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Abstract—Increasing performance needs of modern cyber-
physical systems leads to multiprocessor architectures being in-
creasingly utilized. To efficiently exploit their potential paral-
lelism in hard real-time systems, appropriate task models and
scheduling algorithms that allow to provide timing guarantees
are required. Such scheduling algorithms and the corresponding
worst-case response time analyses usually suffer from resource
over-provisioning due to pessimistic analyses based on worst-case
assumptions. Hence, scheduling algorithms and analyses with high
resource efficiency are required. A prominent fine-grained par-
allel task model is the directed-acyclic-graph (DAG) task model
that is composed of precedence constrained subjobs. This paper
studies the hierarchical real-time scheduling problem of sporadic
arbitrary-deadline DAG tasks. We propose a parallel path progres-
sion scheduling property that is implemented with only two distinct
subtask priorities, which allows to quantify the parallel execution of
a user chosen collection of complete paths in the response time anal-
ysis. This novel approach significantly improves the state-of-the-art
response time analyses for parallel DAG tasks for highly parallel
DAG structures and can provably exhaust large core numbers.
Two hierarchical scheduling algorithms are designed based on this
property, extending the parallel path progression properties and
improve the response time analysis for sporadic arbitrary-deadline
DAG task sets.

Index Terms—Real-time DAG scheduling, homogeneous multi-
core platforms, hierarchical scheduling, approximation algori-
thms.

I. INTRODUCTION & MOTIVATION

MODERN cyber-physical systems have shifted from
uniprocessor to multiprocessor systems in order to deal

with thermal and energy constraints, as well as the computa-
tional demands of increasingly complex applications with tight
deadline constraints. Notably, the number of available cores in
multicore architectures that are meant to be used in the real-time
domain has greatly increased. This is exemplified by the Kalray
MPPA architecture with 256 cores, exacerbating the need for
methodologies that are capable to utilize the potential of the
available cores. This architectural shift poses multiple chal-
lenges for the design methodology of real-time aware parallel
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software, the specification and implementation of fine-grained
parallel task models, and the design of appropriate scheduling
algorithms that allow for formal response time analyses.

The de-facto standard programming and scheduling model
for parallel computing OpenMP and the real-time extension
OmpSs [14] are using hierarchical scheduling. That is, on the
higher-level, the worker threads are scheduled by the operating
system and on a lower level the subjobs of the parallel tasks are
managed by the respective runtime environment that is respon-
sible to dispatch ready subjobs to the available worker threads.
The concrete implementation of the hierarchical scheduling are
not standardized, e.g., the approaches of OpenMP and OmpSs
differ in that, OpenMP implements fork-join parallelism with a
master thread that creates a so-called team of parallel threads on
encountering a parallel region. In contrast, OmpSs uses a pool
of worker threads to serve the subjobs as soon as they become
ready, which is similar to list scheduling. In both frameworks, the
application source code is written in a high-level programming
language, which is instrumented with a set of directives, that, to-
gether with library routines and a provided runtime environment
are used to describe and execute the parallel applications.

We believe that the decoupling of parallel application design
and scheduling on the one hand, and real-time operating system
scheduling and service contracts on the other hand, is the most
promising approach to implement real-time parallel software
due to temporal isolation and simple integration with any com-
monly available scheduling algorithm of the used real-time
operating system such as partitioned or global scheduling vari-
ants of fixed-priority or earliest-deadline first (EDF) scheduling
algorithms.

The response-time analysis of the hierarchical scheduling
approach is decomposed into the problem to verify that each of
the worker threads is able to provide a defined amount of service
– that must be promised by the real-time operating system –
and the subsequent problem to verify that each DAG job can
finish its workload with the promised service within its deadline
constraints.

In the real-time scheduling theory of the DAG task sets, the
objective is to efficiently utilize the parallelism provided by mul-
tiprocessors for task sets with inter- and intra-task parallelism,
while guaranteeing that each task meets its deadline. Parallelism
can be categorized into inter-task parallelism, which refers to the
parallel execution of distinct tasks, each of which executes se-
quentially and intra-task parallelism which refers to the parallel
execution of a single task. Intra-task parallelism requires task
models with subtask level granularity that can be scheduled in
parallel, e.g., Fork-join models [25], synchronous parallel task
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models, or DAG (directed-acyclic graph) based task models.
A plethora of real-time scheduling algorithms and response
time analyses thereof have been proposed, e.g., for generalized
parallel task models [33], and for DAG (directed-acyclic graph)
based task models [3], [5], [13], [16], [17], [19], [28], [42]. For
DAG-based task models, improvements in the response time
analyses can be categorized into analyses that improve inter-task
interference, e.g., in [13], [16], or intra-task interference as e.g.,
in [19], [20], [26], [42]. In general, intra-task interference anal-
yses build upon the interference analysis along the execution of
the envelope (also known as critical path or key path). Intuitively,
the envelope path is a schedule dependent sequence of subjobs,
with the property that the arrival and finishing time intervals
of all envelope path subjobs are a partition of the arrival time
and finishing time interval of the DAG job. Since these subjobs
envelope the execution of the DAG job, the cumulative amount
of time used to execute envelope path subjobs and the cumulative
amount of time that an envelope path subjob is interfered with,
bounds the response time.

In contrast to the state-of-the-art, we analyze the simultaneous
progression a number of user-chosen paths of at most the number
of processors alongside the envelope path. Therefore, we only
have to account for the interference of subjobs that do not belong
to any of those user-chosen paths for a response-time bound
and are thus able to generalize Graham’s makespan bound from
one path to multiple paths. The improvement is achieved by
intra-task prioritization, namely, by assigning a lower-priority to
all subtasks of the user-chosen paths. Thereby, the progression
of the envelope path subjobs and the progression of subjobs from
the user-chosen paths can be analytically related to one another.
To the best of our knowledge, this is the first paper that proposes
the parallel path progression concepts1 and corresponding re-
sponse time analyses as well as extensions of these concepts to
hierarchical scheduling.

Contributions: We provide the following contributions:
� Based on the proposed Parallel Path Progression Concepts

in Section III-A, we propose a preemptive fixed-priority
scheduling algorithm and a sustainable response time anal-
ysis for an arbitrary collection of paths of at most the
number of processors in Section III-B. In Section IV, we
provide a polynomial time algorithm that either finds a path
collection that fully covers the DAG if one exists for the
available number of processors or an approximation with
a provably bounded worst-case response time.

� We extend our findings to two hierarchical scheduling
algorithms in Section V. Namely a sporadic arbitrary-
deadline gang reservation system in Section V-A and a
sporadic arbitrary-deadline ordinary reservation system in
Section V-B that make use of the Parallel Path Progression
Concepts. The hierarchical scheduling algorithm can be
applied to sporadic arbitrary-deadline DAG tasks, which

1While under submission the paper Bounding the Response Time of DAG
Tasks Using Long Paths was published in RTSS 2023 with a similar concept.
However both papers are different in the analysis approach and that we consider
preemptive scheduling and hierarchical scheduling that also works for arbitrary-
deadlines.

Fig. 1. An exemplary directed-acyclic graph (DAG) with subtasks
v1, v2, . . . , v9. The numbers within the vertexes denote the subjob’s worst-case
execution time. The arrows represent the precedence constraints indicating that
the release of a subjob depends on the finishing of all incident subjobs. The
boxed vertexes denote a minimal vertex-disjoint path decomposition of G.

may be executed concurrently with tasks described by a
different task model, e.g., sequential tasks.

� For both reservation systems, we provide response time
analyses and algorithms to generate “feasible” reservation
systems as explained in Sections V-A and V-B, respec-
tively.

� In Section VI, we evaluate our approach using syntheti-
cally generated DAG task sets and demonstrate that our
approach advances the state-of-the-art in high-parallelism
scenarios and show that the performance of our approach
is between the start-of-the-art and federated scheduling in
more sequential scenarios.

II. TASK MODEL AND PROBLEM DESCRIPTION

We consider a set T := {τ1, . . . , τn} of sporadic arbitrary-
deadline directed-acyclic graph (DAG) tasks that are scheduled
and executed uponM homogeneous processors. Each task τi :=
(Gi, Di, Ti) ∈ T is defined by a DAGGi describing the subtasks
and precedence constraints, minimal inter-arrival time Ti, and
relative deadline Di. Each task releases an infinite sequence of
task instances, called jobs. We use J�i to denote the �-th job of
task τi, and a�i , f

�
i , and d�i = a�i +Di to refer to the arrival time,

finishing time, and (absolute) deadline of job J�i .
DAG: The task’s DAG Gi is defined by the tuple (Vi, Ei),

where Vi denotes the finite set of subtasks and the relation
Ei ⊆ Vi × Vi denotes the precedence constraints among them,
such that there are no cyclic precedence constraints. To be math-
ematically precise, each job J�i is associated with an instance of
the DAG G�i with corresponding �-th subjobs v�j where vj is a
subtask in Vi. A subjob of the �-th job of task τi, namely v�j for
vj ∈ Vi, is released when all �-th subjobs v�k for (vk, vj) ∈ Vi
have finished execution. To reduce this notation, we drop the
index of the task as well as of the job when analyzing one specific
job. That is, we refer to G = (V,E) and vj ∈ V to denote a
subjob of a specific DAG job. An exemplary DAG is illustrated
in Fig. 1.

