
Perspectives on Quality of Service in Distributed and
Embedded Real-Time Systems

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Lea Schönberger

Dortmund

2023

Tag der mündlichen Prüfung: 16. August 2023
Dekan: Prof. Dr.-Ing. Gernot A. Fink
Gutachter: Prof. Dr. Jens Teubner

Prof. Dr. Jian-Jia Chen

Abstract

As a consequence of technological advancements, a trend towards the development of
smart cities has emerged, i.e., towards urban areas that comprise a multitude of sensors,
actuators as well as computation and communication resources. Being integrated into
buildings, infrastructure elements, and other objects, these components constitute
a large and heterogeneous distributed hardware platform. Traffic participants and
other actors of a smart city can use this platform in an on-demand fashion to make
use of advanced functionalities such as, for instance, smart means of transportation.
In fact, vehicles of different levels of autonomy rely on a smart city’s distributed
infrastructure when performing sophisticated operations that come with specific
quality of service (QoS) requirements, including a multitude of parameters such as
timing and reliability constraints. Against the background of a shared, heterogeneous
hardware infrastructure, however, guaranteeing the satisfaction of QoS requirements
and, thus, ensuring the operations’ correctness is an intricate matter.

This dissertation addresses selected challenges arising in the context of smart
cities, focusing on the underlying distributed system as well as on individual systems
interacting with it. All challenges contemplated are related to the notion of quality of
service and aim to either guarantee the satisfaction of applications’ QoS requirements
or to enable the system(s) to enhance the level of service provided to (specific types
of) applications. Concretely, a concept of QoS contracts concluded between the
distributed system and each executed application is proposed that allows to provide
QoS guarantees and, moreover, to detect contract violations. An extension of this
concept including applications with robustness requirements is provided as well. For
individual systems, focusing especially on smart vehicles, recovery protocols are
proposed that enable the system to safely offload parts of critical applications to a
smart city’s distributed system, even under unreliable connections, while ensuring
the temporal correctness. In addition, an approach for the optimization of hardware
message filters in controller area network is proposed by means of which the overhead
due to unnecessary message inspection can be reduced, allowing to spend the saved
resource capacity on the execution of other applications. All concepts and approaches
contributed in this dissertation have been evaluated and shown to be effective.

i

Acknowledgments

This dissertation is dedicated to my mother Ruth Schönberger, who, by fate, was not
given the chance to witness the completion of my PhD. I thank her as well as my
brother Jonas Schönberger and my sister Rabea Schönberger for their incredible and
unconditional support.

At a prominent position, I would like to express my gratitude to Jian-Jia Chen,
not only for hiring me in 2017 and allowing me to pursue a PhD degree, but also
for showing me the exciting world of real-time systems and, thus, for averting me
from leaving computer science for the humanities. Thereon, I would like to thank my
supervisors Jens Teubner and Selma Saidi for taking me under their wing in 2020 and
giving me the opportunity to complete my PhD. I appreciate their effort, patience,
and openness to sharing their knowledge and letting me learn from them. Being part
of the final step of my PhD by serving in the examination committee, I thank Jakob
Rehof, Jens Teubner, Jian-Jia Chen, and Klaus-Tycho Förster for investing their time.

Many people have been involved in my PhD – people with whom I collaborated,
people who have enriched my everyday work life as colleagues, who have shared
the same dedication to common objectives, or who have simply been companions
on the path towards the same goal. Since listing and expressing gratitude to all of
them would fill pages, I would like to take the liberty of thanking a few selected
individuals, without claiming completeness and without implying any particular order.
To begin with, I thank all of my collaborators during my PhD for their time and
effort invested in conducting research with me, in particular, Susanne Graf and Georg
von der Brüggen. I also thank my mentor Petra Wiederkehr for her support and her
always very helpful feedback. A person without which completing this dissertation
would have been even harder is my colleague Jan Mühlig, whom I thank for our
PhD-completion self-help group, for supporting me in solving dissertation-related
problems, and for the “don’t panic”. Very importantly, I thank Claudia Graute for her
support, her optimism, her enthusiasm, and her encouragement. Moreover, I thank
Helena Kotthaus, with whom I had the pleasure of sharing an office for a period of
time, for her positive influence on me and for pushing me into the right direction.
I thank Horst Schirmeier for listening to my complaints, problems, and ideas and
for always giving good advice. Likewise, I thank Kuan-Hsun Chen for constantly
answering my random questions without complaints and for his advice in various
situations. I also thank Alexander Lochmann for his advice and for the valuable

iii

iv

exchange (and for providing the best office dog ever). In addition, I express my
gratitude to the strong and smart women of our women-in-computer-science network,
particularly mentioning Meliha Sezgin, Christin Schumacher, Carina Newen, Clara
Scherbaum, and Ines Heining. I appreciate the exchange of ideas, their support,
and our collective effort in challenging an (academic) world where gender equality
often remains a mere concept on paper. Not to be left unconsidered are Nadine
Finke-Micheel, Benjamin Brast, and Anke Kujawski from TU Dortmund University’s
Graduate Center, whom I thank for their extensive support in many respects that
essentially contributed to my PhD. Finally, I would like to thank a few unnamed
people related to an unnamed university’s humanities department for enriching my
life in the last years and for providing a counterbalance to my PhD that allowed me
to replenish my strength. If you wonder if you are included, you are included.

Parts of the research included in this thesis have received funding from Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876,
projects A2 and A3, as well as from the French Embassy in Germany in the context
of a Procope mobility grant.

List of Publications

A number of ideas and results presented in this dissertation have been published in
the proceedings of international conferences:

Lea Schönberger, Susanne Graf, Selma Saidi, Dirk Ziegenbein, and Arne
Hamann. “Contract-Based Quality-of-Service Assurance in Dynamic Distributed
Systems”. In: 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2022, pp. 132-135. DOI: 10.23919/DATE54114.2022.9774529 [SGS+22]

Lea Schönberger, Georg von der Brüggen, Kuan-Hsun Chen, Benjamin Sliwa,
Hazem Youssef, Aswin Karthik Ramachandran Venkatapathy, Christian Wietfeld,
Michael ten Hompel, and Jian-Jia Chen. “Offloading Safety- and Mission-Critical
Tasks via Unreliable Connections”. In: 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020). Ed. by M. Völp. Vol. 165. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2020, 18:1–18:22. DOI: 10.4230/LIPIcs.ECRTS.2020.18 [SBC+20]

Lea Schönberger, Georg von der Brüggen, Horst Schirmeier and Jian-Jia Chen.
“Design Optimization for Hardware-Based Message Filters in Broadcast Buses”. In:
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
606-609. DOI: 10.23919/DATE.2019.8714793 [SBS+19]

The author of this dissertation also contributed to the following works that are
out of its scope and have not been included:

Lea Schönberger, Mohammad Hamad, Javier Velasquez Gomez, Sebastian Stein-
horst, and Selma Saidi. “Towards an Increased Detection Sensitivity of Time-Delay
Attacks on Precision Time Protocol”. In: IEEE Access 9 (2021), pp. 157398-157410.
DOI: 10.1109/ACCESS.2021.3127852 [SHG+21]

Sebastian Schwitalla, Lea Schönberger, and Jian-Jia Chen. “Priority-Preserving
Optimization of Status Quo ID-Assignments in Controller Area Network”. In: 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE). 2020, pp.
834-839. DOI: 10.23919/ DATE48585.2020.9116565 [SSC20]

v

vi

Helena Kotthaus, Lea Schönberger, Andreas Lang, Jian-Jia Chen, and Peter
Marwedel. “Can Flexible Multi-Core Scheduling Help to Execute Machine Learn-
ing Algorithms Resource-Efficiently?”. In: Proceedings of the 22nd International
Workshop on Software and Compilers for Embedded Systems. SCOPES ’19. Sankt
Goar, Germany: Association for Computing Machinery, 2019, pp. 59–62. DOI:
10.1145/3323439.3323986 [KSL+19]

Georg von der Brüggen, Lea Schönberger, and Jian-Jia Chen. “Do Nothing, But
Carefully: Fault Tolerance with Timing Guarantees for Multiprocessor Systems Devoid
of Online Adaptation”. In: 2018 IEEE 23rd Pacific Rim International Symposium on
Dependable Computing (PRDC). 2018, pp. 1-10. DOI: 10.1109/PRDC.2018.00010
[BSC18]

Lea Schönberger, Wen-Hung Huang, Georg Von Der Brüggen, Kuan-Hsun Chen,
and Jian-Jia Chen. “Schedulability Analysis and Priority Assignment for Segmented
Self-Suspending Tasks”. In: 2018 IEEE 24th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA). 2018, pp. 157-167.
DOI: 10.1109/RTCSA.2018.00027 [SHV+18]

Contents

I Fundamentals 1

1 Introduction 3
1.1 Selected Challenges Arising in a Connected World 3
1.2 Contributions of this Dissertation 4
1.3 Author’s Contribution to this Dissertation 6
1.4 Outline . 8

2 Background 9
2.1 Typical Task Model . 9
2.2 Priority-Based Scheduling . 11
2.3 Worst-Case Execution Time . 11
2.4 Quality of Service . 12

II Distributed Systems 15

3 System and Application Model 17
3.1 System Architecture . 17
3.2 Application Model . 19

4 Contract-Based Quality of Service Assurance 23
4.1 Introduction . 24
4.2 Problem Statement . 25
4.3 Assume-Guarantee Contracts . 26
4.4 Quality of Service Contracts . 26
4.5 Detection of Contract Violations 35
4.6 Evaluation . 39
4.7 Summary . 49

5 Robustness-Aware Quality of Service Contracts 53
5.1 Introduction . 53
5.2 Related Work . 55
5.3 Problem Statement . 56

vii

viii Contents

5.4 Soft Quality of Service Contracts 57
5.5 Evaluation . 63
5.6 Summary . 67

III Embedded Systems 69

6 System and Application Model 71
6.1 Endpoint and Local System . 71
6.2 Application Model . 72
6.3 Task Model . 72
6.4 Execution Behavior and Execution Scenarios 74

7 Safe Offloading under Unreliable Connections 77
7.1 Introduction . 77
7.2 Problem Statement . 79
7.3 Related Work . 79
7.4 Recovery Protocols . 80
7.5 Workload Characteristics . 82
7.6 System Behavior and Response Time Analysis 85
7.7 Evaluation . 90
7.8 Summary . 99

8 Hardware Message Filter Optimization 101
8.1 Introduction . 101
8.2 Problem Statement . 103
8.3 Perfect Filters . 105
8.4 Imperfect Filters . 107
8.5 Evaluation . 108
8.6 Related Work . 113
8.7 Summary . 113

IV Conclusion and Outlook 115

9 Conclusion 117
9.1 Summary . 117
9.2 Open Problems and Future Research Directions 120

List of Figures 125

List of Tables 127

Bibliography 129

Part I

Fundamentals

1

CHAPTER 1
Introduction

Contents
1.1 Selected Challenges Arising in a Connected World 3
1.2 Contributions of this Dissertation 4

1.2.1 Distributed Systems . 5
1.2.2 Embedded Systems . 5

1.3 Author’s Contribution to this Dissertation 6
1.4 Outline . 8

1.1 Selected Challenges Arising in a Connected World

In recent years, a trend towards the development of smart cities has emerged, i.e.,
towards urban areas that comprise a multitude of sensors, actuators as well as compu-
tation and communication resources. Being integrated into buildings, infrastructure
elements, and other objects, these components constitute a large and heterogeneous
distributed hardware platform [HKS+19]. To improve their inhabitants’ and visitors’
quality of life, smart cities use this distributed system to provide advanced functional-
ities [KYT+20] such as, for instance, smart means of transportation. In this context,
enhancing vehicles with sensors, computing devices, and communication interfaces, is
a promising strategy for making transportation more comfortable, more efficient, and
more safe [HKS+19].

Following from the evolution of wireless communication technologies [LXC+19],
vehicles of different levels of autonomy [SZ18] rely on a smart city’s distributed
infrastructure when performing sophisticated operations that come with specific
quality of service (QoS) requirements, including, among others, timing and reliability
constraints. Guaranteeing, however, the satisfaction of QoS requirements and thus

3

4 Chapter 1. Introduction

Chapter 7

C
hapter

8

Chapters 4 & 5

Figure 1.1: Illustration of an exemplary smart city including its components and
actors. The areas, to which the challenges addressed in this dissertation
are related, are marked and annotated with the chapters, in which
further details can be found.

ensuring the operations’ correctness and the vehicle’s safety against the background
of a shared, heterogeneous hardware infrastructure is very challenging [HSG+20],
especially in an environment evolving over time [SZD+22]. Consequently, in a world
that is becoming increasingly connected and permeated by dependencies between
different systems, it is not meaningful to focus on the individual systems only when
designing smart vehicles or devices; instead, the interplay between different traffic
participants and actors of a smart city must be taken into account [LXC+19].

This dissertation addresses selected challenges arising in the context of smart
cities, adopting the perspective of the underlying distributed system as well as of
individual systems interacting with it. Specifically, all challenges considered are
related to the topic of quality of service. In Fig. 1.1, an exemplary smart city is
illustrated that serves as a use case throughout this thesis and indicates the areas to
which the challenges explored in the respective chapters are related. In the following,
the addressed challenges are summarized and the corresponding contributions are
shortly emphasized.

1.2 Contributions of this Dissertation

This dissertation makes four contributions that are divided into two parts, one focusing
on the distributed infrastructure of a smart city and one on individual systems

1.2. Contributions of this Dissertation 5

connected to such a distributed system. Subsequently, each addressed challenge is
shortly outlined and the related contribution is highlighted.

1.2.1 Distributed Systems

A distributed system serving as the infrastructure of a smart city is assumed to have
an admission control that decides which applications are executed on the system.
Applications are assumed to have a QoS requirement specifying the maximum amount
of time that must elapse between their start and their completion and can be executed
on the distributed system on demand. For the considered system, it must be ensured
that applications are only admitted if their QoS requirement can be satisfied, and
that the satisfaction of an application’s QoS requirement is guaranteed whenever it is
admitted to the system.

Contract-Based Quality of Service Assurance

QoS contracts are introduced that ensure the satisfaction of the QoS require-
ment of each application on the system. Moreover, a monitoring approach is
proposed that allows to verify the satisfaction of QoS contracts during the
execution of an application and to identify the reasons of contract violations.

This contribution corresponds to Chapter 4. Parts of the presented content
have previously been published in [SGS+22].

Some applications do not require their QoS requirement to be always satisfied
in order to function correctly, as long as it is satisfied for a minimum number of
times. This so-called robustness requirement must be taken into consideration by
the admission control and must be guaranteed for each application exhibiting such a
requirement that is executed on the system.

Robustness-Aware Quality of Service Contracts

Robustness-aware QoS contracts are introduced that guarantee end-to-end
latency requirements in combination with robustness requirements for specific
applications executed on the system. Robustness-aware QoS contracts can
co-exist with regular QoS contracts on the same system.

This contribution corresponds to Chapter 5.

1.2.2 Embedded Systems

To activate enhanced functionalities despite local resource limitations, some individual
systems offload parts of applications to the distributed infrastructure of a smart city.

6 Chapter 1. Introduction

In the case of autonomous vehicles, i.e., vehicles with advanced driver assistance
systems, also parts of critical applications may be offloaded. For critical applications
of such a system, QoS guarantees regarding the maximum time that must elapse from
the release until the completion of an application must be always given, even in the
case of connectivity issues.

Safe Offloading under Unreliable Connections

Two recovery protocols are proposed for satisfying the QoS requirements of all
critical tasks in the case of unsuccessful offloading operations due to connectivity
issues. For each protocol, a schedulability analysis and a schedulability test is
provided that can be used for an a-priori verification of the system.

This contribution corresponds to Chapter 7. Parts of the presented content
have previously been published in [SBC+20].

In modern vehicles, controller area network (CAN) is typically used as the in-vehicle
communication backbone. Since CAN is a broadcast bus, each bus participant receives
all messages transmitted on the bus, even if they are irrelevant, which introduces
unnecessary overhead due to the further message processing. The amount of irrelevant
messages received by a bus participant can be reduced by applying hardware message
filters. In order to minimize the overhead following from irrelevant messages, the
design of these filters must be optimized.

Hardware Message Filter Optimization

Approaches for the computation of hardware message filter configurations are
provided applicable under different constraints with respect to the availability
of the hardware and the required effectiveness of the filters.

This contribution corresponds to Chapter 8. Parts of the presented content
have previously been published in [SBS+19].

1.3 Author’s Contribution to this Dissertation

According to §10(2) of the “Promotionsordung der Fakultät für Informatik der
Technischen Universität Dortmund vom 29. August 2011”, the author’s contribution
to the material included in this dissertation is indicated in the following:

• Chapter 3: The underlying idea for the distributed system model has been
provided by Selma Saidi, Dirk Ziegenbein, and Arne Hamann. The system
model as considered in this dissertation is a result of discussions involving Selma

1.3. Author’s Contribution to this Dissertation 7

Saidi, Dirk Ziegenbein, Arne Hamann, Susanne Graf, and the author of this
dissertation.

• Chapter 4: Parts of the presented content have been published in [SGS+22],
authored by the author of this dissertation, Susanne Graf, Selma Saidi, Dirk
Ziegenbein, and Arne Hamann, where the author of this dissertation was the
principal author. The proposed system admission process has been developed
in discussions involving Susanne Graf, Selma Saidi, Dirk Ziegenbein, Arne
Hamann, and the author of this dissertation. The MITL formulations have
been developed in cooperation between Susanne Graf and the author of this
dissertation. The implementation and the evaluation have been done by the
author of this dissertation.

• Chapter 5: The underlying idea of a co-existence of different types of contracts
in the considered type of systems has been discussed by Selma Saidi and the
author of this dissertation. The underlying idea of monitoring the satisfaction of
dependability requirements in the form of (m, k)-constraints has been discussed
by Susanne Graf, Selma Saidi, and the author of this dissertation. The concept
of soft QoS contracts as proposed in this thesis has been developed by the
author of this dissertation. The constraint formulation has been developed by
the author of this dissertation. The implementation and the evaluation have
been done by the author of this dissertation.

• Chapter 6: The embedded system model corresponds to the system model
considered in [SBC+20], which relies on a typical task model considered in the
real-time community and was extended in discussions involving Jian-Jia Chen,
Georg von der Brüggen, and the author of this dissertation.

• Chapter 7: Parts of the presented content have been published in [SBC+20],
authored by the author of this dissertation, Georg von der Brüggen, Kuan-Hsun
Chen, Benjamin Sliwa, Hazem Youssef, Aswin Ramachandran Venkatapathy,
Christian Wietfeld, Michael ten Hompel, and Jian-Jia Chen, where the author
of this thesis was the principle author. The idea for the recovery-protocols has
been developed by the author of this dissertation. The schedulability analysis
including the proofs has been carried out in cooperation of Jian-Jia Chen, Georg
von der Brüggen, and the author of this dissertation. Realistic and evidence-
based information about unreliable wireless connections has been provided by
Benjamin Sliwa. Robotic data used for the evaluation has been obtained by
Hazem Youssef and Aswin Ramachandran Venkatapathy. The simulator used
for the evaluation has been implemented by Kuan-Hsun Chen and has been
modified by Kuan-Hsun Chen and the author of this dissertation. The evaluation
has been carried out by the author of this dissertation.

• Chapter 8: Parts of the presented content have been published in [SBS+19],
authored by the author of this dissertation, Georg von der Brüggen, Horst
Schirmeier, and Jian-Jia Chen, where the author of this dissertation was the
principle author. The underlying ideas have been collected in cooperation of Jian-
Jia Chen, Georg von der Brüggen, and the author of this thesis. The constraint

8 Chapter 1. Introduction

formulations and the theorem regarding minimal perfect filter configurations
have been developed in cooperation of Jian-Jia Chen and the author of this
dissertation. The scenarios considered in the evaluation have been designed by
Horst Schirmeier. The implementation and the evaluation have been done by
the author of this dissertation.

1.4 Outline

This dissertation is divided into four parts, which are structured as follows:

• Part I continues with Chapter 2, dedicated to the background knowledge that
is essential for understanding the subsequent content.

• Part II addresses distributed systems serving as the backbone of a smart city.
Within this part, Chapter 3 introduces the system model used throughout the
following chapters. Thereon, Chapter 4 presents an approach for contract-based
quality of service assurance, building on which Chapter 5 introduces the concept
of robustness-aware quality of service contracts.

• Part III focuses on embedded systems, addressing individual systems, e.g.,
smart vehicles, that are not part of a smart city’s distributed system but are
connected to it. Chapter 6 introduces the system model used within this part. In
Chapter 7, an approach for enabling safe offloading under unreliable connections
is proposed. Thereafter, Chapter 8 proposes approaches for hardware message
filter optimization, aiming to reduce the computation overhead for resource-
constrained systems that is caused by unnecessarily received broadcast messages.

• Part IV concludes this dissertation with Chapter 9 by giving a summary and
and pointing out open problems and future research directions.

To enhance readability, each chapter concludes with a table of the introduced notation.

CHAPTER 2
Background

Contents
2.1 Typical Task Model . 9
2.2 Priority-Based Scheduling 11
2.3 Worst-Case Execution Time 11
2.4 Quality of Service . 12

2.1 Typical Task Model

To provide the knowledge necessary for understanding this dissertation, first, a task
model is introduced that is commonly used in the real-time research community,
either in the presented form or as a basis for more sophisticated task models. In this
dissertation, modified variants of this task model are considered, which are introduced
at a later point; however, clarifying the standard task model is necessary in order to
explain a set of fundamental concepts. Note that this section largely follows [But11],
using a notation consistent with the rest of this dissertation.

On a system, a set of n real-time tasks, short task, T = {τ1, . . . , τn} with n ∈ N is
assumed to be executed. A task τi is typically characterized by a set of parameters as
illustrated in Fig. 2.1. Tasks can be either aperiodic, periodic, or sporadic. Aperiodic
tasks are executed only once, while a periodic or sporadic task releases a sequence of
task instances, called jobs. The pattern according to which jobs are released is defined
by the period or minimum inter-arrival time Pi. More precisely, if a task is periodic,
each job is released exactly Pi time units after the release of the previous job. If a
task is sporadic, each job is released at minimum Pi time units after the release of the
previous job. The point in time when the first job of a task is released, i.e., it becomes
ready for execution, is defined by the phase Φi. If the phase is not included in the

9

10 Chapter 2. Background

ci ci

Time
τi

Di

Pi

Φi di Φi + Pi

Figure 2.1: Illustration of a sporadic real-time task τi.

specification of a task, it is typically assumed to be zero. The execution time of a job
of a task describes the time required for its uninterrupted execution, i.e., excluding
potential waiting times. The worst-case execution time of a task is denoted by ci and
refers to the maximum execution time over all jobs. Based on the worst-case execution
time, the task utilization is defined as Ui = ci

Pi
. Consequently, the utilization of a task

set is given by
∑︁

τi∈T Ui. As finishing time or completion time fi of a job of a task it
is referred to the point in time in which the execution of the job is completed. The
response time of a job of a task τi is defined as the difference between its finishing
time and its release time. The worst-case response time Ri of a task τi is given by
the maximum response time among all its jobs. The point in time until when the
execution of a job of a task must be completed is indicated by the absolute deadline
di and is given by the by point in time in which a job is released plus the relative
deadline Di that specifies the maximum amount of time that must elapse between
the release of a job and its completion1. Relative deadlines can be either implicit, i.e.,
Di = Pi, constrained, i.e., Di ≤ Pi, or arbitrary, i.e., it can be the case that Di > Pi.
Note that implicit deadlines are a subset of constrained deadlines and constrained
deadlines are a subset of arbitrary deadlines.

If a task’s job is not completed before its deadline, this can have very diverse
consequences, based on which three types of real-time tasks can be distinguished: If
a hard real-time task2 exceeds its deadline, this can lead to catastrophic results and
dangerous consequences for the system and its environment, e.g., when considering
safety-critical control tasks. The results produced by a firm real-time task after
missing its deadline, in contrast, are useless, but not harmful. If a soft real-time task3

is completed after its deadline, the outcome can still be useful for the system to a
certain degree [BSC18; BCH+16]. A system capable of handling real-time tasks is
referred to as a real-time system. In this dissertation, tasks of different types are
considered, which have so-called quality of service (QoS) requirements including the
satisfaction of their deadlines and potential further parameters, as discussed more in
detail in Sec. 2.4.

1Subsequently, the term deadline refers to the relative deadline unless specified differently.
2Synonymously, the expression task with hard real-time requirements is used.
3Synonymously, the expression task with soft real-time requirements is used.

2.2. Priority-Based Scheduling 11

2.2 Priority-Based Scheduling

To execute a set of tasks, where multiple jobs are ready for execution at the same
time, it is necessary to determine an execution order, i.e., a schedule. In priority-based
scheduling, this decision is made based on priorities assigned to the individual jobs
by a scheduling algorithm according to algorithm-specific criteria. Priority-based
scheduling algorithms can be classified into two distinct categories [But11], namely,
fixed-priority scheduling algorithms that make scheduling decisions based on offline-
assigned priorities, and dynamic-priority scheduling algorithms that assign priorities
on the fly, i.e., based on parameters changing over time. With respect to fixed-priority
scheduling, it is possible to make a further distinction: Fixed task-level priority
scheduling algorithms assign the same priority to all jobs of a task, whereas fixed
job-level priority scheduling algorithms may assign different priorities to different
jobs of a task. A well-known example of fixed task-level priority scheduling is rate
monotonic (RM) scheduling, where priorities are assigned based on the period or
minimum inter-arrival time of a task. Consequently, jobs of tasks with a shorter period
receive a higher priority, ties are broken arbitrarily. Independent of the category into
which a scheduling algorithm belongs, it can be either preemptive, i.e., it allows the
interruption of a job’s execution at any point in time, or non-preemptive, i.e., once a
job is started, it must be executed until its completion [But11]. In this dissertation,
preemptive fixed task-level priority scheduling is considered.

A schedule is identified as feasible if all included tasks can be completed such
that a given set of constraints, typically involving their deadlines, is satisfied [But11].
A set of tasks is termed schedulable if at least one scheduling algorithm exists, by
means of which a feasible schedule can be computed [But11]. To determine if a task
set is schedulable under a specific scheduling algorithm, a schedulability test can be
applied. One approach for testing the schedulability of a set of tasks is the worst-case
response time analysis, by means of which it is verified for each task in the task set if
its worst-case response time is less than or equal to its relative deadline4. For this
purpose, a worst-case scenario, called critical instant [LL73], is considered in which
for each task under analysis the interference, i.e., the blocking time, by higher-priority
tasks is quantified within a specific window of interest, i.e., typically, the time between
the release and the absolute deadline of a job of the respective task. For the result
of the response-time analysis to be valid, however, a safe worst-case execution time
value for each task must be taken into account.

2.3 Worst-Case Execution Time

As introduced in Sec. 2.1, the execution time of a job is the time required from its
start until its completion considering only its plain execution, i.e., neglecting waiting
times. This time, however, depends on various factors such as the task inputs and

4The worst-case response time analysis is subsequently also referred to as schedulability analysis.

12 Chapter 2. Background

the states of the hardware, on which it is executed. The worst-case execution time
(WCET) of a task refers to the maximum execution time among all jobs of the
task that can be achieved under all possible (and valid) inputs and hardware states.
Since the state space is very large and not all states can be anticipated a priori, but
partly are revealed only at run-time, it is usually not possible to compute the exact
WCET of a task. Against this background, several approaches exist for determining
approximations of the WCET, which result in distinct WCET concepts that can be
found in the literature. In this thesis, three different WCET concepts are considered.

For hard real-time tasks, safe WCET approximations are needed, i.e., approxima-
tions that over-approximate the actual worst case. These can be obtained by static
analysis methods that employ abstractions and conservative over-approximations
wherever the complete state space cannot be covered. By this means, safe upper
bounds on the WCET are obtained, which, however, can lead to an over-reservation
and waste of resources, since the worst case occurs only rarely [WEE+08]. This kind
of WCET over-approximation is subsequently referred to as worst-case execution time
upper bound and is considered in Chapter 7.

Approximations of the WCET of a task can also be obtained using measurement-
or simulation-based methods, which are commonly used in the industry [WEE+08;
DC19]. In the course of these, execution time values are observed for several test cases.
The resulting worst observed execution time, however, does not necessarily reflect the
worst case and therefore potentially under-approximates the real worst-case execution
time. Consequently, values obtained using such approaches cannot be safely used for
applications with hard real-time requirements. This type of WCET approximation is
subsequently termed estimated worst-case execution time, short time estimate, and is
used in Chapter 4.

Unlike the worst-case execution time upper bound and the estimated worst-case
execution time, the probabilistic worst-case execution time (pWCET) does not consist
of a single WCET value but represents a distribution of execution times over a
sequence of jobs of a task [DC19]. More precisely, the pWCET of a task consists of
a set of execution time values, each of which is associated with a probability of its
occurrence. It can be obtained using several approaches such as, e.g., probabilistic
static analysis [DC19]. Although the pWCET of a task does not provide a safe upper
bound on the WCET, using this concept in the context of hard real-time systems
is anyway possible if the probability that a task’s deadline is violated is sufficiently
small [DC19]. The pWCET is considered in Chapter 5.

2.4 Quality of Service

Applications as considered in this dissertation come with individual so-called quality
of service (QoS) requirements. To understand these more in detail, it is necessary
to know that applications are represented either as a task or as a set of dependent
tasks in this dissertation; details are provided in the respective chapters and are

2.4. Quality of Service 13

omitted at this point. Either way, an application can have different types of QoS
requirements, with the primary requirement that the application’s result is functionally
correct, i.e., for instance, that a value is computed correctly or a consequent system
behavior is exhibited as expected. This type of requirement is known as functional
QoS requirement. In addition, a number of non-functional QoS requirements exist
that specify how, i.e., under which constraints, the functional QoS requirement of an
application must be satisfied.

Temporal correctness requirements are the most common and essential non-
functional QoS requirements in real-time systems [But11] and demand that the
deadline of each task or, respectively, the end-to-end deadline, also known as end-
to-end latency requirement, of each set of dependent tasks is always satisfied. The
end-to-end deadline of a set of tasks is defined similarly to the deadline of a task,
namely, as the maximum amount of time that must elapse from the release of the
first task in the set until the completion of the last task in the set. As noted in
Sec. 2.1, the consequences of an unsatisfied temporal correctness requirement are
not equally severe for all applications; while the continuous satisfaction of temporal
correctness constraints is essential for hard real-time tasks, this is not always the case
for soft real-time tasks. As case studies show, robotic tasks, for instance, are able to
maintain a proper operation despite a limited number of deadline violations [CBC+16;
YCC18]. For this reason, the temporal correctness requirement of soft real-time
tasks can be relaxed by considering additional QoS parameters, allowing for a certain
degree of flexibility regarding the satisfaction of the temporal correctness as long as a
certain minimal level of service can be ensured. This can be achieved by formulating
robustness requirements, which can be expressed in two different ways, namely, in the
form of specifying percentages of cases in which the temporal correctness requirement
must be satisfied, subsequently termed confidence levels, or through (m, k)-criteria,
as explained below.

A confidence level indicates the minimum percentage of cases in which a temporal
correctness requirement must be satisfied. This percentage, however, does not include
any statement about the distribution of cases over multiple application instances. For
clarification, assume that a confidence level of 0.9 is given, implying that in 90 % of
cases the temporal correctness requirement of an application must be satisfied. It may
be possible that a reasonable result is obtained despite 10 % of cases within a sequence
of 100 application instances, in which the temporal correctness is violated, if these
cases are evenly distributed over the 100 application instances. If, in contrast, for 10 %
of successive application instances the temporal correctness requirement is not satisfied,
this may lead to a degradation of the application functionality. To quantify the amount
of temporal correctness violations more accurately that is tolerable without leading to
an unacceptable outcome, (m, k)-constraints are typically used. Originally introduced
in the context of firm real-time tasks [HR95], an (m, k)-constraint expresses that at
least m out of k consecutive jobs of a task (or application instances, respectively) must
satisfy their timeliness constraints. These m jobs, however, are not required to be
consecutive. In recent years, (m, k)-constraints have been related to the area of fault

14 Chapter 2. Background

tolerance of (control) tasks [Che19], considering deadline misses as consequences of
fault compensation mechanisms such as, e.g., (partial) job re-execution. Accordingly,
(m, k)-constraints relax temporal correctness requirements, but must be guaranteed
at any point in time themselves.

Another way of specifying the strictness and ensuring the satisfaction of temporal
correctness requirements is the notion of criticality and, resulting from this, the
concept of mixed-criticality systems [BD18]. These have been formally introduced
for the first time by [Ves07] and describe systems integrating tasks with different
criticality levels on the same platform, which provides distinct system modes, usually
one per criticality level. So-called dual-criticality systems are frequently considered,
comprising high-criticality tasks (typically corresponding to hard real-time tasks) and
low-criticality tasks (typically corresponding to soft real-time tasks). In case of special
events such as fault-occurrence, mixed-criticality systems perform a mode change, i.e.,
a switch to another system mode, which permits to maintain the system safety by
ensuring that the temporal correctness requirements of all tasks with a criticality level
equal to or higher than the current system mode are still met. For all lower-criticality
tasks, however, no more QoS guarantees are provided.

In this dissertation, the satisfaction of all above-mentioned non-functional QoS
requirements is addressed, with an emphasis on temporal correctness requirements.
At the beginning of each chapter, a short recap regarding the currently considered
types of QoS requirements will be provided.

Notation Meaning

ci Worst-case execution time of τi

di Absolute deadline of τi

Di Local deadline of τi

fi Finishing time/completion time of τi

Φ Phase of τi

Pi Period or minimum inter-arrival time of τi

T Set of real-time tasks
τi Real-time task
Ui Utilization of τi

Table 2.1: Overview of the notation introduced in Chapter 2.

Part II

Distributed Systems

15

CHAPTER 3
System and Application Model

Parts of this chapter have previously been published in [SGS+22].

Contents
3.1 System Architecture . 17

3.1.1 Management Layer . 17
3.1.2 Infrastructure Layer . 18

3.2 Application Model . 19
3.2.1 Tasks of Unadmitted Applications 20
3.2.2 Tasks of Admitted Applications 21
3.2.3 Time and Data Flow Determinism 22

3.1 System Architecture

The heterogeneous hardware infrastructure of a smart city as considered in this disser-
tation (cf. Chapter 1.1) can be represented as a centralized, hierarchical distributed
system with an admission control that decides about the execution of applications
on the system. Contemplating a functional abstraction of the system, two distinct
layers can be distinguished, namely, a management layer and an infrastructure layer,
as illustrated in Fig. 3.1. Note that an overview of the notation introduced in this
chapter is given in Table 3.1.

3.1.1 Management Layer

The management layer abstracts the underlying hardware infrastructure and provides
a functional system view to users such as, for instance, traffic participants demanding
to execute applications on the system, as well as to application designers. It comprises

17

18 Chapter 3. System and Application Model

Resource

Resource
Agent

Resource
Monitor

Resource

Resource
Agent

Resource
Monitor

Resource

Resource
Agent

Resource
Monitor

Endpoint
Gateway

Endpoint
Gateway

Endpoint
Gateway

Resource Manager

Admission Control Resource Configuration System Monitor

Infrastructure Layer

Management Layer

Figure 3.1: A schematic overview of the system architecture.

a resource manager that has several duties: It implements the admission control,
which evaluates for each new application whether it can be executed on the system
such that its QoS requirement can be satisfied, and decides about the application’s
admission to the system. For this purpose, it transforms the functional requirements
of the application into system-specific constraints1 that are used for the configuration
and reservation of hardware resources. Moreover, the resource manager includes a
system monitor that collects and evaluates information about the system state. Note
that for all components of this system, a global, i.e., system-wide, notion of time is
assumed to exist that is maintained by any suitable clock synchronization protocol,
for which the resource manager serves as the master clock.

3.1.2 Infrastructure Layer

The infrastructure layer is hidden by the management layer and, thus, is not visible
to users and application developers. It comprises the hardware infrastructure of the
system that can be abstracted as a set of computation and communication resources
as well as of endpoint gateways.

