 0.381
Transf. 0.250 0.250 0.250 0.845 0.821 0.821 0.274 0.369 0.369

Table 9.1: Consistency. Recall@k.

interest”. For each pair of ranking from the three padding variants,
we analyzed the pairwise comparisons among rankings of feature-
time pixels in the saliency explanations FP, FA, and IG. The average
Kendall’s τ and Pearson correlation (ρ) are summarized in Table 9.2
and the absolute values are visualized in Figure 9.4.

Table 9.2 contains, for each data set, neural network architecture,
and saliency map, the average Kendall’s τ and Pearson correlation
coefficients with the respective variance. From the table, it is easy to
spot how the importance scores rankings provided vary in ranges
below 1. Kendall’s τ and Pearson correlation coefficients range
between 1 and −1, where 1 indicates complete agreement among
the rankings, while values close to zero suggest non-constant and
independent orderings. From Figure 9.4a and Figure 9.4b, we ob-
serve that the coefficients are, in most cases, crowded at low values,
and episodes of perfect agreement among the obtained rankings
in the different windows are rare (although non-anomalies). Al-
though the two metrics measure something essentially different,
the behavior observed in Figure 9.4a and Figure 9.4b is similar.

A special case is the LSTM algorithm that provides consistent
saliency maps among the various windows. However, observing
the explanation over the LSTM model, we see that both Kendall’s
τ and Pearson correlation coefficients tend to accumulate to high
scores (≈ 1) as the LSTM method tends to accumulate the learning
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0.164
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0.169
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0.052±

0.200
0.057±

0.206
Transf.

0.150±
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−
0.11±

0.218
−

0.198±
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0.140±
0.178

LST
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0.475±
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0.633±
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0.030

0.921±
0.019

IPD
T

C
N

0.001±
0.083

−
0.002±

0.112
−

0.004±
0.075

−
0.031±

0.095
0.192±

0.083
0.277±

0.114
Transf.

0.124±
0.115

0.167±
0.157

0.054±
0.141

0.042±
0.199

0.204±
0.088

0.295±
0.121

LST
M

0.789±
0.070

0.873±
0.056

0.738±
0.062

0.827±
0.055

0.954±
0.007

0.995±
0.001

EC
G

T
C

N
0.102±

0.074
0.143±

0.096
0.072±

0.062
0.054±

0.070
0.129±

0.078
0.189±

0.101
Transf.

0.089±
0.082

0.098±
0.110

0.020±
0.092

−
0.038±

0.137
0.315±

0.066
0.453±

0.081
LST

M
0.642±

0.072
0.768±

0.066
0.632±

0.078
0.753±

0.070
0.950±

0.007
0.995±

0.002
M

S
T

C
N

0.038±
0.096

0.053±
0.134

−
0.031±

0.116
−

0.058±
0.167

0.055±
0.061

0.081±
0.089

Transf.
0.124±

0.136
0.156±

0.189
0.093±

0.165
0.076±

0.244
0.291±

0.089
0.423±

0.125

LST
M

0.972±
0.064

0.985±
0.036

0.973±
0.112

0.982±
0.102

0.807±
0.064

0.942±
0.066

robustness

PD
T

C
N

0.680±
0.168

0.803±
0.157

0.597±
0.259

0.706±
0.285

0.221±
0.148

0.307±
0.175

Transf.
0.042±

0.141
0.052±

0.153
0.129±

0.148
0.164±

0.161
0.123±

0.133
0.171±

0.143
W

IN
LST

M
0.932±

0.047
0.971±

0.021
0.924±

0.056
0.967±

0.029
0.929±

0.075
0.972±

0.057
T

C
N

0.598±
0.107

0.696±
0.083

0.553±
0.094

0.676±
0.073

0.083±
0.186

0.105±
0.189

Transf.
0.267±

0.241
0.347±

0.283
0.466±

0.153
0.587±

0.167
0.345±

0.149
0.473±

0.143
LST

M
0.446±

0.124
0.603±

0.147
0.579±

0.075
0.732±

0.076
0.699±

0.062
0.864±

0.053
IPD

T
C

N
0.114±

0.141
0.157±

0.188
0.277±

0.159
0.358±

0.194
0.254±

0.137
0.361±

0.183
Transf.

0.369±
0.158

0.480±
0.178

0.364±
0.215

0.458±
0.244

0.322±
0.148

0.449±
0.192

LST
M

0.821±
0.100

0.898±
0.073

0.841±
0.133

0.905±
0.103

0.967±
0.029

0.996±
0.028

EC
G

T
C

N
0.382±

0.119
0.515±

0.138
0.517±

0.087
0.657±

0.101
0.207±

0.125
0.300±

0.172
Transf.

0.276±
0.126

0.365±
0.153

0.535±
0.141

0.673±
0.141

0.415±
0.081

0.582±
0.101

LST
M

0.747±
0.112

0.857±
0.089

0.694±
0.107

0.811±
0.090

0.968±
0.027

0.996±
0.024

T
C

N
0.147±

0.140
0.201±

0.187
0.184±

0.144
0.248±

0.189
0.068±

0.087
0.100±

0.126
Transf.

0.473±
0.220

0.575±
0.238

0.513±
0.215

0.627±
0.239

0.453±
0.105

0.621±
0.125
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PD
LSTM 0.031 0.000 0.000 0.072 0.000 0.000 0.134 0.237 0.237
TCN 0.227 0.258 0.258 0.299 0.443 0.443 0.155 0.216 0.216
Transf. 0.268 0.309 0.309 0.742 0.876 0.876 0.268 0.299 0.299