Volume: The volume voli : Vi → R≥0 specifies the worst-
case execution time of each subtask vj ∈ Vi, which means that
no subjob (instance) v�j ever executes for more than voli(vj)
time-units on the execution platform, but may finish earlier.
Moreover, the volume of any subset of subtasks W ⊆ Vi is
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TABLE I
SUMMARY OF USED NOTATION

vol(W ) :=
∑
vj∈W voli(vj). In particular, the total volume of

a task τi is given by Ci := voli(Vi).
Release & Deadline: In real-time systems, tasks must fulfill

timing requirements, i.e., each jobJ�i must finish its total volume
between the arrival of a job at a�i and that job’s absolute deadline
at a�i +Di. A task τi is said to meet its deadline if each job
meets its deadline, i.e., f �i ≤ a�i +Di for all � ∈ N. We consider
arbitrary-deadlines, which means that we do not make any
assumptions about the relation of deadline and inter-arrival time.
For example, the relative deadline may be less than the minimal
inter-arrival time (Di ≤ Ti) in which case a new job is only
released if the previous job is finished. Alternatively, the deadline
can be larger than the minimal inter-arrival time (Di > Ti) in
which case a new job can be released despite an unfinished prior
job. The release times of any two subsequent jobs of τi is at
least Ti time-units apart, i.e., a�+1

i ≥ a�i + Ti for all � ∈ N. A
summary of used notation is provided in Table 1.

III. PARALLELISM & PATH-AWARE SCHEDULING

The parallelism of a DAG task is inherently limited by the
paths that it is composed of, since a path enforces a sequential
execution order of the associated subjobs. In this paper, we
aim to reduce intra-task interference by enforcing properties
that track and guarantee parallel progress of a collection of
paths within a DAG and thus allow to significantly improve the
worst-case response time for high-parallel use cases. To that end,
we answer the following questions: (Q1) What are the minimal
theoretical properties required to track and guarantee parallel
path progression on a set of dedicated processors? (Q2) Can any
collection of paths be used for parallel progression and if so what
is a provably good selection? (Q3) How can the results from (Q1)
and (Q2) be extended to consider hierarchical scheduling?

A. Parallel Path Progression Concepts

In this subsection, we examine the required properties to
achieve parallel path progression on M processors dedicated

to execute a single job of a DAG task. By that, we avoid any
inter-task interference and solely focus on intra-task interfer-
ence.

Definition 1 (Path): For each subtask vj ∈ V of a DAG
G = (V,E) the set of predecessors of vj is given by pred(vj) :=
{vi ∈ V | (vi, vj) ∈ E}. Respectively, the set of successors
of vj is given by and succ(vj) := {vi ∈ V | (vj , vi) ∈ E}. A
path is an ordered set of subtasks π := 〈v1, . . . , vn〉 such that
pred(v1) = ∅, succ(vn) = ∅ and vk ∈ pred(vk+1) for all k ∈
{1, . . . , n− 1}. If either pred(v1) 
= ∅ or succ(vn) 
= ∅ then π
is not considered a path in the context of this paper.

Definition 2 (n-Path Collection): Let a DAGG = (V,E) then
the enumeration of all possible paths is denoted as Ψ(G) :=
{π |π is a path according to Definition 1 inG}. Any subset of
paths ψ ∈ P(Ψ(G)) from the powerset of Ψ(G) is called a path
collection. Further, a path collection ψ ∈ P(Ψ(G)) is called an
n-path collection if |ψ| = n, i.e., ψ is a collection of n-many
paths.

In the remainder of this paper we will use π∗ to denote the
longest path in G, i.e., vol(π∗) ≥ vol(π) for all π ∈ Ψ(G). It
is a fact that the maximal number of paths that can be executed
in parallel is limited by the number of processors M . Therefore
we constrain our solution space to n-path collections where n ∈
{1, . . . ,M}. Based on a concrete n-path collection ψ, the set of
subtasks that belong to at least one of the paths inψ is defined by
Vs(ψ) := πψ1

∪ · · · ∪ πψn
for each πψ1

, . . . , πψn
∈ ψ. Please

note that we use the subscripts to index the paths belonging to
the path collection. Conversely, the complement set of subtasks
that do not belong to any of the selected paths is denoted by
V cs (ψ) := {v ∈ V | v /∈ Vs(ψ)}.

We propose a parallel-progress prioritization that gives each
subtask a priority based on the membership of the above sets,
which is formalized in the following definition. Later in this
section, we explain how this prioritization can be used to bet-
ter analyze the self-interference by explicitly considering the
parallel execution of paths in ψ in the response-time analysis.

Definition 3 (Parallel Path Progression Prioritization): Let
Vs(ψ) denote the set of subtasks from an n-path collection ψ
of a DAG G = (V,E). A fixed-priority policy for all subtasks
v ∈ V is a parallel path progression prioritization if and only if
Π(vi) < Π(vk) for any two vi ∈ Vs(ψ) and vk ∈ V cs (ψ), where
Π(vi) denotes the priority of subtask vi.

Note that in our notation for the priorities, a higher value
implies a higher priority, i.e., Π(vi) > Π(vk) implies that vi
has a higher priority than vk. A sufficient policy to satisfy the
parallel path progression prioritization property is to only use
two distinct priority-levels.

We clarify the introduced notation and definitions col-
lectively in the following example. The path enumera-
tion Ψ(G) of the DAG illustrated in Fig. 1 consists of
six paths {π1, π2, . . . , π6}, namely; π1 := 〈v1, v2, v3〉, π2 :=
〈v1, v4, v5, v9〉, π3 := 〈v1, v4, v5, v6〉, π4 := 〈v1, v7, v5, v9〉,
π5 := 〈v1, v7, v5, v6〉, and π6 := 〈v1, v7, v8〉. A 2-path col-
lection ψ from the powerset P(Ψ(G)) is for instance
given by ψ := {π2, π3}. Subsequently, Vs(ψ) = π2 ∪ π3 =
{v1, v4, v5, v6, v9} and V cs (ψ) := {v2, v3, v7, v8}. If for in-
stance all subjobs vi ∈ Vs(ψ) are assigned priority Π(vi) = 1
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and conversely all subjobs vi ∈ V cs (ψ) are assigned priority
Π(vi) = 2, then this prioritization is a valid parallel path pro-
gression prioritization.

B. Parallel Path Progression Scheduling

In this subsection, we look at a single DAG job that is
scheduled on M dedicated processors by a work-conserving
preemptive list scheduling algorithm in conjunction with the
parallel path progression prioritization. We elaborate how this
prioritization aids the analysis of the parallel progression of a
path collection and in consequence the response time analysis
of the DAG job.

Definition 4 (List-FP): In a preemptive list-FP schedule on
M dedicated processors, a task instance (job) of a DAG task
G = (V,E) with a fixed-priority assignment of each subjob v ∈
V is scheduled according to the following rules:
� A subjob arrives to the ready list if all preceding subjobs

have executed until completion, i.e., the subjob arrival time
ai for each subjob vi is given by max{fj | vj ∈ pred(vi)}.
An arrived but not yet finished subjob is considered pend-
ing.

� At any time t, the M highest-priority pending subjobs are
executed on the M processors and a lower-priority subjob
is preempted if necessary.

First we introduce and formalize the concept of an envelope
of a schedule, which is a sequence of subjobs, with the property
that the arrival and finishing time intervals of all envelope path
subjobs are a partition of the arrival time and finishing time
interval of the DAG job.

Definition 5 (Envelope): Let S be any concrete schedule of
the subjobs V = {v1, . . . , v�} of a given DAG job of some
DAG task G = (V,E). Let each subjob vk ∈ V have the ar-
rival time ak and finishing time fk in S. We define the en-
velope of G in S as the collection of arrival and finishing
time intervals [ak1 , fk1), [ak2 , fk2), . . . , [akp , fkp) for some p ∈
{1, . . . , �} backwards in an iterative manner as follows:

1) ki 
= kj ∈ {1, . . . , �} for all i 
= j.
2) vkp is the subjob in V with the maximal finishing time.
3) vki−1 is the subjob preceding vki with maximal finishing

time, for all i ∈ {p, p− 1, . . . , 2}.
4) vk1 is a source node, i.e., has no predecessor.
We call πe := {vk1 , vk2 , . . . , vkp} the envelope path. We note

that the definition of an envelope for a DAG job may not be
unique if there are subjobs with the same finishing times. In that
case, ties can be broken arbitrarily.