Resources

Resources are assumed to be heterogeneous, i.e., to have different types such as, e.g.,
specific computation platforms or communication technologies. In fact, each resource
corresponds to an individual, physically existent hardware element, e.g., a CPU, and

1Details will be provided in Chapter 4 and Chapter 5.

3.2. Application Model 19

is administrated by a dedicated resource agent implemented on the resource. The
resource agent is in charge of scheduling; in the course of this, it needs to ensure that
all system-specific constraints computed and imposed by the resource manager are
satisfied, e.g., by preempting or aborting jobs of tasks if necessary. Unless specified
differently, each resource is assumed to employ a preemptive task-level fixed-priority
scheduling policy. Moreover, to decouple communication and computation, so that
resources are independently assignable, each resource is assumed to be equipped with
adequately dimensioned buffers. Apart from the resource agent, each resource has
a resource monitor2 that provides status and potentially further information to the
resource manager.

Endpoint Gateways

Resources can, but do not necessarily have to be connected to an endpoint gateway,
which allows endpoint systems such as, e.g., smart vehicles with advanced driver
assistance systems, to use the system’s hardware infrastructure. Although endpoint
systems can be temporarily located within a smart city, they are not considered as part
of the distributed system in this dissertation, aiming to keep the core infrastructure
static. Instead, they can connect to the distributed system dynamically via an
endpoint gateway and enhance their local resources by using the distributed system
as an execution platform for applications, e.g., for performing autonomous navigation,
provided that these pass the admission control. To cover different technologies that
allow for connecting to the distributed system, different types of endpoint gateways
are assumed to exist.

Infrastructure Model

The hardware on the infrastructure layer is modeled as a directed resource graph,
illustrated in Fig. 3.2, where each node represents either a resource ri ∈ R or an
endpoint gateway eℓ ∈ E and every edge (ri, rj), (ri, eℓ), (eℓ, ri) with i, j, ℓ ∈ N and
i ≠ j, indicates that data flow is possible from resource ri to resource rj , from resource
ri to endpoint gateway eℓ, and from endpoint gateway eℓ to resource ri, respectively.
Direct data flow between two endpoint gateways is not possible.

3.2 Application Model

Each application that can be executed on the system is characterized by a tuple
ai =

(︂
Ti, DE2E

i , Pi

)︂
. Ti is a partially ordered set of sporadic tasks that can be modeled

by a directed acyclic graph (DAG) with one source task and one sink task3 referred
to as task graph (cf. Fig. 3.3 for a schematic illustration of an exemplary task graph).

2Details will be provided in Chapter 4.
3If more than one source or sink task exist, an additional source or sink task requiring an execution

or transmission time of zero time units can be modeled.

20 Chapter 3. System and Application Model

e1 r1 r2 r3

r4 r5 r6

r7 r8 e2 e3

Figure 3.2: Schematic illustration of an exemplary resource graph.

Each node in the task graph represents a task τi,j , where an edge (τi,j , τi,ℓ) with
j, ℓ ∈ N and j ≠ ℓ indicates a dependency of τi,ℓ on τi,j , e.g., due to a computation
result that is required as an input. Two tasks τi,j , τi,ℓ are independent if neither a
direct nor an indirect connection between τi,j and τi,ℓ exists in the task graph. DE2E

i

indicates the end-to-end deadline (or end-to-end latency requirement; cf. Chapter 2.4)
of ai, while Pi is the minimum inter-arrival time according to which application
instances are released. The end-to-end deadline of each application is assumed to be
constrained, i.e., DE2E

i ≤ Pi.
Each task τi,j ∈ Ti is characterized by a tuple that differs depending on the

admission status of the application. More precisely, some task parameters are provided
by the application developers and remain unchanged, whereas others are computed
by the resource manager while the application is being admitted to the system.
Accordingly, tasks of unadmitted applications and tasks of admitted applications must
be distinguished.

τi,1 τi,2

τi,3

τi,4

τi,5 . . . τi,n

Figure 3.3: Schematic illustration of a task graph with n ∈ N tasks.

3.2.1 Tasks of Unadmitted Applications

A task τi,j = (Ci,j , Ei,j , Pi,j) of an unadmitted application is characterized by a
nonempty set of time estimates Ci,j , where each time estimate ci,j indicates the time
required for the execution or transmission4 of the task on a resource of a specific
type. Recall, however, that a time estimate does not necessarily reflect the worst-case
execution time of a task (cf. Chapter 2.3). Pi,j refers to the minimum inter-arrival

4For the sake of readability, subsequently, only the term execution is used.

3.2. Application Model 21

time the task inherits5 from the application ai and Ei,j is a set of endpoint gateway
type requirements. Each element of Ei,j indicates one possible type of endpoint
gateways that must be connected to a resource on which the task τi,j can be executed.
If a resource is not connected to an endpoint gateway of any type included in Ei,j , it
is not suitable for the execution of τi,j .

3.2.2 Tasks of Admitted Applications

Each task τi,j = (ci,j , Pi,j , ωi,j , Di,j , Πi,j) of an admitted application, as illustrated
in Fig. 3.4, is characterized by one time estimate ci,j that is related to the type of
the resource allocated for τi,j . Pi,j refers to the minimum inter-arrival time inherited
from the application ai, which has the same value for each τi,j of ai. ωi,j is the release
offset of τi,j on the allocated resource that is specified relative to the release of the
application, i.e., of the first task in the task graph. Di,j specifies the relative local
deadline, i.e., the execution of τi,j must be finished until ωi,j + Di,j .

ci,j ci,j

Time
τi,j

Di,j

Pi,j

ωi,j ωi,j + Pi,j

Figure 3.4: Illustration of an exemplary task τi,j and of a subset of its parameters.

With each task τi,j , a priority Πi,j is associated that is unique at each point in
time on the allocated resource. Considering a task τi,j in any set of tasks T ′, the set
of higher-priority tasks is defined as hp(τi,j) := {τi,ℓ ∈ T ′|Πi,ℓ > Πi,j} with i, ℓ ∈ N,
and the set of lower-priority tasks as lp(τi,j) := {τi,ℓ ∈ T ′|Πi,ℓ < Πi,j} with i, ℓ ∈ N.
Note that the priority of a task can be modified only if the set of tasks scheduled on
the allocated resource changes.

Each task τi,j of an admitted application ai releases a sequence of jobs, i.e., task
instances, that inherit the task parameters6. The response time of a job is defined as
the time elapsing between its release and its completion (or abortion). Consequently,
the worst-case response time Ri,j of a task is given by the maximum response time
over all of its jobs.

5Note that due to the inheritance Pi,j has the same value for each task τi,j of an application ai.
6Note that the release of an instance of ai implies that each task τi,j releases a job at its respective

release offset.

22 Chapter 3. System and Application Model

3.2.3 Time and Data Flow Determinism

The computation of a release offset and a local deadline for each task during the
admission of an application to the system has the purpose of ensuring time and
data flow determinism. More precisely, for an application ai to behave and function
correctly, no successor task of a task τi,j must start before τi,j has been completed
(or aborted). Accordingly, it is assumed that the release offsets and local deadlines
are computed such that, if an edge (τi,j , τi,ℓ) exists in the task graph, it holds that
ωi,ℓ ≥ ωi,j + Di,j . This is a realization of the logical execution time paradigm [EAG18],
which assumes that each task has a fixed read and write instance at the begin
and, respectively, at the end of its execution, which is already included in the task’s
execution time. The computation and enforcement of release offsets and local deadlines
is revisited in Chapter 4.

Notation Meaning

ai Application
Ci,j Set of time estimates of a task τi,j

ci,j Time estimate of a task τi,j for one resource type
DE2E

i End-to-end deadline of an application ai

Di,j Relative local deadline of a task τi,j

Ei,j Set of endpoint gateway requirements of a task τi,j

eℓ Endpoint gateway
hp(τi,j) Set of tasks with higher priority than task τi,j

lp(τi,j) Set of tasks with lower priority than task τi,j

Pi Minimum inter-arrival time of an application ai

Pi,j Minimum inter-arrival time of a task τi,j

Πi,j Priority of a task τi,j on the allocated resource
Ri,j Worst-case response time of a task τi,j

R Set of all resources
ri Communication or computation resource

(ri, rj) Edge from ri to rj in the resource graph
Ti Task set of an application ai

τi,j Task of an application ai

(τi,j , τi,ℓ) Edge from τi,j to τi,ℓ in the task graph, τi,ℓ depends on τi,j

ωi,j Release offset of a task τi,j on the allocated resource

Table 3.1: Overview of the notation introduced in Chapter 3.

CHAPTER 4
Contract-Based Quality of Service

Assurance
Parts of this chapter have previously been published in [SGS+22].

Contents
4.1 Introduction . 24
4.2 Problem Statement . 25
4.3 Assume-Guarantee Contracts 26
4.4 Quality of Service Contracts 26

4.4.1 Task-Level QoS Contracts . 26
4.4.2 System Admission Process . 27
4.4.3 Application-Level QoS Contracts 30
4.4.4 Remarks . 31

4.5 Detection of Contract Violations 35
4.5.1 Reasons for Contract Violations 35
4.5.2 Metric Interval Temporal Logic 36
4.5.3 Specification of the System Behavior 37
4.5.4 Reasoning about Contract Violations 38

4.6 Evaluation . 39
4.6.1 Simulator . 40
4.6.2 Comparison with Related Work 42
4.6.3 Validation of the Detection of Contract Violations 47

4.7 Summary . 49

23

24 Chapter 4. Contract-Based Quality of Service Assurance

4.1 Introduction

Smart cities involve a variety of different actors, some of which utilize the provided
infrastructure on a continuous basis, while others make only temporary use of it.
Long-term functions such as, for instance, traffic analyses performed by permanently
installed roadside units can already be considered when designing a smart city and
dimensioning its underlying system. The workload, however, introduced by variable
elements, e.g., by modern vehicles with advanced driver assistance systems that use the
smart city’s infrastructure on demand to enable autonomous navigation functionalities,
cannot be anticipated.

Accordingly, in the use case of this chapter (cf. Fig. 4.1), a centralized, hierarchical
distributed system with an admission control, as introduced in Chapter 3, is considered
that is shared by a set of applications originating from different actors of a smart city.
Since this set of application changes over time and is not known a priori, satisfying
the individual QoS requirements of each application is highly challenging.

Contract-Based Quality of Service Assurance

Figure 4.1: A smart city involving a multitude of different participants that use
the distributed infrastructure on demand. This chapter introduces the
concept of QoS contracts for applications, a system admission process,
and a monitoring approach for detecting contract violations.

In the literature, a limited number of works exist that address related challenges. In
fact, with respect to QoS guarantees in distributed systems, two distinct perspectives
can be encountered, one focusing on centralized and another focusing on decentralized
distributed systems; nevertheless, approaches for providing QoS guarantees in the
latter type of systems, e.g., [PSE21], are not directly transferable to the system model
considered in this chapter, for which reason a further discussion is omitted. With

4.2. Problem Statement 25

respect to centralized distributed systems, two related works are highlighted: Not
explicitly targeting at distributed systems, but at networks with static and dynamic
topology including an admission control, [MEB19] proposes a protocol for managing
the admission of applications by computing an optimal admission instant, as of which
QoS guarantees are provided. Due to the assumed variability of task parameters,
specifically, of local deadlines, however, this approach is not applicable to the system
considered in this chapter. In [NSE11], a hierarchical architecture for a centralized
distributed system, comparable to the one considered in this chapter, is introduced,
on which QoS guarantees are given by means of contracts concluded between an
application and different system components.

Adopting the idea of [NSE11], this chapter aims to satisfy the QoS requirements
of applications in dynamic systems by introducing the concept of QoS contracts,
which deviates from the type of contracts considered in [NSE11], as discussed later on.
These contracts allow to provide QoS guarantees for all applications in the system at
any point in time and ensure that the admission of a new application to the system
does not lead to the violation of another application’s QoS requirement. A detailed
description of this objective as well as an outline of the chapter are given in the
following section.

4.2 Problem Statement

An application ai can request to be executed on a distributed system as described in
Chapter 3. Following an admission process, it is either accepted or rejected. At every
time instant, only one application can be in the admission process. Each application
ai is assumed to have a QoS requirement in terms of temporal correctness, i.e., an
end-to-end deadline DE2E . If an application’s QoS requirement cannot be satisfied by
the system, the application must be rejected by the admission control. Accordingly,
for each application executed on the system, it is assumed that its QoS requirement
can be satisfied.

Objective of this Chapter

For the considered system and type of applications executable on the system,
this chapter aims to introduce a concept of QoS contracts that guarantee
the satisfaction of the QoS requirement of each application ai admitted to
the system, and to provide the workflow of a system admission process that
allows to establish such QoS contracts. Moreover, a monitoring approach shall
be proposed for verifying the satisfaction of QoS contracts at run-time that
allows to identify the reasons of contract violations.

In the following section, background knowledge about assume-guarantee contracts
is provided that is necessary for the introduction of QoS contracts in Sec. 4.4. A

26 Chapter 4. Contract-Based Quality of Service Assurance

monitoring approach for the verification of QoS contracts and the detection of contract
violations at run-time is proposed in Sec. 4.5 and evaluated in Sec. 4.6. An overview
of the notation introduced in this chapter is provided in Table 4.1.

4.3 Assume-Guarantee Contracts

Assume-guarantee contracts [BCN+18] (or short contracts) are a concept that is
frequently used in the context of systems development and software engineering. In
brief, a contract C is an abstraction or a model representing an element of a system,
e.g., a physical part, a subsystem, or a piece of software, denoted as component. For
a component κ, a contract C describes a set of assumptions A under which it can be
used and provides a set of guarantees G that are given if the assumptions are satisfied.
If a component κ complies with a contract C = (A , G), the component is said to
satisfy the contract, denoted by κ ⊢ C .

Two contracts C1, C2 can be combined to a new contract C3 either by composition
or by conjunction. The composition (⊗) of two contracts corresponds to merging the
models of two components to a model of a new, more complex component, denoted
by C3 = C1 ⊗ C2. For a composed contract C3, it holds that κ ⊢ C3 if κ ⊢ C1 ⊗ C2.
The conjunction (∧) of two contracts allows to group the models of two independent
components. Accordingly, for C3 = C1 ∧ C2, it holds that κ ⊢ C3 if κ ⊢ C1 and κ ⊢ C2.

4.4 Quality of Service Contracts

For guaranteeing the QoS requirement of each application ai executed on the considered
system, the concept of assume-guarantee contracts can be adopted. By concluding
quality of service (QoS) contracts between the system, represented by the resource
manager (cf. Chapter 3), and each application ai, it is possible to ensure that the
end-to-end deadlines of all ai are satisfied. Two types of QoS contracts are considered
in the following, namely, application-level QoS contracts and task-level QoS contracts.
Concretely, Sec. 4.4.1 introduces task-level QoS contracts, followed by the proposal of a
system admission process in Sec. 4.4.2 that can be used for computing the parameters
required by task-level QoS contracts. In Sec. 4.4.3, it is explained how task-level QoS
contracts can be combined to application-level QoS contracts. The proposed system
admission process is discussed in the context of existing works in Sec. 4.4.4.

4.4.1 Task-Level QoS Contracts

It can be guaranteed that the local deadline Di,j of a task τi,j is met by concluding a
task-level QoS contract. To clarify this, reflect on the prerequisites necessary for Di,j

being always satisfied: Intuitively, it must hold that the response time of each job of
τi,j is less than or equal to the local deadline. Accordingly, the worst-case response
time Ri,j of τi,j must be considered for the computation of a safe Di,j . Since the
response time of a job, however, strongly depends on its execution time, it must be

4.4. Quality of Service Contracts 27

computed based on a realistic time estimate ci,j . Moreover, Ri,j includes the maximum
amount time a job of τi,j can be blocked by jobs of interfering tasks, i.e., tasks with
higher priority scheduled on the same resource. In order to quantify this interference,
it is necessary that a correct minimum inter-arrival time is communicated by each
application ai during the system admission process. Based on these requirements, a
task-level QoS contract can be defined as follows:

Definition 1 (Task-Level QoS Contract). For a task τi,j of an application ai scheduled
on a resource of the considered system, a task-level QoS contract is defined as
Ci,j = (Ai,j , Gi,j) with assumptions Ai,j = {ci,j , Pi,j} and guarantees Gi,j = {Di,j}.
If each job of τi,j complies with the values of ci,j and Pi,j as revealed in the system
admission process, then τi,j ⊢ Ci,j .

4.4.2 System Admission Process

To compute the local deadlines Di,j of all tasks τi,j of an application ai that are
required for a task-level QoS contract, ai must be evaluated in the course of a system
admission process. An incremental admission workflow is proposed in the following.

Mapping

In a first step, a representation of the task graph, denoted as mapping Mi, on the
system’s hardware infrastructure must be computed. The task graph of an application
ai is mapped to the system, i.e., each task τi,j ∈ Ti is associated with a resource, by a
mapping algorithm:

Definition 2 (Mapping Algorithm). A mapping algorithm defines one or multiple
functions map : Ti → R for each τi,j ∈ Ti.

If more than one function map and, thus, multiple mappings exist for an application,
only one of these is chosen. This decision can be based on any criterion imposed by
the system designers.

Local Deadline Assignment

To compute local deadlines for all tasks of an application, each τi,j must be integrated
into the schedule of the resource it is mapped to, so that the schedulability of all other
tasks in the schedule is preserved. If this is not possible on one or more resources but
further mappings exist for the considered application, the system admission process
can be repeated using another mapping; otherwise, it is aborted and the application
is rejected by the admission control. If, however, the respective sets of tasks are
schedulable for all tasks of the application, for each such τi,j , an upper bound on the
worst-case response time is computed (independently of all other tasks of ai) by the

28 Chapter 4. Contract-Based Quality of Service Assurance

responsible resource agent. Based on the computed upper bound on Ri,j
1, a local

deadline Di,j is assigned for each task τi,j such that Di,j ≥ Ri,j
2.

Independent timing analyses can be applied as a consequence of the LET paradigm
(cf. Chapter 3.2.3) being considered for all mapped tasks. More precisely, the task
dependencies are decoupled by the enforcement of release offsets, i.e., no task is
released previous to its release offset even if the execution of its predecessor(s) is
already completed, and by the buffering of input data, which can be reused in case
a predecessor task is aborted before its completion. In fact, the considered scenario
corresponds to a partitioned multiprocessor scheduling scenario of independent tasks
after the partitioning has been completed, where the original scheduling problem has
been transformed into a set of uniprocessor scheduling problems that can be solved
individually (for further information refer to [DB11]).

For the computation of an upper bound on Ri,j , any analysis can be applied that
is suitable for the resource type and that remains valid at run-time, such as the one
provided by Theorem 1 that makes use of well-known standard analysis techniques.

Theorem 1. The worst-case response time Ri,j of a task τi,j mapped to a resource
rz, z ∈ N, on which tasks are feasibly scheduled according to a preemptive task-level
fixed-priority policy, is upper-bounded by the minimum positive value of ∆ for which

∆ = ci,j +
∑︂

τx,y∈hp(τi,j)

(︄⌈︄
∆

Px,y

⌉︄
+ 1

)︄
cx,y

where i, j, x, y ∈ N and hp(τi,j) is the set of tasks with higher priority than τi,j mapped
to resource rz with Dx,y ≤ Px,y.

Proof. Note that all tasks mapped to the resource rz are independent, sporadic
real-time tasks and that the task under analysis τi,j is also a sporadic real-time task
that is independent from all tasks mapped to rz. Assume that all tasks mapped to
rz are associated with a fixed priority and that a concrete preemptive fixed-priority
schedule exists for rz. Assume this schedule to be work-conserving, i.e., the resource
does not idle as long as a released job of a task exists which is neither completed
nor aborted. Based on these assumptions, all jobs of tasks in lp(τi,j), i.e., with lower
priority than τi,j , can be removed from the schedule, since they do not interfere with
the execution of τi,j or of any task in hp(τi,j). To quantify the interference of the
tasks in hp(τi,j) on τi,j within an interval [t, t + ∆) beginning at a point in time t,
the maximum amount of time for which a task τx,y ∈ hp(τi,j) is executed within this
interval must be determined. Recall that Dx,y ≤ Px,y for all τx,y ∈ hp(τi,j) and that

1Note that Ri,j is subsequently considered to be an upper bound on the worst-case response time
of τi,j .

2Note that Di,j = Ri,j is necessary to ensure that the deadline can be met by each job of τi,j .
However, the local deadline assignment can also be extended. For instance, initial deadline values
can be assigned and, if the system admission process determines that a shorter end-to-end latency
can be guaranteed than required by the application, these can be increased later on. This, however,
is not relevant for the objective of this chapter and, therefore, is left to the system designers.

4.4. Quality of Service Contracts 29

Di,j ≤ Pi,j is required for τi,j . Consider two scenarios: a) At time t, no job of τx,y

exists that is neither completed nor aborted. b) At time t, a job of τx,y exists that is
either completed or aborted within [t, t + ∆). In case a), jobs of τx,y are released at
most

⌈︂
∆

Px,y

⌉︂
times within [t, t + ∆). Each released job is executed for up to cx,y time

units. Accordingly, τx,y is executed within [t, t + ∆) for at most
⌈︂

∆
Px,y

⌉︂
cx,y time units.

In case b), τx,y is first executed for up to cx,y time units, i.e., until the job released
before t is completed or aborted. Additionally, τx,y can be released within [t, t + ∆) at
most

⌈︂
∆

Px,y

⌉︂
times. Thus, in case b) τx,y can be executed for at most

(︂⌈︂
∆

Px,y

⌉︂
+ 1

)︂
cx,y

time units. Therefore, case b) dominates case a). The task τi,j under analysis itself
is executed for at most ci,j time units. Although due to the release offsets of the
tasks mapped to resource rz it is possible that not each τx,y ∈ hp(τi,j) is executed
within [t, t + ∆) at all, the maximum possible interference of all τx,y ∈ hp(τi,j) must
be considered to cover the worst-case interference.

Release Offset Assignment

In order to explain how the task release offsets can be computed it is necessary to
make several auxiliary definitions.

Definition 3 (Path). A path in a mapping Mi of an application ai is a totally ordered
set of mapped tasks P

(j,ℓ)
i = {τi,j , . . . , τi,ℓ} from a source τi,j to a sink τi,ℓ, such that

an edge (τi,v, τi,w) exists in Mi for any two τi,v, τi,w ∈ Mi, v ̸= w, with τi,w being a
successor of τi,v. If τi,j = τi,ℓ, then P

(j,ℓ)
i = {τi,j}.

For a path P
(j,ℓ)
i ∈ Mi, the end-to-end latency is given by the sum of local

deadlines, i.e., by
∑︁

τi,v∈P
(j,ℓ)
i

Di,v.

Definition 4 (Submapping). A submapping M
(j,ℓ)
i of an application ai is a mapping

of a partially ordered set of tasks T ′
i ⊆ Ti, which includes all paths from a source τi,j

to a sink τi,ℓ that are included in Mi.

The end-to-end latency of a submapping M
(j,ℓ)
i of ai can be computed by a time

composition function:

Definition 5 (Time Composition Function). For a submapping M
(j,ℓ)
i of an applica-

tion ai, a time composition function

comp(M(j,ℓ)
i) := max

P
(j,ℓ)
i ∈M

(j,ℓ)
i

⎛⎜⎝ ∑︂
τi,v∈P

(j,ℓ)
i

Di,v

⎞⎟⎠
returns the end-to-end latency from a source τi,j to a sink τi,ℓ.

Having defined the above, the release offsets of all tasks τi,j of an application ai can
be computed as follows: To the first mapped task τi,1, assign ωi,1 = 0. Starting from
τi,1, consider the remaining tasks following a breadth-first search. For each considered
task τi,v, create a submapping M

(1,v)
i and assign ωi,v = comp(M(1,v)

i) − Di,v.

30 Chapter 4. Contract-Based Quality of Service Assurance

Latency Composition and Admission Decision

After computing the local deadlines and release offsets of all tasks of an application,
it must be evaluated if the end-to-end deadline of ai can be satisfied, aiming to decide
about the admission of the application. Accordingly, for M

(1,n)
i with n = |Ti|, if

comp
(︂
M

(1,n)
i

)︂
≤ DE2E

i , the application is accepted and an application-level contract
is concluded. Otherwise, the application is rejected3.

4.4.3 Application-Level QoS Contracts

Being able to compute the guarantees provided by task-level QoS contracts, fur-
ther explanation is needed on how task-level QoS contracts can be combined to an
application-level QoS contract. In fact, a task-level QoS ensures the satisfaction of a
task’s local deadline, whereas an application-level QoS contract guarantees that an
application’s end-to-end deadline is met. To understand how this is possible, it is
necessary to recapitulate what the satisfaction of the end-to-end deadline actually
means. As explained in Chapter 2.4, for an application ai, the end-to-end deadline
DE2E

i specifies the maximum amount of time that must elapse from the release of
the first task until the completion of the last task in the task graph. Therefore,
the satisfaction of the end-to-end deadline is based on the satisfaction of the local
deadlines of all τi,j ∈ Ti.

In order to construct an application-level QoS contract based on the task-level
QoS contracts of all τi,j ∈ Ti, however, it must be discussed how these contracts can
be combined, i.e., by contract composition or by contract conjunction (cf. Sec. 4.3).

Recall that contract composition is applied when the models of multiple compo-
nents of a system are combined to a more complex component. At first glance, this
seems to be appropriate, since the task dependencies given by the task graph lead to
the formation of something more complex, namely, the application itself. However,
as already elucidated in Sec. 4.4.2, the task dependencies are dissolved once the
application is executed, owing to the release offsets enforced by the resource manager
and the buffering of input data. In consequence, it is possible to consider each task
and, therefore, the satisfaction of each task-level QoS contract independently, which
leads to the following definition of an application-level QoS contract:

Definition 6 (Application-Level QoS Contract). For an application ai admitted to
the considered system, an application-level QoS contract is defined as Ci =

⋀︁
τi,j∈Ti

Ci,j .

Accordingly, an application-level QoS contract requires that all task-level QoS
contracts are satisfied, i.e., that each task τi,j ∈ Ti satisfies its local deadline that has
been determined based on an independent worst-case response time analysis. Based
on Def. 6, the following theorem can be formulated:

3Note that it is in general possible to repeat the admission process for a rejected application if
multiple mappings exist, excluding the mapping(s) under which the application could not be accepted.

4.4. Quality of Service Contracts 31

Theorem 2. For an application-level QoS contract Ci of an application admitted
after undergoing the proposed system admission process, it holds that ai ⊢ Ci if
τi,j ⊢ Ci,j∀τi,j ∈ Ti.

Proof. This follows from the definition of an application-level QoS contract.

Note that it is assumed that all functions and algorithms used in the system
admission process are correct, which can be verified a priori, and that the system
(specifically, the schedulers) operates correctly, i.e., that the release offsets are enforced
and uncompleted tasks are aborted at their local deadlines.

4.4.4 Remarks

The problem of admitting an application as introduced in Chapter 3.2 to a system
including multiple resources corresponds to the problem of scheduling DAGs on
multiprocessor systems which has been extensively addressed in the literature. Being
combined in the context of the proposed system admission process, the individual
elements, i.e., the idea of mapping tasks to resources, of assigning release offsets
and local deadlines, as well as of performing independent worst-case response time
analyses per resource and combining latencies along a maximum (or so-called critical)
path, are not new but build on existing knowledge. In the proposed system admission
process, they are harnessed in order to establish application-level QoS contracts whose
satisfaction can be verified at run-time (for further details on the detection of contract
violations refer to Sec. 4.5).

Regarding the scheduling of tasks with precedence constraints on multiprocessor
systems, distinct models can be considered such as the fork/join model [LKR10],
the synchronous parallel model [SAL+11], and DAG models, i.e., representations of
dependent tasks as a directed acyclic graph. When modeling applications4 as DAGs,
three primary types of scheduling approaches are typically applied: global scheduling,
federated scheduling, and decomposition-based scheduling.

Under global scheduling, tasks of an application can in general be executed
on any suitable resource or processor, respectively, so that no explicit mapping
(or partitioning) step is required. As the name suggests, one central scheduler is
in charge of all resources. Addressing global scheduling, a generalized model for
sporadic DAGs is introduced in [BBM+12], where also two schedulability tests are
proposed to determine if an application can be scheduled under the global earliest
deadline first (EDF) policy on homogeneous resources. In the schedulability tests,
however, the existence of no more than one DAG is assumed. Building on [BBM+12],
[BMS+13] considers global EDF and global deadline monotonic (DM) scheduling,
providing schedulability tests and speedup bounds, i.e., informally, a quantification
of the maximum speedup that can be achieved by executing an application on
multiple resources instead of a single one. This result is further improved by [Bar14].

4Note that the terminology varies among different works. However, for the sake of consistency, it
is adjusted with the one used in this dissertation.

32 Chapter 4. Contract-Based Quality of Service Assurance

[LAL+13] addresses scheduling applications under global EDF and offers a capacity
augmentation bound, i.e., a metric that can be used as a schedulability test. Another
capacity augmentation bound for global EDF is proposed by [SGJ+18]. A worst-case
response time analysis for sporadic applications under global fixed-priority scheduling
is offered in [FNN17]. For computing the worst-case response time of applications
with arbitrary deadlines under global EDF, an analysis technique is provided in
[WJG+19]. Limited-preemptive global fixed-priority scheduling, i.e., preemption
can only occur at specific points, is addressed by [SMB+16], where a worst-case
response time analysis for sporadic applications is provided. In [NNB19], release
jitter and execution time uncertainty are taken into consideration for applications
scheduled under limited-preemptive global job-level fixed-priority policies; a technique
for computing the best- and worst-case response times of jobs is provided. A recent
approach to computing tight worst-case response times under limited-preemptive
global fixed-priority scheduling is presented in [CZG+23]. Considering full preemption,
[PVS18] proposes a two-level global preemptive fixed-priority scheduling algorithm,
where priorities are assigned to each application and task, so that the highest-
priority task of the highest-priority application is always chosen for execution. For
this scheduling algorithm, a schedulability test is presented. Server-based global
scheduling, where each task is executed in a dedicated reservation server that must
be scheduled, is addressed by [AA22] for a special type of applications, namely, for
periodic, pseudo-harmonic applications. A simulation-based approach is provided for
computing response-time bounds. The scheduling of applications with typed tasks,
i.e., tasks that require to be executed on a specific resource type, on heterogeneous
resources is considered in [SFS+22], where a worst-case response time analysis is
proposed that is based on reconstructing the DAG structure of an application. A
model for sporadic applications represented as conditional DAGs, i.e., where only one
of certain parallel (alternative) paths within a DAG must be executed, is introduced
in [BBM15].

With respect to federated scheduling, the underlying principle is similar to the
one of global scheduling except for a subset of tasks that are exclusively mapped to
specific resources, which cannot be used for the execution of the remaining tasks.
The first federated scheduling algorithm for sporadic applications on homogeneous
resources is proposed by [LCA+14], where implicit deadlines are considered, i.e., the
end-to-end deadline of an application equals the minimum inter-arrival time, followed
by [Bar15b] considering constrained deadlines, i.e., the end-to-end deadline is not
larger than the minimum inter-arrival time. An approach to federated scheduling
of applications with arbitrary deadlines is presented in [Bar15a] and of applications
represented as conditional DAGs in [Bar15c]. For applications with constrained
deadlines, [Che16] shows that federated scheduling algorithms do not have constant
speedup factors with respect to an optimal scheduling algorithm. In [Bar16], mixed-
criticality systems (cf. Chapter 2.4) are considered and an algorithm for scheduling
applications in dual-criticality systems is provided. Another federated scheduling
algorithm for mixed-criticality systems is offered by [LFA+17], where also capacity

4.4. Quality of Service Contracts 33

augmentation bounds are given for dual- and multi-criticality systems. For applications
with arbitrary deadlines, [UBC+18] proposes a reservation-based scheduling approach,
where specific reservation servers are selected for each application, which, in turn,
can be scheduled by other multiprocessor scheduling algorithms. A response-time
analysis technique for applications with arbitrary deadlines scheduled under standard
federated scheduling is presented in [WJG+19]. [HZL+21] distinguish two types of
tasks, namely, heavy and light tasks and provide an algorithm for mapping heavy tasks
to dedicated resources. Additionally, a worst-case response time analysis for light tasks
is given. The federated scheduling of applications with typed tasks on heterogeneous
resources is addressed by [LSU+23], where type-aware federated scheduling algorithms
are proposed and respective worst-case response time analyses are provided that are
based on analysis techniques for self-suspending tasks5 under preemptive fixed-priority
scheduling on uniprocessors. Combining ideas of federated and partitioned scheduling,
[JGL+17] introduce an approach to semi-federated scheduling of applications with
constrained deadlines, where multiple tasks can be mapped to specific resources while
the remaining resources are (globally) shared by other tasks.

Unlike approaches under global and federated scheduling as discussed above,
partitioned scheduling is based on dissolving the dependencies of tasks within an
application and treating them as independent tasks. The decomposition of an ap-
plication can be performed in order to enable partitioned scheduling, i.e., tasks are
assigned to specific resources which employ individual schedulers independent of other
resources’ schedulers, but, however, can also be used to obtain independent tasks that
are scheduled under a global policy. To allow the independent scheduling of tasks that
are part of an application, it is necessary to resolve the task dependencies, i.e., the
precedence constraints, given by the DAG structure, as also done during the system
admission process proposed in this dissertation.

For achieving task independence, [SAL+11] introduces the initially mentioned
synchronous parallel task model, an early and restricted model for the parallel
execution of tasks, where synchronization points are inserted before and after each
part of an application, in which tasks are executed in parallel. These synchronization
points are determined by assigning local deadlines based on the task density which
take the execution order of tasks into account. Referring to the model of [SAL+11],
[CBN+18] provides a partitioning algorithm as well as a worst-case response time
analysis using techniques for segmented self-suspending tasks with non-preemptable
segments. [NBG+12] also considers partitioned scheduling under the synchronous
parallel task model, aiming to reduce the number of resources required to schedule a
set of applications. For assigning local deadlines, an online algorithm is proposed that
takes the task density into account. Another offline approach for assigning release
offsets and local deadlines is provided in [WGD14], where task dependencies are
resolved in order to perform per-resource response-time analyses under EDF using
established techniques for uniprocessors. Distinguishing between so-called heavy and

5For further information on self-suspending tasks refer to Chapter 6.2

34 Chapter 4. Contract-Based Quality of Service Assurance

light tasks, another approach for the assignment of release offsets and local deadlines
for the scheduling under EDF is proposed by [QGM14]. [JLG+16] provides a global
EDF algorithm relying on local deadlines that are obtained by means of a presented
decomposition algorithm. This algorithm is based on so-called structure characteristic
values, which can also be applied in the context of schedulability tests. In [FNN+16], a
worst-case response-time analysis for partitioned fixed-priority scheduling is provided
based on analysis methods for self-suspending tasks. More precisely, each application
is modeled as a set of self-suspending tasks, which are obtained by means of a proposed
algorithm that characterizes the worst-case scheduling scenario of an application.

From the discussed works, it becomes evident that the decomposition of applica-
tions and the worst-case response time analysis of the resulting individual tasks is
indeed an established practice in the field of DAG scheduling on multiprocessors or
multiple resources, respectively. In particular, when assigning deadlines and release
offsets, it is common to proceed along the maximum (or critical) path of an application
and, thereon, to recursively consider tasks on paths parallel to the maximum (or
critical) path. The chosen decomposition approach as well as the criteria according to
which local deadlines are dimensioned depend on each work’s optimization objective
and therefore are not necessarily interchangeable. The strategy adopted in the system
admissin process proposed in this dissertation, namely, assigning a task’s worst-case
response time as its local deadline, has been selected in order to guarantee that tasks
can be completed within their local deadlines.

The choice of decomposition strategies, however, is also related to the order of
the different steps, in which the mapping of tasks to resources, the assignment of
deadlines and release offsets, ad the worst-case response time analysis of tasks as
well as of an application are performed. In this dissertation, the order is given by
the proposed system admission process; nevertheless, this process is not claimed to
be the only valid solution for admitting applications to a system, but rather is one
possible workflow. Another approach is presented by [HCC+21], where a model for
conditional applications executed on heterogeneous resources is proposed as well as
multiple heuristic algorithms for the mapping of tasks to resources. Moreover, a
schedulability analysis is provided. Here, unlike in this dissertation, the assignment of
local deadlines is not linked to the analysis; instead, local deadlines are assigned based
on the worst-case execution time of a task plus a certain share of the application’s
slack, i.e., of the difference between the end-to-end latency and the sum of WCETs of
the tasks on the maximum (or critical) path. Schedulability analyses per resource
are performed after the assignment of local deadlines and release offsets is completed.
Neither of the two approaches exhibits a clear advantage.