WIN
LSTM 0.056 0.030 0.030 0.103 0.051 0.051 0.231 0.248 0.248
TCN 0.274 0.265 0.265 0.389 0.355 0.355 0.295 0.282 0.282
Transf. 0.303 0.252 0.252 0.466 0.568 0.568 0.179 0.372 0.372

IPD
LSTM 0.250 0.250 0.250 0.458 0.417 0.417 0.375 0.458 0.458
TCN 0.250 0.250 0.250 0.458 0.500 0.500 0.333 0.375 0.375
Transf. 0.250 0.250 0.250 0.458 0.542 0.542 0.292 0.333 0.333

ECG
LSTM 0.244 0.134 0.134 0.341 0.232 0.232 0.256 0.280 0.280
TCN 0.256 0.256 0.256 0.476 0.476 0.476 0.232 0.256 0.256
Transf. 0.256 0.256 0.256 0.634 0.622 0.622 0.390 0.305 0.305

MS
LSTM 0.250 0.250 0.250 0.381 0.417 0.417 0.333 0.262 0.262
TCN 0.250 0.250 0.250 0.500 0.500 0.500 0.405 0.381 0.381
Transf. 0.250 0.250 0.250 0.357 0.405 0.405 0.190 0.226 0.226

Table 9.3: Robustness Recall@k.

in the last timestamps, thus implying that the explanation methods
assign high importance only to the last timestamps. We further
observe FA correctly finds the relevant timestamps but cannot
distinguish between noisy and relevant features.

In addition to the relative ranking, we also check the quality
of the saliency explanation using recall@k. Table 9.1 contains the
recall@k obtained among the importance rankings of timestamps
in the “areas of interest”. Recall@k measures the ratio among cor-
rectly relevant and retrieved elements and the number of relevant
elements and ranges in [0, 1]. High recall (≈ 1) indicates that the
highly ranked feature-time pixels are concentrated in the area of
interest, while low recall@k indicates the inability to find relevant
elements correctly.

9.2.4 Robustness evaluation

To evaluate the robustness of the saliency explanation, we apply the
feature swapping depicted in Figure 9.2. Specifically, we continue
using the padded input matrix m ∈ Rα×⌊β·d⌋ from Section 9.2.3
and swap the feature dimensions containing the original input data
window, i.e., the “area of interest”, with noise dimensions. We train
different classification models with the swapped and not swapped
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data. For simplicity, we always locate the original window in the
middle of the selected feature dimension in this experiment. We
compare the ranking of feature-time pixel explanations in the “ar-
eas of interest” of swapped and not swapped pairs. The Kendall’s
τ and Pearson correlation ρ are summarized in Table 9.2 and
Table 9.3. The absolute values of Kendall’s τ and Pearson corre-
lation for TCN and Transformers indicate a significant difference
in saliency maps after the swapping. In other words, when the
important feature is switched with a noisy feature, the feature
attribution in the saliency map is not switched correspondingly.
An exception is the LSTM classifier, which robustly explains all
datasets except IPD. However, the explanation quality is limited.
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O N T H E E F F I C I E N T E X P L A N AT I O N O F O U T L I E R
D E T E C T I O N E N S E M B L E S T H R O U G H S H A P L E Y
VA L U E S

F eature bagging models have revealed their practical us-
ability in various contexts. For outlier detection, where
they build ensembles to assign outlier scores to data sam-

ples reliably, they perform exceptionally well [KM23]. However,
the interpretability of so-obtained outlier detection methods is far
from achieved. Shapley values [LL17; SK10; RSG16] are used as
one of the many black-box models’ interpretability approaches.
By providing valuable insights into the importance of features in
identifying anomalies, Shapley values attribute the contributions
of the individual features to the anomaly scores and reveal helpful
for outlier detection as well [TI14; TC20]. However, Shapley values
are characterized by high computational runtimes that make them
useful only in low-dimensional setups. The exponential blow-up
in computational cost soon renders their use for high-dimensional
contexts infeasible, while approximation techniques have been
implemented to make Shapley values more accessible [Cam+18;
CGT09; LL17; BC21; SK10].