In the remainder of this subsection, we analyze the response
time of a single DAG job using all the previously introduced
properties. Let a fixed-priority list schedule S on M dedicated
processors be generated for a single job J where all subjobs
are prioritized according to the rule described in Definition 3.
For the response time analysis, we analyze the time interval
[aJ , fJ ) between the arrival time and finishing time of J by
interval partitioning into busy and non-busy times. Any point in
time t ∈ [aJ , fJ ) is called busy if an envelope subjob is executed
in S at time t. Conversely, any point in time t ∈ [aJ , fJ ) is
called non-busy if the envelope subjob is not executed. By the
construction of the envelope according to Definition 5, it must

be that at any point in time t ∈ [aJ , fJ ) an envelope subjob is
pending, i.e., has arrived and not yet finished. In conjunction with
the simple fact that t can be exclusively either busy or non-busy
we know that the response time of DAG job J is given by the
cumulative amount of time spent in either of these two states.

In contrast to prior work, we partition the non-busy times
further into parallel path if envelope subjob vki ∈ Vs(ψ) and
non-parallel path times if vki ∈ V cs (ψ) assuming an envelope
path πe := 〈vk1 , vk2 , . . . , vkp〉 in S. The intuition of this ap-
proach is to tie the execution of an envelope subjob to the
execution of subjobs of the path collection ψ, which is used
and explained in the forthcoming analyses.

Theorem 6 (Preemptive Response Time Bound): The re-
sponse time of a DAG job J with an arbitrary n-path collec-
tion ψ = {πψ1

, . . . , πψn
} ∈ P(Ψ(G)) (of n at most M ) that

is scheduled on M dedicated homogeneous processors using
preemptive List-FP scheduling is bounded from above by

RJ ≤ vol(π∗) + vol(V cs (ψ))

M − n+ 1
(1)

Proof: By the definition of the envelope (cf. Definition 5), we
know that the interval [aJ , fJ ) of DAG job’s arrival to its finish-
ing time in a concrete preemptive list-FP scheduleS can be parti-
tioned into contiguous intervals [ak1 , fk1 = ak2), . . . , [fkn−1 =
akn , fkn) where [aki , fki) denotes the arrival and finishing
time of subjob vki for all i ∈ {1, . . . , p} in the envelope πe :=
{vk1 , vk2 , . . . , vkp}.

Busy Time: Considering each envelope subjob interval
[aki , fki) individually for i ∈ {1, . . . , p}, the amount of busy
time is given by the execution time of vki , which is by definition
no more than vol(vki). The cumulative amount of busy time in
[aJ , fJ ) can be obtained by adding up the interval’s individual
busy times resulting invol(πe), which is no more than the longest
path vol(π∗).

Non-Busy Time: Since our scheduling policy is work-
conserving we have that whenever an envelope subjob vki
is not executing during [aki , fki) then all M processors
must be busy executing non-envelope subjobs. Since vki
can be exclusively either in Vs(ψ) or V cs (ψ), we ana-
lyze the set {t ∈ [aJ , fJ ) | envelope subjob is not executing} ∩
[aki , fki) for both cases individually:
� Parallel Path: Let vki ∈ Vs(ψ) and by assumption not

execute at time t then at most n− 1 processors execute
subjobs from Vs(ψ). That is because all subjobs in Vs(ψ)
stem from n different paths, which implies that there can
never be more than n-many subjobs from Vs(ψ) pending
concurrently in general. Moreover, since by assumption
vki ∈ Vs(ψ) and is not executing at t at mostn− 1 subjobs
from Vs(ψ) are pending. Conversely, we know that at least
M − (n− 1) processors execute subjobs from V cs (ψ),
since otherwise vki would be executed contradicting the
case assumption.

� Non-Parallel Path: In the other case, let vki ∈ V cs (ψ) and
by assumption not be executing at time t then it must be that
no processor is executing any subjob from Vs(ψ). That is
because if any of the lower-priority subjobs inVs(ψ)would
be executing, then the higher-priority envelope subjob
vki ∈ V cs (ψ)would be executing as well, which contradicts
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the case assumption. Conversely, we know that all M
processors are exclusively used to execute subjobs from
V cs (ψ).

In summary, we have that during all non-busy times t ∈
[aJ , fJ ), we have that at least M − (n− 1) processors exe-
cute subjobs from V cs (ψ). The total volume of subjobs from
V cs (ψ) during [aJ , fJ ) is at most vol(V cs (ψ)). The maximal
cumulative amount of non-busy times is achieved by evenly
distributing the workload and is thus no more than vol(V cs (ψ))/
(M − (n− 1)). �

Sustainability of Our Response Time Analysis: Many multi-
processor hard real-time scheduling algorithms and schedula-
bility analyses presented in the literature are not sustainable,
which means that they suffer from timing anomalies. These
anomalies describe the counter-intuitive phenomena that a job
that was verified to always meet its deadline can miss its deadline
by augmenting resources, e.g., to execute the job on more
processors or to decrease the execution-time (early comple-
tion). In Corollary 7, we show that our response time bound
is sustainable with respect to the number of processors and the
subjob execution-time. This is a beneficial property in dynamic
environments, where available processors and execution times
vary, and ultimately simplifies implementation efforts in real
systems.

Corollary 7 (Sustainability): The response time bounds in
Theorem 6 hold true for a DAG job withG = (V,E) even if any
subjob v ∈ V completes before its worst-case execution time or
if the number of processors is increased.

Proof: This comes directly from the observation that the
volume of the envelope path vol(πe) as well as the length of
parallel path non-busy and non-parallel path non-busy intervals
can only decrease if the worst-case execution time of any subjob
decreases or the number of processors is increased. Since the
response time is upper-bounded by the sum of times that an
envelope job is executed and the sum of times that no envelope
job is executed, the corollary is proved. �

IV. PATH COLLECTION ALGORITHM

In our approach, any n-path collection, where n is at most
the number of dedicated processors M can be chosen, which
then determine the worst-case response time. Ideally, we are
interested in the minimal achievable makespan, i.e., the minimal
worst-case response time of a single DAG job as stated in
(1). In the case that n = 1, the volume of the set V cs (ψ) is
clearly minimal if the longest path is chosen. However, finding
a makespan optimal n-path collection for every given n > 1 is
to the best of our knowledge not efficiently solvable.

To that end, we propose a polynomial time approximation
algorithm for the makespan optimal n-path collection problem
for a given DAG, which is shown in Algorithm 1 and prove
approximation bounds. Our proposed algorithm uses the theo-
rem of Gallai and Milgram and the greedy strategy proposed
for the WEIGHTED MAXIMUM COVERAGE problem [31]. The
conceptual connection of these to our problem and algorithm
are explained hereinafter.

A. DAG Vertex Coverage

The general problem to find the minimal number of vertex-
disjoint paths – such that all vertexes of a graphG are covered –
is an NP-complete problem as can be shown by reduction to the
HAMILTONIANCYCLE problem. For directed graphs G however,
it was shown by Gallai and Milgram in 1960 that the minimal
number of vertex-disjoint paths to cover all vertexes of a directed
graph G is no more than the size of the maximal independent
set ofG, generalizing the results from Dilworth [11] and König-
Egevary [10].

In the case that the directed graph is also acyclic, i.e., a DAG,
then the largest independent set of G can be computed in poly-
nomial time by the known reduction to the maximal matching
problem in bipartite graphs by using, e.g., the Hopcroft-Karp
algorithm.

For instance, the set of vertex-disjoint paths that cover
the DAG illustrated in Fig. 1 is given by U = {〈v1, v2,
v3〉, 〈v4, v5, v6〉, 〈v7, v8〉, 〈v9〉}, which is calculated as de-
scribed above. In our proposed path collection algorithm, we
require a collection of paths from source to sink vertexes of
G that fully cover G, which are not necessarily vertex-disjoint.
Hence, we here explain the explicit algorithmic construction as
required in line 1 of our proposed Algorithm 1 to obtain w ∈ N

many paths that cover G. Please note that for our algorithm,
the knowledge of the numerical value w is sufficient without
knowing the explicit paths. To prove the existence however, we
construct the w-many paths explicitly.

For each i ∈ {1, . . . , |U |}, we initialize the i-th path πi with
the vertex-disjoint path ui = 〈ui1 , . . . , uin〉 ∈ U and apply the
following steps successively until all πi are paths according to
Definition 1:
� If the left-most vertex in πi is not a source vertex ofG, then

pick any uh = 〈uh1
, . . . , uhm

〉 ∈ U such that 〈vuhz
, vui1

〉
inE for some z ∈ {1, . . . ,m} and extend the path to πi =
〈uh1

, . . . , uhz
〉 ◦ πi.