Beyond the field of DAG scheduling on multiprocessors or multiple resources, the
topic of compositional timing analysis, i.e., of integrating separate worst-case response
time analyses, has also been thoroughly investigated. Noteworthy are the works of
[SL03], [SL04], and [SL05], which introduce a compositional framework for real-time
systems that aims to independently analyze non-functional properties per system
component and to compose these at the system level. In this context, a hierarchy

4.5. Detection of Contract Violations 35

of schedulers is considered, for which several resource models and corresponding
schedulability analyses are proposed. While this framework is indeed powerful, it
considers systems with a complexity that is considerably higher than the one of
the system described in Chapter 3.16. Nevertheless, this dissertation follows the
underlying idea of the respective works, namely, the independent analysis of non-
functional properties and their higher-level composition, which is realized by the
proposed concept of QoS contracts. Although the QoS contracts discussed in this
chapter consider timing properties only, it is intended to cover further parameters
in the future (cf. Chapter 5). In addition to the respective extensions proposed in
Chapter 5, further enhancements are imaginable and desirable, especially in light of
current challenges related to the safety/security and sustainability of systems.

Not to remain unmentioned, [Ern05] proposes an important approach to the
worst-case response time analysis of hierarchical systems, based on which the analysis
tool PyCPA [JE12] has been developed7.

4.5 Detection of Contract Violations

Despite an a-priori verification of the correctness of the system admission process and
the system behavior, especially of the schedulers maintained by the resource agents,
it is possible that a QoS contract is not satisfied. Since different factors can lead to
such a contract violation, it is not only desirable to detect contract violations online,
i.e., at run-time, but also to draw conclusions about their causes.

In Sec. 4.5.1, possible reasons for a contract violation are discussed. Thereon, in
Sec. 4.5.2, an introduction into Metric Interval Temporal Logic (MITL) [AFH96] is
given which is used to provide a constraint-based description of the system behavior
expected under the satisfaction of QoS contracts in Sec. 4.5.3. How these constraints
can be used for the detection of contract violations and for identifying their reasons
is explained in Sec. 4.5.4.

4.5.1 Reasons for Contract Violations

In this chapter, two causes of contract violations are considered, each of which is
assumed to occur rarely, namely, a specification error and a scheduler fault.

Specification Error

As stated in Chapter 3, the worst-case execution time of each task is characterized
using time estimates instead of worst-case execution time upper bounds, which do
not necessarily cover the worst case. If one or multiple jobs of a task τi,j exhibit an
execution time that exceeds the time estimate, the assumptions Ai,j = {ci,j , Pi,j}

6Recall that the system considered in this chapter does not comprise hierarchical schedulers. One
scheduler exists per resource and each resource is abstracted by a resource agent. The resource
manager must not be mistaken for a scheduler.

7PyCPA is used in the context of the evaluation of this chapter (cf. Sec. 4.6).

36 Chapter 4. Contract-Based Quality of Service Assurance

of the task-level QoS contract Ci,j are violated. In consequence, the guarantees
Gi,j = {Di,j} cannot be given, since they have been computed based on Ai,j and are
only valid if Ai,j is satisfied. Note that a deviation from the time estimates may also
result from malicious attacks such as code injection attacks, however, this case is
beyond the scope of this work.

Scheduler Fault

Although the correctness of the system has been verified a priori, a scheduler fault
can occur at some point during the system’s run-time, e.g., a transient fault caused by
environmental influences or a permanent fault resulting from a malicious attack. In the
presence of such a fault, the scheduler does not enforce the task release offsets and/or
does not abort uncompleted jobs of tasks at their local deadlines. Consequently, not
only the QoS contract Ci,j of an affected task τi,j is violated, but also the task-level
QoS contracts of potentially all lower-priority tasks scheduled on the same resource,
since their de facto response times may be prolonged due to the interference of τi,j

and thus may exceed the previously computed wort-case response times that have
been used for the local deadline assignments.

4.5.2 Metric Interval Temporal Logic

To formally specify the expected behavior of a system over time, Metric Interval
Temporal Logic (MITL), introduced by Alur et al. [AFH96], can be used. In this
dissertation, a variant of MITL by Maler and Nickovic [MN04] is adopted that, in
contrast to the proposal in [AFH96], considers only time intervals of finite length.

The state of a system is represented by a set of state variables {x1, . . . , xn} with
n ∈ N. The state space of the system is defined as S = S1 × · · · × Sn, where Si is the
value domain of variable xi. A signal is a function σ : T → S from the discrete time
domain T to the state space and represents a behavior of the system. The set of all
signals over S that a system can exhibit is referred to by Σ. σ[t] ∈ S denotes the value
of signal σ at time instant t, i.e., the system state at time t. A Boolean expression
over {x1, . . . , xn} that evaluates to a Boolean value for each system state σ[t] ∈ S is
denoted a predicate π.

The syntax of MITL over a set of predicates is defined by the grammar

φ := π | ¬φ | φ1 ∨ φ2 | φ1 U[a,b] φ2

where φ is a property, [a, b] is an interval of finite length over T with endpoints
t + a, t + b ∈ T relative to a time instant t, and U[a,b] is the time-constrained until
operator. Further derived standard operators can be used such as the time-constrained
eventually operator ◇[a,b] φ := true U[a,b] φ and the time-constrained always operator
2[a,b] φ := ¬◇[a,b]¬φ.

The set of signals that satisfy a property φ is denoted by Σφ ⊆ Σ. The satisfaction
relation ⊨ indicates if a signal σ satisfies a property φ at time t.

4.5. Detection of Contract Violations 37

Definition 7 (Satisfaction Relation). The satisfaction relation is defined as follows:

(σ, t) ⊨ π ⇔ π(σ[t]) ≡ true

(σ, t) ⊨ ¬φ ⇔ (σ, t) ⊭ φ

(σ, t) ⊨ φ1 ∨ φ2 ⇔ (σ, t) ⊨ φ1 or (σ, t) ⊨ φ2
(σ, t) ⊨ φ1 U[a,b] φ2 ⇔ ∃t′ ∈ [t + a, t + b] s.t. (σ, t′) ⊨ φ2

and ∀t′′ ∈ [t, t′) : (σ, t′′) ⊨ φ1
(σ, t) ⊨ ◇[a,b] φ ⇔ ∃t′ ∈ [t + a, t + b] s.t. (σ, t′) ⊨ φ

(σ, t) ⊨ 2[a,b] φ ⇔ ∀t′ ∈ [t + a, t + b] : (σ, t′) ⊨ φ

Note that the satisfaction relation as defined in this dissertation relaxes the
constraints of the definition of Maler and Nickovic [MN04], where (σ, t) ⊨ φ1 U[a,b] φ2 ⇔
∃t′ ∈ [t + a, t + b] s.t. (σ, t′) ⊨ φ2 and ∀t′′ ∈ [t, t′] : (σ, t′′) ⊨ φ1.

Let a specific set of signals be denoted as events. If for an event σ[t] ≡ true at a
time instant t, but σ[t − 1] ≡ false, the event is said to occur at time t. For each task
τi,j , the following events can be defined that can occur at most once per (minimum)
inter-arrival time:

• σrel
i,j := true if a job of τi,j is released,

• σstart
i,j := true if a job of τi,j has been granted at least one time unit by the

scheduler, i.e., has been executed for at least one time unit,
• σcomp

i,j := true if a job of τi,j has been completed,
• σabort

i,j := true if a job of τi,j has been aborted, and
• σest

i,j := true if a job of τi,j has been executed for the number of time units
specified by its time estimate.

With each event, a predicate is associated that indicates if the respective event
has occurred within the current inter-arrival time:

• πrel
i,j := true if σrel

i,j ≡ true, and πrel
i,j := false otherwise,

• πstart
i,j := true if σstart

i,j ≡ true, and πstart
i,j := false otherwise,

• πcomp
i,j := true if σcomp

i,j ≡ true, and πcomp
i,j := false otherwise,

• πabort
i,j := true if σabort

i,j ≡ true, and πabort
i,j := false otherwise,

• πest
i,j := true if σest

i,j ≡ true, and πest
i,j := false otherwise.

4.5.3 Specification of the System Behavior

The satisfaction of the task-level QoS contract of each task τi,j implies that the system
operates correctly. This expected system behavior is subsequently expressed by means
of MITL constraints. Note that all intervals are interpreted relative to the release
of a considered job of τi,j and that redundancies are required to allow for a more
fine-grained reasoning about contract violations.

38 Chapter 4. Contract-Based Quality of Service Assurance

Start at Least Once per Scheduling Interval

Each job of a task τi,j must be started at least once, i.e., must be granted at least
one time unit by the scheduler before the next job is released.

πrel
i,j =⇒ 2[0,Pi,j]

(︁
◇[0,Di,j] πstart

i,j

)︁
(4.1)

No Local Deadline Overrun

Between its release and the local deadline, each job of τi,j must be either completed
or aborted at some point. Accordingly, no job of τi,j overshoots its local deadline.

πrel
i,j =⇒ 2[0,Pi,j]

(︁
◇[0,Di,j]

(︁
πcomp

i,j ∨ πabort
i,j

)︁)︁
(4.2)

No Overexecution

To ensure that the scheduler does not allow any job to be executed longer than
indicated by its time estimate, each job of τi,j must be either completed or aborted if
it has been executed for the amount of time specified by its time estimate, at some
point between its release and the local deadline.

πrel
i,j =⇒ 2[0,Pi,j]

(︁
◇[0,Di,j]

(︁
πcomp

i,j ∨
(︁
πest

i,j =⇒ πabort
i,j

)︁)︁)︁
(4.3)

Timely Termination according to Time Estimate

Each job is required to be completed until its local deadline without being executed
longer than indicated by its time estimate. This can be expressed by two individual
constraints. First, each job of τi,j must be completed at some point between its release
and the local deadline.

πrel
i,j =⇒ 2[0,Pi,j]

(︁
◇[0,Di,j] πcomp

i,j

)︁
(4.4)

Second, the schedule must be designed in such a way that each job can be completed
at all, i.e., at some point between the release and the local deadline, each job of τi,j

must have been executed for the amount of time indicated by its time estimate.

πrel
i,j =⇒ 2[0,Pi,j]

(︁
◇[0,Di,j] πest

i,j

)︁
(4.5)

4.5.4 Reasoning about Contract Violations

By monitoring the MITL constraints specifying the expected system behavior of
a correctly operating system at run-time, it is possible to detect different types of
contract violations and to identify their causes.

No Execution

If Eq. (4.1) is violated for a task τi,j , the considered job of τi,j has not been started
at all before its deadline. This contract violation indicates a scheduler fault.

4.6. Evaluation 39

Time Estimate too Small

If Eq. (4.4) is violated, but Eq. (4.5) holds for a task τi,j , it is not possible to complete
the considered job of τi,j by executing it for the amount of time indicated by its time
estimate. This results from a deviation of the job’s execution time from the time
estimate of τi,j , which follows from a specification error.

Insufficient Execution Time

If both Eq. (4.4) and Eq. (4.5) are violated, the scheduler did not ensure that the
considered job of τi,j can be executed for the amount of time specified by its time
estimate, which indicates a scheduler fault.

Time Estimate Overrun

If Eq. (4.3) is violated, the scheduler did not abort the considered job at its local
deadline, but grants more time for its execution than specified by the time estimate
of τi,j . This contract violation indicates the existence of a scheduler fault and of a
specification error at the same time.

Deadline Overrun

If Eq. (4.2) is violated, the scheduler did not abort the considered job at its local
deadline. Note that this contract violation differs from a time estimate overrun and
indicates a scheduler fault only.

Time Estimate Underrun

Note that the MITL constraints can also be used to detect if a task’s time estimate has
been dimensioned too conservatively. More precisely, if Eq. (4.4) holds and Eq. (4.5)
is violated, the execution time of the considered job of τi,j was shorter than the time
estimate of τi,j . This behavior does not cause a contract violation, however, a frequent
detection of a time estimate underrun could be communicated to the developers of
the respective application in order to determine a more realistic time estimate, which
contributes to avoiding resource overreservation.

4.6 Evaluation

To evaluate the proposed system admission approach for concluding QoS contracts
and to validate the monitoring-based reasoning about contract violations, simulations
have been performed using an event-based simulator. Subsequently, details about the
simulator will be provided, followed by a discussion of the two evaluations and their
respective results.

40 Chapter 4. Contract-Based Quality of Service Assurance

4.6.1 Simulator

An event-based simulator representing a system as described in Chapter 3 has been
implemented in Python 3.9. The simulation workflow consists of three stages, as
illustrated in Fig. 4.2, namely, the data generation, the system admission simulation,
and the scheduling simulation. The output of the data generation serves as input for
the system admission simulation, and, in turn, the output of the system admission
simulation serves as input for the scheduling simulation. As an output of the scheduling
simulation, diagrams are generated automatically that display the schedules and the
activity of the resource monitor for each resource in the system. In the following, the
stages of the simulation workflow are described in detail.

Generation Admission Scheduling

Figure 4.2: Schematic overview of the simulation workflow.

Data Generation

The considered system topology as well as the set of applications are created syntheti-
cally. In the course of the data generation, several parameters are chosen randomly
that are based on a common, configurable random seed to allow for reproducibility.
First, a topology, i.e., a resource graph, consisting of a given number of resources with
a given number of resource types is generated. The number of resources and resource
types can be configured. With a subset of resources, connected endpoint gateway
types are associated. In a second step, a set of directed acyclic graphs is generated,
where each DAG corresponds to one application. For the generation of applications,
multiple parameters can be configured such as the number of tasks, the period, and
the utilization of an application. During the generation of an application, the DAG
structure is constructed first, where forks and joins are chosen randomly to create
parallel paths. Subsequently, the application parameters are created according to the
following strategy: The period8 and the application’s utilization are selected randomly
out of a configurable set of periods and utilization values, respectively. Based on the
period and the utilization, the overall execution time of the application is computed,
which is distributed as the tasks’ time estimates. The end-to-end deadline of the
application is chosen out of the closed interval between the latency of the maximum
path, i.e., the path in the DAG exhibiting the largest sum of time estimates, and the
period. Resource type and endpoint gateway type requirements are assigned to the
tasks randomly. After the generation, it is verified for each application if it can be
mapped to the resource graph; if this is not the case, the application is re-generated.

8The simulator considers periodic tasks instead of sporadic tasks (cf. Chapter 2.1), which is not
an uncommon practice in the literature [ANN+22]; due to the properties of sporadic and periodic
tasks, the results are anyway representative.

4.6. Evaluation 41

System Admission Simulation

The system admission simulation implements the system admission process proposed
in Sec. 4.4.2. To compute a mapping of a considered application to the resource
graph, a number of constraints is encoded that need to be satisfied if the task graph is
represented correctly on the resource graph, and solved by the z3 SMT solver [MB08].
Satisfiability modulo theories (SMT) refers to the automatic satisfiability verification
of logic constraints restricting the interpretation of all symbols to the same logic
background theory [BT18]. If a solution, i.e., a set of variables, exists for which all
constraints can be satisfied, one solution is provided by the SMT solver. Accordingly,
if a solution is retrieved, it is chosen as the application’s mapping; otherwise, the
application is rejected. To assign the local deadlines, a worst-case response-time
analysis is carried out for each task using pyCPA [DAT+], a Python implementation
of the compositional performance analysis approach [HHJ+06; HAE17], whereat a
rate-monotonic priority assignment (cf. Chapter 2.2) is considered. Note that the
worst-case response-time analysis technique used by pyCPA is a busy-window analysis
as proposed by [Leh90], which is applicable for periodic real-time tasks as considered in
this evaluation. For details on the internals of the analysis as implemented in pyCPA
refer to [JE12]. If a set of tasks is deemed unschedulable on a resource, the application
is rejected. Otherwise, the computed worst-case response times are assigned as the
local deadlines of the respective tasks. The release offsets of all tasks are computed
recursively, beginning with the first task in the task graph. Finally, it is verified if the
end-to-end latency satisfies the end-to-end deadline of the application. If this is not
the case, the application is rejected. Otherwise, the tasks’ local deadlines are extended
by the so-called slack, i.e., the difference between the end-to-end deadline of the
application and the actual end-to-end latency, proportional to a task’s time estimate,
i.e., such that a task with a larger time estimate receives a longer prolongation of its
local deadline. Note that during the admission stage no task execution is simulated,
but only resource reservation for the admitted applications takes place.

Scheduling Simulation

To simulate the execution of applications on the considered system, a set of resource
instances is created, each being endowed with a fixed-priority preemptive scheduler
(cf. Chapter 2.2). All schedulers operate according to a global notion of discrete
time, i.e., each unit of simulation time corresponds to one unit of execution time
on each resource. When the simulation is started, for each task, a set of predicates
corresponding to those introduced in Sec. 4.5.2 is initialized, which are updated after
each elapsed time unit. The resource monitors indicated in the schematic overview
of the system abstraction in Fig. 3.1 (cf. Chapter 3) are implemented such that for
each task on a resource a monitor is instantiated that checks the set of constraints
provided in Sec. 4.5.3 after each simulation time unit. Note that the monitors have
been implemented manually. However, for real-world systems, it can be meaningful to
include a module that generates monitors directly from MITL formulae, as done, for

42 Chapter 4. Contract-Based Quality of Service Assurance

instance, in [MN04], in order to allow for easy extensibility with respect to monitoring
functionalities without additional implementation effort. To validate the approach
proposed in this chapter, however, this would not generate any additional value in
terms of gaining further insights. If a monitor detects a contract violation and draws
conclusions regarding its origin according to the conditions provided in Sec. 4.5.4,
the violation is recorded. Based on the recorded data, diagrams are automatically
created for each resource at the end of the simulation that illustrate task-wise when
the respective monitor has checked the monitoring constraints and when which type
of contract violation has been detected.

4.6.2 Comparison with Related Work

The proposed system admission process has the purpose of computing QoS contracts
that guarantee the satisfaction of an application’s QoS requirement. To evaluate
it, the related approach of [NSE11] can be considered for comparison: In a shared
execution platform with multiple CPUs that exhibits a layered architecture, similar to
the two layers of the system model described in Chapter 3, a central control instance
analyzes the effects that the execution of a new application on the system would
have on the overall system behavior and decides about its admission accordingly.
Unlike the system admission process proposed in this chapter, the analysis in [NSE11]
relies on an end-to-end response-time analysis based on compositional performance
analysis [HHJ+06], i.e., a global, centralized analysis that contrasts the distributed
analysis of the proposed admission process. Both approaches are compared by means
of simulations using the previously introduced event-based simulator, including an
extension that implements a global response-time analysis. For the ease of readability,
the proposed approach is subsequently referred to as the distributed approach and
the approach from [NSE11] as the global approach. The detailed experiment setup is
described subsequently, followed by a discussion of the results.

Experiment Setup

As described in Sec. 4.6.1, the event-based simulator uses pyCPA to compute the tasks’
response times. To provide a comparable implementation of the global response-time
analysis considered in [NSE11], an additional end-to-end analysis function relying on
pyCPA is implemented. In order to compare both approaches, the time required for
the analyses is measured, assuming the mapping of the application to the resource
graph to be given, i.e., not including it into the measurements9. When considering the
distributed approach, the time needed for the complete admission process (without
the mapping) is measured. This includes the response-time analyses, the composition
of the local deadlines, and the comparison of the resulting end-to-end latency against
the application’s end-to-end deadline (cf. Sec. 4.4.2). Since the simulator used for

9Since the run-time of the SMT solver the mapping is based on can vary strongly, the results
could otherwise be distorted.

4.6. Evaluation 43

the evaluation simulates a distributed system, but does not perform the analysis
operations on distinct resources in parallel, as it is possible on the resources of a
real-world system, the maximum analysis time over all resources is considered as the
duration of the overall analysis process.

For the evaluation, randomly generated system topologies with 3 resource types,
representing computation, wired, and wireless communication, are considered. More
precisely, a topology consisting of 5, 10, and 20 resources is contemplated, representing
different parts of a smart city. For each topology, the system admission simulation is
performed under different scenarios, i.e., for different configurations of the parameters
used for the generation of applications. To reduce the potential bias resulting from
the randomness of the generated data, the simulation under each scenario is carried
out with 10 distinct sets of applications, where each set comprises 50 applications.

For the generation of applications, the following configuration parameters are
considered: In all scenarios, the periods are selected out of the set {50, 100, 200, 1000}
ms, which is based on the set of periods that is typically used in automotive sys-
tems [KZH15]10. To explore the impact of different parameters on the performance of
the proposed approach, in different simulation scenarios, different numbers of tasks
per application as well as different application utilization values are considered. In
one scenario, the number of tasks is fixed while the utilization is altered, whereas
in another scenario the utilization is fixed and the number of tasks is varied. More
precisely, for a randomly chosen number of tasks per application out of the interval
[1, 20], application sets are generated, where the applications’ utilization is selected
out of the sets {0.1, 0.2}, {0.1, 0.2, 0.3, 0.4}, and {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Moreover,
for utilization values chosen out the set {0.1, 0.6}, the number of tasks per application
is selected from the intervals [1, 10], [1, 20], and [1, 30]. Note that simulations have
been performed under further configurations, but due to the similarity of the results,
these are omitted here.

Results

In fact, the absolute time measured for both approaches has little informative value
since it is related to the simulator only, and, therefore, is not representative11. Instead,
the ratio between the time measurements for the global and the distributed approach
is contemplated, which allows to infer the order of magnitude of the difference in time
required by both approaches. The resulting ratios of computation time show by which
factor the global approach is more time intensive than the distributed approach.

10Note that the complete set of periodic tasks in automotive systems is typically activated according
to periods out of the set {1, 2, 10, 20, 50, 100, 200, 1000}. However, since the considered system model
described in Chapter 3 comprises constrained deadlines only and the implemented simulator requires
each task to have an execution time of at least 1 ms, short periods have been omitted in order to
reduce the time required to generate a valid application.

11Note that the run-time can vary in a real-world system depending on the hardware and can be
optimized by using different programming languages and strategies.

44 Chapter 4. Contract-Based Quality of Service Assurance

The simulation results are discussed subsequently, illustrated by boxplots that
can be understood as follows: The box, termed interquartile range IQR, represents
the middle 50 % of data points, where the red line marks the median. Accordingly,
the lower border of the box indicates the middle value between the smallest data
point and the median, denoted by Q1, whereas the the upper border of the box
indicates the middle value between the largest data point and the median, denoted by
Q3. The black so-called whiskers indicate the distribution of data points outside the
interquartile range; the lower whisker marks Q1 − 1.5 · IQR and the upper whisker
Q3 + 1.5 · IQR. So-called outliers, i.e., data points that are located outside of the
area limited by the whiskers, are indicated by circles. Note that each plot represents
the results of a simulation for one set of applications.

In Fig. 4.3a and Fig. 4.3b, the obtained ratios of computation time are illustrated
for a system consisting of 5 resources; analogously, Fig. 4.3c and Fig. 4.3d show the
results for a system consisting of 10 resources, and Fig. 4.3e and Fig. 4.3f for a system
with 20 resources. From all figures, it becomes apparent that the ratio of computation
time is larger than 1 in many, but not in all cases. For instance, as shown in Fig. 4.3d,
in a system with 10 resources, where the application utilization is chosen from the
set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, a median of 1.48, an upper whisker of 6.15, and a lower
whisker of 0.41 for the ratio of computation time are obtained in a scenario where
the number of tasks per application is in the interval [1, 10], a median of 1.11, an
upper whisker of 4.12, and a lower whisker of 0.51 in a scenario where the number
of tasks per application is in the interval [1, 20], and a median of 0.98, an upper
whisker of 3.03, and a lower whisker of 0.5 in a scenario where the number of tasks
per application is in the interval [1, 30]. For comparison, as depicted in Fig. 4.3f, in a
system with 20 resources, where the application utilization is also chosen from the set
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, a median of 2.15, an upper whisker of 11.25, and a lower
whisker of 0.39 is obtained in a scenario where the number of tasks per application is
in the interval [1, 10], a median of 3.31, an upper whisker of 9.08, and a lower whisker
of 0.5 in a scenario where the number of tasks per application is in the interval [1, 20],
and a median of 2.09, an upper whisker of 9.23, and a lower whisker of 0.51 in a
scenario where the number of tasks per application is in the interval [1, 30]. Based
on these and further results, it can be stated that the distributed approach requires
considerably less time than the global approach in the majority of simulated cases,
although variations exist from scenario to scenario.

Aiming to analyze, which parameters affect the ratio of computation time, it can
be conceived that the number of tasks per application does not have a decisive impact,
as visible, e.g., in Fig. 4.3d and Fig. 4.3f, where no clear trend is discernible.

4.6. Evaluation 45

[1,10] [1,20] [1,30]
Task Intervals

1

2

3

4

Ra
tio

of
Co

m
pu

ta
tio

n
Ti

m
e

5 Resources, Uti. in {0.1, . . . , 0.6}

(a) The ratio of computation time depend-
ing on the intervals from which the
number of tasks per application is cho-
sen for a system with 5 resources.

{0.1,0.2} {0.1,. . . ,0.4} {0.1,. . . ,0.6}
Utilization Sets

1

2

3

4

Ra
tio

of
Co

m
pu

ta
tio

n
Ti

m
e

5 Resources, Tasks per Application: [1,20]

(b) The ratio of computation time depend-
ing on the sets out of which the utiliza-
tion of an application is chosen for a
system with 5 resources.

[1,10] [1,20] [1,30]
Task Intervals

0

5

10

15

Ra
tio

of
Co

m
pu

ta
tio

n
Ti

m
e

10 Resources, Uti. in {0.1, . . . , 0.6}

(c) The ratio of computation time depend-
ing on the intervals out of which the
number of tasks per application is cho-
sen for a system with 10 resources.

{0.1,0.2} {0.1,. . . ,0.4} {0.1,. . . ,0.6}
Utilization Sets

0

5

10

Ra
tio

of
Co

m
pu

ta
tio

n
Ti

m
e

10 Resources, Tasks per Application: [1,20]

(d) The ratio of computation time depend-
ing on the sets out of which the utiliza-
tion of an application is chosen for a
system with 10 resources.

[1,10] [1,20] [1,30]
Task Intervals

0

10

20

30

Ra
tio

of
Co

m
pu

ta
tio

n
Ti

m
e

20 Resources, Uti. in {0.1, . . . , 0.6}

(e) The ratio of computation time depend-
ing on the intervals out of which the
number of tasks per application is cho-
sen for a system with 20 resources.

{0.1,0.2} {0.1,. . . ,0.4} {0.1,. . . ,0.6}
Utilization Sets

0

10

20

30

40

50

Ra
tio

of
Co

m
pu

ta
tio

n
Ti

m
e

20 Resources, Tasks per Application: [1,20]

(f) The ratio of computation time depend-
ing on the sets out of which the utiliza-
tion of an application is chosen for a
system with 20 resources.

Figure 4.3: The ratio of the time required by the global and distributed approach
depending on different parameters. Higher is better.

46 Chapter 4. Contract-Based Quality of Service Assurance

Although in Fig. 4.3b, where the application utilization is again chosen from the
set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, a trend exists with respect to the median – here, a
median of 2.14, an upper whisker of 11.25, and a lower whisker of 0.39 is obtained
in a scenario where the number of tasks per application is in the interval [1, 10], a
median of 3.31, an upper whisker of 9.08, and a lower whisker of 0.5 in a scenario
where the number of tasks per application is in the interval [1, 20], as well as a median
of 2.09, an upper whisker of 9.23, and a lower whisker of 0.51 in a scenario where the
number of tasks per application is in the interval [1, 30] – this result is not sufficiently
expressive against the background of further measurements to claim a correlation
between the number of tasks per application and the ratio of computation time.

A similar statement can be made with respect to the impact of the set out of
which the utilization of an application is chosen on the ratio of computation time.
For clarification, compare Fig. 4.3b, Fig. 4.3d, and Fig. 4.3f, where simulation results
are illustrated considering applications with a number of tasks out of the interval
[1, 20]: As shown in Fig. 4.3b, a median of 1.02, an upper whisker of 2.39, and a
lower whisker of 0.34 are obtained in a scenario where the application utilization is
chosen out of the set {0.1, 0.2}, a median of 1.02, an upper whisker of 1.59, and a
lower whisker of 0.52 in a scenario where the application utilization is chosen out
of the set {0.1, 0.2, 0.3, 0.4}, and a median of 0.98, an upper whisker of 1.24, and a
lower whisker of 0.86 for a scenario where the application utilization is chosen out of
the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In Fig. 4.3d, a median of 1.41, an upper whisker of
5.85, and a lower whisker of 0.53 are obtained in a scenario where the application
utilization is chosen out of the set {0.1, 0.2}, a median of 1.06, an upper whisker
of 7.74, and a lower whisker of 0.39 in a scenario where the application utilization
is chosen out of the set {0.1, 0.2, 0.3, 0.4}, and a median of 1.12, an upper whisker
of 4.12, and a lower whisker of 0.51 in a scenario where the application utilization
is chosen out of the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Lastly, in the results depicted in
Fig. 4.3f, a median of 1.55, an upper whisker of 6.26, and a lower whisker of 0.36
is obtained in a scenario where the application utilization is chosen out of the set
{0.1, 0.2}, a median of 1.53, an upper whisker of 9, and a lower whisker of 0.28 in a
scenario where the application utilization is chosen out of the set {0.1, 0.2, 0.3, 0.4},
and a median of 3.31, an upper whisker of 9.08, and a lower whisker of 0.5 in a scenario
where the application utilization is chosen out of the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
As regarding the number of tasks per application, no clear impact of the sets out of
which the utilization of an application are chosen on the ratio of computation time
can be perceived from the simulation results.

However, when comparing the results, it becomes evident that another parameter
has a clear impact on the ratio of computation time, namely, the system size, i.e.,
the number of resources. When examining the medians of a scenario across different
system sizes, it is conceivable that they increase with an increasing system size, which
indicates that the ratio of computation time and, consequently, the advantage of
the distributed approach over the global approach in terms of computation time
becomes greater as the system size grows. This can be explained by the fact that

4.6. Evaluation 47

the availability of a larger number of resources allows to map tasks requiring the
same resource type to distinct resources, for which reason the time required for the
response-time analysis on each resource is reduced under the distributed approach12.

4.6.3 Validation of the Detection of Contract Violations

To validate the effectiveness of the detection of contract violations by means of the
proposed monitoring-based approach, a scheduling simulation is performed using
the event-based simulator, into which scheduler faults and specification errors are
injected. Subsequently, the experiment setup is described, followed by a discussion of
the results.

Experiment Setup

For an example system consisting of 8 resources, to which a set of applications has
been admitted, a scheduling simulation is performed. First, the scheduling simulation
is carried out without any modifications. Second, a scheduler fault as well as a
specification error (cf. Sec. 4.5.1) are injected on one resource and for one task,
respectively. More precisely, the scheduler fault is injected into resource r6, on which
the set of tasks {τ4, τ5, τ7, τ9} is scheduled, where τ7 = {c7 = 8, P7 = 100, ω7 =
15, D7 = 8, Π7 = 1}, τ4 = {c4 = 15, P4 = 50, ω4 = 18, D4 = 20, Π4 = 2}, τ5 = {c5 =
2, P5 = 50, ω5 = 38, Π3 = 3}, and τ9 = {c9 = 40, P9 = 100, ω9 = 0, D = 100, Π9 = 4}.
Note that application indices are omitted here to improve readability. The specification
error is injected into task τ7, leading to an increased execution time of its first job.

Results

During the unmodified, i.e., fault- and error-free, scheduling simulation, as expected,
no contract violations have been detected. A visualization of the resulting schedule is
omitted since it does not provide any knowledge gain. For the scheduling simulation
under fault and error injection, the resulting scheduling diagram that is automatically
generated by the simulator is shown in Fig. 4.4, where it is contextualized with a
schematic representation of the system topology.

12Recall that the response-time analysis has not only the purpose to verify the schedulability of
the tasks set on the resource, but also to determine a local deadline for each task (cf. Sec. 4.4.2).
Accordingly, if multiple tasks of an application are mapped to the same resource, multiple response-
time analyses must be performed successively, since it is not possible to verify the schedulability of a
task set, i.e., to check for deadline violations, when local deadlines have not yet been assigned.

48 Chapter 4. Contract-Based Quality of Service Assurance

e1 r1 r2 r3

r4 r5 r6

r7 r8 e2 e3

�
�

� � �

�

� �

τ7

TO
TS
DO
IT
NE

20 40 60 80 100

τ4

TO
TS
DO
IT
NE

20 40 60 80 100

τ5

TO
TS
DO
IT
NE

20 40 60 80 100

τ9

TO
TS
DO
IT
NE

20 40 60 80 100

�
�
�

�

�

Figure 4.4: Scheduling diagram for one resource of an example system that includes
indications of the moments in which the monitors evaluate the conditions
for detecting different types of contract violations. Tasks scheduled on
the resource: τ7 = {c7 = 8, P7 = 100, ω7 = 15, D7 = 8, Π7 = 1},
τ4 = {c4 = 15, P4 = 50, ω4 = 18, D4 = 20, Π4 = 2}, τ5 = {c5 = 2, P5 =
50, ω5 = 38, Π3 = 3}, and τ9 = {c9 = 40, P9 = 100, ω9 = 0, D =
100, Π9 = 4}.

The diagram can be understood as follows: The release times, local deadlines,
and execution intervals of each job are indicated as common in the literature (cf.
Chapter 2.1). The points in time when the monitor for each task evaluates the
conditions for detecting different types of contract violations, as proposed in Sec. 4.5.4,
are indicated by vertical lines above the timeline, on which each task’s execution is

4.7. Summary 49

depicted, where NE abbreviates no execution, IT abbreviates insufficient execution
time, DO abbreviates deadline overrun, TS abbreviates time estimate too small,
and TO abbreviates time estimate overrun. If a contract violation is detected,
this is indicated by a red lightning symbol. Note that although all predicates are
updated after each unit of simulation time, not all contract violations become evident
immediately, for which reason the related conditions do not need to be evaluated at
each point in time. Since no statement can be made about the contract violations of
type time estimate too small, insufficient execution time, and no execution before a
job’s deadline, the monitor checks for these types of violations at each job’s deadline.
Analogously, it evaluates the conditions for a contract violation of type deadline
overrun at one time unit after a job’s local deadline.

During all simulations carried out, neither false positives nor false negatives have
occurred with respect to any of the above contract violation types13. In fact, both
false positives as well as false negatives are in general possible, although only under
specific circumstances. Whether a contract violation is detected or not, depends on
the satisfaction of the constraints proposed in Sec. 4.5.3 that, in turn, is based on the
values of the included predicates. Consequently, to false-positively detect a contract
violation, the value of one or more predicates must be incorrect, which can result,
for instance, from bit flips due to electromagnetic interference or from a malicious
attack. With respect to false negatives, one specific case must be noticed, namely, the
co-existence of a time estimate too small and of an insufficient execution time contract
violation regarding the same task. Under these conditions, only insufficient execution
time can be detected while time estimate too small remains invisible. However,
since insufficient execution time indicates a scheduler faults that affects not only
the considered task, this trade-off appears to be acceptable. Owing to the fact that
the proposed monitoring approach is based on the system and application model
considered in this chapter, more false negatives can occur if the approach is transferred
to a real-world system, where unknown factors potentially come into play. Therefore, it
is meaningful to extend the approach according to the characteristics of the respective
system and the requirements of its users.

4.7 Summary

To provide QoS guarantees for all applications executed on a distributed system
as described in Chapter 3, which serves as the backbone of a smart city and is
shared by a set of applications that changes over time, the concept of QoS contracts
has been introduced in this chapter. More precisely, an approach for concluding
application-level QoS contracts has been proposed that consist of a conjunction of
task-level QoS contracts. This contract conjunction, enabled by the considered system
design, simplifies the verification of contract satisfaction on the application level,

13Note that all injected faults and errors are kept track of during the simulation and can be
compared with the simulator’s output.