Ensemble approaches comprehend various techniques such as
bagging [Bre96], boosting [Sch+99], and stacking [San17]. Bagging
involves training multiple base models on possibly bootstrapped
data samples and aggregating their predictions; examples are k-
nearest neighbors, Support Vector Machines, and neural networks.
Adapted to outlier detection, the ensemble’s collective decision
provides more robust results [AP96]. Homogeneity among the base
models’ types characterizes “homogeneous” outlier ensembles,
where the models usually differ only by a different initialization.
DEAN [BKM22] and Isolation Forest (IForest) [LTZ08] are prime
examples of outlier detection methods employing such homoge-
neous ensembles; DEAN is based on multiple neural networks,
while IForest relies on a collection of isolation trees. On the other
hand, all ensemble methods are hardly interpretable and pretty
complex.

We propose bagged Shapley values, a method to achieve in-
terpretability for feature bagging ensembles for outlier detection.
Interpreting anomaly detection methods is essential for understand-
ing why single data points are considered anomalous, particularly
in safety-critical applications; feature importance analysis plays

117
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an essential role here [LZV23; Dis+20]. Our method not only as-
signs local importance scores to each feature of the initial space,
helping to increase the interpretability but also solves the computa-
tional issue; specifically, the bagged Shapley values can be exactly
computed in polynomial time. We visualize the interpretation as
heatmaps [KB01], which have historically been useful in enhancing
trust in complex models’ predictions (cf. Chapters 6,9).

To conclude, our main contribution can be summarized as

1. we solve the computational challenge of exactly computing
Shapley values by introducing the bagged Shapley values

and

2. we use the bagged Shapley values to interpret through
saliency maps the result of feature-bagging ensembles for
anomaly detection.

10.1 outlier detection ensembles

In our context, a set X ⊆ RN of data points can be parted into
two subsets: the set of “normal observations” indicated with Xnor,
and the set of “abnormal observations”, indicated with Xabn. In
unlabeled data, distinguishing normal from anomalous data is not
always straightforward. We consider a model for outlier detection
g, that aims at classifying each data point x ∈ X as either normal
or anomalous. Among the various anomaly detection methods, we
focus on methods that provide to each data point a score measuring
its “outlierness”.

Definition 10.1.1. Given a set of data points X, we call model a function
a : X 7→ R where a(x) represents the outlier score assigned by a to the
sample x.

The higher the value a(x), the more likely x is considered to be
an anomaly compared to the set X. On the same set X, various
outlier detection models can be constructed. We indicate withMX
the set of models constructed on X.

Definition 10.1.2. Given a set of (sub)modelsMX, an ensemble is a
function AMX : X 7→ R that assigns to each x ∈ X its average outlier
score, i.e.,

AMX(x) =
1

∥MX∥ ∑
a∈MX

a(x). (10.1)

The ensemble prediction is the average submodel prediction in
the setMX.

Using the trick of projected data points in lower dimensional
spaces, we reach the definition of bagging. We indicate with N
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the set of coordinates of X and with XI the set of data points in
X projected only on the I ⊆ N coordinates (or features), i.e., given
x ∈ X the corresponding point xI = (xi)i∈I and I ⊂ N . Now
we can define a subset MXI ⊆ MX as the set of submodels that
belongs toMX trained only on XI .

The bagging procedure is meant to randomly cover the infor-
mation in X, considering only the projection of X in smaller-sized
subsets. We refer to the size of the data points in the projection as
bag. Having X ⊆ RN fixed and bag ≤ N, we can get ( N

bag
) different

subsets of size bag from the N features.

Definition 10.1.3. After fixing the bag, the bagging procedure consists
in defining the model bS,a ∈ MS such that bS,a(x) is the result of a model
a when trained on the data set XS and S is a subset of N whose size is
|S| = bag.

The bagging procedure does not fix either the model a from
MX or the set S ⊆ N , thus potentially covering, using sufficiently
many random seeds, all the information contained in X. We write
bS,a|seed for the specific bagging submodel resulting after we fixed
the seed for the random sampling of S and the model a. Finally,
we can construct the so-called feature bagging ensemble based on
the bagging technique.

Definition 10.1.4. Given a dataset X and a set of modelsMX, we define
the function gMX : X 7→ R such that it assign to each x ∈ X the score
defined as

gMX(x) = lim
n→∞

1
n

n

∑
j=0

bS,a|seed[j](x). (10.2)

where seed is an eventually infinite vector of randomly drawn seeds.

A similar definition could also be made for non-outlier detection
ensembles as long as the output is a linear combination of the
submodel predictions. Still, feature bagging is most commonly
used in outlier detection.