� If the right-most vertex in πi is not a sink vertex of G
then pick any tuple uh = 〈uh1

, . . . , uhm
〉 ∈ U such that

〈vuin
, vuhz

〉 inE for some z ∈ {1, . . . ,m} and update the
path to πi = πi ◦ 〈uhz

, . . . , uhm
〉

For instance, with reference to the provided example, we start
at u4 = (9) with π4 = 〈v9〉, which is a sink vertex in G and
identify tuple u2 = (4, 5, 6) since (v5, v9) ∈ E and the path is
updated to π4 = 〈v4, v5, v9〉. Since v4 is not a source vertex in
G, we continue and identify u1 = (1, 2, 3) due to (v1, v4) ∈ E
and update π4 = 〈v1, v4, v5, v9〉. Since v1 is a source vertex,
the procedure is terminated. Repeating the procedure yields
the four simple paths π1 = 〈v1, v2, v3〉, π2 = 〈v1, v7, v8〉, π3 =
〈v1, v4, v5, v6〉, and π4 = 〈v1, v4, v5, v9〉, which collectively
cover all vertexes v ∈ V . Please note that while in this example,
w = 4 is the minimal number of paths to coverG, the algorithm
in general only provides a safe upper-bound.

B. Weighted Maximum Coverage

Another related algorithm is the WEIGHTED MAXIMUM COV-
ERAGE [31] problem. Hereinafter, we map the problem of finding
an n-path collection ψ for a DAGG that maximizes vol(Vs(ψ))
(minimizes vol(V cs (ψ))) to that problem as follows:
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Algorithm 1: n-Path Collection Approximation (nPCA).

Require: DAG G = (V,E), No. CPU M , WCET vol.
Ensure: An approximately optimal n-path collection ψ
1: ψ∗ ← PATHCOVERAGE(G) := {πψ1

, . . . , πψw
}

2: if w ≤M then
3: return (ψ∗, w);
4: create ψ0 ← ∅;
5: z ←∞;
6: vol′ ← vol;
7: for each n ∈ {1, . . . ,M} do
8: create ψn ← ψn−1;
9: π∗n ← use DFS(G) to search the max. vol′ path;
10: ψn ← ψn ∪ π∗n;
11: for each v ∈ π∗n do
12: update vol′(v) to 0;
13: z′ ← (C − vol(Vs(ψn))) /M − (n− 1);
14: if z′ < z then
15: solution (ψ∗, n∗)← (ψn, n);
16: update z ← z′;
17: return solution (ψ∗, n∗);

� Input: A problem instance I of the WEIGHTED MAXIMUM

COVERAGE problem is given by a collection of sets S :=
{S1, . . . , Sm}, a weight function ω, and a natural number
k. Each set Si ⊆ U is a subset from some universe U for
each i ∈ {1, . . . ,m} and each element s ∈ Si is associated
with a weight as given by the function ω(s).

� Objective: For a given problem instance I , the objec-
tive is to find a subset S ′ ⊆ S such that |S ′| ≤ k and∑
s∈{∪{Si∈S′}} w(s) is maximized.

It was shown by Nemhauser et al. [31] that any polynomial
time approximation algorithm of the WEIGHTED MAXIMUM

COVERAGE problem has an asymptotic approximation ratio with
respect to an optimal solution that is lower-bounded by 1− 1/e
unless P = NP , where e is Euler’s number. This approxima-
tion ratio can be achieved by a greedy strategy that always
chooses the set which contains the largest weights of not yet
chosen elements. Despite WEIGHTED MAXIMUM COVERAGE and
our problem not being equivalent, we use the same approx-
imation strategy for the n-path Collection Approximation in
Algorithm 1.

C. Approximation Algorithm

On the basis of the existence of a path collection of size w, it
is possible to analyze the approximation quality of Algorithm 1.
We first present our proposed algorithm and thereafter prove the
approximation factor.
n-Path Collection Approximation Algorithm: From line 1

to line 3 in Algorithm 1, the upper-bound w of the minimal
number of paths to fully cover the is computed. If the number of
processors M is sufficient to allow the parallel execution of all
w paths, i.e., w ≤M then those paths are chosen for the path
collection.

In the other case, from line 4 to 17, in each iteration n ∈
{1, . . . ,M}, the longest path π∗n with respect to the current
iteration’s volume function vol′ is chosen. After the path is

chosen, all volumes of that path’s subjobs are set to 0 to indicate
that the subjobs have already been covered. By this strategy, we
always choose the path, which contains the largest amount of
volume of not yet chosen subjobs in each iteration. Moreover,
in each n-th iteration, it is probed in line 14 if the solution ψn
strictly improves the prior solution ψn−1 with one path less.
At the end of the M -th iteration, an n∗-path collection ψ∗ is
found that yields formal guarantees as stated in Theorem 8. The
maximal bipartite matching can be obtained in O(|V |) using
the Hopcroft-Karp algorithm. The time-complexity of nPCA
is dominated by the for-loop and the depth-first search (DFS)
in line 9 that is invoked in each of the iterations, resulting in
O(M · |V ||E|) time complexity.

Theorem 8 (nPCA): The worst-case response time of a DAG
job J (makespan) onM dedicated processors using parallel path
progression scheduling and for which the n∗-many paths are
calculated according to Algorithm 1, is at most

Ropt ·
{
1 + M

M−n∗+1 ·
(
1− 1

w

)n∗ ≤ 2− 1
w w > M ≥ n∗

1 M ≥ w
(2)

where w refers to the solution of the PATHCOVERAGE.
Proof: We prove this theorem for the casesM ≥ w andM <

w individually.
Case 1: In the first case, i.e., from line 1 to line 3, letM ≥ w.

From the discussion in Section IV-A, we know that each vertex
v ∈ V of the DAGG = (V,E) is covered by at least one of those
w-many paths as computed by the PATHCOVERAGE algorithm,
which are returned in line 3. In consequence, the response-time
bound is given by

RJ ≤ vol(π∗) + 0

M − (w − 1)
≤ Ropt (3)

which is upper-bounded by an optimal response-time, since the
longest path in G is a lower-bound of any DAG job’s response-
time.

Case 2: Please note that w as obtained from PATHCOVERAGE

is not a minimal solution, but an upper-bound of it. That is, there
may exist n-many paths under the constraints w > M ≥ n ≥ 1
such that the DAGs total volume C can be covered. However
such a minimal solution is not known to be computable in
polynomial time. We can however prove the approximation ratio
of an optimal response-time with respect to that upper-bound.

Step 1: We prove by contradiction, that for each iteration n ∈
{1, . . . ,M} the following inequality holds

vol(n)(π∗n) ≥
C − vol(Vs(ψn−1))

w
(4)

where ψ0 := ∅ and vol(Vs(ψ0)) = 0. We use vol(n) to refer to
vol′ in the n-th iteration for better clarity in this proof. Assume
for contradiction that there exists an iteration n ∈ {1, . . . ,M}
such that

∀πn ∈ Ψ(G) w · vol(n)(πn) + vol(Vs(ψn−1)) < C (5)

holds. Then it must hold in particular that

w · vol(n)(π∗n) + vol(Vs(ψn−1)) < C (6)
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where - - by the algorithmic strategy – π∗n is chosen such that
for all paths π ∈ Ψ(G), the inequality vol(n)(π∗n) ≥ vol(n)(π)
is satisfied. Thus, w · vol(n)(π∗n) ≥ vol(n)(∪wi=1πi) for any ar-
bitrary collection of w-many paths. Consequently, we have that
if (6) holds then

vol(n)

(
w⋃
i=1

πi

)
+ vol(Vs(ψn−1)) < C (7)

holds as well. It is easy to see that based on the algorithm

vol(n)

(
w⋃
i=1

πi

)
= vol

(
w⋃
i=1

πi

)
− vol(Vs(ψn−1)) (8)

holds, since if the volume of a vertex in the n-th iteration differs
from the initial volume then that vertex must be covered by any
of the collected paths during the prior iterations, i.e., Vs(ψn−1).
Then using the identity of (8) in (7) yields that (5) leads to
the condition vol(∪wi=1πi) < C for any arbitrary collection of
w-many paths, which contradictions the existence a solution of
w-many paths.