50 Chapter 4. Contract-Based Quality of Service Assurance

compared to approaches based on contract composition, since the satisfaction of an
application-level QoS contract can be verified by verifying the satisfaction of all related
task-level QoS contracts. Moreover, the proposed system admission approach relies
on distributed response-time analyses, offering an advantage in terms of computation
time compared to approaches applying global response-time analyses. In simulations
based on synthetic data, it was shown that the proposed approach outperforms a
related approach in [NSE11], which makes use of global response-time analyses, in
the majority of cases and increases in time-efficiency with a growing system size.

To detect violations of the proposed QoS contracts that can result from distinct
causes, a set of MITL constraints describing the expected system behavior has
been proposed, based on which run-time monitors can be designed that are able to
distinguish different types of contract violations. By means of simulations under
fault- and error-injection, this approach has been proven to be effective. In fact, the
provided MITL constraints and the resulting monitoring approach offer benefits that
extend beyond the objective of this chapter. On the one hand, the information about
the reason for a contract violation that is obtained by the monitors can be used to
invoke suitable reconfiguration measures to the system in order to re-establish the
contract satisfaction for all applications executed on the system. On the other hand,
the retrieved monitor data can be analyzed using meta-monitoring strategies. For
instance, it is possible to observe how frequently a specific application’s contract is
violated within a sequence of application instances. The resulting information can be
exploited when further QoS parameters such as, e.g., dependability requirements are
taken into consideration during the system admission process and shall be guaranteed
by means of contracts. This idea is further explored in the following chapter.

4.7. Summary 51

Notation Meaning

A Assumptions of a contract
C Contract
Ci Application-level QoS contract
Ci,j Task-level QoS-contract

C1 ⊗ C2 Contract composition
C1 ∧ C2 Contract conjunction

G Guarantees of a contract
κ Component

κ ⊢ C A component satisfies a contract
φ Property
Mi Mapping of the task graph of application ai

M
(j,ℓ)
i Submapping of an application ai

P
(j,ℓ)
i Path in a mapping from τi,j to τi,ℓ

π Predicate
Ri,j Worst-case response time of a task τi,j

S State space of the system
Si State domain of xi

σ Signal
Σ Set of all signals the system can exhibit over S
T Discrete time domain
t Time instant

U[a,b] Time-constrained until operator
xi State variable

◇[a,b] Time-constrained eventually operator
2[a,b] Time-constrained always operator
⊨ Satisfaction relation

Table 4.1: Overview of the notation introduced in Chapter 4.

CHAPTER 5
Robustness-Aware Quality of Service

Contracts

Contents
5.1 Introduction . 53
5.2 Related Work . 55
5.3 Problem Statement . 56
5.4 Soft Quality of Service Contracts 57

5.4.1 Task-Level Soft QoS Contracts 58
5.4.2 Application-Level Soft QoS Contracts 59
5.4.3 System Admission Constraints 60

5.5 Evaluation . 63
5.5.1 Experiment Setup . 63
5.5.2 Results . 64

5.6 Summary . 67

5.1 Introduction

The time estimate of a task does not necessarily reflect its worst-case execution time,
as discussed in Chapter 2.3. In consequence, the actual execution demand of a task can
be larger than the time estimate, especially, if the execution time depends on external
factors that cannot be fully anticipated in test scenarios by the application developers.
Revisiting the use case of this thesis (cf. Fig. 5.1), the number of traffic participants
at a smart city’s intersection, for instance, can have a strong impact on the time
required by object detection and trajectory planning tasks of autonomous vehicles.
From Chapter 4 it is known that cases, in which a task’s execution time demand

53

54 Chapter 5. Robustness-Aware Quality of Service Contracts

Robustness-Aware Quality of Service Contracts

Figure 5.1: On distributed systems underlying a smart city, applications with mul-
tifaceted QoS requirements can be executed. This chapter extends the
concept of QoS contracts as well as their construction process, such that
robustness requirements of applications are taken into account.

exceeds the time estimate, can lead to a violation of the QoS contract concluded
between the corresponding application and the system. This follows from the fact
that QoS contracts are constructed based on the information, i.e., characteristics
and requirements, provided by the applications and can be fulfilled only while these
remain valid.

To prevent contract violations, worst-case execution time bounds (cf. Chapter 2.3)
can be considered instead of time estimates, leading, however, to two drawbacks:
First, the usage of worst-case execution time bounds implies an overreservation of
resources, i.e., more time is reserved for a task than needed by the majority of jobs.
Second, and following from the first, the chance of applications with high resource
demands to be admitted to the system is reduced, since insufficient resource capacity
for satisfying the application’s QoS requirement can remain available due to other
applications’ overreservation. As an alternative, probabilistic worst-case execution
time (cf. Chapter 2.3) can be used to describe an execution time distribution covering
manifold execution scenarios, although considering the pWCET without further
modifications of the system does not suffice to avoid contract violations. In fact,
the system admission process described in Chapter 4.4.2 takes only one execution
time value per task into account. Selecting a single execution time value, however,
leads to cases similar to those occurring when worst-case execution time bounds or
time estimates are considered. Accordingly, when application characteristics are not
described by fixed values, but exhibit a certain degree of variability, it is meaningful to

5.2. Related Work 55

provide a more flexible kind of QoS guarantees than achievable by the QoS contracts
introduced in Chapter 4.

As discussed in Chapter 2.4, not each task necessarily requires a satisfaction of its
temporal correctness requirement at any point in time, but may be able to sustain a
correct function as long as it is satisfied for a minimum number of jobs. Analogously,
the end-to-end latency requirement of an application does not always need to be
satisfied by each application instance, but, depending on the application type, can
underlie additional robustness requirements. In light of this, the idea of soft contracts
introduced by [RBH+08] is adopted in this chapter. For applications having QoS
requirements in terms of temporal correctness along with robustness requirements,
a novel type of contracts is proposed that takes the variability of tasks’ execution
times into account and, in consequence, aims to reduce the risk of excessive resource
overreservation as well as of immoderately frequent contract violations. Before this
objective is described more in detail, an overview of related works is given that aim
to provide QoS guarantees under variable application characteristics.

5.2 Related Work

One option for coping with dynamically changing parameters are probabilistic QoS
guarantees, which, instead of specifying only one (typically pessimistic) QoS value,
provide a probability distribution of QoS values, i.e., the achievement of each QoS
value is guaranteed with the corresponding probability. Probabilistic QoS guarantees
in terms of latency are frequently used when pWCET distributions are considered. To
compute these, i.e., to derive probabilistic response times (considering individual tasks)
and end-to-end latencies (considering DAGs of tasks), probabilistic schedulability
analysis techniques can be applied. In [BCM+20], for instance, a probabilistic
schedulability analysis approach is proposed considering fixed-priority partitioned
scheduling for tasks with precedence constraints. For DAGs including tasks with
different periods that are scheduled under EDF on partitioned multi-cores, an analysis
method is presented in [LCH+22] and an approach for minimizing the probabilistic
end-to-end latencies in [HK23]. Against the background of the system considered
in this chapter, however, applying such methods is not meaningful. In fact, even
under the usage of pWCET values instead of worst-case execution time upper bounds,
standard (i.e, non-probabilistic) analysis techniques can be applied due to the system
design: Recall that jobs are aborted at their local deadlines if they have not been
completed. Therefore, the worst-case response time of each task scheduled on the
system is upper-bounded by its local deadline.

Probabilistic QoS guarantees can also be encountered in the area of cloud com-
puting, where on-demand requests exhibiting a high variability must be handled. In
this context, typically not only end-to-end latencies, but also further QoS parameters
are considered at the same time. For providing and satisfying these guarantees, load
prediction and dynamic resource reservation techniques can be applied [QWS+22]. In

56 Chapter 5. Robustness-Aware Quality of Service Contracts

fact, similar approaches, are not applicable to the considered system, since resources
are reserved statically during the system admission of an application and extending a
job’s local deadline afterwards would have an impact on all successor tasks as well as
on the end-to-end latency.

Robustness guarantees (cf. Chapter 2.4) are another option for handling factors
that exhibit a certain variability and are not necessarily controllable. Originating
from the field of tolerance against deadline misses and faults, (m, k)-constraints can
be considered. For guaranteeing these, two classes of approaches, i.e., static and
dynamic approaches, exist that share the same basic idea: Granting additional time
for fault compensation techniques such as (partial) re-execution to a certain number
of jobs allows to ensure that at minimum these particular jobs are reliable. Using
static approaches, the choice of reliable jobs is made offline, i.e., at design time [HR95;
NQ06; QH00; KS95], while dynamic approaches perform a selection at run-time, for
instance, based on monitoring [CBC+16] or on error prediction [SUC+23]. However,
these approaches cannot be applied to the considered system, since it relies on static
resource reservation.

5.3 Problem Statement

In this chapter, a system as described in Chapter 3 is considered. Regarding the
applications that can be executed on the system, the following assumptions are made:
Each task τi,j of an application ai is characterized by a set Ci,j of pWCET distributions,
where each pWCET distribution Ci,j is related to one particular resource type on
which the task can be executed. A pWCET distribution consists of a set of execution
time values c

pi,j

i,j , where pi,j (with 0 < pi,j ≤ 1 and pi,j ∈ Q) is the probability that a
job of τi,j exhibits the respective execution time1.

An application instance is said to be completed successfully if all of its jobs
have been completed within their local deadlines. Consequently, the unsuccessful
completion of an application instance is equivalent to the case that one or more
jobs of the instance do not meet their local deadlines2. By design, the violation of
a local deadline does not imply its overrun, since uncompleted jobs are by default
aborted at their local deadlines (cf. Chapter 3), such that the end-to-end latency
requirement DE2E

i of an application ai is always satisfied once it has been admitted
to the system. Additionally, in this chapter, it is assumed that uncompleted jobs that
uncompleted jobs are aborted after their maximum execution time (cf. Chapter 5.4) if
they are not completed, to ensure that an execution time overshoot does not have an
impact on other tasks scheduled on the same resource. However, if a job is aborted,
its successor job(s) make use of older or default data, leading to an increased data

1To improve readability, the indices i and j of p will be omitted whenever the context is clear, i.e.,
cp

i,j will be written instead of c
pi,j

i,j .
2Note that this is always assumed to result from an exceedance of the task’s execution time value

considered during the computation of the local deadline. The existence of scheduler faults or potential
further causes is neglected in this chapter.

5.4. Soft Quality of Service Contracts 57

age and, therefore, potentially to a service degradation (e.g., a reduced accuracy of
planned trajectories due to old sensor data) of the application.

Unlike in Chapter 4, it is assumed that not each instance of an application ai needs
to be completed successfully. Adopting and combining different parameters presented
in Chapter 2.4, this property is expressed by an additional QoS requirement, denoted
as robustness requirement, that is described by the (m, k)-criterion ρi = (mi, ki) and
the confidence level ζi. While ρi specifies the minimum number mi out of ki successive
application instances (with mi, ki > 0) that must be completed successfully, ζi (with
0 < ζi ≤ 1) indicates the minimum probability required for the satisfaction of ρi.
Note that this way of using (m, k)-criteria deviates from the one that is most common
in the literature (cf. Chapter 2.4). Considering a confidence level ζi in addition to
the (m, k)-criterion has the purpose of compensating for the variability of the task
execution time without overreserving resources, which would be necessary if ζi is
omitted. In fact, the considered type of robustness requirement has the purpose of
enabling probabilistic robustness guarantees that allow for a certain degree of flexibility.

Objective of this Chapter

For the considered system and the considered type of applications executable
on the system, this chapter aims to propose a concept of robustness-aware
QoS contracts that provide probabilistic robustness guarantees, i.e., that
guarantee the satisfaction of QoS requirements consisting of an end-to-end
latency requirement combined with a robustness requirement, and to provide
an approach to constructing these.

In the following section, the notion of robustness-aware contracts, briefly referred
to as soft QoS contracts, is introduced, which is evaluated later on in Sec. 5.5. An
overview about the notation introduced in this chapter is provided in Table 5.1.

5.4 Soft Quality of Service Contracts

Soft QoS contracts can be concluded between the system and an application ai to
provide probabilistic robustness guarantees for ai. More precisely, if ai has been
admitted to the system under a soft QoS contract, it must be guaranteed that its
end-to-end latency requirement DE2E

i is satisfied and that ρi holds, i.e., that at
least mi out of ki successive application instances are completed successfully, with a
minimum probability of ζi. Analogously to the QoS contracts proposed in Chapter 4,
soft QoS contracts are assume-guarantee contracts, which can be classified into two
types, namely, into task-level soft QoS contracts (introduced in Sec. 5.4.1) and into
application-level soft QoS contracts (addressed in Sec. 5.4.2). A set of constraints
that need to be satisfied in the course of the system admission process for concluding
soft QoS contracts is proposed in Sec. 5.4.3.

58 Chapter 5. Robustness-Aware Quality of Service Contracts

5.4.1 Task-Level Soft QoS Contracts

A task-level soft QoS contract guarantees that a task τi,j of an application ai is
completed successfully until its local deadline Di,j . This guarantee, however, is not
given absolutely, i.e., not in the sense that each job is completed successfully, but
with a certain probability that depends on the pWCET distribution of the respective
task. In fact, the local deadline Di,j is assumed to be assigned based on a worst-case
response time analysis for sporadic real-time tasks scheduled under a preemptive
fixed-priority policy, analogously to Chapter 4.4.2, in which one particular execution
time value cp

i,j ∈ Ci,j of τi,j is considered that is chosen during the mapping. To
compute the worst-case response time of a task τi,j , any suitable analysis can be
applied, such as the one given by Theorem 3 that makes use of well-known standard
analysis techniques.

Theorem 3. The worst-case response time Ri,j of a task τi,j mapped to a resource
rz, z ∈ N, on which tasks are feasibly scheduled according to a preemptive task-level
fixed-priority policy, is upper-bounded by the minimum positive value of ∆ for which

∆ = cp
i,j +

∑︂
τx,y∈hp(τi,j)

(︄⌈︄
∆

Px,y

⌉︄
+ 1

)︄
cp

x,y

where i, j, x, y ∈ N and hp(τi,j) is the set of tasks with higher priority than τi,j mapped
to resource rz with Dx,y ≤ Px,y.

Proof. This theorem can be proven analogously to Theorem 1 in Chapter 4.4.2. Note
that all tasks mapped to the resource rz are independent, sporadic real-time tasks and
that the task under analysis τi,j is also a sporadic real-time task that is independent
from all tasks mapped to rz. Assume that all tasks mapped to rz are associated with
a fixed priority and that a concrete preemptive fixed-priority schedule exists for rz.
Assume this schedule to be work-conserving, i.e., the resource does not idle as long as
a released job of a task exists which is neither completed nor aborted. Based on these
assumptions, all jobs of tasks in lp(τi,j), i.e., with lower priority than τi,j , can be
removed from the schedule, since they do not interfere with the execution of τi,j or of
any task in hp(τi,j). To quantify the interference of the tasks in hp(τi,j) on τi,j within
an interval [t, t + ∆) beginning at a point in time t, the maximum amount of time
for which a task τx,y ∈ hp(τi,j) is executed within this interval must be determined.
Recall that Dx,y ≤ Px,y for all τx,y ∈ hp(τi,j) and that Di,j ≤ Pi,j is required for τi,j .
Consider two scenarios: a) At time t, no job of τx,y exists that is neither completed nor
aborted. b) At time t, a job of τx,y exists that is either completed or aborted within
[t, t + ∆). In case a), jobs of τx,y are released at most

⌈︂
∆

Px,y

⌉︂
times within [t, t + ∆).

Since only one specific cp
x,y is considered after τx,y is mapped to a rz and since any

released job of τx,y is aborted after cp
x,y time units if it is not completed, each released

job of τx,y is executed for for at most cp
x,y time units. Accordingly, τx,y is executed

within [t, t + ∆) for at most
⌈︂

∆
Px,y

⌉︂
cp

x,y time units. In case b), τx,y is first executed for

5.4. Soft Quality of Service Contracts 59

up to cp
x,y time units, i.e., until the job released before t is completed or aborted. The

value of cp
x,y upper-bounds the execution time of a job of τx,y for the same reason as

explained with respect to case a). Additionally, τx,y can be released within [t, t+∆) at
most

⌈︂
∆

Px,y

⌉︂
times. Thus, in case b) τx,y can be executed for at most

(︂⌈︂
∆

Px,y

⌉︂
+ 1

)︂
cp

x,y

time units, where the execution time of a job of τx,y is upper-bounded by cp
x,y for the

same reason as explained with respect to case a). Therefore, case b) dominates case
a). The task τi,j under analysis itself is executed for at most cp

i,j time units, since, as
explained above, only one cp

i,j is considered after τi,j is mapped to a rz and since any
released job of τi,j is aborted after cp

i,j time units if it is not completed. Although due
to the release offsets of the tasks mapped to resource rz it is possible that not each
τx,y ∈ hp(τi,j) is executed within [t, t + ∆) at all, the maximum possible interference
of all τx,y ∈ hp(τi,j) must be considered to cover the worst-case interference.

A job of task τi,j is completed successfully before Di,j if the exhibited execution
time does not overshoot the chosen cp

i,j , i.e., if τi,j is not aborted after being executed
for cp

i,j time units. For an arbitrary but fixed p, intuitively, the probability that a job
of τi,j is completed successfully before Di,j corresponds to the probability that the
job’s execution time is at most cp

i,j , denoted by P
(︂
≤ cp

i,j

)︂
. Since this probability relies

on the value of p indicated by the pWCET distribution Ci,j for the occurrence of the
considered cp

i,j , it is necessary that a correct pWCET distribution is communicated
by an application during the system admission process. Moreover, to ensure a correct
response-time analysis, the task’s minimum inter-arrival time must be provided
correctly, as explained in Chapter 4.4.1. Accordingly, a task-level soft QoS contract
can be defined as follows:

Definition 8 (Task-Level Soft QoS Contract). For a task τi,j of an application ai

scheduled on a resource of the considered system, a task-level soft QoS contract is
defined as Ci,j = (Ai,j , Gi,j) with assumptions Ai,j = {Ci,j , Pi,j} and guarantees Gi,j ={︂

Di,j ,P
(︂
≤ cp

i,j

)︂}︂
. If each job of τi,j complies with Ci,j and Pi,j as communicated in

the system admission process, τi,j ⊢ Ci,j .

5.4.2 Application-Level Soft QoS Contracts

Task-level soft QoS contracts can be combined to an application-level soft QoS contract
by means of contract conjunction (cf. Chapter 4.3), since the task dependencies are dis-
solved once an application is executed, as explained in Chapter 4.4.2. Correspondingly,
an application-level soft QoS contract can be defined as follows:

Definition 9 (Application-Level Soft QoS Contract). For an application ai admit-
ted to the considered system, an application-level soft QoS contract is defined as
Ci =

⋀︁
τi,j∈Ti

Ci,j , where each Ci,j is a task-level soft QoS contract. Accordingly, it holds

that ai ⊢ Ci if τi,j ⊢ Ci,j∀τi,j ∈ Ti.

60 Chapter 5. Robustness-Aware Quality of Service Contracts

5.4.3 System Admission Constraints

To understand the link between the probabilities P
(︂
≤ cp

i,j

)︂
that a job of a task τi,j is

completed successfully and the robustness requirement of an application ai, recall that
the confidence level ζi indicates the minimum probability required for the satisfaction
of the (m, k)-criterion ρi. Accordingly, for the robustness requirement of ai to be
satisfied, it must hold that

ζi ≤ Pki
i +

ki−1∑︂
x=mi

ki!
(ki − x)!x! · Px

i · (1 − Pi)(ki−x) (5.1)

where Pi is the probability that the jobs of all tasks of the application are completed
successfully, that is

Pi =
n∏︂

j=0
P
(︂
≤ c

pj

i,j

)︂
(5.2)

with n = |Ti|. Note that the probability P
(︂
≤ c

pj

i,j

)︂
is independent for all τi,j due to

the system design.

For clarification, consider the following example: For an application a1 with
ρ1 = (2, 3) and the probability Pi = 0.6 that all jobs of an application instance
are completed successfully (short: that the application instance is successful), all
possible execution scenarios of a sequence of k1 = 3 successive application instances
are depicted in Fig. 5.2. The (m, k)-criterion ρ1 is satisfied if either two out of
three or all three successive application instances are successful. While in general
only one execution scenario exists, where all application instances in an observed
sequence are successful, multiple execution scenarios exist for the case that two out
of three successive application instances are successful. To compute the probability
that ρ1 is satisfied, following well-known rules of stochastics, it is necessary to
sum up the occurrence probabilities of all execution scenarios satisfying ρ1, i.e.,
P3

1+P2
1 ·(1−P1)+P2

1 ·(1−P1)+P2
1 ·(1−P1) = 0.63+0.62 ·0.4+0.62 ·0.4+0.62 ·0.4 = 0.684.

The computation of this probability is generalized by Eq. (5.1).

5.4. Soft Quality of Service Contracts 61

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

P3
i

P2
i · (1 − Pi)

P2
i · (1 − Pi)

Pi · (1 − Pi)2

P2
i · (1 − Pi)

Pi · (1 − Pi)2

Pi · (1 − Pi)2

(1 − Pi)3

Pi

1 − Pi

Pi

1 − Pi

Pi

1 − Pi

Pi

1 − Pi

Pi

1 − Pi

Pi

1 − Pi

Pi

1 − Pi

Figure 5.2: Possible execution scenarios of a sequence of k1 = 3 successive applica-
tion instances for an application a1 with ρ1 = (2, 3) and Pi = 0.6.

When an application undergoes the system admission process, the same approaches
for computing local deadlines, release offsets, and the resulting end-to-end latency can
be applied as during the system admission process introduced in Chapter 4. For this
purpose, it is necessary to first choose an execution time value for each task τi,j out of
the respective pWCET distribution Ci,j . In theory, P

(︂
≤ cp

i,j

)︂
, according to which the

related cp
i,j can be selected, can be computed based on Pi by deriving a combination

of the probabilities P
(︂
≤ cp

i,j

)︂
for all τi,j ; however, Pi is unknown at this point. It is,

in general, possible to compute possible values of Pi based on the known parameters,
nevertheless, this is not trivial, since, depending on mi and ki, a polynomial with
high degree must be solved.

Against this background, one possibility to design a system admission process is
to formulate a set of constraints expressing the properties expected from an admitted
application, for which a solution is computed by means of an SMT solver. Recall that
as satisfiability modulo theories (SMT), the automatic satisfiability verification of
logic constraints is denoted, where the interpretation of all symbols is restricted to
the same logic background theory [BT18]. If a set of variables, termed solution, exists

62 Chapter 5. Robustness-Aware Quality of Service Contracts

under which all constraints are satisfied, it can be obtained using an SMT solver.
However, if multiple solutions exist, an SMT solver does not necessarily provide
the optimal solution. Accordingly, if an execution time value exists in the pWCET
distribution Ci,j of each task τi,j based on which values of Di,j and P

(︂
≤ cp

i,j

)︂
can

be computed that lead to a satisfaction of the application’s QoS requirements, the
respective execution time value can be determined and, moreover, the local deadlines
can be retrieved for each τi,j by solving the following constraints:

ζi ≤ Pki
i +

ki−1∑︂
x=mi

ki!
(ki − x)!x! · Px

i · (1 − Pi)(ki−x) (5.3)

Pi =
n∏︂

j=1
P
(︂
≤ cp

i,j

)︂
with n = |Ti| (5.4)

∀j, P
(︂
≤ cp

i,j

)︂
=

∑︂
{ci′,j′ p∈Ci,j : ci′,j′

pi′,j′ ≤c
pi′,j′
i,j }

pi′,j′ (5.5)

∀j, cp
i,j ∈ Ci,j (5.6)

Di,j ≥ Ri,j (5.7)

comp(M(1,n)
i) ≤ DE2E

i with n = |Ti| (5.8)

The constraints can be understood as follows: Eq. (5.3) corresponds to Eq. (5.1)
and requires that the application’s robustness requirement is satisfied, as explained
above. Eq. (5.4) specifies how Pi is computed, while Eq. (5.5) defines the computation
of P

(︂
≤ Pp

i,j

)︂
. Eq. (5.6) enforces that only execution time values are chosen for a

task τi,j that are contained in the corresponding pWCET distribution Ci,j . The
remaining equations reflect operations known from the system admission process in
Chapter 4. In fact, Eq. (5.7) requires that all local deadlines are dimensioned large
enough to cover the response time of the respective task under the chosen execution
time value, whereas Eq. (5.8) targets at the satisfaction of the application’s end-to-end
deadline, where M

(1,n)
i is a submapping of the application from τi,1 to τi,n, as defined

in Chapter 4.4.2. If a solution is found for which the constraints are satisfied, the
application is accepted and the release offsets ωi,j can be assigned for each task τi,j

as explained in Chapter 4.4.2; otherwise, the application is rejected. Note that it is
assumed that a mapping of the considered application has already been computed
when the above constraint formulation is solved, for which reason no mapping-related
constraints are included.

5.5. Evaluation 63

5.5 Evaluation

The proposed concept of soft QoS contracts has the purpose of providing QoS
guarantees without overreserving resources, taking the variability of tasks’ execution
times as well as the applications’ robustness requirements into account. To evaluate
if and to which extent soft QoS contracts contribute to a reduction of resource
reservations, the approach is compared against the concept of QoS contracts proposed
in Chapter 4, subsequently referred to as hard QoS contracts. To this end, the
event-based simulator described in Chapter 4.6.1 is extended. In the following, the
experiment setup, including the modifications of the simulator, is described, followed
by a discussion of the results.

5.5.1 Experiment Setup

To carry out simulations in which soft QoS contracts are concluded, two extensions to
the simulator presented in Chapter 4.6.1 have been made, namely, to the application
generation and to the system admission simulation. In order to generate applications
for which soft QoS contracts can be concluded, it is necessary to create a pWCET
distribution for each task. For this purpose, first, an application is created as explained
in Chapter 4.6.1, where one time estimate is associated with each task. On this basis,
a pWCET distribution is built: Out of a configurable interval, a value is randomly3

chosen describing the probability that the execution time of a job of the respective
task is no more than the related time estimate. The counterprobability is associated
with a second generated execution time value that can overshoot the initial time
estimate by a configurable factor. The probability that the execution time of a job
does not exceed the initial time estimate is split up and each resulting probability is
associated with generated execution time values that are shorter than the initial time
estimate. The resulting pWCET distribution of each task includes at minimum 2 and
at maximum 10 execution time values with associated probabilities. For each task, a
confidence as well as an (m, k)-constraint are chosen from configurable sets.

A system admission process according to Sec. 5.4.3 has been implemented, relying
on the z3 SMT solver [MB08] for solving the encoded constraints. The worst-case
response time of each task for each individually considered execution time value
is computed using pyCPA [DAT+], analogously to Chapter 4.6.1, since each task
corresponds to a standard periodic4 real-time task under fixed-priority preemptive
scheduling if only one of its execution time values is contemplated. To reduce the
simulation time, only one mapping is considered for each application, i.e., if multiple
mappings exist for an application and the application’s QoS requirements cannot

3Note that the same random seed as for the application generation is used for all other random
operations to ensure the reproducibility of results.

4Recall that periodic instead of sporadic real-time tasks are considered in the simulations, as
stated in Chapter 4.6.1.

64 Chapter 5. Robustness-Aware Quality of Service Contracts

be satisfied under the contemplated mapping, the admission process is not repeated
under another mapping, but the application is rejected.

For the experiments, a topology consisting of 10 resources is generated as described
in Chapter 4.6.1, on which different scenarios are simulated. Each scenario is simulated
with 10 sets of applications to reduce the potential bias resulting from the random
nature of the input data. For the generation of applications, the following parameters
known from Chapter 4.6.2 are considered: The number of tasks per application
is determined out of the interval [1, 20]. The application period is chosen out of
the set {50, 100, 200, 1000}. The applications’ utilization is selected out of the set
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

To evaluate the concept of QoS contracts, the number of accepted applications
under soft QoS contracts is compared to the one under hard QoS contracts (cf. Chap-
ter 4), where the impact of different factors on the number of accepted applications is
investigated. Concretely the following scenarios are examined: Different intervals out
of which the probability associated with a task’s initial time estimate is chosen are
considered, since it has a strong impact on the design of the pWCET distribution,
namely, the intervals [0.6, 0.7], [0.7, 0.8], and [0.8, 0.9]. Moreover, different intervals
out of which an application’s confidence level is chosen are contemplated, i.e., [0.1, 0.3],
[0.4, 0.6], [0.7, 0.9]. Also, sets of (m, k)-criteria with distinct strictness are taken into
account, for which the strictness is defined based on the ratio m

k . More precisely,
(m, k)-criteria from (1, 3) to (9, 10) are considered, where the (m, k)-criteria are re-
ferred to as low if m

k ∈ (0, 0.3], as medium (short: med) if m
k ∈ (0.3, 0.6], and as high

if m
k ∈ (0.6, 1).

5.5.2 Results

First, it must be noted that, when conducting simulations considering different
intervals out of which the probability that the execution time of a job is at most
the initial time estimate of a task is chosen, no impact on the number of accepted
applications can be observed, for which reason a visualization of the results is omitted.
This is indeed plausible, since the respective probability influences the design of the
pWCET distribution of a task, but is not directly involved in the system admission
process. Instead, it is likely to rather have an impact on the number of contract
violations when the application is scheduled; however, investigating this is beyond the
scope of this chapter. Due to this lack of impact, in the following, only results for a
respective probability out of the interval [0.8, 0.9] are shown.

Recall that the boxplots visualizing the results must be understood as follows:
The box, termed interquartile range IQR, represents the middle 50 % of data points,
within which the red line marks the median. Accordingly, the lower border of the
box indicates the middle value between the smallest data point and the median,
denoted by Q1, whereas the the upper border of the box indicates the middle value
between the largest data point and the median, denoted by Q3. The black so-called
whiskers indicate the distribution of data points outside the interquartile range; the

5.5. Evaluation 65

lower whisker marks Q1 − 1.5 · IQR and the upper whisker Q3 + 1.5 · IQR. So-called
outliers, i.e., data points that are located outside of the area limited by the whiskers,
are indicated by circles.

From Fig. 5.3 as well as from Fig. 5.4 it becomes evident that concluding soft QoS
contracts leads to a higher number of accepted applications than concluding hard
QoS contracts. For instance, in Fig. 5.3a, i.e., under low (m, k)-criteria, the median is
13, the upper whisker is 16, and the lower whisker is 8 under hard QoS contracts for
both intervals of confidence levels, in contrast to a median of 28, an upper whisker
of 30, and a lower whisker of 26 for confidence levels out of [0.1, 0.3] under soft QoS
contracts and to a median of 27, an upper whisker of 29, and a lower whisker of 26
for confidence levels out of [0.7, 0.9] for soft QoS contracts.

[0.1, 0.3] [0.7, 0.9] [0.1, 0.3] [0.7, 0.9]
Confidence Levels

10

15

20

25

30

Ac
ce

pt
ed

A
pp

lic
at

io
ns

Hard Hard

Soft

Soft

(m, k)-Criteria: Low

(a) The number of accepted applications
for different intervals out of which the
confidence level of an application is cho-
sen compared for low (m, k)-criteria.

[0.1, 0.3] [0.7, 0.9] [0.1, 0.3] [0.7, 0.9]
Confidence Levels

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5
Ac

ce
pt

ed
A

pp
lic

at
io

ns

Hard Hard

Soft

Soft

(m, k)-Criteria: High

(b) The number of accepted applications
for different intervals out of which the
confidence level of an application is cho-
sen compared for high (m, k)-criteria.

Figure 5.3: The impact of the interval out of which the confidence level of an
application is chosen on the number of accepted applications is compared
under the system admission process for QoS contracts (Hard) and the
system admission process for soft QoS contracts (Soft) for low and high
(m, k)-criteria. Higher is better.

A similar order of magnitude with respect to the difference of accepted applications
under hard and soft QoS contracts can be found in other scenarios; in fact, the number
of accepted applications is nearly doubled under soft QoS contracts compared to the
results under hard QoS contracts. This can be explained as a consequence of the usage
of execution time values shorter than the (initial) time estimates for the computation
of local deadlines, which anyway suffice for satisfying the end-to-end deadline under
the given robustness requirement. Thus, a reduction of resource overreservations

66 Chapter 5. Robustness-Aware Quality of Service Contracts

is achieved, which allows more applications to be executed on the system and thus
satisfies the objective formulated in Sec. 5.3.

Investigating the impact of the type of (m, k)-criteria and of the interval out of
which an application’s confidence level is chosen, it is conceivable that both parameters
do not influence the number of accepted applications under hard QoS contracts, since
they are neither involved in the respective system admission process nor affect other
relevant parameters. Under soft QoS contracts, however, a clear impact can be
seen. When comparing Fig. 5.3a and Fig. 5.3b, it can be noticed that under higher
confidence levels a lower number of applications is accepted (median of 28, upper
whisker of 30, lower whisker of 26 for a confidence level in [0.1, 0.3] and median of 27,
upper whisker of 29, lower whisker of 26 for a confidence level in [0.7, 0.9] in Fig. 5.3a,
median of 25.5, upper whisker of 28, lower whisker of 23 for a confidence level in
[0.1, 0.3] and median of 22, upper whisker of 24, lower whisker of 21 for a confidence
level in [0.7, 0.9] in Fig. 5.3b).

Low High Low High
(m, k)-Criteria

10

15

20

25

30

Ac
ce

pt
ed

A
pp

lic
at

io
ns

Hard Hard

Soft

Soft

Confidence Levels: [0.1, 0.3]

(a) The number of accepted applications
for different (m, k)-criteria compared
for confidence levels out of [0.1, 0.3].

Low High Low High
(m, k)-Criteria

10

15

20

25

30

Ac
ce

pt
ed

A
pp

lic
at

io
ns

Hard Hard

Soft
Soft

Confidence Levels: [0.7, 0.9]

(b) The number of accepted applications
for different (m, k)-criteria compared
for confidence levels out of [0.7, 0.9].

Figure 5.4: The impact of different (m, k)-criteria on the number of accepted ap-
plications is compared under the system admission process for QoS
contracts (Hard) and for soft QoS contracts (Soft) for applications’
confidence levels chosen out of [0.1, 0.3] and [0.7, 0.9]. Higher is better.

In Fig. 5.4a and Fig. 5.4b it can be perceived that higher (m, k)-criteria lead to a
lower number of accepted applications compared to lower (m, k)-criteria. Concretely,
a median of 28, an upper whisker of 30, and a lower whisker of 26 is encountered
for low (m, k)-criteria compared to median of 25.5, an upper whisker of 28, and a
lower whisker of 23 under confidence levels in [0.1, 0.3] (cf. Fig. 5.4a). Analogously,
a median of 27, an upper whisker of 29, and a lower whisker of 26 is encountered

5.6. Summary 67

for low (m, k)-criteria compared to a median of 22, an upper whisker of 24, and a
lower whisker of 21 for high (m, k)-criteria under confidence levels in [0.7, 0.9] (cf.
Fig. 5.4b).

5.6 Summary

Against the background of static resource reservation in the considered system and
the end-to-end latency requirement of each application, resources are reserved with
respect to a time estimate describing each task’s worst-case execution time if QoS
contracts as proposed in Chapter 4 are concluded. However, job execution times
typically exhibit a certain degree of variability, i.e., the considered time estimate is
frequently undershot, such that the reserved resource capacity is not fully used. In a
distributed system serving as the backbone of a smart city, on which a potentially
large number of individual systems, e.g., smart vehicles, require the execution of
applications at the same time, such a waste of resources is a limiting factor. To reduce
resource overreservation and, thus, to enable more applications to make use of the
system’s infrastructure, this chapter considered applications that do not require the
satisfaction of their end-to-end deadline at any point in time, but only according to
an additional robustness requirement. Exploiting the pWCET distribution of each
task, the concept of soft QoS contracts has been introduced that allows to take all
QoS parameters, i.e., end-to-end deadline as well as robustness requirement, into
account when making resource reservations. The proposed approach has been proven
to be effective in simulations with synthetic data, where up to 50 % more applications
could be admitted to the system under soft QoS contracts than under the type of
QoS contracts presented in Chapter 4. In the course of the evaluation, it was noticed
that applications’ robustness criteria, more precisely, the strictness of (m, k)-criteria
as well as the intervals out of which confidence levels are chosen, have an impact on
the number of accepted applications. Actually, the higher the confidence levels and
the stricter the (m, k)-criteria, the less applications can be admitted to the system.