10.2 the bagged shapley values

We defined cooperative games as pairs (N , f ) where N is the set
of players, and f is the value function in Section 2.2. The Shapley
values are a “fair” assignment of weights to the single players that
consider the role of the single players in any single coalition. Given
the game (N , f ) and a player i ∈ N , the Shapley value of i is defined
by Equation (2.1) , i.e.,

ϕ f (i) = ∑
A⊆N\i

1

N(N−1
|A| )

[ f (A∪ i)− f (A)] .
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We mentioned the exponential complexity intrinsic of Shapley
values; we show that the exact computation of Shapley value-
similar scores for feature bagging ensembles can be easily reduced
to a polynomial time.

We introduce the bagged Shapley values; their definition per-
fectly aligns with the impossibility of training an ensemble method
with less than bag features. We rewrite the definition of Shapley
values from their definition (2.1) for feature bagging ensembles as
ϕgMX (x)(i), where x ∈ X ⊆ RN is a data point, gMX is the feature
bagging model and we are interested in assigning to the coordinate
i of X an importance score in predicting the overall outlier score
gMX(x). We define the bagged Shapley values:

Definition 10.2.1. Given a set of data points X ⊆ RN , a set of (sub)models
MX and a feature bagging model gMX defined overMX, the bagged

Shapley values are the values

ϕ̃gMX (x)(i) = ∑
S⊆N ,i/∈S,s≥bag

N · (s! · (N − s− 1)!)
(N − bag) · N!

·
[

gMXS∪{i}
(x)− gMXS

(x)
] (10.3)

This equation removes terms with magnitude ∝ bag

N , a necessary
step, as defining an ensemble model with less than bag features
is not possible. Notice that the higher the dimension of the data
points in X is, the smaller the difference between ϕ̃gMX (x)(i) and
ϕgMX (x)(i). To somewhat correct for this difference, we add a factor

N
N−bag

to compensate that we are summing over fewer subsets of
N .

10.3 theoretical guarantees for the approximation

The main result of our study regards the chance to express Shapley
values with a limited number of selected bagging submodels, thus
avoiding the exponential computational costs of Shapley values.

Theorem 10.3.1. The bagged Shapley values can be expressed using
a selection of submodels involved in the feature bagging ensemble gMX .
In particular, it holds

ϕ̃gMX (x)(i) ∝ gMX(x)− gMXN\i
(x).

Proof. To increase readability, we use the notation

k(S, N) =
N

N − bag

s!(N − s− 1)!
N!
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where s = |S| and N = |N |. For abuse of notation and readability,
we write S instead of XS throughout the whole proof. Now, we can
rewrite the bagged Shapley values in the following way bS,a|seed
and substitute it with b|seed ∈ MS

ϕ̃gMX (x)(i) = ∑
S⊆N ,i/∈S,s≥bag

k(S, N)
[

gS∪{i}(x)− gS(x)
]

= lim
n→∞ ∑

S⊆N ,i/∈S,s≥bag

k(S, N)

·
(

∑j=0,...,n,b∈MS∪{i}
b|seed(x)

∥MS∪{i}∥
−

∑j=0,...,n,b∈MS
b|seed(x)

∥MS∥

)

where MK = {a ∈ MX | a restricted to features in K} is the sub-
set of models that contain only features included in K.

From the previous equation, we see that ϕ̃gMX (x)(i) is a sum
over the same bagging models multiple times, as they are part
of various subsets. We can simplify the writing to evaluate each
model only once but weight them using some constant factors αb
and βb:

ϕ̃gMX (x)(i) = lim
n→∞

1
∥MX∥ ∑

b∈MX

αb · b|seed(x)

− 1
∥MN\i∥

∑
b∈MN\i

βb · b|seed(x).
(10.4)

We can shuffle our feature labels without changing Equation 10.4,
αb = α and βb = β have to be independent on the specific model
b|seed. By the same argument, α and β can not depend on the
model outputs b|seed(x). This allows us to choose any model b(x)
to compute them; we pick here

b(x) =

1 if model b considers feature i

0 otherwise
. (10.5)
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Using the proposed b(x), the β term disappears, thus we can write
α as

α = lim
n→∞

∑S⊆N ,i/∈S,|S|≥bag
k(S, N) ∥MX∥

∥MXS∪{i}∥
∑b∈MXS∪{i}

b(x)

∑b∈MX
b(x)

= lim
n→∞

∑S⊆N ,i/∈S,|S|≥bag
k(S, N) ·

count(MXS∪{i} )

∥MXS∪{i}∥

count(MX)
∥MX∥

where count(MXK) is the number of models inMXK that contain
one specific feature in K. We can use

lim
n→∞

count(MXK)

∥MXK∥
=

( |K|−1
bag−1)

( |K|
bag

)
=

bag

|K|

thus getting

α =N
N

N − bag

N−1

∑
s=bag

(
N
s

)
· s!(N − s− 1)!

N!
· 1

s + 1

=
N

N − bag

N−1

∑
s=bag

· 1
s + 1

=
N

N − bag

· (ψ0(N + 1)− ψ0(bag + 1))

with the digamma function ψ0.
When instead of choosing b(x) to be independent of i, we find

that ϕ̃ fMX (x)(i) ∝ (α− β). But since the feature is designed not to
have any effect, we know that ϕ̃ fMX (x)(i) = 0 and thus α = β. This
concludes the proof.