Step 2: In a second step, we now claim and prove by induction
that

vol(V cs (ψn)) = C − vol(Vs(ψn)) ≤
(
1− 1

w

)n
· C (9)

For n = 1, (9) reduces to w · vol(Vs(ψ1)) ≥ C, which
holds true since we know that there exists a finite w
such that vol(πψ1

∪ · · · ∪ πψw
) = C ≤∑w

i=1 vol(πψi
) ≤ w ·

vol(Vs(ψ1)) = w · vol(π∗), since ψ1 only contains the longest
path in G. In the induction step n→ n+ 1, we have

C − vol(Vs(ψn+1)) = C − (vol(Vs(ψn)) + vol′(π∗n+1))
(10)

Using (4), we conclude that

Eq. (10) ≤ C − vol(Vs(ψn))− C − vol(Vs(ψn))
w

(11)

≤ (C − vol(Vs(ψn))) ·
(
1− 1

w

)
(12)

≤
(
1− 1

w

)n
· C ·

(
1− 1

w

)
(13)

Conclusion: Using (9) yields that after the n-th iteration of
nPCA, the maximum response time using the computed n-path
collection ψn is at most

RJ ≤ vol(π∗) + C

M
· M

M − n+ 1
·
(
1− 1

w

)n
(14)

Due to the fact that Ropt ≥ max{vol(π∗), C/M} and the
minimal response time solution (ψ∗, n∗) returned by nPCA in
line 17 using (14) we have that

RJ ≤ Ropt ·min
n≥1

{
1 +

M

M − n+ 1
·
(
1− 1

w

)n}

≤ Ropt ·min
n≥1

{
1 + n ·

(
1− 1

w

)n}
(15)

≤ Ropt ·
(
2− 1

w

)
(16)

Please note that (15) is due to the fact that under the con-
straints (M ≥ n ≥ 1) the function M/(M − n+ 1) is strictly
decreasing with respect to M for n ≥ 1. Due to the constraints,
the minimal feasibleM is bounded from below by n and is thus
no more than n/(n− n+ 1) = n.

In addition, we have the parametric bound based on the results
w and n∗ generated by the algorithm namely

RJ ≤ Ropt ·
(
1 +

M

M − n∗ + 1
·
(
1− 1

w

)n∗)
(17)

Finally, we haveRJ ≤ Eq.(17) ≤ Eq.(16) concluding the proof.

V. HIERARCHICAL SCHEDULING

We extend the properties of parallel path progression to a
system with inter-task interference using a hierarchical schedul-
ing approach. That is, the scheduling problem is separated into
different scheduling levels. On the lowest level, reservation
systems (or threads) are scheduled on the physical processors
by some scheduling policy that is compliant with the model
of the reservation system. On the higher level, the workload,
i.e., the subjobs of a DAG job, is executed by the reservations
in a temporally and spatially isolated environment. The isola-
tion property allows to analyse each DAG job’s response time
without inter-task interference. Most importantly, reservation
systems can be co-scheduled with other tasks on the same set of
physical processors using existing response time analyses.

We propose and discuss two reservation schemes, namely a
gang reservation system in Section V-A and an ordinary reser-
vation system in Section V-B, and provide resource provisioning
rules and response time analyses. The hierarchical scheduling
problem consists of two interconnected problems:
� Service provisioning of the respective gang-reservation

or ordinary-reservation systems such that a DAG job can
finish within the provided service.

� Verification of the schedulability of the provisioned reser-
vation systems by any existing analyses that support the
respective task models, e.g., sporadic arbitrary-deadline
gang tasks or sporadic arbitrary-deadline ordinary sequen-
tial tasks.

For the remainder of this section, we assume the existence
of a feasible schedule upon M identical multiprocessors for
the studied reservation system model and focus on the service
provisioning problem. We assume that a reservation system
satisfies the following four properties regardless of the specific
reservation model.

Property 1 (Parallel Service): The reservation systems re-
leasem parallel reservations such that at each time, during which
the reservation system promises service, at mostm reservations
can provide service concurrently.

Property 2 (Association of Service): An instance of the reser-
vation system serves exactly one DAG job of a DAG task. This
means that an instance of the m parallel reservations that serve
the �-th job J�i of DAG task τi all arrive synchronous at time
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a�i and the deadline is given by d�i . Note that if the next DAG
job arrives before the previous one is finished, a new instance
(job) of reservations is released. This allows to directly deal with
arbitrary-deadlines without further considerations.

Property 3 (Sustained Service): The service of a reservation
is provided whenever the reservation system is scheduled, ir-
respective of whether there are insufficient number of pending
subjobs to be served at that time.

Property 4 (Internal Dispatching): The reservation system’s
internal dispatching of each subjob v ∈ V of a DAG job G =
(V,E) with parallel path-progression prioritization on m reser-
vations follows List-FP in Definition 4 with only one difference:
At any time t, let m(t) denote the concurrently scheduled
reservations then the m(t) highest-priority pending subjobs
are executed on the reservations and a lower-priority subjob is
preempted if necessary.

Reclamation: The above properties are required in the formal
response-time analysis, which is pessimistic in the sense that
the processor may be spinning at times without executing any
workload whenever a reservation is scheduled but no subjob
can be dispatched. Reclamation mechanisms can be used by
attaching any soft real-time DAG jobs or normal sequential jobs
to the reservation with a lower-priority than the to-be served
DAG job. The only required property is that the served DAG job
can claim the service whenever a subjob is pending and service
is provided.

A. Gang Reservation System

In gang scheduling, a set of threads is grouped together into
a so-called gang with the additional constraint that all threads
of a gang must be co-scheduled at the same time on available
processors. It has been demonstrated that gang-based parallel
computing can often improve the performance [15], [21], [41].
Due to its performance benefits, the gang model is supported
by many parallel computing standards, e.g., MPI, OpenMP,
Open ACC, or GPU computing. Motivated by the practical
benefits and the conceptual fit of parallel path progressions in our
approach and the gang execution model, we propose anm-Gang
reservation system as follows.

Definition 9 (m-Gang Reservation System): A sporadic
arbitrary-deadline mi-gang reservation system G that serves
a sporadic arbitrary-deadline DAG task τi := (Gi, Di, Ti) is
defined by the tuple Gi := (mi, Ei, Di, Ti) such that mi · Ei
service is provided during the arrival- and deadline interval
with the gang scheduling constraint that all reservations must
be co-scheduled at the same time.

Hence, the provisioning problem of Gi for a DAG task τi is to
find mi and Ei such that given the properties 1-4 and the gang
scheduling constraint, each DAG job can complete within one
of the mi reservations before its absolute deadline.

Theorem 10 (Gang Reservation Provisioning): Each job J�i
of a sporadic arbitrary-deadline DAG task τi := (Gi, Di, Ti)
can complete its total volume Ci within its respective gang
reservation instance of the mi parallel reservations of size Ei
before its absolute deadline if

vol(π∗) +
vol(V cs (ψ))

mi − n+ 1
≤ Ei ≤ Di (18)

holds for any n- path collection ψ of at most mi and the gang
reservation system Gi is verified to be schedulable, i.e., able to
provide all service before the absolute deadline.

Proof: Since in an mi-gang all reservations provide service
simultaneously, the arrival and finishing time window [aJ , fJ ]
of any DAG job J of task τi can be partitioned into busy,
non-busy, and non-service intervals in which none of the mi

gang reservations are scheduled and thus provide no service. In
analogy to previous proofs, the response time is no more than
the cumulative length of these sets, where the cumulative length
of non-service times is upper-bounded by Di − Ei given the
assumption that the mi gang is schedulable. In consequence, if
(18) holds, then

RJ ≤ vol(π∗) + vol(V cs (ψ))

mi − n+ 1
+Di − Ei ≤ Di (19)

which concludes the proof. �

Algorithm 2: Approximate Minimal Waste Gang.

Require: τi := (Gi, Di, Ti), No. CPU M , vol, width w.
1: ξ ← ∅;
2: for each mi ∈ {1, . . . ,min{w,M}} do
3: (ψ∗, n∗)← call NPCA with Gi,mi, vol;
4: if Ei ← using (18) with (mi, ψ

∗, n∗) ≤ Di then
5: ξ ← ξ ∪ (mi, Ei, ψ

∗, n∗);
6: return ξ∗ ∈ ξ such that ξ∗ minimizes (20)

Gang-Reservation Provisioning: Finding the best provision-
ing for specific gang reservation systems depends on the concrete
schedulability problem at hand and the other tasks that are to be
co-scheduled. Hence, it may be beneficial to trade decreased
budgets for increased gang size in some concrete scenarios.
Determining such specific provisions is however beyond the
scope of this work. Instead, in a more generic optimization
attempt, we seek to find a provisioning that minimizes the unused
gang service (waste), which is described asmi · Ei − Ci. Due to
the gang restriction, increasing the number of reservations mi

beyond the number of processors M that the reservations are
going to be executed upon is not possible. Moreover, increasing
the gang size beyond the value w determined for the DAG
can only increase the waste, since w describes the maximal
inherent parallelism. Due to the constrained search space of
mi ∈ {1, . . . ,min{w,M}} an exhaustive search can be applied
to find the values ofmi, Ei withEi ≤ Di and ψ, n that approx-
imately minimize the waste objective

mi · vol(π∗) +mi · Ci − vol(Vs(ψ))
mi − n+ 1

− Ci (20)

as shown in Algorithm 2. For illustration of the algorithm,
an exemplary result for the DAG in Fig. 1 with longest path
volume 10, total volume 18, relative deadline 16 and M = 3 is
calculated. Since, the boundw of the DAG is 4, only gang sizes of
mi ∈ {1, 2, 3} are viable candidates. The algorithm returns a 2-
gang with the 2-path collection Vs(ψ) = {v1, v7, v5, v6, v2, v3}
that yields a reservation budget of 10 + (18− 14)/(2− 2 +
1) = 14 ≤ 16 and waste of 2 · 14− 18 = 10. Fig. 2 shows an
exemplary schedule of this provisioned 2-gang system and the
internal DAG job scheduling using the gang reservations.
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Fig. 2. Exemplary schedule for a 2-gang reservation system with a 2-path
collection of the DAG illustrated in Fig. 1 with a deadline of 16 time units.