The evaluation’s findings can be fruitfully used when designing distributed systems
as described in Chapter 3. In fact, the considered system architecture allows for the
coexistence of QoS contracts and soft QoS contracts5. Although QoS contracts lead to
a higher resource overreservation, it is not possible for each application to be admitted
under a soft QoS contract, since certain safety-critical applications may indeed require
that their end-to-end deadline is always met. Consequently, it seems to be convenient
to conclude different types of QoS contracts on the same system, establishing quota
not only for each type of contract, but also for different categories of applications. To
define such categories, the applications’ confidence levels and (m, k)-criteria can be
meaningful indicators; however, for each system to be designed, individual objectives
and requirements must be taken into consideration.

5Recall that uncompleted jobs are aborted at their local deadlines, so that one application violating
its (soft) QoS contract cannot have any impact on another application’s (soft) QoS contract if the
scheduler operates correctly.

68 Chapter 5. Robustness-Aware Quality of Service Contracts

Notation Meaning

Ci,j Set of pWCET distributions of τi,j

Ci,j pWCET distribution of τi,j

c
pi,j

i,j Execution time value
cp

i,j c
pi,j

i,j

ζi Confidence level of ai

(mi, ki) (m, k)-criterion of application ai

pi,j Occurrence probability of an execution time value
p pi,j

ρi (mi, ki)
P
(︂
≤ cp

i,j

)︂
Probability that the execution time of a job of τi,j is at most cp

i,j

Pi Probability of successful completion of all jobs of all tasks of ai

Table 5.1: Overview of the notation introduced in Chapter 5.

Part III

Embedded Systems

69

CHAPTER 6
System and Application Model

Parts of this chapter have previously been published in [SBC+20].

Contents
6.1 Endpoint and Local System 71

6.2 Application Model . 72

6.3 Task Model . 72

6.4 Execution Behavior and Execution Scenarios 74

6.1 Endpoint and Local System

The infrastructure of a smart city, represented by a centralized, hierarchical distributed
system, as introduced in Chapter 3, can be used in an on-demand fashion by individual
endpoint systems. For instance, a vehicle with advanced driver assistance system
can temporarily connect to the distributed system in order to enable autonomous
navigation in specific areas of the city. Similar to the distributed system, an endpoint
system comprises multiple communication and computation resources, although to a
lesser extent. In fact, its computation resources are assumed to have limited capacity,
so that the activation of additional autonomy functionalities is not possible either
without making use of the distributed system’s resources or without degrading or
deactivating other functionalities of the endpoint system. A computation resource of
an endpoint system, e.g., an electronic control unit (ECU), denoted as local system, is
subsequently considered as a uniprocessor.

71

72 Chapter 6. System and Application Model

6.2 Application Model

On an endpoint system, applications of different criticality (cf. Chapter 2.4) are
executed. More precisely, critical applications with hard real-time requirements
and non-critical applications with soft real-time requirements can be distinguished.
Independent of their criticality, applications executed on an endpoint system are
comparable to those executed on the distributed system of a smart city (cf. Chapter 3),
i.e., they consist of a partially ordered set of dependent, sporadic tasks sharing the
same minimum inter-arrival time that can be modeled as a directed acyclic task graph.
Due to the above mentioned resource limitations, it is assumed that the execution
of each application begins and ends on one particular local system and that the
intermediate part of the task graph is offloaded to the distributed system. To model
such applications, however, the view of a local system is adopted. For this purpose,
the part of an application’s task graph that is executed on the distributed system
can be summarized and hidden as an offloading operation; the resulting simplified
task graph is assumed to not contain any independent tasks, i.e., its tasks exhibit a
total instead of a partial order. This perspective of the local system corresponds to
the concept of self-suspension [CBH+17]. More precisely, instead of modeling the
application as a task graph, it can be considered as a single task executed on one local
system that temporarily interrupts its execution, while it waits for the completion of
an offloading operation, and proceeds as soon as the latter is finished. The duration
of an offloading operation, i.e., the time elapsing between the moment a message
is sent to the remote system and the latest safe moment in which a response may
be received, can be upper-bounded, assuming that a QoS contract as proposed in
Chapter 4 exists for the considered (part of the) application.

Since modeling the time required for an offloading operation as additional execution
time rather than as so-called suspension time, i.e., waiting time, would lead to a
pessimistic resource under-utilization [SHV+18; BHC+16], one of the state-of-the-art
models can be applied1 such as the dynamic self-suspension model (cf., e.g., [HCL15],
[LC14]), the segmented self-suspension model (cf., e.g., [SHV+18]), or a hybrid model
(cf. e.g. [BHC17]). Subsequently, the segmented self-suspension model is considered,
which allows to model a specific, known suspension pattern, i.e., to specify the exact
point in time in which an offloading operation begins as well as an upper bound on
its duration.

6.3 Task Model

The set of applications executed on a local system is represented by a set of tasks2 T
that is divided into a set of critical tasks Tcrit and a set of non-critical tasks Tnon, such
that T = Tcrit ∪ Tnon and Tcrit ∩ Tnon = ∅. Each recurrent task τi ∈ T , as illustrated

1For a detailed overview of self-suspension and how it can be modeled refer to [CNH+18; CBH+17].
2Recall that each application is modeled as one self-suspending task on the local system.

6.3. Task Model 73

in Fig. 6.1, is assumed to have a sporadic release pattern and is characterized by a
tuple

(︂
ci,1, ci,s, ci,2, Si, cpre

i , cpost
i , Di, Pi

)︂
.

Time
ωi ωi + Di

ci,1 cpre
i Si cpost

i ci,2

Figure 6.1: An offloading operation of a job of task τi is performed successfully.

Each taskτi releases an infinite number of task instances denoted as jobs. Pi

indicates the minimum inter-arrival time of τi, i.e., the release times of any two
consecutive jobs of τi must be separated by at least Pi time units. Di describes the
QoS requirement of task τi in terms of temporal correctness (cf. Chapter 2.4), i.e.,
its relative deadline. The absolute deadline of a job of task τi released at time ωi is
given by ωi + Di. Deadlines are assumed to be constrained for all tasks, i.e., Di ≤ Pi

for each task τi. The completion time of a job is indicated by fi. Note that, unlike in
a system as described in Chapter 3, no uncompleted job of a task τi is aborted at its
deadline unless specified differently.

ci,1 and ci,2 denote the worst-case execution time (WCET) of the first and second
computation segments of τi, i.e., parts of the task. ci,S is the worst-case execution
time of the typically offloaded share of the task that is required for its execution on
the local system. cpre

i and cpost
i are the worst-case execution times of the computation

segments that perform pre- and post-processing routines, which are executed before
and after the offloading operation of a job of task τi, respectively. Si is the offloading
or suspension time of τi. Note that worst-case execution time upper bounds (cf.
Chapter 2.3) are considered for each computation segment of τi.

In the following, it is assumed that Pi ≥ Di > 0 and ci,1, ci,S , ci,2, Si, cpre
i , cpost

i ≥ 0.
Moreover, the natural assumption is made that cpre

i + cpost
i ≤ ci,S , since offloading is

not meaningful otherwise. Furthermore, the worst-case execution time of a job of task
τi under any possible execution scenario is greater than 0, i.e., ci,1 + ci,S + ci,2 > 0
and ci,1 + cpre

i + cpost
i + ci,2 > 0. For notational brevity, let c♯

i = ci,1 + ci,S + ci,2 and
c♭

i = ci,1 + cpre
i + cpost

i + ci,2.

The set of tasks T is scheduled according to a preemptive task-level fixed-priority
policy, under which each task is assigned a unique priority. If at any point in time
multiple jobs are ready, i.e., eligible for being executed on the local system, the
job with the highest priority is executed. For each task τi, the unique set of the
higher-priority tasks is denoted as hp(τi). Note that a summary of the notation used
in this chapter is given in Table 6.1.

74 Chapter 6. System and Application Model

6.4 Execution Behavior and Execution Scenarios

According to the classification of tasks into two subsets, two different execution
behaviors of the system are specified, i.e., normal and local execution behavior. This
corresponds to the characteristics of mixed-criticality systems (cf. Chapter 2.4),
although the considered system is assumed not to be a classical mixed-criticality
system3. When the system exhibits normal execution behavior, offloading operations
are performed and all QoS requirements, i.e., all deadlines, of all tasks are satisfied
at any point in time, whereas, if the system exhibits local execution behavior, tasks
are executed fully on the local system and QoS guarantees can only be given for all
critical tasks τi ∈ Tcrit. Depending on the execution behavior of the system, for a job
of task τi released at time ωi, different execution scenarios are possible:

• The job is executed locally (cf. Fig. 6.2). In this case, the worst-case execution
time of the job released at time ωi is ci,1 + ci,S + ci,2, i.e., c♯

i.
• The job is offloaded (cf. Fig. 6.1). In this case, the job is first executed locally for

up to ci,1 execution time units and, thereon, enters the pre-processing routine for
offloading for up to cpre

i execution time units. Suppose that the first computation
segment as well as the pre-processing routine are finished at time ρ. Then, the
considered job is offloaded to the distributed system at time ρ.

Time
ωi ωi + Di

ci,1 ci,S ci,2

Figure 6.2: A job of task τi is executed locally.

When a job of task τi is offloaded, the offloading operation can be either successful
or unsuccessful:

• Offloading is successful if the computation result or offloading response is
returned to the local system until time ρ + Si. In this case, the offloading
response is post-processed for up to cpost

i time units and the second computation
segment is executed for up to ci,2 time units (cf. Fig. 6.1). Accordingly, the
execution time of the job of τi on the local system is at most c♭

i.
• Offloading is unsuccessful otherwise. In this case, at time ρ + Si, a local re-

execution of the offloaded task share is performed for up to ci,S time units
followed by the execution of the second computation segment for up to ci,2 time
units. Hence, the execution time of the job of τi on the local system is at most
c♯

i + cpre
i .

3The considered system does not provide explicit mode changes, but rather transitions between
different execution behaviors, as discussed later.

6.4. Execution Behavior and Execution Scenarios 75

An overview of the notation introduced in this section is given in Table 6.1.

Notation Meaning

ci,1 WCET of a task’s first computation segment
ci,2 WCET of a task’s second computation segment
ci,S Local WCET of a typically offloaded task share
cpre

i WCET of pre-processing before offloading
cpost

i WCET of post-processing after offloading
c♯

i ci,1 + ci,S + ci,2
c♭

i ci,1 + cpre
i + cpost

i + ci,2
Di Relative deadline of a task

hp(τi) Set of tasks with higher priority than a task τi

Pi Minimum inter-arrival time of a task
ρ Moment in which a considered job of a task is offloaded
Si Suspension time of a task
T Set of tasks on the local system

Tcrit Set of critical tasks, Tcrit ⊆ T
Tnon Set of non-critical tasks, Tnon ⊆ T

τi Task
ωi Release time of a task

Table 6.1: Overview of the notation introduced in Chapter 6.

CHAPTER 7
Safe Offloading under Unreliable

Connections
Parts of this chapter have previously been published in [SBC+20].

Contents
7.1 Introduction . 77
7.2 Problem Statement . 79
7.3 Related Work . 79
7.4 Recovery Protocols . 80
7.5 Workload Characteristics . 82
7.6 System Behavior and Response Time Analysis 85

7.6.1 Analysis of the Service Protocol 87
7.6.2 Analysis of the Return Protocol 89

7.7 Evaluation . 90
7.7.1 Experiment Setup . 91
7.7.2 Results . 93

7.8 Summary . 99

7.1 Introduction

Processing large amounts of sensor data within short, pre-defined intervals of time
is crucial for many endpoint systems, e.g., smart vehicles with advanced driver
assistance systems, in order to accomplish their mission or even to maintain their
operability. With respect to the execution of applications on such systems, three
options exist: It is possible to perform all computations locally on the endpoint system

77

78 Chapter 7. Safe Offloading under Unreliable Connections

without any external acceleration, to perform all computations remotely, e.g., on
the infrastructure of a smart city (cf. Chapter 3), or to offload only certain parts of
an application that are expensive in terms of time or energy, while the remainder
is executed locally. In order to activate enhanced functionalities, e.g., autonomous
driving, it is assumed that endpoint systems implement the latter option, as described
in Chapter 6. Accordingly, after a part of an application has been offloaded and the
remote execution is completed, the computation result is transmitted back to the
endpoint system, where it is further processed.

To ensure the satisfaction of an application’s temporal correctness requirement,
reliable data transmission between the endpoint system and the distributed sys-
tem is required. However, especially wireless connections, e.g., over 4G/5G or
IEEE802.11p [EE17], exhibit a certain level of unreliability, which must be taken
into account. For instance, the end-to-end latency achieved within cellular vehicular
communication systems is severely influenced by highly dynamic channel conditions
related to shadowing effects, multipath fading, handover situations, and technology
switches [SFL+19]. Wireless data transmissions can also be strongly impacted by
electromagnetic interference resulting from natural or human-made sources or by
incomplete network coverage, e.g., in rather rural areas of a smart city, as considered
as the use case of this chapter (cf. Fig. 7.1).

under Unreliable Connections
Safe Offloading

Figure 7.1: Wireless connections, especially in rural areas of a smart city, are not
always reliable. This chapter introduces an approach for offloading
critical applications from an endpoint system to a distributed system
while providing QoS guarantees.

Even if connectivity issues are considered to be rather rare cases in a smart city,
it is necessary to ensure that the QoS requirements, especially of critical applications,
are always satisfied. Consequently, this chapter addresses the challenge of providing

7.2. Problem Statement 79

QoS guarantees for applications that are offloaded from an endpoint system to a
distributed system, as considered in Chapter 3, over unreliable connections.

7.2 Problem Statement

For a local system, i.e., a computation resource, of an endpoint system, as described
in Chapter 6, which is connected to a distributed system, as described in Chapter 3,
an approach for offloading critical and non-critical tasks from the local system to the
distributed system is required that provides QoS guarantees for all critical tasks. To
this end, it is necessary to anticipate all events that may occur during an offloading
operation, e.g., a missing response due to an unreliable wireless connection, and to
specify a deterministic mechanism for handling these.

Objective of this Chapter

For the considered system and the considered type of applications executed on
the system, this chapter aims to propose two alternative recovery protocols
allowing the system to satisfy the QoS requirements of all critical tasks under
local execution behavior if a task is offloaded unsuccessfully, to return to
normal execution behavior and to re-establish QoS guarantees for both critical
and non-critical tasks as soon as possible. For each of these recovery protocols,
a schedulability analysis and a schedulability test shall be provided that al-
low for an a-priori verification of a system implementing the respective protocol.

Subsequently, an overview about existing works addressing the offloading of tasks
over unreliable connections as well as of critical tasks is given. In Sec. 7.4, the recovery
protocols are introduced. The workload of a task exhibited in different execution
scenarios is examined in Sec. 7.5. On this basis, a schedulability analysis for both
recovery protocols is provided in Sec. 7.6. An evaluation of the protocols is presented
in Sec. 7.7. Table 7.1 provides an overview of the notation introduced in this chapter.

7.3 Related Work

With respect to the offloading of tasks over unreliable connections, existing research
focuses on making offloading decisions, i.e., on deciding if and when a task is offloaded.
For instance, considering unmanned aerial vehicles (UAVs), [HAA+19] takes the
UAVs’ position into account, which impacts the quality of wireless connections, when
formulating an optimization problem to make offloading decisions. Focusing on the
minimization of a system’s energy consumption, [LCP+20] also integrates latency and
reliability requirements of applications into the offloading decision problem. [MA21]
propose an adaptive offloading decision scheme for drones that starts and stops
offloading depending on the system’s workload and on the quality of the wireless

80 Chapter 7. Safe Offloading under Unreliable Connections

connection. An adaptive offloading controller taking into consideration the network
conditions as well as the requirements of an application is presented in [ARS18]. In the
context of autonomous driving, [ZZL+19] propose an approach based on deep learning
to compute optimal offloading schemes including the choice of a wireless transmission
mode. To handle transmission failures, offloading operations are repeated under a
combination of two such transmission modes in order to increase the connection’s
reliability.

Critical tasks are addressed by [OHC+23], however, these are not considered
for offloading. Instead, the proposed approach aims to maximize the number of
offloaded resource-intensive soft real-time tasks in order to maximize the local system’s
capacity available for the execution of time- and safety-critical applications. [XYY+19]
considers the offloading of mission critical tasks and provides an algorithm for making
offloading decisions. However, reliability aspects and connectivity issues are neglected.

7.4 Recovery Protocols

As known from Chapter 6, the point in time when a task is offloaded to the distributed
system under normal execution behavior is already known, for which reason no
offloading decision needs to be made for any task, in contrast to the tasks considered
in all works outlined in Sec. 7.3. Instead, the case must be handled that a task’s
offloading operation is unsuccessful.

Recall that the set of tasks executed on the local system is divided into a set of
critical tasks with hard real-time requirements and a set of non-critical tasks with
soft real-time requirements. Although a task with soft real-time requirements does
not require its deadline to be always satisfied, it is in general desirable1 to provide a
QoS to a non-critical task that is as high as possible, i.e., to satisfy its deadline as
frequently as possible and, if a deadline cannot be met, to minimize the tardiness2.
Against this background, two recovery protocols with distinct objectives are proposed
in this chapter:

• The service protocol aims to provide a QoS as high as possible to non-critical
tasks, even under local execution behavior.

• The return protocol aims to minimize the amount of time, in which the system
exhibits local execution behavior after an unsuccessful offloading operation.

Independent of the implemented protocol, assume that the local system exhibits
normal execution behavior at time 0, such that offloading is enabled for all tasks in
T . The schedule considers the execution of all tasks until the first moment γ1,↘, in
which the offloading operation of a certain task τi is unsuccessful, i.e., a job of task
τi that has offloaded its computation at time γ1,↘ − Si does not receive a response

1Note that non-critical is not equivalent to unimportant. For further discussion on the relation
between criticality and importance refer to [ENN+15].

2The tardiness of a job of a task is 0 if its deadline is met, and the difference between its completion
time and its absolute deadline otherwise.

7.4. Recovery Protocols 81

from the distributed system until time γ1,↘ (cf. Fig. 7.2). Immediately after γ1,↘,
the local system exhibits local execution behavior. Until time γ1,↘, three scenarios
are possible for each uncompleted job a critical task τi ∈ Tcrit:

• The job of τi has not been offloaded: In this case, no offloading operation will
be performed for this job. Instead, it is executed on the local system. Since
it is possible that the pre-processing routine for offloading is already active
at time γ1,↘, the worst-case execution time of this job is upper-bounded by
ci,1 + cpre

i + ci,S + ci,2, i.e., c♯
i + cpre

i .
• The job of τi is already offloaded, but no response from the distributed system

was received until time γ1,↘: In this case, the offloading process is aborted
and the job is executed on the local system as of time γ1,↘. Therefore, the
worst-case execution time of this job is upper-bounded by ci,1 + cpre

i + ci,S + ci,2,
i.e., c♯

i + cpre
i .

• The job of τi is already offloaded and the response from the distributed system
has been received prior to time γ1,↘: In this case, the job continues its final
processing. Therefore, the worst-case execution time of this job is upper-bounded
by ci,1 + cpre

i + cpost
i + ci,2, i.e., c♭

i.

Time
ωi γ1,↘

ci,1 cpre
i Si ci,S ci,2

Figure 7.2: An unsuccessful offloading operation of τi results in the transition to
the local system behavior at time γ1,↘.

After γ1,↘, QoS guarantees are only given for Tcrit. Moreover, offloading is
inhibited for all critical tasks in the near future of γ1,↘, owing to the currently
unreliable connection to the distributed system that was indicated by the missing
response. The offloading decision for non-critical tasks, however, depends on the
applied recovery protocol:

• Service Protocol: Under the service protocol, offloading is inhibited for all
jobs of all tasks that are active as long as the system exhibits local execution
behavior. The task share of each τi ∈ T that is offloaded under normal execution
behavior is executed on the local system within ci,S units of execution time.
Since this leads to a higher workload on the local system, QoS guarantees cannot
be given for any non-critical task. Nevertheless, no non-critical task is aborted.

• Return Protocol: The return protocol does not inhibit offloading for all
tasks, but only for critical ones under local execution behavior. Non-critical
tasks, in contrast, are offloaded regardless, but neither a re-execution nor a

82 Chapter 7. Safe Offloading under Unreliable Connections

re-transmission is performed if a response from the distributed system is not
received in time. More precisely, the second computation segment of τi is only
executed if a response is received, and aborted otherwise. Moreover, a job of
τi ∈ Tnon is aborted whenever it misses its deadline.

As of time γ1,↘, the local system exhibits local execution behavior until the point
in time γ1,↗, in which QoS guarantees can be given again for all tasks in T . In the
proposed protocols, two options exist for the transit from local to normal execution
behavior, which should be chosen depending on the actual system requirements:

• Abort-Transit: This option aims to re-establish the normal execution behavior
as quickly as possible. Suppose that γ1,↗ is the earliest moment (after γ1,↘) in
which no uncompleted job from Tcrit exists. All released but not yet finished
jobs of non-critical tasks are discarded.

• Idle-Transit: This option re-establishes the normal execution behavior in the
earliest moment γ1,↗ (after γ1,↘) in which no uncompleted job from T exists.

Note that the above transitions are well-defined and the local system exhibits
normal and local execution behavior in an interleaving manner.

7.5 Workload Characteristics

When the system exhibits normal execution behavior, task execution patters are the
same under both proposed protocols, i.e., an offloading operation is performed for
each task. Hence, each τi ∈ T is a (segmented) self-suspending task consisting of two
computation segments as well as of one suspension interval of length Si, and can
therefore be analyzed applying any suitable technique.

Definition 10. Suppose that the system always exhibits normal execution behavior.
Then, for each task τi ∈ T , the worst-case response time Rnormal

i is the worst-case
response time of task τi and R1

i is the worst-case response time of the first computation
segment of task τi. By definition, R1

i ≤ Rnormal
i . It is assumed that Rnormal

i ≤ Di ≤ Pi,
∀τi ∈ T .

Lemma 1. If τi ∈ Tnon, the worst-case response time of τi under normal execution
behavior is upper-bounded by Rnormal

i regardless of the adopted protocol.

Proof. This is based on the definition.

Assume that an existing and correct3 analysis, e.g., the analysis proposed in
[SHV+18], has been used for verifying that each task in T meets its deadline if the
system always exhibits normal execution behavior. The following lemma characterizes
the maximum workload of a task τi under analysis, i.e., the maximum amount of

3Note that several misconceptions exist in the literature regarding the analysis of self-suspending
tasks. Further information can be found in [CNH+18].

7.5. Workload Characteristics 83

execution time, within in a time interval [t, t + ∆) under the assumption that the
local system resumes from idling at time t, i.e., it idles at t − ε for an infinitesimal ε,
under normal execution behavior and that it does not switch from the local execution
behavior to the normal execution behavior before t + ∆ for ∆ > 0.

Lemma 2. Suppose that the local system resumes from idling at time t, i.e., it idles
at t − ε for an infinitesimal ε and executes a certain job at time t, under normal
execution behavior and it does not switch from the local execution behavior to the
normal execution behavior before t + ∆ for ∆ > 0. For a task τi, in which

• τi ∈ T under the service protocol or
• τi ∈ Tcrit under the return protocol,

the amount of execution time for which task τi is executed in time interval [t, t + ∆)
on the local system is upper-bounded by max{f1(τi, ∆), f2(τi, ∆)}, where

f1(τi, ∆) = cpre
i +

⌈︃∆
Pi

⌉︃
c♯

i (7.1)

and
f2(τi, ∆) = ci,S + ci,2 +

⌈︄
∆ − (Pi − (R1

i + Si))
Pi

⌉︄
c♯

i (7.2)

Recall that c♯
i is defined as ci,1 + ci,S + ci,2.

Proof. First, consider the simpler case, in which the local system stays in the normal
execution behavior from t to t + ∆. In this case, there are two scenarios:

• Case 1a: if no uncompleted job of τi exists before t (cf. Fig. 7.3), then, the
workload of task τi executed in time interval [t, t + ∆) is at most

⌈︂
∆
Pi

⌉︂
c♭

i ≤
f1(τi, ∆).

• Case 1b: If an uncompleted job of τi exists before t, then, by the definition that
the local system returns from idling at time t, task τi has been suspended (cf.
Fig. 7.4). Since the system still exhibits normal execution behavior prior to time
t, it is known that there is at most one such suspended job of τi and its release
time ωi cannot be earlier than t − (R1

i + Si). Therefore, the first job of task τi

released after t is released no earlier than t − (R1
i + Si) + Pi. Since the system

exhibits normal execution behavior from t to t+∆, the workload of task τi within
the time interval [t, t+∆) is at most cpost

i +ci,2 +
⌈︃

∆−(Pi−(R1
i +Si))

Pi

⌉︃
c♭

i ≤ f2(τi, ∆).

For the case, in which the local system switches to local execution behavior at
time γ, where t ≤ γ < t + ∆, there are also two scenarios:

• Case 2a: There is no job of τi arriving before t that has not yet been completed
by time t (cf. Fig. 7.5). From t to γ, at most

⌈︂
γ−t
Pi

⌉︂
jobs of task τi are

released. Specifically, among them, the last job of τi offloaded prior to γ may
be offloaded unsuccessfully. The worst-case execution time of this particular

84 Chapter 7. Safe Offloading under Unreliable Connections

Time
t t + ∆

c
post
i ci,2 c

post
i ci,2c

pre
ici,1 c

pre
ici,1

Figure 7.3: Execution of a task τi under analysis in [t, t + ∆) in case 1a of Lemma 2.

t t + ∆

c
post
i ci,2 c

post
i ci,2c

pre
ici,1 c

pre
ici,1 c

post
i

Time

Figure 7.4: Execution of a task τi under analysis in [t, t + ∆) in case 1b of Lemma 2.

job is ci,1 + cpre
i + ci,S + ci,2 = c♯

i + cpre
i , while the worst-case execution time of

the other
⌈︂

γ−t
Pi

⌉︂
− 1 jobs is at most c♭

i ≤ c♯
i . Moreover, the worst-case execution

time of any job of τi released after γ, under the service protocol or the return
protocol when τi ∈ Tcrit, is at most c♯

i. Therefore, the workload of τi from t to
t + ∆ is(︃(︃⌈︃∆

Pi

⌉︃
− 1

)︃
c♯

i

)︃
+ (c♯

i + cpre
i) ≤ cpre

i +
⌈︃∆

Pi

⌉︃
c♯

i

def≡ f1(τi, ∆)

• Case 2b: A job of τi suspended prior to t and its second computation segment
is released at or after t (cf. Fig. 7.6). Identically to the discussion in case
1b, the next job of task τi is released no earlier than t − (R1

i + Si) + Pi. If
the job suspended prior to t is offloaded unsuccessfully, i.e., its execution time
after t is at most ci,S + ci,2, the other subsequent jobs of τi will be executed on
the local system, until the moment in which the local system switches to the
normal execution behavior again, under the service protocol or under the return
protocol when τi ∈ Tcrit. Therefore, the workload of τi from t to t + ∆ is as
defined in f2(τi, ∆). If the job suspended prior to t is offloaded successfully, at
most of one of the jobs released after t−(R1

i +Si)+Pi is offloaded unsuccessfully.
In this case, the workload of τi from t to t + ∆ is at most

cpost
i + ci,2 + cpre

i +
⌈︄

∆ − (Pi − (R1
i + Si))

Pi

⌉︄
c♯

i ≤ f2(τi, ∆),

since cpre
i + cpost

i ≤ ci,S .

So far, the maximum workload that can be contributed to a time interval [t, t + ∆)
by a task τi ∈ T under the service protocol and by a task τi ∈ Tcrit under the return

7.6. System Behavior and Response Time Analysis 85

t γ t + ∆

c
pre
ici,1 ci,1 ci,S ci,2ci,S ci,2

Time

Figure 7.5: Execution of a task τi under analysis in [t, t + ∆) in case 2a of Lemma 2.

t, γ t + ∆

ci,S ci,2 ci,1 ci,S ci,2 ci,1

Time

Figure 7.6: Execution of a task τi under analysis in [t, t + ∆) in case 2b of Lemma 2.

protocol has been analyzed. For the missing case that τi ∈ Tnon under the return
protocol, the workload in the time interval [t, t + ∆) can be reduced based on the
definition of the protocol (cf. Sec. 7.4), as given in the following lemma:

Lemma 3. For a task τi in Tnon under the return protocol, under the same condition
for t and t + ∆ as specified in Lemma 2, the amount of execution time that task τi is
executed in the time interval [t, t + ∆) is upper-bounded by

(︂⌈︂
∆
Ti

⌉︂
+ 1

)︂
C♭

i .

Proof. Under the return protocol, a job of task τi ∈ Tnon is aborted whenever it
misses its deadline. Therefore, the number of jobs of τi that have not yet missed their
deadlines in a time interval [t, t + ∆) is at most

(︂⌈︂
∆
Pi

⌉︂
+ 1

)︂
since Di ≤ Pi. Under the

return protocol, a task τi ∈ Tnon is always offloaded if the first computation segment is
completed before the job’s deadline. Any execution of such a job on the local system
requires up to c♭

i execution time units by definition. Therefore,
(︂⌈︂

∆
Pi

⌉︂
+ 1

)︂
c♭

i is the
upper bound of the workload.

7.6 System Behavior and Response Time Analysis

To analyze the worst-case timing behavior of the local system, the timing behavior of
each task τi must be analyzed, beginning with the highest-priority task, considering
the following two scenarios:

• If τi ∈ Tcrit, the worst-case response time under local and normal execution
behavior must be analyzed.

• If τi ∈ Tnon, only the worst-case response time under normal execution behavior
must be analyzed.

Note that the worst-case response time of τi ∈ Tnon under local execution behavior is
not of interest, since its jobs may be aborted (cf. Sec. 7.4).

86 Chapter 7. Safe Offloading under Unreliable Connections

In the following analysis, a concrete fixed-priority preemptive schedule σ for the
task set T is assumed to exist from time 0 onward. For the concrete schedule σ,
let γh,↘ be the h-th moment in which σ switches from normal to local execution
behavior. Moreover, let γh,↗ be the h-th moment in which σ switches from local
behavior to normal behavior. By the definition of the recovery protocols (cf. Sec. 7.4),
γh,↘ < γh,↗ < γh+1,↘.

Consider the ℓ-th job of task τi, denoted as τi,ℓ, in schedule σ and assume that
at the release time of job τi,ℓ no uncompleted job of task τi exists in the schedule σ.
Now, remove all lower-priority jobs from the schedule σ. Since σ is a fixed-priority
preemptive schedule and all tasks in T are independent of each other, the removal of
these jobs does not have any impact on the execution of any remaining job in the
schedule σ. Thereon, remove all jobs of task τi released before the release of τi,ℓ at
time ωi,ℓ from the schedule σ. Due to the assumption that the jobs of τi released
before ωi,ℓ have been completed before ωi,ℓ, the removal of these jobs of τi does not
have any impact on the execution of any remaining job in the schedule σ.

To improve readability, the index ℓ will be removed when the context is clear.
Accordingly, ωi denotes the release time of the job of τi under analysis and fi its
completion time. By definition, the next job of τi cannot be released before ωi + Pi.
The remainder of this section will focus on the analysis of the case that τi ∈ Tcrit.

Lemma 4. For any τi ∈ Tcrit under both service and return protocol as well as under
both abort- and idle-transit, the local system switches at most once from normal to
local behavior in the interval [ωi, fi). That is, at most one γh,↘ exists in [ωi, fi).

Proof. This property results from the definition of the protocols and abort- and idle-
transits. That is, the local system only switches from the local to normal execution
behavior when no uncompleted job of any task in Tcrit exists.

Based on Lemma 4, only four cases must be considered:

• σ is executed under local execution behavior at time ωi and under normal
execution behavior at time fi, denoted as L2N.

• σ is executed under normal execution behavior at time ωi and under normal
execution behavior at time fi, denoted as N2N.

• σ is executed under normal execution behavior at time ωi and under local
execution behavior at time fi, denoted as N2L.

• σ is executed under local execution behavior at time ωi and under local execution
behavior at time fi, denoted as L2L.

In the following, each of these cases is considered individually, beginning with
those that do not depend on the implemented recovery protocol, i.e., L2N and N2N.
The remaining cases are inspected under each protocol separately, since the timing
behavior of a task τi ∈ Tcrit under analysis differs depending on the specification of
the execution behavior exhibited by the system.

7.6. System Behavior and Response Time Analysis 87

Lemma 5. The case L2N is not possible under Abort-Transit and Idle-Transit.

Proof. In both transitions from local to normal execution behavior, no uncompleted
job exists in the local system at time γh,↗ for any h ≥ 0.

Lemma 6. The response time fi − ωi in the case N2N is at most Rnormal
i , as defined

in Definition 10.

Proof. This case is identical to a system with self-suspending tasks. Suppose that
γh,↗ ≤ ωi < γh,↘. All jobs in the schedule σ before γh,↗ can be removed without
changing any execution in σ after γh,↗. Therefore, the jobs released in [γh,↗, fi) are
exactly the same as in the system analyzed in Definition 10.

7.6.1 Analysis of the Service Protocol

For case N2L, the worst-case response time of task τi is given by the following lemma:

Lemma 7. Under the service protocol, the response time fi − ωi in the case N2L is
upper-bounded by the minimum positive value of ∆, for which

∆ = cpre
i + c♯

i +
∑︂

τj∈hp(τi)
max{f1(τj , ∆), f2(τj , ∆)} (7.3)

if ∆ ≤ Pi.

Proof. By definition of case N2L, the execution behavior of the local system changes
at time γh,↘, in which ωi ≤ γh,↘ < fi.

There are two cases to be considered:

• Case 1: In the interval [ωi, γh,↘), the schedule σ does not idle at all.
• Case 2: In the interval [ωi, γh,↘), the schedule σ idles at some time previous

to γh,↘.

Note that the schedule σ is busy from γh,↘ to fi, since σ is a work-conserving schedule4

and there is no suspending behavior between γh,↘ and fi under the service protocol.
Proof of Case 1: Let t be the earliest moment such that the schedule σ is busy

from t to ωi. Note that such a t exists. Under the above construction, the schedule σ

is busy from t to fi and idles right prior to t. If the release time of the job of τi is
altered from ωi to t, its response time becomes fi − t, which is no less than fi − ωi.

If the job of τi is not offloaded, its execution time is at most ci,1+ci,S+ci,2. If the job
of τi is offloaded successfully, its execution time is at most ci,1 +cpre

i +cpost
i +ci,2. If the

job of τi is offloaded unsuccessfully, its execution time is at most ci,1 + cpre
i + ci,S + ci,2.

Due to the assumption that cpre
i + cpost

i ≤ ci,S (cf. Chapter 6), its execution time
is upper-bounded by the maximum of the above three scenarios, which is at most
ci,1 + cpre

i + ci,S + ci,2 = cpre
i + c♯

i .
4A schedule is referred to as work-conserving if it never idles while a job is available for being

executed [LKA04].

88 Chapter 7. Safe Offloading under Unreliable Connections

Since the local system idles prior to t under normal execution behavior, the
interference of the higher-priority tasks can be quantified using Lemma 2. Therefore,
the worst-case response time of τi in this case is the minimum positive value of ∆
such that

∆ = cpre
i + c♯

i +
∑︂

τj∈hp(τi)
max{f1(τj , ∆), f2(τj , ∆)} (7.4)

Proof of Case 2: Let t′ be the latest moment such that the schedule σ is busy
from t′ to fi. Note that such a t′ exists since the schedule idles at some moment in
[ωi, γh,↘). By definition, t′ − ωi ≤ R1

i + Si.
Now, an upper bound of fi − t′ will be analyzed. Since the schedule σ idles prior to

time t′, the job of τi must have been offloaded. If the offloading operation is successful,
the execution time of task τi in the interval [t′, fi) is at most cpost

i + ci,2. If the job
of τi is offloaded unsuccessfully, its execution time in the interval [t′, fi) is at most
ci,S + fi,2. Due to the assumption that cpre

i + cpost
i ≤ ci,S (cf. Chapter 6) its execution

time in the interval [t′, fi) is at most ci,S + ci,2.
The interference of the jobs of higher-priority tasks in the time interval [t′, fi)

can be obtained using Lemma 2. Since t′ − ωi ≤ R1
i + Si and the interference of

a higher-priority task τj from t′ to t′ + ∆ is at most max{f1(τj , ∆), f2(τj , ∆)}, the
worst-case response time of τi in case 2 is R1

i + Si + ∆, where ∆ is the minimum
positive value with

∆ = ci,S + ci,2 +
∑︂

τj∈hp(τi)
max{f1(τj , ∆), f2(τj , ∆)} (7.5)

Because ci,S + ci,2 ≤ c♯
i , the worst-case response time obtained by Eq. (7.4) dominates

the one from Eq. (7.5).