The results not only show that the bagged Shapley value is
proportional to the difference of two feature bagging, respectively
defined on MX and MXN\i , but also that when using bagging
models, we can estimate the bagged Shapley values in polynomial
time. This is because for deterministic submodels, instead of using
∞ of them, we only need to train ( N

bag
) < Nbag submodels. The

code is available online1.

10.4 experiments

We evaluate our approach on various freely available real-world
datasets with varying numbers of features [Tri+17; Den12; Liu+15].

1 Code available at chiarabales/ensembleShapley

https://github.com/chiarabales/ensembleShapley
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Figure 10.1: Approximation accuracy. On the left, plot of the bagged

Shapley values against the exact Shapley values for each
data sample in the phoneme dataset. On the right, Shapley
values and their approximation for two example samples.

We conduct experiments on the correctness of the approximation
(Section 10.4.1), the effectiveness (Section 10.4.2), and the scalability
(Section 10.4.3) of our approach.

10.4.1 Quality of the Approximation

To fairly investigate the approximation accuracy of the bagged

Shapley values, we use a low-dimensional dataset, i.e., the five-
dimensional phoneme dataset [Tri+17] that requires the training of
feature bagging ensemble models only 25 times. The low dimen-
sionality of the dataset allows us to compute the non-approximated
version of Shapley values without incurring extremely long run-
times. We train isolation trees from [LTZ08] with a bagging size
of 2 and simplify the obtained anomaly score to fit our method-
ology by using the negative average path length over all trees as
an indicator of anomalies. We train one million submodels and
average the obtained results to guarantee consistent and robust
results. The total training takes about 70min of CPU time2. The
ROC-AUC score is 0.733.

We separate the trained models into ensembles for each subset
and compute the exact Shapley values and the bagged Shapley

values. We combine the values obtained into Figure 10.1. As the
mapping lies on the diagonal line, we conclude that the approxi-
mation works well on all data points.

2 All experiments were performed on Intel Xeon E5 CPUs. In the paper, we also
stick to CPUs over GPUs when we use neural network submodels; the choice is
justified by the higher amount of parallelization they allow.



124 explanations for outlier detection ensembles

O
ri

gi
na

l
IF

or
es

t
D

E
AN

E
xp

ec
te

d
U

ne
xp

ec
te

d

Figure 10.2: MNIST dataset. The original images are in the top row. The
bottom rows contain the derived bagged Shapley values

heatmap for ISOR and DEAN. We rescaled the color legend
to each plot’s Shapley values’ upper and lower bounds.

10.4.2 Effectiveness

We can compute the bagged Shapley values for datasets whose
dimensions are too high for an exact computation. We focus on the
MNIST dataset [Den12], a collection of images of hand-written dig-
its usually used to train image-recognition models. Following the
approach of [Ruf+18], we consider normal all images representing
a handwritten “seven”, and anomalous the images representing
other digits. Each image has a resolution of 28× 28, i.e., we handle
784 features in each image. Computing the exact Shapley values
for the single pixels requires 2784 ≈ 10237 evaluations, a number
significantly larger than the computational power available.

For the bagged Shapley values, we use the bagging size bag =
32. We train two models: we use DEAN, a deep learning model-
based ensemble, and a shallow isolation forest [LTZ08]. We choose
DEAN [BKM22] because of its inherited feature bagging and rel-
atively low training time per submodel. The training time is sig-
nificantly longer than using IForest3. Note that we do not only
train a model on each possible subset, as the number of subsets is
still (768

32 ) ≈ 4 · 1032. Instead, we train on random subsets until the
result converges. This also helps deal with the random nature of
our algorithms.

Figure 10.2 represents the plots of the Shapley values for five
representative samples in the form of heatmaps; bright colors
represent high scores, i.e., features highly increasing the outlier

3 The isolation forest takes about 220min of CPU time. DEAN requires about
113days; however, the independent ensembles are easy to parallelize, and less
accurate results can already be achieved with ten thousand submodels (27
hours).
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Figure 10.3: celebA dataset. The heatmaps show the bagged Shapley

values; brighter colors indicate features having a strong
influence on the anomaly score’s prediction.

score. Each heatmap, both for DEAN and IForest, highlights the
changes to the original input that would make it closer to a normal
observation by highlighting the erroneous regions. From the left
to the right side, the first two input images are labeled as normal;
however, they still contain features that are not expected, e.g.,
the middle horizontal line in the first image. These unexpected
features are highlighted in bright red and yellow. Similarly, the
other three images obtain high outlier scores, although they contain
typical features for normal input images. These features are also
unexpected by the model and thus result in high Shapley values.
Examples are represented by the “nine” and the “four”; removing
the lower line from the circle would make the “nine” more similar
to a normal observation while adding a horizontal line to the top
would make the “four” more similar to a “seven”.