B. Ordinary Reservation System

Despite the practical benefits of gang scheduling, the analytic
schedulability due to the co-scheduling constraint is reduced
compared to an equivalent ordinary reservation system without
such constraints.

Definition 11 (m-Ordinary Reservation System): A sporadic
arbitrary-deadlinemi-ordinary reservation systemO that serves
a sporadic arbitrary-deadline DAG task τi := (Gi, Di, Ti) is
defined by the tupleOi := (mi, E

1
i , . . . , E

mi
i , Di, Ti) such that∑mi

p=1E
p
i service is provided during the arrival- and deadline

interval.
Theorem 12 (Ordinary Reservation Provisioning): Each job

J�i of a sporadic arbitrary-deadline DAG task τi := (Gi, Di, Ti)
can complete its total volume Ci within its respective ordinary
reservation instance Oi before its absolute deadline if first

vol(π∗) +
vol(V cs (ψ)) + (n− 1) ·Di

mi − n+ 1
≤
∑mi

p=1E
p
i

mi − n+ 1
(21)

holds for any n-path collection ψ where n is at mostmi and all;
and second, the ordinary reservation systemOi is verified to be
schedulable, i.e., each individual reservation is able to provide
all service before the absolute deadline.

Proof: Let S be a schedule of mi ordinary reservations that
are feasibly schedulable. That is, each individual reservation is
guaranteed to provideEpi service to the DAG jobJ := J�i during
the interval [aJ , aJ +Di) for p ∈ {1, . . . ,mi}. Let ψ denote
the n-path collection and Vs(ψ) denote the corresponding set of
subjobs. Letmi(t) ∈ {0, 1, . . . ,mi} the number of reservations
that provide service at time t and let h(t) ∈ {0, . . . ,mi(t)} the
number of reservations providing service to subjobs in V cs (ψ) at
time t. We prove this theorem by contrapositive, i.e., we assume
that DAG jobJ misses its deadline and prove that this leads to the
violation of (21). Let J miss its deadline at time dJ := aJ +Di

in S and let vkp denote a subjob that is executing at time dJ
and is not yet finished. Please note that at least one such subjob
must exist, since otherwise the total volume is finished, which
contradicts the assumption of a deadline miss.

Using the envelope construction rules in Definition 5,
an incomplete envelope path πe := {vk1 , vk2 , . . . , vkp} is
derived starting from subjob vkp . We partition the in-
terval [aJ , dJ ) into contiguous sub intervals Iki namely
[ak1 , fk1), [ak2 , fk2), . . . , [akp , dJ ) for each incomplete enve-
lope subjob. Moreover, we partition each subjob interval into
busy times defined as αki := {t ∈ Iki | vki is executed} and
non-busy times defined as βki := {t ∈ Iki | vki is not executed}

for each i ∈ {1, . . . , p}. Please note that in our partitioning, the
case of no service, i.e.,mi(t) = 0 is considered a non-busy time.

To measure the cumulative amount of time spent in either
state, we define

|αki | =
∫
Iki

[t ∈ αki ] dt and |βki | =
∫
Iki

[t ∈ βki ] dt (22)

where [pred] denotes the iverson bracket, which evaluates to
1 if the predicate is true and 0 otherwise. Each point in time
t ∈ [aJ , dJ ] is exclusively either a busy or a non-busy time and
since by assumption J misses its deadline, we have that

Di <

p∑
i=1

|αki |+ |βki | (23)

We analyze the amount of busy times and non-busy times
separately as follows.

Busy Time: The cumulative amount of busy times in each
interval Iki is given by |αki | ≤ vol(vki) for i ∈ {1, . . . , p− 1}
and |αkp | < vol(vkp) since the subjob vkp has not yet finished
execution by definition. In summary, the cumulative amount of
busy times during Iki is given by

p∑
i=1

|αki | <
p∑
i=1

vol(vki) = vol(πe) ≤ vol(π∗) (24)

Non-Busy Time: We further partition the non-busy interval into
a parallel path case if the incomplete envelope subjob vki ∈
Vs(ψ) and a non-parallel path case if vki ∈ V cs (ψ). Since our
scheduling policy is work-conserving we have that whenever an
envelope subjob vki is not serviced at time t ∈ Iki then allmi(t)
reservations must be servicing non-envelope jobs (or no service
is available at all).

Non-Parallel Path: Let by assumption vki ∈ V cs (ψ) then for
any time t ∈ βki each of the mi(t) reservations is either ex-
clusively servicing subjobs from V cs (ψ) \ vki (or no service is
provided at all). This is due to the fact that Vs(ψ) subjobs have
lower-priority than V cs (ψ) subjobs and thus the servicing of a
subjob from Vs(ψ) would imply the servicing of all pending
V cs (ψ) subjobs, which contradicts the assumption that pending
vki ∈ V cs (ψ) is not serviced. In consequence of this implication
we have that βki ⊆ {t ∈ Iki |h(t) = mi(t)} and thus |βki | can
be over-approximated as

|βki | ≤
∫
Iki

[h(t) = mi(t)] dt (25)

We introduce the auxiliary function m̄i(t) = mi −mi(t) to
formalize the non-service at time t, which yields

|βki | ≤
∫
Iki

[h(t) + m̄i(t) = mi] dt (26)

Each t ∈ Iki that satisfies the predicate also satisfies (h(t) +
m̄i(t))/mi = 1. Moreover, since by definition h(t) + m̄i(t) ≥
0 for any t ∈ Iki (regardless of the predicate being satisfied or
not), we further approximate the length of βki to

|βki | ≤
∫
Iki

h(t) + m̄i(t)

mi
dt (27)
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Parallel Path: By assumption, let the incomplete envelope
subjob vki ∈ Vs(ψ) not being serviced by any mi(t) at time
t ∈ Iki . We use n(t) ∈ {1, . . . , n} to denote the number of
pending subjobs from Vs(ψ) at time t. By case assumption, we
know that for each t ∈ βki at most n(t)− 1 subjobs from Vs(ψ)
are serviced by mi(t) reservations at time t. Additionally, we
know that pending V cs (ψ) subjobs are prioritized before Vs(ψ)
subjobs, i.e.,

h(t) ≥ mi(t)−min {mi(t), n(t)− 1} (28)

≥ mi(t)− (n(t)− 1) ≥ mi(t)− (n− 1) (29)

In consequence of this implication we have that βki ⊆
{t ∈ Iki |h(t) ≥ mi(t)− (n− 1)} and thus

|βki | ≤
∫
Iki

[h(t) ≥ mi(t)− (n− 1)] dt (30)

Using m̄i(t) = mi −mi(t) yields the inequality h(t) +
m̄i(t) ≥ mi − (n− 1). With the same reasoning as in the pre-
vious case, the length can be approximated by

|βki | ≤
∫
Iki

h(t) + m̄(t)

mi − (n− 1)
dt (31)

In conclusion we have that

|βki | ≤
{

Eq. (31) if vki ∈ Vs(ψ)
Eq. (27) if vki ∈ V cs (ψ) (32)

and since Eq. (31) ≥ Eq. (27), we reach the conclusion that

p∑
i=1

|βki | ≤
∫ dJ

aJ

h(t) + m̄(t)

mi − (n− 1)
dt (33)

By definition,
∫ dJ
aJ

h(t) dt ≤ vol(V cs (ψ)) holds and thus

p∑
i=1

|βki | ≤
vol(V cs (ψ))

mi − n+ 1
+

∫ dJ

aJ

m̄i(t)

mi − n+ 1
dt (34)

The contract of the reservation system for a job of DAG task
τi promises to provide E1

i , . . . , E
mi
i service during the arrival

time of the DAG job J and its deadline [aJ , dJ ). Therefore, each
of the mi individual reservations does not provide service for
at most Di − Epi for p ∈ {1, . . . ,mi} amount of time, which
implies that

p∑
i=1

|βki | ≤
vol(V cs (ψ))

mi − n+ 1
+

∑mi

p=1Di − Epi
mi − n+ 1

(35)

In conclusion and with reference to (24), we have that a deadline
miss of J implies that

Di < vol(π∗) +
vol(V cs (ψ))

mi − n+ 1
+

∑mi

p=1Di − Epi
mi − n+ 1

(36)

which proves the theorem. �
Ordinary-Reservation Provisioning Algorithm: Similar to the

problem of gang reservation provisioning, trading the number
of reservations with the individual reservation sizes may be
beneficial for the schedulability of concrete task sets. Again,
to provide a baseline solution that can be further refined for con-
crete application scenarios, we search for reservation systems

Algorithm 3: Minimal Service Ordinary Reservations.