Having examined the case N2L under the service protocol, subsequently the case
L2L is considered for a task τi ∈ Tcrit under analysis. The worst-case response time
of task τi in this case can be determined by the following lemma:

Lemma 8. Under the service protocol, the response time fi − ωi in the case L2L is
upper-bounded by the worst-case response time derived in Lemma 7 if ∆ ≤ Pi.

Proof. Note that the schedule σ is busy from ωi to fi, since σ is a work-conserving
schedule and there is no suspending behavior between ωi and fi under the service
protocol. Based on the schedule σ, the following two moments are examined5:

• Let t be the earliest moment such that schedule σ is busy from t to ωi.
• Let t′ be the latest moment such that local system switches from normal to

local execution behavior before or at ωi.
5Note that the schedule σ is already modified by removing lower-priority jobs. Therefore, it is

possible that the reduced schedule idles but the local system exhibits local execution behavior.

7.6. System Behavior and Response Time Analysis 89

Note that both t and t′ exist. There are two scenarios to be analyzed:

• t ≤ t′: The local system exhibits normal execution behavior prior to time t′.
The release time of a the considered job of τi can be changed to t′ without
decreasing its response time. Consequently, the analysis of case 1 in Lemma 7
can be applied directly, since the worst-case execution time of τi is at most R♯

i

in this scenario.
• t > t′: The schedule σ idles at t − ε for an infinitesimal ε and the local system

exhibits local execution behavior from t′ to t. Therefore, the idle time in schedule
σ results from the removal of the lower-priority tasks from the original schedule.
In this case, there exists no uncompleted job of any task in hp(τi) at time t.
All jobs released by τi and all tasks in hp(τi) are executed on the local system.
Therefore, the classical critical instant theorem by Liu and Layland [LL73] can
be applied. The worst-case response time in this case is at most the minimum
positive value of ∆, for which

∆ = c♯
i +

∑︂
τj∈hp(τi)

⌈︄
∆
Pj

⌉︄
c♯

j (7.6)

if ∆ ≤ Pi. This case is dominated by Eq. (7.4).

Resulting from the above analyses, the schedulability of a task τi ∈ Tcrit under
the service protocol can be verified by the following theorem:

Theorem 4. Consider the service protocol. Suppose that Definition 10 holds, i.e.,
every task τi ∈ T meets its deadline under normal execution behavior. Every task
τi ∈ Tcrit meets its deadline under local execution behavior if there exists a ∆ with
0 < ∆ ≤ Di such that the condition in Eq. (7.3) holds.

Proof. According to Lemma 8, the scenario L2L is dominated by N2L. By Lemma 5,
L2N is not possible under both recovery protocols. By Lemma 6, the worst-case
response time due to N2N is at most Rnormal

i . By Definition 10, Rnormal
i ≤ Di.

Therefore, the only condition to check the schedulability is to verify the scenario N2L
based on Eq. (7.3) in Lemma 7.

7.6.2 Analysis of the Return Protocol

The return protocol is designed to reduce the workload on the local system so that a
faster transit from local to normal execution behavior is possible. Under the return
protocol, the execution time of a job of τi ∈ Tnon on the local system is always no more
than c♭

i, independent of the system execution behavior. The analysis of the service
protocol in Lemma 7 and Lemma 8 can be slightly changed to accommodate such a
workload reduction under the return protocol, as stated in the following lemmata:

90 Chapter 7. Safe Offloading under Unreliable Connections

Lemma 9. Under the return protocol, the response time fi − ωi in case N2L is upper
bounded by the minimum positive value of ∆, for which

∆ = cpre
i + c♯

i +
∑︂

τj∈hp(τi)∪Tcrit

max{f1(τj , ∆), f2(τj , ∆)} +
∑︂

τj∈hp(τi)∪Tnon

(︄⌈︄
∆
Pj

⌉︄
+ 1

)︄
c♭

j

(7.7)

if ∆ ≤ Pi.

Proof. The proof is almost identical to the proof of Lemma 7 by considering different
interferences of the higher-priority task τj using Lemma 2 when τj ∈ Tcrit or Lemma 3
when τj ∈ Tnon. Note that the main argument in the proof of Lemma 7, that the
local system is busy from γh,↘ to fi, remains valid, since task τi ∈ Tcrit cannot offload
from γh,↘ to fi.

Lemma 10. Under the return protocol, the response time fi − ωi in the case L2L is
upper bounded by the worst-case response time derived in Lemma 9 if ∆ ≤ Pi.

Proof. The proof is identical as a patch of Lemma 8 by considering different interfer-
ences of the higher-priority task τj using Lemma 2 when τj ∈ Tcrit or Lemma 3 when
τj ∈ Tnon.

Resulting from the above analyses, the schedulability of a task τi ∈ Tcrit under
the return protocol can be verified by the following theorem:

Theorem 5. Consider the return protocol. Suppose that Definition 10 holds, i.e.,
every task τi ∈ T meets its deadline under normal execution behavior. Every task
τi ∈ Tcrit meets its deadline under local execution behavior if there exists a ∆ with
0 < ∆ ≤ Di such that the condition in Eq. (7.7) holds.

Proof. According to Lemma 10, the case L2L is dominated by N2L. By Lemma 5, L2N
is not possible under both recovery protocols. By Lemma 6, the worst-case response
time due to N2N is at most Rnormal

i . By Definition 10, Rnormal
i ≤ Di. Therefore, the

only condition to check the schedulability is to verify the case N2L under the return
protocol based on Eq. (7.7) in Lemma 9.

7.7 Evaluation

To evaluate the proposed recovery protocols, comprehensive simulations are performed
considering two metrics, namely, the percentage of run-time, in which the system
exhibits local execution behavior, and the acceptance ratio of the schedulability tests
in Theorem 4 and Theorem 5, i.e., the number of synthesized task sets that are deemed
schedulable. The percentage of run-time under local execution behavior indicates
to what extent the recovery protocols are beneficial for maintaining the system’s
full operability. If, for instance, a few very rarely occurring unsuccessful offloading

7.7. Evaluation 91

operations would lead to permanent local execution behavior, the recovery protocols
would fail to satisfy their objectives (cf. Sec. 7.4). The acceptance ratio, in turn,
quantifies the price payed for the QoS guarantees given to critical tasks, i.e., the
reduced maximum utilization of the local system under normal execution behavior.
Subsequently, the experiment setup including a description of the simulation data is
given, before the results are discussed.

7.7.1 Experiment Setup

The local system is simulated by an event-based miss rate simulator based on [CVC18],
that receives synthesized tasks as well as data obtained from an industrial robot as an
input. Depending on the considered input data, different experiments are conducted.

Experiment 1: Synthetic Data

Simulations under the usage of synthetic data are referred to as experiment 1. In these
simulations, the system is examined under variations of 1a) the system utilization,
1b) the probability that an offloading operation is performed unsuccessfully, 1c) the
percentage of critical tasks in the task set (CT), and 1d) the interval out of which
the task periods are generated. Accordingly, for a variation of these parameters, the
percentage of time the system exhibits local execution behavior is investigated in the
experiments 1a-I) and 1b)-1d), whereas the acceptance ratios are contemplated in
experiment 1a-II). To generate the input data for each experiment 1a)-1d)6, synthetic
sets of 10 non-suspending sporadic tasks (per experiment) are created:

• Based on a specific system utilization value, task utilization values are created
according to the well-known UUniFast method [BB05].

• The task periods in experiments 1a)-1c) are specified according to a log-uniform
distribution over the interval [1, 100] ms, which is a common practice based on
[DZB08], and according to a uniform distribution over the intervals [1, 2] ms,
[1, 10] ms, [1, 20] ms, [1, 50] ms, and [1, 100] ms in experiment 1d).

• The worst-case execution time under normal execution behavior is given by
ci = Pi · Ui.

• The deadlines of all tasks τi are set to implicit deadlines, i.e., Di = Pi.

After creating the sets of non-suspending tasks, these are transformed into sets of
self-suspending tasks with two computation segments as considered in Chapter 6:

• The worst-case execution time value ci is divided into ci,1 and ci,2.
• The length of each task’s suspension interval is chosen according to a uniform

random distribution out of the interval [0.01 · (Pi − ci), 0.1 · (Pi − ci)].

6Note that other configurations have been tested as well. Since the results were similar, the
configurations are not discussed here.

92 Chapter 7. Safe Offloading under Unreliable Connections

• To generate the corresponding local computation segments ci,S , a scaling factor
α = 2 is applied such that Ck,s = Si · α, since it is assumed that Si < ci,S

according to Chapter 6.
• Priorities are assigned on the task-level according to the well-known rate-

monotonic (RM) approach. The percentage of critical tasks in the system (CT)
is set to 10 %, 20 %, 30 %, 40 %, 50 %, and 60 % in experiment 1c) and to
20 % otherwise.

The probability that a task τi offloads unsuccessfully is assumed to follow a Poisson
distribution, i.e., 1−exp(−λ ·Si), which models that for a task with longer suspension
time the probability of experiencing an unsuccessful offloading operation is higher. λ

is set to 0.01 · 1
ms , 0.05 · 1

ms , 0.1 · 1
ms , 0.5 · 1

ms , and 1 · 1
ms in experiment 1a) and 1b),

and to 0.1 · 1
ms otherwise. Each experiment is repeated 100 times, except experiment

1a-I), which is repeated 10 times. For experiments 1a-I) and 1b)-1d), only task sets
are considered that passed the schedulability tests in Theorem 4 and Theorem 5.

Experiment 2: Measured Robot Data

Simulations under the usage of measured data from a Robotnik RB-1 robot plat-
form [Robb] are referred to as experiment 2. The Robotnik RB-1 is capable of perform-
ing loading operations of logistics objects in a highly unstructured environment, using
the Robot Operating System (ROS) [Roba]. To obtain the input data for the experi-
ment, first, the navigation of the robot in a virtual map was simulated in a Gazebo-
based environment [Gaz] and measurements were performed during a time frame of 60
seconds using the Real-Time Scheduling Framework for ROS (ROSCH) [SSA+18] and
RESCH [KRI09]. More precisely, the execution times of the so-called ROS topics the
move_base node subscribed to were measured, i.e., /rb1_base/front_laser/scan,
which is the laser scanner data topic, /rb1_base/robotnik_base_control/odom,
which is the odometry topic that contains motor encoder readings and is used for
navigation, and /tf, which contains the transformations between different ROS 3D
coordinate frames. Resulting from this, three periodic, implicit-deadline tasks have
been obtained:

• τlaser = (Claser, Tlaser) with Claser = 6.732 ms, Tlaser = 64.516 ms
• τodom = (Codom, Todom) with Codom = 1.046 ms, Todom = 60.0 ms
• τtf = (Ctf , Ttf) with Ctf = 0.333 ms, Ttf = 60.0 ms

Considering the cases that 20 %, 40 %, and 60 % of the task workload are offloaded,
these tasks are transformed into self-suspending tasks analogously to the tasks in
experiment 1). Note that it is assumed that Tcrit = {τodom} and Tnon = {τlaser, τtf }.
The local system is simulated with a probability that an offloading operation is
unsuccessful of λ = 0.1 · 1

ms . For each scenario, the simulation is repeated 100 times.

7.7. Evaluation 93

7.7.2 Results

Experiment 1: Synthetic Data

1a-I): In Fig. 7.7, the mean values of the percentage of simulation time, in which the
system exhibits local execution behavior, over all simulations is depicted as a function
of the system utilization under normal execution behavior7. While the percentage of
time in which the system exhibits local execution behavior under the return protocol
is always either close to 0 % or 0 %, the values under the service protocol vary strongly
between 0 % and approximately 30 %. From these results, it can be concluded that the
percentage of time the system exhibits local execution behavior is not only dependent
on the system utilization, but very likely also on other factors discussed later on.

1a-II): The outcome of experiment 1a-II) is shown in Fig. 7.8, namely, the
acceptance ratios for the schedulability tests in Theorem 4 and Theorem 5. The
service protocol achieves an acceptance ratio of nearly 100 % until a system utilization
of approximately 20 % system utilization; an acceptance ratio of 0 % is approached at
approximately 70 % system utilization. The return protocol achieves an acceptance
ratio of nearly 100 % until a system utilization of approximately 40 %; 0 % are reached
under a system utilization of approximately 95 %. Note that similar results were
obtained under different configurations.

0 20 40 60
Utilization (%)

0

5

10

15

20

25

30

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

λ: 0.1/ms, CT: 20 %
Return Protocol
Service Protocol

Figure 7.7: The percentage of time in
which the system exhibits
local execution behavior de-
pending on the system uti-
lization (experiment 1a-I).

0 20 40 60 80 100
Utilization (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
Ra

tio
(%

)

CT: 20 %

Return Protocol
Service Protocol

Figure 7.8: The acceptance ratios ob-
tained for the schedulabil-
ity tests of the service and
the return protocol (experi-
ment 1a-II).

7Note that simulations have only been carried out for integer utilization percentages; the remaining
data points are interpolated.

94 Chapter 7. Safe Offloading under Unreliable Connections

0.01 0.05 0.1 0.5 1
λ (1/ms)

0

20

40

60

80

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Service Protocol, Uti.: 30 %, CT: 20 %

(a) The percentage of local execution be-
havior for different probabilities of un-
successful offloading operations under
the service protocol.

0.01 0.05 0.1 0.5 1
λ (1/ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Return Protocol, Uti.: 30 %, CT: 20 %

(b) The percentage of local execution be-
havior for different probabilities of un-
successful offloading operations under
the return protocol.

Figure 7.9: Experiment 1b): The percentage of time the system exhibits local
execution behavior during the simulation for different probabilities of
unsuccessful offloading operations under the service and the return
protocol with a system utilization of 30 % and 20 % critical tasks.
Lower is better.

1b): The percentage of time in which the system exhibits local execution behavior
under different probabilities of unsuccessful offloading operations is illustrated in
Fig. 7.9a for the service protocol and Fig. 7.9b for the return protocol. Recall that
the diagrams can be understood as follows: The box, termed interquartile range
IQR, represents the middle 50 % of data points, within which the red line marks
the median. Accordingly, the lower border of the box indicates the middle value
between the smallest data point and the median, denoted by Q1, whereas the the
upper border of the box indicates the middle value between the largest data point and
the median, denoted by Q3. The black so-called whiskers indicate the distribution of
data points outside the interquartile range; the lower whisker marks Q1 − 1.5 · IQR

and the upper whisker Q3 + 1.5 · IQR. So-called outliers, i.e., data points that are
located outside of the area limited by the whiskers, are indicated by circles. Under
both protocols, the time the system exhibits local execution behavior increases with
an increasing probability of unsuccessful offloading operations, despite a small number
of outliers. If λ is low, i.e., 0.01 · 1

ms and 0.05 · 1
ms , in the majority of cases, the

7.7. Evaluation 95

10 20 30 40 50 60
Critical Tasks (%)

0

20

40

60

80

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Service Protocol, λ: 0.1/ms, Uti.: 30 %

(a) The percentage of time the system ex-
hibits local execution behavior under
the service protocol for different per-
centages of critical tasks in the system.

10 20 30 40 50 60
Critical Tasks (%)

0

5

10

15

20

25

30

35

40

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Return Protocol, λ: 0.1/ms, Uti.: 30 %

(b) The percentage of time the system ex-
hibits local execution behavior under
the return protocol for different per-
centages of critical tasks in the system.

Figure 7.10: Experiment 1c): The percentage of time the system exhibits local
execution behavior during the simulation under the service and the
return protocol for different percentages of critical tasks in the system
with a system utilization of 30 % and λ = 0.1 · 1

ms . Lower is better.

system exhibits local execution behavior in a quite low percentage of time under
both protocols. If, however, λ is high, i.e., 1 · 1

ms , the service protocol leads to a
significantly higher percentage of time under local execution behavior (median at
approximately 5 %, Q3 at approximately 75 %, upper whisker at approximately 95 %)
than the return protocol (median approximately at 0.08 %, Q3 approximately at
0.15 %, upper whisker approximately at 0.28 %). This follows from the different
handling of non-critical tasks by both protocols under local execution behavior. The
outliers can, in general, be explained by the fact that different tasks can experience
unsuccessful offloading operations, leading to different consequences (consider, e.g., a
task with a short period in contrast to a task with a long period).

1c): The percentage of time in which the system exhibits local execution behavior
under different percentages of critical tasks in the system is illustrated in Fig. 7.10a
for the service protocol and in Fig. 7.10b for the return protocol. It can be perceived
that the percentage of time the system exhibits local execution behavior increases
with an increasing percentage of critical tasks in the system, although the increase is
larger under the service protocol than under the return protocol (except one outlier

96 Chapter 7. Safe Offloading under Unreliable Connections

[1,2] [1,10] [1,20] [1,50] [1,100]
Periods in Interval (ms)

0

20

40

60

80

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Service Protocol, λ: 0.1/ms, Uti.: 30 %, CT: 20 %

(a) The percentage of time in which the sys-
tem exhibits local execution behavior
under the service protocol for different
period intervals.

[1,2] [1,10] [1,20] [1,50] [1,100]
Periods in Interval (ms)

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Return Protocol, λ: 0.1/ms, Uti.: 30 %, CT: 20 %

(b) The percentage of time in which the sys-
tem exhibits local execution behavior
under the service protocol for different
period intervals.

Figure 7.11: Experiment 1d): The percentage of time the system exhibits local
execution behavior during the simulation under the service and the
return protocol for different intervals for the period generation with
UUnifast with a system utilization of 30 %, 20 % critical tasks, and
λ = 0.1 · 1

ms . Lower is better.

under a percentage of critical tasks of 60 % in Fig. 7.10b). However, comparing the
medians in Fig. 7.10a to those in Fig. 7.9a, it can be stated that the effect of the
percentage of critical tasks on the percentage of local execution behavior is weaker
than the impact of the probability of unsuccessful offloading operations.

1d): Fig. 7.11a and Fig. 7.11b show the percentage of time the system exhibits
local execution behavior for different intervals, with respect to which the task periods
are generated with UUnifast, considering a system utilization of 30 %, 20 % critical
tasks, and a probability that an offloading operation is unsuccessful of λ = 0.1 · 1

ms , for
the service protocol and the return protocol, respectively. Under both protocols, no
clear correlation is discernible between the percentage of time the system exhibits local
execution behavior and the intervals out of which the task periods are chosen, except
for the interval [1, 100]. Although the medians are close to 0 % under both protocols,
a slight increase of the percentage of time the system exhibits local execution behavior
is visible. As stated with respect to the results of experiment 1b), this is likely to
result from widely differing task periods leading to an increased amount of time under
local execution behavior if a task with a long period offloads unsuccessfully.

7.7. Evaluation 97

0.01 0.05 0.1 0.5 1
λ(1/ms)

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Service Protocol, Robot Data, 20 % offloaded

(a) Local execution behavior, 20 % task
workload offloaded, service protocol.

0.01 0.05 0.1 0.5 1
λ (1/ms)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Return Protocol, Robot Data, 20 % offloaded

(b) Local execution behavior, 20 % task
workload offloaded, return protocol.

0.01 0.05 0.1 0.5 1
λ(1/ms)

0.0

0.1

0.2

0.3

0.4

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Service Protocol, Robot Data, 40 % offloaded

(c) Local execution behavior, 40 % task
workload offloaded, service protocol.

0.01 0.05 0.1 0.5 1
λ(1/ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Return Protocol, Robot Data, 40 % offloaded

(d) Local execution behavior, 40 % task
workload offloaded, return protocol.

0.01 0.05 0.1 0.5 1
λ(1/ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Service Protocol, Robot Data, 60 % offloaded

(e) Local execution behavior, 60 % task
workload offloaded, service protocol.

0.01 0.05 0.1 0.5 1
λ(1/ms)

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ca

lE
xe

cu
tio

n
Be

ha
vi

or
(%

)

Return Protocol, Robot Data, 60 % offloaded

(f) Local execution behavior, 60 % task
workload offloaded, return protocol.

Figure 7.12: Experiment 2): The percentage of time the robot exhibits local execu-
tion behavior during the simulation under the service and the return
protocol for different probabilities of unsuccessful offloading operations
and percentages of offloaded workload per task. Lower is better.

98 Chapter 7. Safe Offloading under Unreliable Connections

Experiment 2: Measured Robot Data

In Fig. 7.12, the percentage of time the robot exhibits local execution behavior under
the service protocol and the return protocol is illustrated for different probabilities
of unsuccessful offloading operations and percentages of workload offloaded per task.
From Fig. 7.12b, Fig. 7.12d, and Fig. 7.12f, it is discernible that the amount of
offloaded workload per task has no crucial impact on the percentage of time in which
the system exhibits local execution behavior.

Under the service protocol, for higher probabilities of unsuccessful offloading
operations, i.e. for λ ∈

{︂
0.5 · 1

ms , 1 · 1
ms

}︂
, the time the system exhibits local execution

behavior clearly increases when the amount of offloaded workload per task is increased.
In consequence, it can be concluded that the amount of offloaded workload per task
has a strong impact on the system execution behavior under the service protocol and
thus should be taken into account when making decisions regarding the system design.

Discussion

By means of the experiments, it has been shown that both proposed protocols do
not introduce an intolerable overhead into the system, which makes them attractive
for being implemented in real-world systems, and that both protocols fulfill the
purposes they have been designed for. The return protocol has been developed with
the intention to speed up the system’s return from local to normal execution behavior.
This effect has been proven throughout the experiments, where the system exhibits
less local execution behavior under the return protocol than under the service protocol
when other experimental conditions remain unchanged. The purpose of the service
protocol is to provide as much service as possible to non-critical tasks, even if the
system exhibits local execution behavior. This benefit comes with a certain cost that
is reflected in the acceptance ratios: The service protocol is applicable to less task
sets, i.e., systems, than the return protocol.

It has been proven empirically that the probability of an unsuccessful offloading
operation has a strong impact on the time a system exhibits local execution behavior;
however, this parameter is outside system designers’ sphere of influence. In conse-
quence, it is meaningful to control a number of other parameters that have been
shown to have an impact on the time a system exhibits local execution behavior: For
both protocols, the time the system exhibits local execution behavior can be reduced
by reducing the amount of critical tasks in the system, by carefully and smartly
designing the task periods, and by executing as much workload as possible locally
instead of offloading it under normal execution behavior. As seen in the experimental
results, the effect of these measures is stronger under the service protocol than under
the return protocol, following from the anyway smaller amount of time the system
exhibits local execution behavior under the return protocol.

7.8. Summary 99

7.8 Summary

In order to ensure the correct and safe operation of a system, e.g., a smart vehicle, that
offloads parts of its critical applications to a smart city’s distributed infrastructure,
two recovery protocols with distinct objectives have been introduced in this chapter.
By implementing the proposed protocols in a system, it can be guaranteed that the
QoS requirements of all critical applications are satisfied at any point in time, even
in situations where the connections used for offloading are unreliable, and that the
QoS requirements of all applications executed on the system are satisfied whenever
offloading operations are performed successfully. This can be verified at system design
time by applying the schedulability tests that have been provided together with the
recovery protocols. By performing simulations based on synthetic data as well as on
data measured on a real-world robotic system, it has been shown that both recovery
protocols come with reasonable acceptance ratios, i.e., that the reduction of the
maximum system utilization payed as the price for an increased safety is acceptable.
Moreover, the protocols have been proven to not cause the system to exhibit local
execution behavior excessively, during which no QoS guarantees are given for non-
critical tasks. In fact, it was detected that the system behavior under the proposed
protocols depends on different factors, namely, on the probability of unsuccessful
offloading operations, the percentage of critical tasks in the system, and the amount
of offloaded workload. Evidence has also been found that the percentage of time the
system exhibits local execution behavior depends on the actual task experiencing
an unsuccessful offloading operation and, in consequence, also on the interval out of
which task periods are chosen. Consequently, these aspects must be taken into account
when designing a system that is intended to use one of the proposed protocols.

100 Chapter 7. Safe Offloading under Unreliable Connections

Notation Meaning

α Scaling factor
∆ Time interval

γ1,↘ First moment, when the offloading operation of τi is unsuccessful
γ1,↗ Moment, when QoS guarantees can be given again for all tasks
γh,↘ h-th moment σ switches from normal to local execution behavior
γh,↗ h-th moment σ switches from local behavior to normal behavior

λ Probability that a task offloads unsuccessfully
Rnormal

i Worst-case response time of τi under normal execution behavior
R1

i Worst-case response time of the first computation segment of τi

under normal execution behavior
σ Concrete fixed-priority preemptive schedule for T

Table 7.1: Overview of the notation introduced in Chapter 7.

CHAPTER 8
Hardware Message Filter Optimization

Parts of this chapter have previously been published in [SBS+19].

Contents
8.1 Introduction . 101
8.2 Problem Statement . 103
8.3 Perfect Filters . 105

8.3.1 Accepting Desired and Nonexistent Messages 105
8.3.2 Filtering with Prime Implicants 106

8.4 Imperfect Filters . 107
8.4.1 Minimizing the QoF . 107
8.4.2 Minimizing the Hardware Cost 108

8.5 Evaluation . 108
8.5.1 Benchmarks . 108
8.5.2 Experiment Setup . 108
8.5.3 Results . 110

8.6 Related Work . 113
8.7 Summary . 113

8.1 Introduction

A smart city’s infrastructure can be used for the execution of computationally intensive
applications that cannot be executed on an endpoint system without leading to a
degradation of other applications’ QoS. Especially resource-constrained systems such
as smart vehicles with advanced driver assistance systems (cf. Fig. 8.1) benefit from
this opportunity, since offloading computation saves local resource capacity and thus

101

102 Chapter 8. Hardware Message Filter Optimization

allows to satisfy the QoS requirements of critical and non-critical tasks likewise, as
explained in Chapter 7. There exist, however, applications for which offloading is
not possible, but that can introduce a non-negligible workload to a smart vehicle’s
electronic control unit (ECU). One such application is the inspection of messages
received via communication resources, which determines if a message is relevant to the
ECU and must be further handled, or if it can be discarded. While the inspection of
a single message does not create a relevant computational overhead, the accumulation
of such small workloads can become problematic if messages are received with a short
minimum inter-arrival time or period1, particularly for ECUs with low clock speeds.

Filter
O

ptim
ization

H
ardware

M
essage

Figure 8.1: Undesired CAN messages introduce computational overhead to a smart
vehicle’s ECUs, but can be blocked by configurable hardware message
filters. This chapter proposes approaches for optimizing hardware
message filter configurations.

Modern vehicles still rely on Controller Area Network (CAN) [Rob91] as their
communication backbone, a broadcast bus that does not provide point-to-point
communication. Accordingly, messages written to the bus are not transmitted to a
specific destination, but are received by all bus participants, i.e., connected ECUs. In
consequence, each ECU is required to inspect all incoming messages, even though only
a subset of these is deemed relevant. To reduce this overhead, hardware message filters
can be used by an ECU that allow to match the bit-vector of a message’s identifier
with predefined bit-patterns in order to block undesired messages. These filters are
provided by the majority of commercial off-the-shelf CAN controllers and can be
configured according to the system’s needs. This chapter addresses the optimization
of hardware message filters, aiming to minimize the number of undesired messages
received by each ECU.

1Note that subsequently the term period is used instead of minimum inter-arrival time, complying
with the majority of related works.

8.2. Problem Statement 103

8.2 Problem Statement

In an endpoint system as described in Chapter 6, where a set of computation re-
sources is connected to a CAN bus, each resource, subsequently referred to as a
node, broadcasts messages that can be received by all other nodes connected to the
bus. In CAN, message are transmitted in the standardized form of data frames that
consist of different fields, such as, among others2, an identifier (ID). The ID is a
vector of 11 bits (or 29 bits in the extended data frame format) length that is used
for bus arbitration, i.e., to decide which message is transmitted if multiple messages
are written to the bus at the same time. Consequently, the ID encodes the message
priority and must be unique to ensure the correct operation of the bus arbitration.
To cover both data frame formats, a message is subsequently characterized by a tuple
m = (bm, Pm), where bm indicates the message ID of length H and Pm the period.
Each node connected to the bus can send messages with IDs that are prespecified at
system design-time. The overall set of messages with prespecified IDs that can be used
by one or multiple nodes is indicated by M ; its subset of messages that is relevant to
a considered node is indicated by MD and termed the set of desired messages. The
set of undesired messages of a node is denoted by MU . Note that M = MD ∪ MU

and MD ∩ MU = ∅.
Each node has a set of hardware filters F = f1, . . . , fn with n ∈ N, also referred

to as filter configuration. Each filter f is characterized by a tuple xi, Yi, where xi is a
mask with i ∈ N and Yi is a set of tags yi,k ∈ Yi with k ∈ N. Both masks and tags
are bit vectors of length H that are matched with the message ID bm of an incoming
message m. Since bm is unique, the patterns represented by a mask xi and its tags
Yi can be modified so that they correspond only to a selected set of message IDs. A
message m is accepted by a filter f consisting of a mask xi with tag yi,k if and only if
the statement b_and(xi, yi,k) = b_and(xi, bm) is true, where b_and is the bit-wise
and-operation. This filtering process is illustrated by an example in Table 8.1, where
a filter consisting of one mask with one tag is given as well as a set of message IDs.

The filter pattern resulting from the given mask and tag can be understood as
follows: Whenever a bit of an ID is not considered by the filter, it is marked as
irrelevant by setting the corresponding bit of the mask to 0. An irrelevant bit is
represented by a don’t care, denoted by ∗, in the resulting filter pattern. All other bits
indicate the values that a message ID must exhibit for the message to be accepted.

Depending on the set of accepted messages, a filter configuration can be classified
as correct, perfect, or imperfect. A correct filter configuration accepts all desired
messages, whereas a perfect filter configuration accepts all desired messages and,
additionally, blocks all undesired messages. An imperfect filter configuration accepts
all desired messages, but does not block all undesired messages and is therefore not
preferable. However, due to the limited number of hardware filters in commercial
off-the-shelf components, imperfect filters are not always avoidable. A quality metric

2Since only the identifier field is relevant for this chapter, the remaining ones are not further
discussed. A complete overview can be found in [Rob91].

104 Chapter 8. Hardware Message Filter Optimization

Bit Pattern Accepted?
Mask 011 1111 1110
Tag 000 1100 1001
Filter ∗00 1100 100∗
ID 000 1100 0001 no
ID 000 1100 1000 yes
ID 000 1100 1001 yes
ID 100 1000 1000 no
ID 100 1100 1000 yes
ID 100 1100 1001 yes

Table 8.1: A filter (one mask, one tag per mask) and a set of exemplary message
IDs.

for hardware filter configurations that quantifies the penalty due to undesired but
accepted messages, the so-called Quality of Filter (QoF), is introduced in [PDB17]
and given as QoF =

∑︁
m∈MU

[m is accepted]
Pm

, where the numerator uses the Iverson
bracket. The QoF is optimal if the given expression evaluates to zero, i.e., if the filter
is perfect.

In this chapter, two distinct scenarios are contemplated regarding the optimization
of hardware filter configurations. First, the design of new systems is addressed
where the number of undesired messages accepted by the filter(s) may be reduced
to zero if a suitable number of hardware filters can be installed. Accordingly, an
approach is required for designing perfect filter configurations under no hardware
limitations. Second, the optimization of filters in existing systems is considered,
where hardware components cannot be easily exchanged, so that minimizing the QoF
is highly important in order to reduce the unnecessary overhead for handling the
undesired, but accepted, messages.

Objective of this Chapter

Under the considered system model, this chapter aims to provide approaches
for the computation of hardware filter configurations, namely, of perfect filter
configurations under no hardware limitations, of imperfect filter configurations
with minimized QoF, and of imperfect filter configurations with minimized
hardware cost for a given maximum QoF threshold.

Subsequently, approaches for the computation of perfect filters are introduced
in Sec. 8.3 and of imperfect filter configurations in Sec. 8.4. An evaluation of the
proposed approaches is presented in Sec. 8.5. Related works addressing message IDs
and hardware message filtering in CAN are discussed in Sec. 8.6. An overview of the
notation introduced in this chapter is given in Table 8.3.

8.3. Perfect Filters 105

8.3 Perfect Filters

Recall that each ID bm for m ∈ M is a unique sequence of H bits, i.e., a bit-
vector of length H. Considering each bit bm,ℓ with ℓ ∈ N as a Boolean variable,
it is possible to express an ID as a Boolean function I : {0, 1}H → {0, 1} with
I(bm,1, bm,2, . . . , bm,H) := 1 if m ∈ MD and I(bm,1, bm,2, . . . , bm,H) := 0 otherwise.
Accordingly, if m is a desired message, the conjunction bm,1 ∧ bm,2 ∧ · · · ∧ bm,H must
evaluate to 1. Such a conjunction of all function variables that evaluates to 1 is known
as a minterm of a Boolean function.

In order to obtain a perfect filter configuration for one node connected to a
CAN bus, the fact that each message and each filter can be expressed by Boolean
algebra can be exploited to formulate a number of constraints specifying the actual
requirements a filter must satisfy. To compute such a filter configuration, an SMT
solver can be applied. SMT refers to the automatic satisfiability verification of logic
constraints restricting the interpretation of all symbols to the same logic background
theory [BT18]. If a solution, i.e., a set of variables, exists for which all constraints can
be satisfied, one such solution is provided by the SMT solver. This solution, however,
is not necessarily optimal. In the following, two constraint formulations expressing
the characteristics expected from a perfect filter configuration are proposed.

8.3.1 Accepting Desired and Nonexistent Messages

As a consequence of the metric’s definition, the acceptance or rejection of messages
with unspecified, i.e., nonexistent, IDs has no impact on the QoF of a filter3. Therefore,
each filter can be permitted to accept any m ∈ Mok, where Mok is defined as Mok =
Mall\MU and Mall is the set of all messages whose IDs that can be expressed by an
H-bit vector, to reduce the number of filters required for a perfect filter configuration.
For a given number of masks xi with tags yi,k ∈ Yi, a perfect filter configuration of
such kind can be obtained by solving the following constraint formulation, where
b_and indicates the bit-wise and-operation and zm,i,k is a Boolean variable:

∀m, i, k, zm,i,k = (b_and(xi, yi,k) = b_and(xi, bm)) (8.1)
∀m ∈ MD, ∨i ∨k zm,i,k = true (8.2)
∀m ∈ MU , ∨i ∨k zm,i,k = false (8.3)

Eq. (8.1) expresses the filtering process during which a message m is either accepted
or blocked by a filter with mask xi and tag yi,k (cf. Sec. 8.2). Eq. (8.2) and Eq. (8.3)
ensure the correctness and the perfectness of the filter configuration. More precisely,
Eq. (8.2) enforces that only desired messages are accepted and Eq. (8.3) that only
undesired messages are rejected. Consequently, every filter configuration satisfying
Eq. (8.1)-(8.3) that is retrieved by an SMT solver, is a perfect filter configuration.

3Note that this is not the case if messages with unspecified IDs are sent in the context of a
malicious attack. This, however, is beyond the scope of this chapter.

106 Chapter 8. Hardware Message Filter Optimization

8.3.2 Filtering with Prime Implicants

If a further reduction of the number of filters is possible, a minimal perfect filter
configuration can be computed by using prime implicants. An implicant of a Boolean
function is an expression over its function variables for which must hold that it
evaluates to 1 whenever the Boolean function evaluates to 1. A prime implicant is
an implicant that cannot be further reduced, i.e., from which no variables can be
removed, without loosing the property of being an implicant. Prime implicants can
be generated by merging two or more minterms, e.g., by the well-known algorithm of
Quine & McCluskey [Nel53].