Comparing DEAN and IForest, we see how the understanding of
the “normal” concept, i.e., the digit “seven”, of the isolation forest,
is too simple to explain the predictions entirely. In the second
column of Figure 10.2, we see that the isolation forest expects
the tail of the “seven” to bend instead of going straight down.
On the other hand, based on a deep learning method, DEAN
has less difficulty learning a broader concept of “seven”. This is
also reflected in the outlier detection performance: while DEAN
reaches a ROC-AUC of 0.9698 on the dataset, the isolation forest
only reaches a lower 0.9118 score. We strongly believe that the
bagged Shapley values’s saliency maps provide useful insights
into what the model understood and learned from the training data,
additionally to better performance measured by the ROC-AUC
metric.
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10.4.3 Scalability

We select the celebA dataset [Liu+15] to study how the approach
scales to larger datasets. celebA contains images with 218× 178 =
38804 pixels, which we convert to grayscale to simplify the plotting.
In the previous section, we showed how complex patterns can
overwhelm outlier detection ensembles that struggle to learn a
proper schema for normal and abnormal data points. Thus, we aim
to maximize the separation between normal and abnormal classes
to simplify the learning task. We divide the dataset into normal and
anomalous instances, where we characterize a normal observation
being labeled with the attributes “female”, “young”, “attractive”,
and “not bald”. The inverse attributes characterize an abnormal
observation. Here, the choice of attributes was only guided by
the distribution of attributes in the dataset, and similar results
would likely have followed any other choices for the anomalous
and normal classes. We only trained the DEAN ensemble on the
dataset, as the model proved to handle complicated attributed
data better. We represent the obtained bagged Shapley values

as heatmaps on five images in Figure 10.3. The first row is the
input image, while the second contains the corresponding Shapley
values.

The images resulting from the bagged Shapley values plotting
have high resolution and show some features as more anomalous;
however, the designed features do not match the designed separa-
tion in normal and abnormal images. This can also be seen in the
ROC-AUC score of 0.6184. From left to right, the most anomalous
features seem to be the bindi, the partially covered forehead, the
shirt collar, the laugh lines, and the skin paint transition. These
are rare features in the images of young women in celebA, thus
considered “anomalous” by the model. Still, the complexity of the
separation is likely too big for the available samples (≈ 72000),
and thus, the learning, as shown by the ROC-AUC, is inaccurate.
Although the features outlined are not the expected ones from
our understanding of the separation between the two classes, it is
worth noticing how the maps of bagged Shapley values can be
used to understand and improve the outlier detection models. The
runtime of the training procedure for one million DEAN submod-
els is ≈ 468 days; training 500 submodels simultaneously requires
about 4 days of CPU time. Under parallelization assumption, we
use 4 millions of submodels in our training setup and set up the
bagging size to be bag = 32. A different bagging size might have
achieved more accurate results, but we did not optimize it since, in
most contexts, the outlier detection task sets the bagging size. We
finally want to characterize the minimum number of submodels
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Figure 10.4: Influence of the number of submodels on the bagged

Shapley values. Here we use 12127, 121263, and 1212625
submodels so that each feature is approximately sampled 10,
100, and 1000 times. The times stated assume a parallelization
with 500 CPUs.

needed for our methodology to perform well. For this, we calculate
the bagged Shapley values maps so that each feature is used 10,
100, and 1000 times. The corresponding maps for the central image
of Figure 10.3 are shown in Figure 10.4. While some features are
already visible at about 12000 submodels, the noise level being still
very high, facial features are undetectable; with about 10, those be-
come visible while extensively the number of submodels to about
100 times more, they have become clear.

As a rule of thumb, we suggest training 10 · N features to visual-
ize the basic features and to train 10 · N 3

2 for clear images.





Part III

S U M M A RY





11
S U M M A RY A N D F U T U R E W O R K

S everal solutions involving rankings and importance scores
have been proposed in this thesis, focusing on unlabelled
data mining applications, trustworthiness, and consistency