Require: Task τi := (Gi, Di, Ti), No. CPU M , voli.
Ensure: Minimal Service mi-ordinary Reservations Oi
1: ψ∗, w ← PATHCOVER(G) := {πψ∗1 , . . . , πψ∗w}
2: vol′ ← vol;
3: create ψ0 ← ∅;
4: for each n ∈ {1, . . . ,min{w,M}} do
5: if n = w then
6: if vol(Vs(ψ∗))− vol(Vs(ψn−1)) > Di then
7: E∗i ← (vol(π∗) + (w − 1) ·Di)/w;
8: return solution (E∗i , w, ψ∗);
9: else
10: create ψn ← ψn−1;
11: π∗n ← use DFS(G) to search the max. vol′ path;
12: ψn ← ψn ∪ π∗n;
13: for each v ∈ π∗n do
14: update vol′(v) to 0;
15: if vol(Vs(ψn))− vol(Vs(ψn−1)) > Di then
16: E∗i ← (vol(π∗) + vol(V cs (ψn)) + (n− 1)Di)/n;
17: n∗ ← n;
18: for each mi ∈ {n∗, . . . ,M} do
19: E ′i ← ((mi − n∗) · vol(π∗) + n∗ · E∗i )/mi;
20: if E ′i ≤ Di then
21: return solution (E ′i,mi, ψn);
22: return infeasible;

that minimize the cumulative allocated service under the con-
straints of equal budgets Epi = Ep+1

i for p ∈ {1, . . . ,mi − 1}
and E1

i ≤ Di, which is described in Algorithm 3. The key
intuitions are; first the number of parallel reservations mi is
bounded by the minimum of the number of available processors
M and the bound of the serviced DAG w, and second that the
cumulative allocated service can only increase with increasing
mi. Therefore in a first stage, we setmi to the minimal attainable
value, which is n under the constraints mi ≥ n, resulting in the
inequality

vol(π∗) + Ci − vol(Vs(ψ)) + (n− 1) ·Di ≤
n∑
p=1

Epi

as subject to optimization. In Algorithm 3, we compute the path-
cover and boundw and apply for eachn ∈ {1, . . . ,min{w,M}}
the iterative nPCA principle to search the configuration that
minimizes the service by analyzing if in the n-th iteration the
following improvement condition

−vol(Vs(ψn))+(n− 1) ·Di<−vol(Vs(ψn−1))+(n− 2) ·Di

holds, which simplifies to vol(Vs(ψn))− vol(Vs(ψn−1)) > Di.
In case that the calculated n∗ < w leads to a deadline constraint
violation, i.e.,E∗i > Di, we iteratemi ∈ {n∗, . . . ,M} until the
deadline is met and return the respective solution. If n∗ = w
then the deadline constraint can only be violated if vol(π∗) > Di

holds, i.e., if the DAG is not schedulable by default.
Discussion: In contrast to the gang reservation system, in-

creasing the size of the path collection in the ordinary reservation
system may not be beneficial due to the additional (n− 1) ·Di

term. In order for improvements over a single path collection to
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Fig. 3. Exemplary schedule for an ordinary reservation system of the DAG
illustrated in Fig. 1 with a deadline of 16. A reservation system that consists of 4
equally sized reservations of 13.5 time units using a 3-path collection computed
by nPCA.

be possible, the following condition must hold

(m− n+ 1)vol(π∗) + Ci − vol(Vs(ψn)) + (n− 1) ·Di

< (m− 1)vol(π∗) + Ci

which simplifies to

(n− 1) · (Di − vol(π∗)) + vol(π∗) < vol(Vs(ψn)) (37)

While the left-hand side’s increase is always Di − vol(π∗)
the right-hand side’s increase is diminishing (under nPCA).
Therefore, if n = 2 does not yield an improvement then neither
does any w > n > 2. In general, for an n-path collection to be
an improvement over the single path collection and respective
reservation system, the following condition must be satisfied

(n− 1) · (Di − vol(π∗)) <
n∑
k=2

vol′(π∗k) (38)

wherevol′ refers to the iteration based volume function innPCA.
It can be observed that very tight deadlines, i.e., D ≈ vol(π∗)
and DAG structures with few overlapping paths benefit the most
from this approach. In that regard the DAG used in the following
example does not benefit from the parallel path concepts and
only serves to illustrate the reservation principle. Note that since
in Algorithm 3, the calculated cumulative allocated service no
more than the cumulative allocated service of a single path reser-
vation system, the speed up factors of 3 + 2

√
2 under partitioned

and global EDF scheduling of the arbitrary-deadline ordinary
reservation system with respect to any optimal scheduler as
shown by Ueter et al. [38] still apply.

Example: An exemplary 4-ordinary reservation system using
a 3-path collection for the DAG shown in Fig. 1 with deadline 16
is illustrated in Fig. 3. In this example, each reservation is equal
in size which results toEpi = 13.5 for p ∈ {1, . . . , 4} according
to (21) with Di = 16, n = 3, mi = 4, and vol(V cs (ψ)) = 4.
Please notice that the service can be provided arbitrarily de-
pending on a concrete schedule as long as the promised service
is provided within the arrival and deadline interval.

VI. EVALUATION

In the forthcoming evaluations, we assess the performance of
our proposed parallel path progression concepts using synthet-
ically generated DAG task sets to allow for a systematic and
exhaustive exploration. First, we evaluate the makespan of our
approach (OUR) compared to the state-of-the-art approach as
represented by He et al. [20] (HE). We use federated schedul-
ing [26] (FED) to assess if OUR can leverage the the potential of
parallel execution of parallel paths, since a similar performance
of OUR and FED indicates that either most of the workload is
on the longest path or the number of processors is insufficient,
i.e., our bound degrades to Grahams bound.

Second, we evaluate our proposed gang and ordinary
reservation systems provisioning strategies from Algorithm 2
(GA) and Algorithm 3 (ORD) for relative resource over-
provisioning against the resource allocation of semi-federated
scheduling [24] (SEM) and reservation-based federated schedul-
ing [38] (UE) with respect to the DAG’s total volume, i.e., the
lower-bound.

Third, we evaluate if our path cover algorithm can outper-
form the iterative path collection selection in the approximation
algorithm and in what parametric scenarios.

A. Experiment-Data Generation

In order to systematically evaluate the presented algorithms
and to assess the performance for different classes of DAG
structures, we generated 300 DAGs using the layer-by-layer and
the Erdős–Rényi generation method for each configuration of
generation parameters.

Layer-by-Layer Generation: The internal structure of the
DAG under evaluation strongly impacts the performance of
the evaluated analyses. The layer-by-layer method offers a
parameterized generation process to randomly generate DAGs
whose structure can be attributed to the generation parameters
min parallelism, max parallelism, min layer, max layers, and
connection probability. In each DAG’s generation, the number
of layers is chosen uniformly from the range 5− 10 and 10− 15
representing min layer to max layer. In each layer, the number of
subtasks referred to as parallelism is drawn uniformly from the
ranges of 5− 10, 10− 15, 10− 25, and 10− 30 representing
the range of min parallelism to max parallelism. Please note that
the minimal number of paths to fully cover a DAG is never more
than the maximum parallelism in any of the generated layers. The
connection of subtasks at a layer � is only allowed by subtasks
from layer �− 1. Each newly generated subtask in a layer is
connected with a subtask from the previous layer with proba-
bility connection probability, which is drawn at random from
the ranges 5%− 10%, 10%− 20%, 20%− 30%, 40%− 50%,
50%− 60%, and 40%− 80% resulting in 48 different configu-
rations for which we generated a set of 300 DAGs each. Each
subtask is assigned an integer worst-case execution time drawn
uniformly from the range 10 to 100.

Erdős–Rényi Generation: In addition, we generated DAG task
sets using the Erdős–Rényi method that is paremeterized with
min vertex to max vertex and connection probability. In the gen-
eration process, at first, a number of vertexes is drawn uniformly
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TABLE II
DIFFERENCE OF THE PATH COVER BOUND w COMPARED TO THE MINIMAL

NUMBER OF PATHS CALCULATED BY THE GREEDY APPROACH FOR A FULL

COVER FOR THE LAYER-BY-LAYER DAG SETS

in the ranges of 10− 100 and 100− 150. For each class of
connection probabilities 5%− 10%, 15%− 20%, 25%− 30%,
35%− 40%, and 45%− 50%, a connection probability is drawn
uniformly that is used for the generation of a single DAG belong-
ing to that class. Second, an upper-triagonal adjacency matrix is
generated where each entry aij in the matrix, i.e., the directed
edge (vi, vj), is drawn uniformly with the probability connection
probability. We generated 300 DAGs for each combination of
configurations.