Enforcing that each filter f ∈ F is a prime implicant of Mok, i.e., f ∈ PI (Mok),
for the case that each mask xi has only one tag yi,k, i.e., k = 1, the constraint
formulation proposed in Sec. 8.3.1 can be extended as follows, where b_xor is the
bit-wise xor-operation:

∀m, i, k, zm,i,k = (b_and(xi, yi,k) = b_and(xi, bm)) (8.4)
∀m ∈ MD, ∨i ∨k zm,i,k = true (8.5)
∀m ∈ MU , ∨i ∨k zm,i,k = false (8.6)

∀i, k, b_xor(xi, yi,k) ∈ PI (Mok) (8.7)

By solving this extended constraint formulation, a minimal perfect filter configu-
ration can be computed, as stated by the subsequent theorem.

Theorem 6 (Minimal Perfect Filter Configuration). Any filter configuration F

obtained applying Eq. (8.4)–(8.7), where each mask xi has one tag yi,k, i.e., k = 1, is
perfect and minimal.

Proof. F being perfect results directly from Eq. (8.6). To show that F is minimal,
consider a non-minimal, perfect filter configuration F ′ = f1, . . . , fn. Since F ′ is not
minimal, at least two filters f ′

a, f ′
b ∈ F ′ can be reduced to a filter fc by substituting

at least one filter bit by a don’t care, so that f ′
c accepts all messages accepted by

fa and fb but blocks all undesired messages m ∈ MU . Assume that the reduction
of F ′ is continued as far as possible while maintaining its optimal QoF, i.e., F ′ is
transformed from a non-minimal perfect filter configuration to a minimal perfect filter
configuration. Since F ′ cannot be further reduced without accepting any m ∈ MU , it
is clear that F ′ ⊆ PI (Mok) with Mok = Mall\MU .

Note that the generation of prime implicants may become computationally in-
tractable depending on the size of the message space, which depends on the considered
length of the message ID H. As an alternative, the SMT formulation proposed in
Sec. 8.3.1 can be applied if the availability of hardware filters is not limited. Otherwise,
an imperfect filter can be used.

8.4. Imperfect Filters 107

8.4 Imperfect Filters

Perfect filter configurations cannot always be realized for several reasons. When
considering existing systems, hardware components can typically be modified only
up to a certain extent or not at all, such that the achievable QoF is limited by
the given hardware. When designing new systems, hardware limitations may be
given as well, for instance, due to cost or space constraints. In consequence, it is
often unavoidable that a filter configuration accepts a number of undesired messages.
However, not all undesired messages introduce the same overhead: Consider two
messages ma, mb ∈ MU . If ma has a short period and mb a long one, ma must
be further processed by the ECU more frequently than mb and thus is more costly.
Accordingly, when designing imperfect filter configurations, the set of undesired but
accepted messages should be chosen such that the introduced overhead, quantified by
the QoF, is minimized.

8.4.1 Minimizing the QoF

Aiming to minimize the QoF for a given filter hardware, i.e., a given number of masks
xi with a given number of tags yi,k, the constraint formulation proposed in Sec. 8.3.1
can be modified and extended as follows, where cm is the cost, i.e., the overhead,
introduced by a message m, cg is an upper bound on the overall cost, i.e., the QoF,
and ⊕ is the logic xor operator:

∀m, i, k, zm,i,k = (b_and(xi, yi,k) = b_and(xi, bm)) (8.8)
∀m ∈ MD, ∨i ∨k zm,i,k = true (8.9)

∀m ∈ MU ,

(︃
cm = 1

Pm

)︃
⊕ (∨i ∨k zm,i,k = false) (8.10)

∀m ∈ MU , (cm = 0) ⊕ (∨i ∨k zm,i,k = true) (8.11)∑︂
m∈MU

cm ≤ cg (8.12)

The constraints Eq. (8.10)-(8.12) can be understood as follows: Eq. (8.10) requires
that each m ∈ MU must be either rejected by all filters or introduces a cost greater
than zero. Correspondingly, Eq. (8.11) enforces each m ∈ MU introduces either zero
cost or is accepted by at least one filter. In Eq. (8.12), a QoF threshold cg is set that
must not be exceeded. Recall that an SMT solver does not provide optimal solutions.
For this reason, cg is initialized with an upper bound on the QoF that is stepwise
reduced during an optimization process, for which, e.g., simple heuristics such as
binary search, random search etc., can be applied.

108 Chapter 8. Hardware Message Filter Optimization

8.4.2 Minimizing the Hardware Cost

When designing new systems, it can be meaningful to reduce the hardware cost
resulting from a filter configuration in order to lower the overall system cost on
the one hand and the system size on the other hand. Especially with respect to
low-budget embedded devices, both factors may be non-negligible. To compute filter
configurations for such system, the constraint formulation proposed in Sec. 8.4.1 can
be used, for which a fixed upper-bound on the QoF must be given that quantifies the
tolerable overhead introduced by undesired but accepted messages. In contrast to the
previous scenario, only the number k of tags per mask but not the number i of masks
is fixed, since the considered hardware component type is assumed to be given. To
determine the minimum required number of hardware components, i is decreased in
each iteration until the cost threshold cg is overshot.

8.5 Evaluation

To validate the approaches proposed in this chapter, distinct experiments based
on multiple benchmarks are performed. Subsequently, the benchmarks and the
experiment setup are described, before the results are discussed.

8.5.1 Benchmarks

To evaluate the proposed approaches, different benchmarks are considered. The
epsilon benchmark refers to the the network specification of the battery electric
vehicle epsilon’s [Eps] heating, ventilation, and air conditioning controllers provided
by [PDB17]. It comprises 55 11-bit message IDs with periods, out of which 11 are
desired and 44 undesired. The SAE benchmark consists of 55 messages that were
originally presented in [Aut94] and provided in a modified version in [LJP17]. From
the modified benchmark, 18 desired messages are selected. Since no message IDs
are provided, 11-bit message IDs in a range from 0 to 2047 are created and assigned
randomly. The resulting set of message IDs is given in Table 8.2.

The NDA benchmark is an industrial benchmark with 17 desired and 12 undesired
messages. Due to a non-disclosure agreement, further details about the benchmark
are omitted. As the Racing benchmark it is referred to a benchmark of a Formula
Student Germany [For] racing car provided by GET racing Dortmund e.V. [GET].
For reasons of competitiveness, further details about the benchmark are omitted.
Moreover, synthetic benchmarks are created by generating sets of message IDs to
which periods from the set {50ms, 100ms, 500ms, 1000ms} are assigned randomly.

8.5.2 Experiment Setup

For the evaluation, different experiments are performed. In order to provide compa-
rable time measurements, all experiments are conducted on a machine with Intel®
Xeon® i7-9800X processor (3.80GHz, 16 CPUs, 8 cores per socket, 2 logical threads

8.5. Evaluation 109

ID [hex] T [ms] Des. ID [hex] T [ms] Des. ID [hex] T [ms] Des.
0x058 20 yes 0x28A 20 0x5B4 5 yes
0x06B 20 0x2AD 20 yes 0x5CE 10
0x085 5 yes 0x2C6 1000 0x601 1000
0x0C6 20 yes 0x2EF 10 0x624 20
0x0DC 20 0x309 20 yes 0x644 10
0x11E 5 0x316 10 0x667 20
0x138 1000 0x336 20 0x66B 20 yes
0x13F 20 yes 0x351 20 yes 0x6AB 20 yes
0x148 20 yes 0x364 20 yes 0x6D2 20
0x15E 20 0x38A 20 0x6D3 20 yes
0x1BA 5 0x3A1 20 0x6F4 20 yes
0x1F8 20 0x3F7 20 0x6F8 100
0x209 20 yes 0x40A 5 0x725 10
0x212 1000 0x479 1000 0x755 20
0x235 10 0x4B4 5 0x772 20
0x236 20 0x4B5 20 yes 0x77C 5 yes
0x23F 20 yes 0x564 20 0x7D8 1000

Table 8.2: The modified SAE benchmark by Lesi et al. [LJP17] with randomly
chosen desired messages and synthetic message IDs generated according
to a uniform distribution.

per core) and 31 GiB RAM. The proposed constraints are solved using the Z3 solver
by Microsoft [MB08].

Experiment 1: Minimum and Varying Number of Filters

A minimum perfect filter configuration for the epsilon benchmark is computed con-
sidering a filter component with one tag per mask. Beginning with the retrieved
minimum number of filters required for a minimum perfect filter configuration, the
number of filters is stepwise reduced to 1. For each considered number of filters, an
imperfect filter configuration is computed. The QoF of the filter configurations as well
as the time required for the computation are documented and compared to the results
reported in [PDB17]. The SAE benchmark is examined under the same settings. For
comparison, the experiment is performed for the NDA benchmark and for the Racing
benchmark as well.

Experiment 2: Varying Number of Tags

The impact of the number of tags per mask on the time required to find an imperfect
filter configuration is analyzed based on the epsilon benchmark and the SAE bench-

110 Chapter 8. Hardware Message Filter Optimization

mark. For this purpose, a filter component with one mask and different numbers of
tags is considered.

Experiment 3: Hardware Cost Optimization

With respect to the optimization of the hardware cost, the number of required
hardware filter components for a given QoF threshold as well as the time required
for computing a filter configuration is examined using synthetic benchmarks. For
this purpose, a component with 1 tag per mask and a set of 100 randomly created
message IDs are considered out of which 20 IDs are marked as desired. A maximum
QoF threshold of 5 %, 10 %, and 20 % of the maximum possible QoF (also referred
to as the allowed QoF overhead) is considered. For each configuration, 10 sets of
message IDs are generated.

8.5.3 Results

Experiment 1: Minimum and Varying Number of Filters

For the epsilon benchmark and an unlimited number of available hardware components
with 1 mask and 1 associated tag, a perfect filter configuration with 7 filters is obtained
within 0.94 seconds. Identical results are reported by [PDB17], however, no information
about the run-time is provided. For 3 filters, a QoF of 48 s−1 is obtained within 0.87
seconds, as illustrated in Fig. 8.2a and Fig. 8.2b. The QoF achieved for this scenario
by [PDB17] is 48 s−1 as well, but, analogously to the previous case, no run-time is
documented. Note that the maximum, i.e., the worst, QoF that can be achieved for
the epsilon benchmark is 1180 s−1. As evident from Fig. 8.2a, the QoF improves with
an increasing number of masks, i.e., filters. This observation can be made as well
with respect to the SAE benchmark. Note, that a QoF of 2216s−1 is achieved for the
SAE benchmark, i.e., its maximum possible QoF, under 1 as well as under 2 masks,
since the number of filters is not sufficient to block any undesired message.

In general, the time required for computing a filter configuration for the SAE
benchmark is higher than for the epsilon benchmark, as shown in Fig. 8.2b. One
important aspect affecting the run-time that can explain this observation is the ID
design. In fact, the message IDs of the SAE benchmark are created randomly. Hence,
it is possible that some IDs differ by an unnecessarily high number of bits, resulting
in an increase of computation time for the SMT solver. With respect to the epsilon
benchmark, in contrast, it can be assumed that the ID assignment has been done very
carefully, since these message IDs are actively used in a real-world system. The validity
of this explanation is supported by the results obtained for the NDA benchmark and
the Racing benchmark4.

4Due to a non-disclosure agreement concerning the NDA benchmark and for reasons of competi-
tiveness with respect to the Racing benchmark, details about the results are omitted.

8.5. Evaluation 111

1 2 3 4 5 6 7
Number of Filters

0

500

1000

1500

2000

Q
ua

lit
y

of
Fi

lte
r(

s−
1)

epsilon
SAE

(a) QoF for different number of filters con-
sidering two benchmarks.

1 2 3 4 5 6 7
Number of Filters

0

2

4

6

8

Ti
m

e
(s

)

epsilon
SAE

(b) Computation time for different number
of filters considering two benchmarks.

1 2 3 4 5 6 7 8 9 10
Number of Tags

0

500

1000

1500

2000

Q
ua

lit
y

of
Fi

lte
r(

s−
1)

epsilon
SAE

(c) QoF for one mask with different number
of tags considering two benchmarks.

5 10 20 30 50
Allowed QoF Overhead (%)

6

7

8

9

10

11

12

N
um

be
ro

fF
ilt

er
s

(d) Minimum number of filters for allowed
QoF (synthetic benchmarks).

Figure 8.2: Results of different experimental scenarios investigating the QoF for
different numbers of filters, the time required for computing filter con-
figurations, and the minimum number of filters ensuring that a given
QoF threshold is not overshot. Lower is better.

112 Chapter 8. Hardware Message Filter Optimization

Experiment 2: Varying Number of Tags

When considering hardware filter components consisting of only one mask with
multiple tags, a perfect filter configuration for the epsilon benchmark can be obtained
when 10 tags are available, as shown in Fig. 8.2c. The time required to compute the
solutions was measured for both the epsilon and the SAE benchmark, however, due to
strong variations without a discernible trend it cannot be generally stated if solutions
can be computed faster when considering multiple filter components with 1 tag per
mask or for one filter component with multiple tags. Consequently, the results are
not illustrated here. When deciding about the type of filter components to be used in
a system, however, it should be taken into account which hardware components are
available as commercial off-the-shelf hardware, since filters with very specific numbers
may need to be expensively custom-made.

Experiment 3: Hardware Cost Optimization

Regarding the optimization of the number of required hardware components under a
given upper bound on the QoF, the computed minimum number of filters is illustrated
in Fig. 8.2d. The diagram can be understood as follows: The box, termed interquartile
range IRQ, represents the middle 50 % of data points, within which the red line
marks the median. Accordingly, the lower border of the box indicates the middle
value between the smallest data point and the median, denoted by Q1, whereas the
the upper border of the box indicates the middle value between the largest data point
and the median, denoted by Q3. The black so-called whiskers indicate the distribution
of data points outside the interquartile range; the lower whisker marks Q1 − 1.5 · IQR

and the upper whisker Q3 + 1.5 · IQR. So-called outliers, i.e., data points that are
located outside of the area limited by the whiskers, are indicated by circles.

It can be observed that with increasing allowed QoF overhead less filters are
required, except for an overhead of 30 %. However, the number of filters strongly
varies for each considered scenario, i.e., for each QoF overhead value. The computation
times required for obtaining a solution varies as well: For an overhead of 5 % of
the maximum possible QoF, a solution is computed within an average time of 11.84
seconds with a standard deviation of 18.85 seconds. For 10 % overhead, an average
computation time of 9.21 seconds with a standard deviation of 8.87 seconds is required,
for 20 % overhead, 60.88 seconds with a standard deviation of 234.69 seconds, for
30 % overhead, 6.35 seconds with a standard deviation of 1.99 seconds, and for 50 %
overhead 6.62 seconds with a standard deviation of 4.1 seconds.

Based on these results, it is not possible to make a clear statement regarding the
dependence of the computation time on the of permitted QoF overhead. However,
the lack of a clear trend as well as the relatively high standard deviations suggest
a relation to the random nature of the synthetic message IDs considered in the
experiment and thus support the previous statement that the number of filters as well
as the time consumed to compute a solution strongly depend on the ID design. In
consequence, it can be concluded that it is necessary to optimize the ID assignment

8.6. Related Work 113

of message sets in CAN for multiple reasons: An optimization does not only allow
to design better hardware message filters and, in the course of this, to reduce the
computational overhead for inspecting incoming messages in terms of their relevance,
but also contributes to reducing the time required for configuring hardware filters as
well as the actual (hardware) cost of a system.

8.6 Related Work

The topic of hardware message filtering in CAN has been addressed quite scarcely in the
literature. In fact, the majority of works taking CAN message IDs into consideration
focuses on schedulability analysis, e.g., [DBB+07], or priority assignment. For instance,
[PDB16] proposes an approach for designing extensible ID assignments, such that
further messages can be integrated into the system at a later point in time without
violating the schedulability. An optimal priority assignment for the scheduling of a
mixture of CAN and CAN FD [Rob12] frames is proposed in [PS19]. As part of this
approach, IDs are split into distinct priority and filter sections.

The first work addressing the the optimization of hardware message filter configu-
rations in CAN has been published in 2017 [PDB17], followed by [SBS+19], which
covers the approaches proposed in this chapter. Building on the findings emphasized
in Sec. 8.5, strategies for the optimization of already existing ID assignments are
proposed in [SSC20].

Message IDs are also considered in the context of security. For instance, [SLJ+19]
proposes a so-called dynamic ID virtualization technique. By assigning ID ranges
instead of IDs to each message and by randomly changing each ID within its range,
attackers shall be prevented from injecting messages with predefined IDs into the
system. This approach, however, could be detrimental to the QoF of hardware
message filters in the system. In fact, since no fixed IDs are assigned, filters cannot be
configured in a fine-granular manner, but may need to exhibit a high number of don’t
care bits. It may, nevertheless, be possible to choose sets of IDs instead of ranges,
which are composed of IDs that can be merged easily, in order to anyway design filter
configurations with a reasonable QoF. For this purpose, the constraint formulations
proposed in this chapter can be supportive.

8.7 Summary

The objective of this chapter was to propose an approach to reduce the workload
imposed on a smart vehicle’s ECU when inspecting received messages in terms of their
relevance. To achieve this, methods for computing perfect and imperfect hardware
message filter configurations have been proposed and their effectiveness has been
confirmed by evaluations involving real-world benchmarks. It has been observed
that the design of message IDs has a strong impact on the minimal number of filters
needed for perfect filtering when the number of available filters is not limited, on the

114 Chapter 8. Hardware Message Filter Optimization

attainable QoF under a limitation of filter components, as well as on the time required
for computing filter configurations. Against the background of these findings, the
necessity of optimizing the ID assignments of sets of messages has been emphasized in
order to compute filter configurations with lower, i.e., better, QoF within shorter time
and to save hardware components. Based on the contributions and insights presented
in this chapter, an optimization approach has already been published in [SSC20].

Notation Meaning

m CAN message
bm Message ID
Pm Period of m

H Message ID length
MD Set of desired messages
MU Set of undesired messages
F Filter configuration
f Filter
xi Mask of a filter
Yi Set of tags of a mask
yi,k Tag in a set of tags

b_and Bit-wise and operation
b_xor Bit-wise xor operation

⊕ Logic xor operation
∗ don’t care bit

QoF Quality of Filter; the lower, the better
bm,ℓ Bit in a bit-vector
Mall Set of messages whose IDs can be expressed by an H-bit vector
Mok Mok = Mall\MU

PI (Mok) Prime implicants of Mok

cg QoF upper bound
cm Cost introduced by message m

Table 8.3: Overview of the notation introduced in Chapter 8.

Part IV

Conclusion and Outlook

115

CHAPTER 9
Conclusion

Contents
9.1 Summary . 117
9.2 Open Problems and Future Research Directions 120

9.1 Summary

In this dissertation, the use case of a smart city has been considered, which is becoming
increasingly relevant due to technological advancements, especially with respect to
wireless technologies [LXC+19]. Against this background, a set of arising challenges
has been addressed, concerning distributed systems that serve as the technological
backbone of a smart city, as introduced in Chapter 3, and embedded systems, as
introduced in Chapter 6, that are not considered as part of a distributed system
but can connect to it in order to make use of the hardware infrastructure. All
contemplated challenges are related to the notion of quality of service: Mechanisms
have been proposed that either allow to guarantee the satisfaction of applications’
QoS requirements or to enable the system(s) to generally provide more service to
(specific types of) executed applications. The areas of an exemplary smart city to
which the contemplated challenges correspond as well as the respective contributions
made by this dissertation are illustrated in Fig. 9.1.

Concretely, in Part II, the perspective of a distributed system has been adopted,
which can be used as an on-demand execution platform for applications originating
from distinct actors and traffic participants of a smart city. In this context, Chapter 4
addressed the challenge of providing QoS guarantees in terms of temporal correctness
to all applications executed on the system. For this purpose, the concept of QoS
contracts has been introduced as well as a system admission process that allows to
conclude these between an application and the system. QoS contracts come with

117

118 Chapter 9. Conclusion

under Unreliable Connections
Safe Offloading

Filter
O

ptim
ization

H
ardware

M
essage

Contract-Based Quality of Service Assurance & Robustness-Aware Quality of Service Contracts

Figure 9.1: Against the background of technological advancements, several chal-
lenges arise in the context of a smart city. This dissertation addressed a
subset of these related to several aspects of quality of service.

multiple benefits: In the course of the system admission process, distributed response
time analyses are used, which are less intensive in terms of computation time than
global response-time analyses. By means of simulations, it has been shown that
the system admission according to the proposed approach outperforms the related
approach of [NSE11] relying on global response-time analyses and that this advantage
in computation time increases with a growing system size. Moreover, due to the
considered system design, application-level QoS contracts can be constructed as a
conjunction instead of a composition of task-level QoS contracts which facilitates
the verification of their satisfaction. To detect contract violations, a monitoring-
based approach has been introduced, which is based on a set of MITL constraints
specifying the expected system behavior. Depending on which constraints are violated,
different types of contract violations, including their causes, can be distinguished.
This approach has been proven to be effective by means of simulations under error
and fault injection.

On this basis, Chapter 5 aimed to reduce the resource waste resulting from
resource overreservations made for applications admitted to the system. Since not
each application requires its temporal correctness requirement to be satisfied at any
point in time, but reasonable results maintaining the system’s functionality and safety
can also be achieved under a certain amount of temporal correctness violations for some
types of applications, applications with additional robustness requirements relaxing
the temporal correctness requirement have been considered. For such applications,

9.1. Summary 119

the concept of robustness-aware QoS contracts (short: soft QoS contracts) has been
proposed that allows to provide temporal correctness guarantees while taking the
robustness requirements into consideration. For establishing soft QoS contracts, a
set of constraints have been proposed describing the expected characteristics of an
admitted application, based on which the system admission process can be performed,
for instance, using an SMT solver. By simulations comparing the number of accepted
applications under QoS contracts and soft QoS contracts, it has been found that,
depending on the simulated scenario, under soft QoS contracts up to 50 % more
applications can be accepted than under normal QoS contracts.

In Part III, the focus was shifted towards individual systems, e.g, smart vehicles,
facing limitations due to constrained local resources. To activate advanced function-
alities such as, e.g., autonomous navigation, regardless, a system can connect to a
smart city’s distributed system and offload parts of applications for remote execu-
tion. Aiming to satisfy the temporal correctness requirements of critical applications
and, thus, to ensure the system safety despite the potential unreliability of wireless
connections, two recovery protocols have been proposed in Chapter 7. For each
protocol, related schedulability tests have been provided that allow to verify offline,
i.e., at design time if a system implementing the respective protocol can provide
QoS guarantees for critical tasks at any point in time. By means of simulations
involving data measured on a real-world robotic system, it has been shown that the
reduction of the maximum system utilization payed as the price for an increased
safety is acceptable. Furthermore, it has been observed that the duration of the
system exhibiting a local fallback execution behavior is not excessive when compared
to the overall simulation time. Additionally, in the course of the evaluation, different
factors have been identified that have an impact on the amount of time the system
exhibits local execution behavior, which can be taken into account for optimization
purposes during the system design. Building on these contributions, an extension
of the recovery protocols for systems with multiple criticality levels, e.g., for drones
monitoring sporting events, has been developed in the context of a bachelor thesis
co-supervised by the author of this dissertation.

To reduce the computational overhead introduced to a resource-constrained system
by the inspection of received broadcast messages in terms of their relevance, Chapter 8
addressed the optimization of hardware message filters in controller area network.
Since a participant of a broadcast bus, e.g., an ECU, receives all messages written to
the bus, it must be checked for each incoming message if further message handling
is necessary. To reduce this overhead resulting from irrelevant received messages,
hardware message filters can be applied that prevent the reception of undesired
messages based on their IDs, provided that they are configured accordingly. To
optimize such hardware message filter configurations, methods for computing perfect
and imperfect hardware message filter configurations have been proposed and their
effectiveness has been confirmed by evaluations involving real-world benchmarks.
The evaluation results have indicated that the ID assignment of message sets is
crucial in order to compute more effective filter configurations within shorter time

120 Chapter 9. Conclusion

and, depending on the considered scenario, to save hardware components at system
design time. Based on the findings presented in this dissertation, an approach for the
optimization of ID assignments in existing systems has been published in [SSC20] to
which the author of this dissertation has contributed.

9.2 Open Problems and Future Research Directions

Beyond the challenges addressed in this dissertation, manifold other open problems
exist that will continue to arise in consequence of technological advances. With
respect to distributed systems as considered in Part II, further challenges emerge
directly from the concepts of QoS contracts. Although soft QoS contracts already
refine the notion of QoS as required by an application and guaranteed by a system, it
is desirable to establish a more comprehensive type of QoS guarantees by including
further parameters. In addition, it is advisable to extend the concept of QoS contracts
also to applications with arbitrary deadlines, i.e., applications having an end-to-end
deadline longer than their period. This can, for instance, be the case for applications
processing the input of sensors that sample with a high frequency.

Taking up the proposal made in Chapter 5, it can be meaningful to introduce quota
for different classes of applications executed on a system. To this end, it is necessary
to define such classes of applications in a fine-grained way, supported by case studies
carried out on real-world systems. One possible criterion for defining such classes is
the amount of time for which an application is executed on the distributed system. In
fact, after the admission of an application to the system, it is not necessarily executed
in perpetuity, for instance, if originating from a smart vehicle that only passes through
the smart city. Information about how long an application is likely to utilize the
system infrastructure can also be taken into account during the system admission
process, i.e., with respect to the reservation of resources.

To obtain such as well as other information, it is necessary to perform more
extensive monitoring, i.e., beyond the monitors based on the MITL constraints
provided in Chapter 4, and to make predictions based on the retrieved data. In
general, the information obtained through monitoring can be exploited to a larger
extent; for instance, it is meaningful to develop system reconfiguration strategies that
can be directly applied as countermeasures to the events and system states detected
by the monitors.

When offloading computation from an individual system, as considered in Part III,
to a distributed system making use of recovery protocols as proposed in Chapter 7, it is
recommendable to take the advancements of new cellular networking technologies into
account, such as the fifth generation of mobile communication networking (5G) [Eur19],
where transmission times can be guaranteed depending, among others, on the channel
conditions [NSO+22]. By modifying the protocols according to such advancements,
it may be possible to reduce the waste of resources and to provide less pessimistic
schedulability tests. Furthermore, with respect to individual systems, a primary need

9.2. Open Problems and Future Research Directions 121

for action exists in the field of security, especially regarding the interplay of security
and safety. Although TSN is becoming the new de facto technological standard for
in-vehicle communication [SZ18], CAN is still the prevailing communication resource
encountered in the majority of vehicles. Therefore, it should be investigated how the
contributions made in Chapter 8 with respect to hardware message filtering can be
beneficial also in the context of security, e.g., in combination with related works.

List of Figures

1.1 Illustration of an exemplary smart city including its components
and actors. The areas, to which the challenges addressed in this
dissertation are related, are marked and annotated with the chapters,
in which further details can be found. 4

2.1 Illustration of a sporadic real-time task τi. 10

3.1 A schematic overview of the system architecture. 18
3.2 Schematic illustration of an exemplary resource graph. 20
3.3 Schematic illustration of a task graph with n ∈ N tasks. 20
3.4 Illustration of an exemplary task τi,j and of a subset of its parameters. 21

4.1 A smart city involving a multitude of different participants that use
the distributed infrastructure on demand. This chapter introduces
the concept of QoS contracts for applications, a system admission
process, and a monitoring approach for detecting contract violations. 24

4.2 Schematic overview of the simulation workflow. 40
4.3 The ratio of the time required by the global and distributed approach

depending on different parameters. Higher is better. 45
4.4 Scheduling diagram for one resource of an example system that

includes indications of the moments in which the monitors evaluate
the conditions for detecting different types of contract violations.
Tasks scheduled on the resource: τ7 = {c7 = 8, P7 = 100, ω7 =
15, D7 = 8, Π7 = 1}, τ4 = {c4 = 15, P4 = 50, ω4 = 18, D4 =
20, Π4 = 2}, τ5 = {c5 = 2, P5 = 50, ω5 = 38, Π3 = 3}, and τ9 =
{c9 = 40, P9 = 100, ω9 = 0, D = 100, Π9 = 4}. 48

5.1 On distributed systems underlying a smart city, applications with
multifaceted QoS requirements can be executed. This chapter
extends the concept of QoS contracts as well as their construction
process, such that robustness requirements of applications are taken
into account. 54

5.2 Possible execution scenarios of a sequence of k1 = 3 successive
application instances for an application a1 with ρ1 = (2, 3) and
Pi = 0.6. 61

123

124 List of Figures

5.3 The impact of the interval out of which the confidence level of an
application is chosen on the number of accepted applications is
compared under the system admission process for QoS contracts
(Hard) and the system admission process for soft QoS contracts
(Soft) for low and high (m, k)-criteria. Higher is better. 65

5.4 The impact of different (m, k)-criteria on the number of accepted
applications is compared under the system admission process for QoS
contracts (Hard) and for soft QoS contracts (Soft) for applications’
confidence levels chosen out of [0.1, 0.3] and [0.7, 0.9]. Higher is better. 66

6.1 An offloading operation of a job of task τi is performed successfully. 73
6.2 A job of task τi is executed locally. 74

7.1 Wireless connections, especially in rural areas of a smart city, are not
always reliable. This chapter introduces an approach for offloading
critical applications from an endpoint system to a distributed system
while providing QoS guarantees. 78

7.2 An unsuccessful offloading operation of τi results in the transition
to the local system behavior at time γ1,↘. 81

7.3 Execution of a task τi under analysis in [t, t + ∆) in case 1a of
Lemma 2. 84

7.4 Execution of a task τi under analysis in [t, t + ∆) in case 1b of
Lemma 2. 84

7.5 Execution of a task τi under analysis in [t, t + ∆) in case 2a of
Lemma 2. 85

7.6 Execution of a task τi under analysis in [t, t + ∆) in case 2b of
Lemma 2. 85

7.7 The percentage of time in which the system exhibits local execution
behavior depending on the system utilization (experiment 1a-I). . . 93

7.8 The acceptance ratios obtained for the schedulability tests of the
service and the return protocol (experiment 1a-II). 93

7.9 Experiment 1b): The percentage of time the system exhibits local
execution behavior during the simulation for different probabilities
of unsuccessful offloading operations under the service and the
return protocol with a system utilization of 30 % and 20 % critical
tasks. Lower is better. 94

7.10 Experiment 1c): The percentage of time the system exhibits local
execution behavior during the simulation under the service and
the return protocol for different percentages of critical tasks in the
system with a system utilization of 30 % and λ = 0.1 · 1

ms . Lower is
better. 95

List of Figures 125

7.11 Experiment 1d): The percentage of time the system exhibits local
execution behavior during the simulation under the service and the
return protocol for different intervals for the period generation with
UUnifast with a system utilization of 30 %, 20 % critical tasks, and
λ = 0.1 · 1

ms . Lower is better. 96
7.12 Experiment 2): The percentage of time the robot exhibits local

execution behavior during the simulation under the service and the
return protocol for different probabilities of unsuccessful offloading
operations and percentages of offloaded workload per task. Lower
is better. 97

8.1 Undesired CAN messages introduce computational overhead to a
smart vehicle’s ECUs, but can be blocked by configurable hardware
message filters. This chapter proposes approaches for optimizing
hardware message filter configurations. 102

8.2 Results of different experimental scenarios investigating the QoF for
different numbers of filters, the time required for computing filter
configurations, and the minimum number of filters ensuring that a
given QoF threshold is not overshot. Lower is better. 111

9.1 Against the background of technological advancements, several
challenges arise in the context of a smart city. This dissertation
addressed a subset of these related to several aspects of quality of
service. 118

List of Tables

2.1 Overview of the notation introduced in Chapter 2. 14

3.1 Overview of the notation introduced in Chapter 3. 22

4.1 Overview of the notation introduced in Chapter 4. 51

5.1 Overview of the notation introduced in Chapter 5. 68

6.1 Overview of the notation introduced in Chapter 6. 75

7.1 Overview of the notation introduced in Chapter 7. 100

8.1 A filter (one mask, one tag per mask) and a set of exemplary message
IDs. 104

8.2 The modified SAE benchmark by Lesi et al. [LJP17] with randomly
chosen desired messages and synthetic message IDs generated ac-
cording to a uniform distribution. 109

8.3 Overview of the notation introduced in Chapter 8. 114

127

Bibliography

[AA22] S. Ahmed and J. H. Anderson. “Exact Response-Time Bounds of Periodic DAG
Tasks under Server-Based Global Scheduling”. In: 2022 IEEE Real-Time Systems
Symposium (RTSS). 2022, pp. 447–459. doi: 10.1109/RTSS55097.2022.00045
(Cited on page 32).

[AFH96] R. Alur, T. Feder, and T. A. Henzinger. “The Benefits of Relaxing Punctuality”.
In: J. ACM 43.1 (01/1996), pp. 116–146. issn: 0004-5411. doi: 10.1145/227595.
227602 (Cited on pages 35 sq.).

[ANN+22] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. “A Comprehen-
sive Survey of Industry Practice in Real-Time Systems”. In: Real-Time Syst. 58.3
(09/2022), pp. 358–398. issn: 0922-6443. doi: 10.1007/s11241-021-09376-1
(Cited on page 40).

[ARS18] A. Adiththan, S. Ramesh, and S. Samii. “Cloud-assisted Control of Ground
Vehicles Using Adaptive Computation Offloading Techniques”. In: 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2018, pp. 589–
592. doi: 10.23919/DATE.2018.8342076 (Cited on page 80).

[Aut94] S. of Automotive Engineers. Class C Application Requirement Considerations.
Standard. SAE J2056/1, 1994 (Cited on page 108).

[Bar14] S. Baruah. “Improved Multiprocessor Global Schedulability Analysis of Sporadic
DAG Task Systems”. In: 2014 26th Euromicro Conference on Real-Time Systems.
2014, pp. 97–105. doi: 10.1109/ECRTS.2014.22 (Cited on page 31).

[Bar15a] S. Baruah. “Federated Scheduling of Sporadic DAG Task Systems”. In: 2015
IEEE International Parallel and Distributed Processing Symposium. 2015,
pp. 179–186. doi: 10.1109/IPDPS.2015.33 (Cited on page 32).

[Bar15b] S. Baruah. “The Federated Scheduling of Constrained-Deadline Sporadic DAG
task systems”. In: 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 2015, pp. 1323–1328. doi: 10.7873/DATE.2015.0200 (Cited
on page 32).

[Bar15c] S. Baruah. “The Federated Scheduling of Systems of Conditional Sporadic
DAG Tasks”. In: Proceedings of the 12th International Conference on Embedded
Software. EMSOFT ’15. Amsterdam, The Netherlands: IEEE Press, 2015, pp. 1–
10. isbn: 9781467380799 (Cited on page 32).

[Bar16] S. Baruah. “The Federated Scheduling of Systems of Mixed-Criticality Sporadic
DAG Tasks”. In: 2016 IEEE Real-Time Systems Symposium (RTSS). 2016,
pp. 227–236. doi: 10.1109/RTSS.2016.030 (Cited on page 32).

[BB05] E. Bini and G. C. Buttazzo. “Measuring the Performance of Schedulability
Tests”. In: Real-Time Systems 30.1-2 (2005), pp. 129–154 (Cited on page 91).

129

https://doi.org/10.1109/RTSS55097.2022.00045
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/s11241-021-09376-1
https://doi.org/10.23919/DATE.2018.8342076
https://doi.org/10.1109/ECRTS.2014.22
https://doi.org/10.1109/IPDPS.2015.33
https://doi.org/10.7873/DATE.2015.0200
https://doi.org/10.1109/RTSS.2016.030

130 Bibliography

[BBM+12] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A. Wiese. “A
Generalized Parallel Task Model for Recurrent Real-Time Processes”. In: 2012
IEEE 33rd Real-Time Systems Symposium. 2012, pp. 63–72. doi: 10.1109/RTSS.
2012.59 (Cited on page 31).

[BBM15] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela. “The Global EDF Schedul-
ing of Systems of Conditional Sporadic DAG Tasks”. In: Proceedings of the 2015
27th Euromicro Conference on Real-Time Systems. ECRTS ’15. USA: IEEE
Computer Society, 2015, pp. 222–231. isbn: 9781467375702. doi: 10.1109/
ECRTS.2015.27 (Cited on page 32).