of evaluations. Part I focused on unlabeled tabular data and un-
labeled time series. We explored Shapley values to evaluate and
measure the correlation structure among the data features and
track eventual changes over time. In particular, we used the ob-
tained importance scores to rank features in unlabelled data sets
and pathways in collections of gene sets, respectively, in Chap-
ter 4 and Chapter 5. Using a label-independent value function
enabled us to bridge the gap between unsupervised feature selec-
tion and cooperative game theory. In Chapter 4 and Chapter 6, the
total correlation-based Shapley values summarize the correlation
structure of the datasets in feature importance scores; these scores
aggregate the measured correlations from an exponential amount
of feature subsets in a unique score per feature. They allow (a)
ranking and (b) selecting features preserving the correlation struc-
ture of unlabeled datasets, as shown in Chapter 4, and (c) keeping
track of correlations among univariate dimensions of unlabeled
time series, and detecting happening drifts, as shown in Chapter 6.
In Chapter 4, the two introduced algorithms, svfs and svfr, in-
tegrate Shapley values with redundancy awareness. In particular,
we introduced svfs as an unsupervised redundancy-aware fea-
ture selection method and svfr as an unsupervised redundancy-
aware feature ranking approach; the experiments confirm the low
redundancy rate retained in the selected features on numerous
data sets in comparison to other unsupervised feature selection
methods [CZH10; Zhu+19; ZL07]. Chapter 6 proposed a new unsu-
pervised change point visualization and detection method for time
series with discrete values. slidSHAPs allow us to visualize change
points in the correlation structure of the time series and provide
a method to relocate identified change points in the multivariate
original time series; the method resulted in being more effective in
detecting changing points related to the correlation structure than
other unsupervised approaches [BG07; DP11].

Furthermore, we introduced in Chapter 5 an application-oriented
method for reducing the dimension and redundancy of collections
of sets. We gave a practice application and a straightforward mo-
tivation based on a case study on collections of gene sets. We
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used the Shapley values as importance scores that consider the
distribution of elements within the family of sets and their overlap.
We added various pruning techniques to obtain overlapping free
rankings and aimed to satisfy various properties when selecting
sets. Interestingly, using microarray games [MPB07] allows for
efficient computing of Shapley value, even in cases where the num-
ber of players is large. During our experiments on collections of
gene sets, we studied the effect of the rankings of pathways under
several aspects: we observed a reduction in overlapping of sets,
high coverage of the genes, and similar statistical significance to
one of the original collections using much smaller ones. However,
the range of potential applications is much broader. The proposed
ranking methods can be applied in any family of sets or where the
relationship can be expressed as a binary matrix B.

Part II focuses on theoretical aspects and trustworthiness issues,
again focusing on rankings and importance scores. The objective is
to critically examine some commonly used interpretability meth-
ods and metrics and introduce a new interpretable method for
bagging-based anomaly detection. Relevant to the trustworthi-
ness of machine learning, we focus on the consistency of evalua-
tions of machine learning methods and saliency map interpreta-
tions [Kri+22]. Chapter 8 considered ranking evaluation metrics,
primarily derived from Recommender Systems and Information
Retrieval techniques and used to evaluate rankings in applications-
independent contexts; Chapter 9 focuses on saliency explanations
for time series classification methods and reveals how these ex-
planations are mostly inconsistent on the invariant time-windows
structure of time series.

In Chapter 8, we provided theoretical and experimental insights
on the necessity of careful choices for ranking evaluation metrics
on symmetric groups. We showed that non-consistent evaluations
appear when using ranking evaluation metrics and proposed theo-
retical properties to understand these metrics better. Our investiga-
tion illustrates how most metrics do not distinguish small changes,
how single swaps and slides of the rankings influence their evalua-
tion, and how robust the metrics are. We additionally gave insights
into the interplay among these properties and attempted to define
distances on symmetric groups.

In Chapter 9, we studied yet another context where consistency
of methods plays a role. While explanations based on saliency
maps have succeeded in vision and natural language domains,
they remain challenging for time series data, where explanations
struggle with the time-features structure [Ism+20]. We analyzed
the use of saliency explanations initially thought for computer
vision applications [HS97; Lea+17; Vas+17] to interpret time series
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methods; there, we identified issues related to inconsistencies rising
in saliency explanations over overlapping time windows and non-
robustness when swapping features in time series windows. As an
exploratory analysis, we aimed to raise awareness of the described
problems [Kri+22] and motivate further development of saliency
methods that address the existing flaws.

Finally, we work on explaining anomaly detection approaches,
another typical unsupervised application. Some explanation meth-
ods are already available for anomaly detection [TI14; TC20]; how-
ever, the computational complexity of Shapley values does not
allow for large-scale implementations. We combine Shapley val-
ues with ensemble techniques [BKM22], explicitly focusing on
feature-bagging ensembles for outlier detection. The bagged Shap-
ley values offer an advantageous reduction of the computational
costs, giving a chance to compute importance scores for settings
with tens of thousands of features. Furthermore, we showed the
value of highlighting anomalous features in images to obtain in-
sights into the features learned by the outlier detection method.
Our experiments showed that, combined with ensemble meth-
ods, the computation of Shapley values-based explanations has a
polynomial runtime. We believe that combining Shapley values
with ensemble methods can boost the use of Shapley values in the
machine learning community, showing advantages from a compu-
tational and interpretability point of view, and leading to better,
more reliable, outlier detection models.