Deadline and Period Generation: For each of the generated
DAG sets described before, we generated easy, medium, and
hard to schedule deadlines. That is, the open interval of deadlines
D := (vol(π∗), C) defines deadlines such that the DAG is not
infeasible by default or trivially schedulable. The interval is
then partitioned into three equi-sized intervals D1, D2 and D3

representing the first, second, and third fraction of the interval. A
deadline is considered hard if it is drawn uniform at random from
the interval D1, medium if it is drawn uniform at random from
D2, and easy if it is drawn uniform at random from D3 respec-
tively. Since the compared to methods only support constrained-
deadlines except for reservation-based federated scheduling,
which is a special case of our ordinary reservation system,
we only evaluated constrained deadlines. We draw α ∈ [a, b] ⊂
[1, b] for [a, b] in {[1, 1.2], [1.2, 1.5], [1, 2], [2, 3], [1, 1.8], [1, 3]}
and set the period T = α ·D.

B. Path Cover Experiments

In the path cover experiment, we compare the calculated
bound by the path cover algorithm that is described in Sec-
tion IV-A against the minimal number of paths required by the
greedy approach – described in Section IV-C – to completely
cover the DAG. The motivation for this experiment is to show
that there are actually cases for the evaluated DAGs in which this
bound is better than the iterative solution and in consequence,
the resource allocation can be significantly improved. Both algo-
rithms are evaluated on the DAGs sets described in Section VI-A
for which the results are aggregated and shown in Tables II and
III respectively. The column improved shows the percentage of
DAGs in the evaluated set for which the path cover determines
less paths that the iterative solution. The column max shows
the maximal absolute difference of the required paths, i.e., how
many paths, the path cover algorithm requires less.

It can be observed that for the Erdős–Rényi set all DAG
sets can be significantly improved and that sets in the range
of 5− 40% connection probability have at least 56% improve-
ments. For the layer-by-layer DAG sets, the improvements are
still existent however only roughly a quarter of DAGs could

TABLE III
DIFFERENCE OF THE PATH COVER BOUND w COMPARED TO THE MINIMAL

NUMBER OF PATHS CALCULATED BY THE GREEDY APPROACH FOR A FULL

COVER FOR THE ERDŐS–RÉNYI DAG SETS

benefit and higher connection probabilities reduce the improve-
ments.

C. Makespan Experiment

We evaluate the makespan, i.e., the worst-case response
time of a single DAG job on 4, 8, 16, 32 processors exclu-
sively for all configurations described in Section VI-A and
present the makespan normalized to a theoretical lower-bound
of max{C/M, vol(π∗)}, i.e., 100% implies a tight result. Since
the evaluations showed similar results, only a few representative
figures are shown in the box plots in Figs. 4 and 5.

Observations: From all recorded results, it can observed that
our method does not strictly dominate the approach by HE, but
can improve the makespan in case of high parallelism, i.e., large
number of processors. Intuitively, the makespan of our approach
is better if the majority of the workload of the DAG task is
distributed on at most M paths, which likely increases with the
number of available processors. Therefore, the improvements
depend on the DAG parameters and number of processors.
Otherwise, the approach by HE is better in analyzing the subtask
interference more accurately and thus able to provide a better
makespan. Notably, our approach is however able to provide
tight results for many of the evaluated cases. A representative
case is shown in Fig. 4, where a DAG set with 100-150 vertexes
and 45− 50% connection probability is evaluated. It can be
observed that OUR provides a tight results when the number
of provided processors is 8, whereas HE provides slightly larger
(non-optimal) makespan values. Another representative case is
shown in Fig. 5 for a DAG set generated by the layer-by-layer
method with 10− 15 layers, a parallelism of 10− 30, and a con-
nection probability of50− 60%. Note that, federated scheduling
(FED) coincides with our analysis if only one path is considered.
It can be seen that OUR does not significantly improve FED
up to 16 processors, which suggests that the the majority of the
workload of the DAG task is distributed on more paths. However,
when 32 processors are provided for the tasks with parallelism
of at most 30 then the makespan of OUR is tight in most cases.

D. Reservations Over-Provisioning Experiment

In our hierarchical scheduling approach, the schedulability
depends on the schedulability analysis used for the reservation
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Fig. 4. Relative makespan of DAGs generated by the Erdős–Rényi method with 100− 150 vertexes and a connection probability of 45− 50%.

Fig. 5. Relative makespan of DAGs generated by the layer-by-layer method with 10− 15 layers, parallelism of 10− 30, and a connection probability of
50− 60%.

systems. We are only interested in the evaluation of the resource
allocation of the reservations systems as the schedulability de-
pends on the performance of the schedulability analyses of the
scheduling algorithms used to schedule the reservation systems.
We compare the resource allocation of each approach per job
activation (meaning over a period T ) of our ordinary reserva-
tion (ORD), our gang (GA), semi-federated scheduling (SEM),
and reservation-based federated scheduling (UE) relative to the
DAGs total volume. That is, an over-provision value of 100%
indicates a tight allocation. We assume that a sufficient number
of processors is available such that a reservation system can be
found for every generated deadline. A few representative results
are shown in the box plots in Figs. 6 and 7.

Observation: It can be seen that ORD and GA improve the
resource allocation in all scenarios and significantly for hard to
scheduled DAG tasks. With increasing period to deadline ratio,
the larger the improvements of the reservation based scheduling
approaches to semi-federated scheduling are. Interestingly, ORD
and GA show similar resource allocation in all scenarios, which
demonstrates that the less restrictive reservation scheme of ORD
does not incur larger resource demands.

VII. RELATED WORK

Real-time aware scheduling of parallel task systems has been
extensively studied for a variety of different proposed task
models. Goosens et al. [18] have provided a classification of
parallel task with real-time constraints.

Fig. 6. Over-provisioning for Erdős–Rényi with 100− 150 vertexes, 35−
40% connection probability and α = [1.2, 1.5].

Early work on parallel task models focused on synchronous
parallel task models, e.g., [8], [27], [33]. Synchronous parallel
task models extend the fork-join model [9] in such a way that
they allow different numbers of subtasks in each (synchronized)
segment where the number of subtasks can exceed the number
of processors.

A prominent parallel task model that has been subject to many
recent scheduling and analysis efforts, is the directed-acyclic
graph (DAG) task model. The DAG models subtask-level par-
allelism by acyclic precedence constraints for a set of subtasks.
The parallel DAG task model has been studied for global [5],
[7], [30] and partitioned scheduling [4], [6], [16], [17].
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Fig. 7. Over-provisioning for layer-by-layer 10− 15 layers, parallelism 10−
30%, connection probability 50− 60% and α = [2, 3].

The proposed scheduling algorithms and analyses in the
literature can be categorized into decompositional and non-
decompositional. In the former, the parallel task model is decom-
posed into a set of sequential task models, which is scheduled
and analyzed in their stead, e.g., [23]. Non-decompositional
approaches consider the peculiarities of the parallel task models,
e.g., [2], [5], [13], [26], [30], [38].

A prominent decomposition based approach is federated
scheduling by Li et al. [26] that avoids inter-task interference
for parallel tasks. It has been extended in, e.g., [2], [3], [12],
[22], [24], [38]. In the original federated scheduling approach,
the set of DAG tasks is partitioned into tasks that can be executed
sequentially on a single processor and tasks that need to execute
in parallel to finish before their respective deadlines. In federated
scheduling [26], the intra-task interference of the envelope ex-
ecution is upper-bounded by the workload of the non-envelope
subjobs divided by the number of processors. The corresponding
response time analysis requires no information about the internal
structure of the DAG except for the total volume and the longest
path.

This analysis was improved by He et al. [19], who proposed
a specific intra-node priority assignment for list-scheduling that
the topological ordering of the nodes within the DAG. This pri-
ority assignment and the inspection of the DAG structure results
in a less pessimistic upper-bound for a task’s self-interference
of the envelope path compared to federated scheduling. These
results are further improved and extended by Zhao et al. [42],
where subjob dependencies are explicitly considered along the
execution of the envelope path to more accurately bound self-
interference. Most recently, He et al. [20] improved their prior
work by lifting the topological order restrictions in their intra-
node priority assignments, which further improved the results
by Zhao et al. [42].

VIII. CONCLUSION AND FUTURE WORK

We present the parallel path progression concept that allows
to analyze the simultaneous progress of a collection of paral-
lel paths. We propose a sustainable scheduling algorithm and
analysis that is extended by virtue of hierarchical scheduling
for gang-based and ordinary reservation systems for sporadic
arbitrary-deadline DAG tasks. For these reservations, we provide
algorithms that approximately provision optimal reservation
systems with respect to the service they require. We evaluated

our approach using synthetically generated DAG task sets and
demonstrated that our approach can improve the state-of-the-art
in high-parallelism scenarios while demonstrating reasonable
performance for low-parallelism scenarios. In future work, we
plan to improve the active idling issues of the proposed reserva-
tion systems by considering self-suspension behaviour for the
reservation systems.
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