11.0.1 Future research directions

The thesis is the starting point of several research directions. The
NP-hardness of the Shapley values computation is a considerable
obstacle that still needs to be overcome. The number of features
and the dimension of the multivariate time series had to fit within
the framework, thus barely allowing for consideration of real-world
problems, where we often deal with higher-dimensional data sets.
The literature overflows out of approximation approaches [CGT09;
LL17]. Choosing one of them is, again, a challenge; it is context-
dependent and not uniquely solved. In our experiments, we often
referred to Castro et al. [CGT09] as an approximation technique
that, with its simplicity, offers an easy-implementing solution. We
believe in the necessity of summarizing and revealing the theoret-
ical properties and benchmarking the available approximations;
the result will eventually offer an understanding of whether it is
necessary to implement additional methods. It is worth noting
the possibility of using non-approximated Shapley values under
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highly specific conditions; Chapter 5 and Chapter 10 are examples
of this. We further believe they are not the only two cases in which
an exact computation is feasible in polynomial time.

The data type represents a limitation of Chapter 4 and Chapter 6.
Both chapters focus on the case of categorical or discrete data sets,
a direct consequence of using total correlation as a value func-
tion [Cov99]. We implemented several techniques to overcome the
mentioned limitation, mainly exploring approximation techniques,
acting on the data as a preprocessing step, substituting the value
function, approximating the total correlation, and applying encod-
ing techniques, e.g., [KLF05]. The differential Shannon entropy for
the total correlation computation was considered a starting point.
However, research into overcoming the issue has not yet come to a
full stop.

An interesting aspect not tackled in the thesis regards the societal
impact of rankings and the assignment of importance scores in
critical applications. Feature importance scores are ubiquitous and
created from the most disparate settings; the induced orderings
result in recommendations, information retrieval, selections, and
deselections of items and individuals. In context-critical real-world
applications, it is sometimes unclear if their use is legitimate or
induces or propagates biases. Biases – against races, sexes, sexual
orientations, and minorities – represent a threat to societal appli-
cations where the models’ predictions can discriminate against
underrepresented and protected communities. We often mentioned
how Shapley values represent a “individual fair” assignment of
importance scores; however, there is no trace of “group fairness” in
their definition. Adding fairness to importance scores, rank aggre-
gation methods, and Recommender Systems represents a tiny step
toward addressing this significant challenge. However, how do we
address the bias problem when people interact with Recommender
Systems? How do we ensure that biases in rankings are not propa-
gated through rank aggregation strategies? The last two questions
are fascinating and challenging. For all contexts where fairness
concerns represent a danger, additional research to add “fairness
constraints” to existing methods is essential to spread trustworthy
machine learning methodologies to critical applications.

Finally, we highlight the need for trustworthy and interpretable
machine-learning techniques. In this direction, the state-of-the-art
literature needs more methods for unsupervised applications and
unlabeled data, particularly for time series data, where methods
based on unlabeled data streams are hardly interpretable. We plan
to extend the slidSHAP series to increase the interpretability of
the detected change points, using the shifts in the slidSHAPs in
the neighbor of the change points to predict how they influence
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the input variable correlation in future timestamps. Furthermore,
Chapter 9 has left us with a problem to solve and without a solution.
The inconsistency issue could be solved using Siamese networks,
simultaneously minimizing the consistency of explanations and
accuracy. In Chapter 9, we focused on our time series classification
setup; however, the inconsistency among interpretability methods
is a much broader issue [Kri+22]. Furthermore, the disagreement
among interpretability methods is fragile with respect to “fairwash-
ing” [Aïv+19] attacks. Fairwashing refers to the malicious use of
saliency maps, importance scores, and explanation methods to
voluntarily induce a false perception in the user, mainly regarding
the fairness of the machine learning models. An increased aware-
ness of eventual inconsistencies among metrics, explanations, and
methods is needed to develop new solutions and guarantee an
informed use of Machine Learning methods.

11.0.2 Conclusions

This thesis proposes methodological solutions in Part I while fo-
cusing on a theoretical analysis of fundamental aspects of methods’
trustworthiness in Part II. We conclude by using the exact words
we used when we started it. Rankings and importance scores offer
an easy, interpretable solution to many Machine Learning chal-
lenges. By studying the data structure from a “correlation” point of
view, we explored unlabelled data, offering solutions on reducing
their dimensions when predictions’ goals are unclear or absent;
using Shapley values-based importance scores in unlabeled setups,
we detect correlational concept drifts in unlabeled data streams,
decrease the size of a collection of gene sets, and introduce a
redundancy-free ranking of features. Additionally, we highlighted
the risks of mindlessly using ranking evaluation metrics across
different contexts and transposing saliency explanation methods
from computer vision to interpret time series classification models;
we concluded with the introduction of a new Shapley values-based
anomaly detector explanation approach.

Future challenges also involve rankings and important scores
when formulating problems or solutions. A handful of questions
remained unanswered, and many others keep us interested in
consequential and non-strictly related future research directions.
We hope we have convinced the readers about both the potential
and the risks of using rankings and importance scores in Machine
Learning solutions and that the proposed advances will have a
positive future impact.
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