[BCH+16] G. v. d. Brüggen, K.-H. Chen, W.-H. Huang, and J.-J. Chen. “Systems with
Dynamic Real-Time Guarantees in Uncertain and Faulty Execution Environ-
ments”. In: Real-Time Systems Symposium (RTSS). Porto, Portugal, 11/2016
(Cited on page 10).

[BCM+20] S. Ben-Amor, L. Cucu-Grosjean, M. Mezouak, and Y. Sorel. “Probabilistic
Schedulability Analysis for Precedence Constrained Tasks on Partitioned Multi-
core”. In: 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). Vol. 1. 2020, pp. 345–352. doi: 10.1109/
ETFA46521.2020.9211973 (Cited on page 55).

[BCN+18] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinke-
meier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger, and K. G.
Larsen. “Contracts for System Design”. In: Foundations and Trends® in Elec-
tronic Design Automation 12.2-3 (2018), pp. 124–400. issn: 1551-3939. doi:
10.1561/1000000053 (Cited on page 26).

[BD18] A. Burns and R. I. Davis. “A Survey of Research into Mixed Criticality Systems”.
In: vol. 50. 6. 2018, 82:1–82:37. doi: 10.1145/3131347 (Cited on page 14).

[BHC+16] G. von der Brüggen, W.-H. Huang, J.-J. Chen, and C. Liu. “Uniprocessor
Scheduling Strategies for Self-Suspending Task Systems”. In: Proceedings of the
24th International Conference on Real-Time Networks and Systems (RTNS).
2016, pp. 119–128 (Cited on page 72).

[BHC17] G. von der Brüggen, W.-H. Huang, and J.-J. Chen. “Hybrid Self-suspension
Models in Real-time Embedded Systems”. In: 23rd IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, RTCSA.
2017, pp. 1–9 (Cited on page 72).

[BMS+13] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. “Feasibility
Analysis in the Sporadic DAG Task Model”. In: 2013 25th Euromicro Conference
on Real-Time Systems. 2013, pp. 225–233. doi: 10.1109/ECRTS.2013.32 (Cited
on page 31).

[BSC18] G. von der Brüggen, L. Schönberger, and J.-J. Chen. “Do Nothing, But Carefully:
Fault Tolerance with Timing Guarantees for Multiprocessor Systems Devoid of
Online Adaptation”. In: 2018 IEEE 23rd Pacific Rim International Symposium
on Dependable Computing (PRDC). 2018, pp. 1–10. doi: 10.1109/PRDC.2018.
00010 (Cited on pages vi, 10).

https://doi.org/10.1109/RTSS.2012.59
https://doi.org/10.1109/RTSS.2012.59
https://doi.org/10.1109/ECRTS.2015.27
https://doi.org/10.1109/ECRTS.2015.27
https://doi.org/10.1109/ETFA46521.2020.9211973
https://doi.org/10.1109/ETFA46521.2020.9211973
https://doi.org/10.1561/1000000053
https://doi.org/10.1145/3131347
https://doi.org/10.1109/ECRTS.2013.32
https://doi.org/10.1109/PRDC.2018.00010
https://doi.org/10.1109/PRDC.2018.00010

Bibliography 131

[BT18] C. Barrett and C. Tinelli. “Satisfiability Modulo Theories”. In: Handbook of
Model Checking. Ed. by E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem.
Cham: Springer International Publishing, 2018, pp. 305–343. isbn: 978-3-319-
10575-8. doi: 10.1007/978- 3- 319- 10575- 8_11 (Cited on pages 41, 61,
105).

[But11] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, Third Edition. Vol. 24. Real-Time Systems Series.
Springer, 2011. isbn: 978-1-4614-0675-4. doi: 10.1007/978-1-4614-0676-1
(Cited on pages 9, 11, 13).

[CBC+16] K. Chen, B. Bönninghoff, J. Chen, and P. Marwedel. “Compensate or Ignore?
Meeting Control Robustness Requirements through Adaptive Soft-error Han-
dling”. In: Proceedings of the 17th ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, Tools, and Theory for Embedded Systems, LCTES 2016,
Santa Barbara, CA, USA, June 13 - 14, 2016. Ed. by T. Kuo and D. B. Whalley.
ACM, 2016, pp. 82–91. doi: 10.1145/2907950.2907952 (Cited on pages 13,
56).

[CBH+17] J.-J. Chen, G. von der Brüggen, W.-H. Huang, and C. Liu. “State of the Art for
Scheduling and Analyzing Self-suspending Sporadic Real-time Tasks”. In: 23rd
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA. 2017, pp. 1–10. doi: 10.1109/RTCSA.2017.8046321
(Cited on page 72).

[CBN+18] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. “Partitioned Fixed-Priority
Scheduling of Parallel Tasks Without Preemptions”. In: 2018 IEEE Real-Time
Systems Symposium (RTSS). 2018, pp. 421–433. doi: 10.1109/RTSS.2018.
00056 (Cited on page 33).

[Che16] J.-J. Chen. “Computational Complexity and Speedup Factors Analyses for Self-
Suspending Tasks”. In: Real-Time Systems Symposium (RTSS). 2016, pp. 327–
338. doi: 10.1109/RTSS.2016.039 (Cited on page 32).

[Che19] K. Chen. “Optimization and Analysis for Dependable Application Software on
Unreliable Hardware Platforms”. PhD thesis. Technical University of Dortmund,
Germany, 2019. url: https : / / hdl . handle . net / 2003 / 38110 (Cited on
page 14).

[CNH+18] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Bletsas,
C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Rajkumar, D. de Niz, and
G. von der Brüggen. “Many Suspensions, Many Problems: A Review of Self-
Suspending Tasks in Real-Time Systems”. In: Real-Time Systems (09/2018).
issn: 1573-1383. doi: 10.1007/s11241-018-9316-9 (Cited on pages 72, 82).

[CVC18] K.-H. Chen, G. Von Der Brüggen, and J.-J. Chen. “Analysis of Deadline Miss
Rates for Uniprocessor Fixed-Priority Scheduling”. In: 2018 IEEE 24th In-
ternational Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). 2018, pp. 168–178. doi: 10.1109/RTCSA.2018.00028
(Cited on page 91).

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1145/2907950.2907952
https://doi.org/10.1109/RTCSA.2017.8046321
https://doi.org/10.1109/RTSS.2018.00056
https://doi.org/10.1109/RTSS.2018.00056
https://doi.org/10.1109/RTSS.2016.039
https://hdl.handle.net/2003/38110
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1109/RTCSA.2018.00028

132 Bibliography

[CZG+23] N. Chen, S. Zhao, I. Gray, A. Burns, S. Ji, and W. Chang. “Precise Response
Time Analysis for Multiple DAG Tasks with Intra-task Priority Assignment”.
In: 2023 IEEE 29th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2023, pp. 174–184. doi: 10.1109/RTAS58335.2023.00021
(Cited on page 32).

[DAT+] J. Diemer, P. Axer, D. Thiele, and J. Schlatow. pyCPA. https : / / pycpa .
readthedocs.io/en/latest (Cited on pages 41, 63).

[DB11] R. I. Davis and A. Burns. “A Survey of Hard Real-Time Scheduling for Multi-
processor Systems”. In: ACM Comput. Surv. 43.4 (10/2011). issn: 0360-0300.
doi: 10.1145/1978802.1978814 (Cited on page 28).

[DBB+07] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. “Controller Area Network
(CAN) Schedulability Analysis: Refuted, Revisited and Revised”. In: Real-Time
Systems 35.3 (04/2007), pp. 239–272. issn: 1573-1383. doi: 10.1007/s11241-
007-9012-7 (Cited on page 113).

[DC19] R. I. Davis and L. Cucu-Grosjean. “A Survey of Probabilistic Timing Analysis
Techniques for Real-Time Systems”. In: Leibniz Trans. Embed. Syst. 6.1 (2019),
03:1–03:60. doi: 10.4230/LITES-v006-i001-a003 (Cited on page 12).

[DZB08] R. I. Davis, A. Zabos, and A. Burns. “Efficient Exact Schedulability Tests for
Fixed Priority Real-Time Systems”. In: IEEE Transactions on Computers 57.9
(2008), pp. 1261–1276 (Cited on page 91).

[EAG18] R. Ernst, L. Ahrendts, and K. B. Gemlau. “System Level LET: Mastering Cause-
Effect Chains in Distributed Systems”. In: IECON 2018 - 44th Annual Conference
of the IEEE Industrial Electronics Society, Washington, DC, USA, October 21-23,
2018. IEEE, 2018, pp. 4084–4089. doi: 10.1109/IECON.2018.8591550 (Cited
on page 22).

[EE17] I. of Electrical and E. Engineers. 802.11p-2010 - IEEE Standard for Information
technology – Local and Metropolitan Area Networks – Specific Requirements–
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments.
https://standards.ieee.org/standard/802_11p-2010.html. 2017 (Cited
on page 78).

[ENN+15] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. “How Realistic is the Mixed-
Criticality Real-Time System Model?” In: Proceedings of the 23rd International
Conference on Real Time and Networks Systems. RTNS ’15. Lille, France: Asso-
ciation for Computing Machinery, 2015, pp. 139–148. isbn: 9781450335911. doi:
10.1145/2834848.2834869 (Cited on page 80).

[Eps] Epsilon. Epsilon. Small Electric Passenger Vehicle with Maximized Safety and
Integrating a Lightweight Oriented Novel Body Architecture. https://www.
2zeroemission.eu/research-project/epsilon/ (Cited on page 108).

[Ern05] R. Ernst. “System Level Performance Analysis – the SymTA/S Approach”.
English. In: IEE Proceedings - Computers and Digital Techniques 152 (2 03/2005),
148–166(18). issn: 1350-2387 (Cited on page 35).

https://doi.org/10.1109/RTAS58335.2023.00021
https://pycpa.readthedocs.io/en/latest
https://pycpa.readthedocs.io/en/latest
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.4230/LITES-v006-i001-a003
https://doi.org/10.1109/IECON.2018.8591550
https://standards.ieee.org/standard/802_11p-2010.html
https://doi.org/10.1145/2834848.2834869
https://www.2zeroemission.eu/research-project/epsilon/
https://www.2zeroemission.eu/research-project/epsilon/

Bibliography 133

[Eur19] European Telecommunications Standards Institute. ETSI TR 121 915 V15.0.0
(2019-10). Digital Cellular Telecommunications System (Phase 2+) (GSM);
Universal Mobile Telecommunications System (UMTS); LTE; 5G; Release De-
scription; Release 15 (3GPP TR 21.915 Version 15.0.0 Release 15). 1019 (Cited
on page 120).

[FNN+16] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho. “Response Time Analysis
of Sporadic DAG Tasks under Partitioned Scheduling”. In: 2016 11th IEEE
Symposium on Industrial Embedded Systems (SIES). 2016, pp. 1–10. doi: 10.
1109/SIES.2016.7509443 (Cited on page 34).

[FNN17] J. Fonseca, G. Nelissen, and V. Nélis. “Improved Response Time Analysis
of Sporadic DAG Tasks for Global FP Scheduling”. In: Proceedings of the
25th International Conference on Real-Time Networks and Systems. RTNS ’17.
Grenoble, France: Association for Computing Machinery, 2017, pp. 28–37. isbn:
9781450352864. doi: 10.1145/3139258.3139288 (Cited on page 32).

[For] Formula Student Germany. Formula Student Germany. International Design
Competition. https://www.formulastudent.de/fsg/ (Cited on page 108).

[Gaz] Gazebo. Gazebo. Robot Simulation Made Easy. http://gazebosim.org/ (Cited
on page 92).

[GET] GET racing Dortmund e. V. GET racing Dortmund e. V. https://www.get-
racing.de/ (Cited on page 108).

[HAA+19] E. E. Haber, H. A. Alameddine, C. Assi, and S. Sharafeddine. “A Reliability-
aware Computation Offloading Solution via UAV-mounted Cloudlets”. In: 2019
IEEE 8th International Conference on Cloud Networking (CloudNet). 2019,
pp. 1–6. doi: 10.1109/CloudNet47604.2019.9064038 (Cited on page 79).

[HAE17] R. Hofmann, L. Ahrendts, and R. Ernst. “CPA: Compositional Performance
Analysis”. In: Handbook of Hardware/Software Codesign. Ed. by S. Ha and J.
Teich. Dordrecht: Springer Netherlands, 2017, pp. 721–751. isbn: 978-94-017-
7267-9. doi: 10.1007/978-94-017-7267-9_24 (Cited on page 41).

[HCC+21] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari, and M. Bertogna.
“The HPC-DAG Task Model for Heterogeneous Real-Time Systems”. In: IEEE
Transactions on Computers 70.10 (2021), pp. 1747–1761. doi: 10.1109/TC.2020.
3023169 (Cited on page 34).

[HCL15] W.-H. Huang, J. Chen, and C. Liu. “PASS: Priority Assignment of Real-time
Tasks with Dynamic Suspending Behavior under Fixed-priority Scheduling”. In:
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 06/2015,
pp. 1–6. doi: 10.1145/2744769.2744891 (Cited on page 72).

[HHJ+06] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. “System-
level Performance Analysis - The SymTA/S Approach”. In: 01/2006, pp. 29–74.
isbn: 9780863415524. doi: 10.1049/PBCS018E_ch2 (Cited on pages 41 sq.).

[HK23] T. Han and K. Kim. “Minimizing Probabilistic End-to-end Latencies of Au-
tonomous Driving Systems”. In: 29th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). 2023, pp. 1–13 (Cited on page 55).

https://doi.org/10.1109/SIES.2016.7509443
https://doi.org/10.1109/SIES.2016.7509443
https://doi.org/10.1145/3139258.3139288
https://www.formulastudent.de/fsg/
http://gazebosim.org/
https://www.get-racing.de/
https://www.get-racing.de/
https://doi.org/10.1109/CloudNet47604.2019.9064038
https://doi.org/10.1007/978-94-017-7267-9_24
https://doi.org/10.1109/TC.2020.3023169
https://doi.org/10.1109/TC.2020.3023169
https://doi.org/10.1145/2744769.2744891
https://doi.org/10.1049/PBCS018E_ch2

134 Bibliography

[HKS+19] H. Habibzadeh, C. Kaptan, T. Soyata, B. Kantarci, and A. Boukerche. “Smart
City System Design: A Comprehensive Study of the Application and Data
Planes”. In: ACM Comput. Surv. 52.2 (05/2019). issn: 0360-0300. doi: 10.1145/
3309545 (Cited on page 3).

[HR95] M. Hamdaoui and P. Ramanathan. “A Dynamic Priority Assignment Technique
for Streams with (m,k)-firm Deadlines”. In: IEEE Transactions on Computers
44.12 (1995), pp. 1443–1451. doi: 10.1109/12.477249 (Cited on pages 13, 56).

[HSG+20] A. Hamann, S. Saidi, D. Ginthoer, C. Wietfeld, and D. Ziegenbein. “Building
End-to-End IoT Applications with QoS Guarantees”. In: 2020 57th ACM/IEEE
Design Automation Conference (DAC). 2020, pp. 1–6. doi: 10.1109/DAC18072.
2020.9218564 (Cited on page 4).

[HZL+21] M. Han, T. Zhang, Y. Lin, and Q. Deng. “Federated Scheduling for Typed
DAG Tasks Scheduling Analysis on Heterogeneous Multi-Cores”. In: Journal
of Systems Architecture 112 (2021), p. 101870. issn: 1383-7621. doi: https:
//doi.org/10.1016/j.sysarc.2020.101870 (Cited on page 33).

[JE12] P. A. Jonas Diemer and R. Ernst. “Compositional Performance Analysis in
Python with pyCPA”. In: 3rd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS). 2012 (Cited on
pages 35, 41).

[JGL+17] X. Jiang, N. Guan, X. Long, and W. Yi. “Semi-Federated Scheduling of Par-
allel Real-Time Tasks on Multiprocessors”. In: 2017 IEEE Real-Time Systems
Symposium (RTSS). 2017, pp. 80–91. doi: 10.1109/RTSS.2017.00015 (Cited
on page 33).

[JLG+16] X. Jiang, X. Long, N. Guan, and H. Wan. “On the Decomposition-Based Global
EDF Scheduling of Parallel Real-Time Tasks”. In: 2016 IEEE Real-Time Systems
Symposium (RTSS). 2016, pp. 237–246. doi: 10.1109/RTSS.2016.031 (Cited
on page 34).

[KRI09] S. Kato, R. Rajkumar, and Y. Ishikawa. “A Loadable Real-time Scheduler
Suite for Multicore Platforms”. In: Technical Report CMU-ECE-TR09-12 (2009)
(Cited on page 92).

[KS95] G. Koren and D. Shasha. “Skip-Over: Algorithms and Complexity for Overloaded
Systems that Allow Skips”. In: Proceedings 16th IEEE Real-Time Systems
Symposium. 1995, pp. 110–117. doi: 10.1109/REAL.1995.495201 (Cited on
page 56).

[KSL+19] H. Kotthaus, L. Schönberger, A. Lang, J.-J. Chen, and P. Marwedel. “Can
Flexible Multi-Core Scheduling Help to Execute Machine Learning Algorithms
Resource-Efficiently?” In: Proceedings of the 22nd International Workshop on
Software and Compilers for Embedded Systems. SCOPES ’19. Sankt Goar,
Germany: Association for Computing Machinery, 2019, pp. 59–62. isbn:
9781450367622. doi: 10.1145/3323439.3323986 (Cited on page vi).

[KYT+20] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang, and C. S. Hong.
“Edge-Computing-Enabled Smart Cities: A Comprehensive Survey”. In: IEEE
Internet of Things Journal 7.10 (2020), pp. 10200–10232. doi: 10.1109/JIOT.
2020.2987070 (Cited on page 3).

https://doi.org/10.1145/3309545
https://doi.org/10.1145/3309545
https://doi.org/10.1109/12.477249
https://doi.org/10.1109/DAC18072.2020.9218564
https://doi.org/10.1109/DAC18072.2020.9218564
https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101870
https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101870
https://doi.org/10.1109/RTSS.2017.00015
https://doi.org/10.1109/RTSS.2016.031
https://doi.org/10.1109/REAL.1995.495201
https://doi.org/10.1145/3323439.3323986
https://doi.org/10.1109/JIOT.2020.2987070
https://doi.org/10.1109/JIOT.2020.2987070

Bibliography 135

[KZH15] S. Kramer, D. Ziegenbein, and A. Hamann. “Real World Automotive Benchmarks
for Free”. In: 6th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS). Vol. 130. 2015 (Cited on
page 43).

[LAL+13] J. Li, K. Agrawal, C. Lu, and C. Gill. “Outstanding Paper Award: Analysis
of Global EDF for Parallel Tasks”. In: 2013 25th Euromicro Conference on
Real-Time Systems. 2013, pp. 3–13. doi: 10.1109/ECRTS.2013.12 (Cited on
page 32).

[LC14] C. Liu and J. Chen. “Bursty-Interference Analysis Techniques for Analyzing
Complex Real-Time Task Models”. In: Real-Time Systems Symposium (RTSS).
2014, pp. 173–183 (Cited on page 72).

[LCA+14] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. “Analysis of
Federated and Global Scheduling for Parallel Real-Time Tasks”. In: 2014 26th
Euromicro Conference on Real-Time Systems. 2014, pp. 85–96. doi: 10.1109/
ECRTS.2014.23 (Cited on page 32).

[LCH+22] H. Lee, Y. Choi, T. Han, and K. Kim. “Probabilistically Guaranteeing End-to-
End Latencies in Autonomous Vehicle Computing Systems”. In: IEEE Trans-
actions on Computers 71.12 (2022), pp. 3361–3374. doi: 10.1109/TC.2022.
3152105 (Cited on page 55).

[LCP+20] H. Liu, L. Cao, T. Pei, Q. Deng, and J. Zhu. “A Fast Algorithm for Energy-Saving
Offloading With Reliability and Latency Requirements in Multi-Access Edge
Computing”. In: IEEE Access 8 (2020), pp. 151–161. doi: 10.1109/ACCESS.
2019.2961453 (Cited on page 79).

[Leh90] J. Lehoczky. “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines”. In: [1990] Proceedings 11th Real-Time Systems Symposium. 1990,
pp. 201–209. doi: 10.1109/REAL.1990.128748 (Cited on page 41).

[LFA+17] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. “Mixed-Criticality
Federated Scheduling for Parallel Real-Time Tasks”. In: Real-Time Syst. 53.5
(09/2017), pp. 760–811. issn: 0922-6443. doi: 10.1007/s11241-017-9281-8
(Cited on page 32).

[LJP17] V. Lesi, I. Jovanov, and M. Pajic. “Network Scheduling for Secure Cyber-Physical
Systems”. In: IEEE Real-Time Systems Symposium (RTSS). 2017 (Cited on
pages 108 sq.).

[LKA04] J. Leung, L. Kelly, and J. H. Anderson. Handbook of Scheduling: Algorithms, Mod-
els, and Performance Analysis. USA: CRC Press, Inc., 2004. isbn: 1584883979
(Cited on page 87).

[LKR10] K. Lakshmanan, S. Kato, and R. Rajkumar. “Scheduling Parallel Real-Time
Tasks on Multi-Core Processors”. In: 2010 31st IEEE Real-Time Systems Sym-
posium. 2010, pp. 259–268. doi: 10.1109/RTSS.2010.42 (Cited on page 31).

[LL73] C. L. Liu and J. W. Layland. “Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment”. In: J. ACM 20.1 (01/1973), pp. 46–61. issn:
0004-5411. doi: 10.1145/321738.321743 (Cited on pages 11, 89).

https://doi.org/10.1109/ECRTS.2013.12
https://doi.org/10.1109/ECRTS.2014.23
https://doi.org/10.1109/ECRTS.2014.23
https://doi.org/10.1109/TC.2022.3152105
https://doi.org/10.1109/TC.2022.3152105
https://doi.org/10.1109/ACCESS.2019.2961453
https://doi.org/10.1109/ACCESS.2019.2961453
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1007/s11241-017-9281-8
https://doi.org/10.1109/RTSS.2010.42
https://doi.org/10.1145/321738.321743

136 Bibliography

[LSU+23] C.-C. Lin, J. Shi, N. Ueter, M. Günzel, J. Reineke, and J.-J. Chen. “Type-
Aware Federated Scheduling for Typed DAG Tasks on Heterogeneous Multicore
Platforms”. In: IEEE Transactions on Computers 72.5 (2023), pp. 1286–1300.
doi: 10.1109/TC.2022.3202748 (Cited on page 33).

[LXC+19] K. Liu, X. Xu, M. Chen, B. Liu, L. Wu, and V. C. S. Lee. “A Hierarchical
Architecture for the Future Internet of Vehicles”. In: IEEE Communications
Magazine 57.7 (2019), pp. 41–47. doi: 10.1109/MCOM.2019.1800772 (Cited on
pages 3 sq., 117).

[MA21] F. Machida and E. Andrade. “PA-Offload: Performability-Aware Adaptive Fog
Offloading for Drone Image Processing”. In: 2021 IEEE 5th International Con-
ference on Fog and Edge Computing (ICFEC). 2021, pp. 66–73. doi: 10.1109/
ICFEC51620.2021.00017 (Cited on page 79).

[MB08] L. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan
and J. Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340.
isbn: 978-3-540-78800-3 (Cited on pages 41, 63, 109).

[MEB19] V. Millnert, J. Eker, and E. Bini. “End-To-End Deadlines over Dynamic Topolo-
gies”. In: 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Ed.
by S. Quinton. Vol. 133. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
10:1–10:22. isbn: 978-3-95977-110-8. doi: 10.4230/LIPIcs.ECRTS.2019.10
(Cited on page 25).

[MN04] O. Maler and D. Nickovic. “Monitoring Temporal Properties of Continuous
Signals”. In: Formal Techniques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. Ed. by Y. Lakhnech and S. Yovine. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 152–166. isbn: 978-3-540-30206-3 (Ci-
ted on pages 36 sq., 42).

[NBG+12] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. “Techniques Optimizing
the Number of Processors to Schedule Multi-threaded Tasks”. In: 2012 24th
Euromicro Conference on Real-Time Systems. 2012, pp. 321–330. doi: 10.1109/
ECRTS.2012.37 (Cited on page 33).

[Nel53] R. J. Nelson. “W. V. Quine. The Problem of Simplifying Truth Functions. The
American mathematical monthly, vol. 59 (1952), pp. 521–531. (Offprint 1952,
on sale by the Mathematical Association of America.)” In: Journal of Symbolic
Logic 18.3 (09/1953), pp. 280–282. doi: 10.2307/2267441 (Cited on page 106).

[NNB19] M. Nasri, G. Nelissen, and B. B. Brandenburg. “Response-Time Analysis of
Limited-Preemptive Parallel DAG Tasks under Global Scheduling”. In: 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Ed. by S. Quinton.
Vol. 133. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 21:1–21:23.
isbn: 978-3-95977-110-8. doi: 10.4230/LIPIcs.ECRTS.2019.21 (Cited on
page 32).

[NQ06] L. Niu and G. Quan. “Energy Minimization for Real-time Systems with (m,k)-
guarantee”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 14.7 (2006), pp. 717–729. doi: 10.1109/TVLSI.2006.878337 (Cited on
page 56).

https://doi.org/10.1109/TC.2022.3202748
https://doi.org/10.1109/MCOM.2019.1800772
https://doi.org/10.1109/ICFEC51620.2021.00017
https://doi.org/10.1109/ICFEC51620.2021.00017
https://doi.org/10.4230/LIPIcs.ECRTS.2019.10
https://doi.org/10.1109/ECRTS.2012.37
https://doi.org/10.1109/ECRTS.2012.37
https://doi.org/10.2307/2267441
https://doi.org/10.4230/LIPIcs.ECRTS.2019.21
https://doi.org/10.1109/TVLSI.2006.878337

Bibliography 137

[NSE11] M. Neukirchner, S. Stein, and R. Ernst. “The EPOC Architecture—Enabling
Evolution Under Hard Constraints”. In: Organic Computing — A Paradigm
Shift for Complex Systems. Ed. by C. Müller-Schloer, H. Schmeck, and T.
Ungerer. Basel: Springer Basel, 2011, pp. 399–412. isbn: 978-3-0348-0130-0. doi:
10.1007/978-3-0348-0130-0_26 (Cited on pages 25, 42, 50, 118).

[NSO+22] A. Nota, S. Saidi, D. Overbeck, F. Kurtz, and C. Wietfeld. “Context-based
Latency Guarantees Considering Channel Degradation in 5G Network Slicing”.
In: 2022 IEEE Real-Time Systems Symposium (RTSS). 2022, pp. 253–265. doi:
10.1109/RTSS55097.2022.00030 (Cited on page 120).

[OHC+23] P. Oza, N. Hudson, T. Chantem, and H. Khamfroush. “Deadline-Aware Task
Offloading for Vehicular Edge Computing Networks Using Traffic Lights Data”.
In: ACM Trans. Embed. Comput. Syst. (04/2023). Just Accepted. issn: 1539-9087.
doi: 10.1145/3594541 (Cited on page 80).

[PDB16] F. Pölzlbauer, R. I. Davis, and I. Bate. “A Practical Message ID Assignment
Policy for Controller Area Network That Maximizes Extensibility”. In: Proceed-
ings of the 24th International Conference on Real-Time Networks and Systems.
RTNS ’16. Brest, France: Association for Computing Machinery, 2016, pp. 45–54.
isbn: 9781450347877. doi: 10.1145/2997465.2997484 (Cited on page 113).

[PDB17] F. Pölzlbauer, R. I. Davis, and I. Bate. “Analysis and Optimization of Message
Acceptance Filter Configurations for Controller Area Network (CAN)”. In: Int.
Conf. on Real-Time Networks and Systems (RTNS). 2017 (Cited on pages 104,
108 sqq., 113).

[PS19] T. Park and K. G. Shin. “Optimal Priority Assignment for Scheduling Mixed
CAN and CAN-FD Frames”. In: 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). 2019, pp. 192–203. doi: 10.1109/RTAS.
2019.00024 (Cited on page 113).

[PSE21] J. Peeck, J. Schlatow, and R. Ernst. “Online Latency Monitoring of Time-
sensitive Event Chains in Safety-critical Applications”. In: 2021 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). 2021, pp. 539–542.
doi: 10.23919/DATE51398.2021.9474109 (Cited on page 24).

[PVS18] R. Pathan, P. Voudouris, and P. Stenström. “Scheduling Parallel Real-Time
Recurrent Tasks on Multicore Platforms”. In: IEEE Transactions on Parallel and
Distributed Systems 29.4 (2018), pp. 915–928. doi: 10.1109/TPDS.2017.2777449
(Cited on page 32).

[QGM14] M. Qamhieh, L. George, and S. Midonnet. “A Stretching Algorithm for Paral-
lel Real-time DAG Tasks on Multiprocessor Systems”. In: Proceedings of the
22nd International Conference on Real-Time Networks and Systems. RTNS ’14.
Versaille, France: Association for Computing Machinery, 2014, pp. 13–22. isbn:
9781450327275. doi: 10.1145/2659787.2659818 (Cited on page 34).

[QH00] G. Quan and X. Hu. “Enhanced Fixed-priority Scheduling with (m,k)-firm
Guarantee”. In: Proceedings 21st IEEE Real-Time Systems Symposium. 2000,
pp. 79–88. doi: 10.1109/REAL.2000.895998 (Cited on page 56).

https://doi.org/10.1007/978-3-0348-0130-0_26
https://doi.org/10.1109/RTSS55097.2022.00030
https://doi.org/10.1145/3594541
https://doi.org/10.1145/2997465.2997484
https://doi.org/10.1109/RTAS.2019.00024
https://doi.org/10.1109/RTAS.2019.00024
https://doi.org/10.23919/DATE51398.2021.9474109
https://doi.org/10.1109/TPDS.2017.2777449
https://doi.org/10.1145/2659787.2659818
https://doi.org/10.1109/REAL.2000.895998

138 Bibliography

[QWS+22] H. Qian, Q. Wen, L. Sun, J. Gu, Q. Niu, and Z. Tang. “RobustScaler: QoS-Aware
Autoscaling for Complex Workloads”. In: 2022 IEEE 38th International Confer-
ence on Data Engineering (ICDE). Los Alamitos, CA, USA: IEEE Computer
Society, 05/2022, pp. 2762–2775. doi: 10.1109/ICDE53745.2022.00252 (Cited
on page 55).

[RBH+08] S. Rosario, A. Benveniste, S. Haar, and C. Jard. “Probabilistic QoS and Soft Con-
tracts for Transaction-Based Web Services Orchestrations”. In: IEEE Transac-
tions on Services Computing 1.4 (2008), pp. 187–200. doi: 10.1109/TSC.2008.17
(Cited on page 55).

[Roba] Robot Operating System. Robot Operating System (ROS). https://www.ros.
org/ (Cited on page 92).

[Robb] Robotnik Automation S.L. Mobile Robot RB-1 Base. https://www.robotnik.
eu/mobile-robots/rb-1-base-2/ (Cited on page 92).

[Rob12] Robert Bosch GmbH. CAN with Flexible Data-Rate Specification Version 1.0.
2012 (Cited on page 113).

[Rob91] Robert Bosch GmbH. Controller Area Network Specification 2.0. 1991 (Cited on
pages 102 sq.).

[SAL+11] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. “Multi-Core Real-Time Scheduling
for Generalized Parallel Task Models”. In: 2011 IEEE 32nd Real-Time Systems
Symposium. 2011, pp. 217–226. doi: 10.1109/RTSS.2011.27 (Cited on pages 31,
33).

[SBC+20] L. Schönberger, G. von der Brüggen, K.-H. Chen, B. Sliwa, H. Youssef, A. K. R.
Venkatapathy, C. Wietfeld, M. ten Hompel, and J.-J. Chen. “Offloading Safety-
and Mission-Critical Tasks via Unreliable Connections”. In: 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020). Ed. by M. Völp. Vol. 165.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 18:1–18:22. isbn: 978-
3-95977-152-8. doi: 10.4230/LIPIcs.ECRTS.2020.18 (Cited on pages v, 6 sq.,
71, 77).

[SBS+19] L. Schönberger, G. von der Brüggen, H. Schirmeier, and J.-J. Chen. “Design
Optimization for Hardware-Based Message Filters in Broadcast Buses”. In: 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE). 2019,
pp. 606–609. doi: 10.23919/DATE.2019.8714793 (Cited on pages v, 6 sq., 101,
113).

[SFL+19] B. Sliwa, R. Falkenberg, T. Liebig, N. Piatkowski, and C. Wietfeld. “Boosting
Vehicle-to-cloud Communication by Machine Learning-enabled Context Predic-
tion”. In: IEEE Transactions on Intelligent Transportation Systems (07/2019)
(Cited on page 78).

[SFS+22] C. Shushan, X. Feng, H. Shujuan, Z. Wenjuan, H. Xingxing, and L. Tiansen.
“Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Recon-
struction”. In: IEEE Access 10 (2022), pp. 93140–93154. doi: 10.1109/ACCESS.
2022.3203590 (Cited on page 32).

https://doi.org/10.1109/ICDE53745.2022.00252
https://doi.org/10.1109/TSC.2008.17
https://www.ros.org/
https://www.ros.org/
https://www.robotnik.eu/mobile-robots/rb-1-base-2/
https://www.robotnik.eu/mobile-robots/rb-1-base-2/
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.4230/LIPIcs.ECRTS.2020.18
https://doi.org/10.23919/DATE.2019.8714793
https://doi.org/10.1109/ACCESS.2022.3203590
https://doi.org/10.1109/ACCESS.2022.3203590

Bibliography 139

[SGJ+18] J. Sun, N. Guan, X. Jiang, S. Chang, Z. Guo, Q. Deng, and W. Yi. “A Capacity
Augmentation Bound for Real-Time Constrained-Deadline Parallel Tasks under
GEDF”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 37.11 (2018), pp. 2200–2211. doi: 10.1109/TCAD.2018.2857362
(Cited on page 32).

[SGS+22] L. Schönberger, S. Graf, S. Saidi, D. Ziegenbein, and A. Hamann. “Contract-
Based Quality-of-Service Assurance in Dynamic Distributed Systems”. In: 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE). 2022,
pp. 132–135. doi: 10.23919/DATE54114.2022.9774529 (Cited on pages v, 5, 7,
17, 23).

[SHG+21] L. Schönberger, M. Hamad, J. V. Gomez, S. Steinhorst, and S. Saidi. “Towards
an Increased Detection Sensitivity of Time-Delay Attacks on Precision Time
Protocol”. In: IEEE Access 9 (2021), pp. 157398–157410. doi: 10.1109/ACCESS.
2021.3127852 (Cited on page v).

[SHV+18] L. Schönberger, W.-H. Huang, G. Von Der Brüggen, K.-H. Chen, and J.-J. Chen.
“Schedulability Analysis and Priority Assignment for Segmented Self-Suspending
Tasks”. In: 2018 IEEE 24th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). 2018, pp. 157–167. doi:
10.1109/RTCSA.2018.00027 (Cited on pages vi, 72, 82).

[SL03] I. Shin and I. Lee. “Periodic Resource Model for Compositional Real-Time
Guarantees”. In: Proceedings of the 24th IEEE International Real-Time Sys-
tems Symposium. RTSS ’03. USA: IEEE Computer Society, 2003, p. 2. isbn:
0769520448 (Cited on page 34).

[SL04] I. Shin and I. Lee. “Compositional Real-Time Scheduling Framework”. In:
25th IEEE International Real-Time Systems Symposium. 2004, pp. 57–67. doi:
10.1109/REAL.2004.15 (Cited on page 34).

[SL05] I. Shin and I. Lee. “A Compositional Framework for Real-Time Embedded
Systems”. In: Service Availability, Second International Service Availability
Symposium, ISAS 2005, Berlin, Germany, April 25-26, 2005, Revised Selected
Papers. Ed. by M. Malek, E. Nett, and N. Suri. Vol. 3694. Lecture Notes in
Computer Science. Springer, 2005, pp. 137–148. doi: 10.1007/11560333_12
(Cited on page 34).

[SLJ+19] H. Sun, S. Y. Lee, K. Joo, H. Jin, and D. H. Lee. “Catch ID if You CAN:
Dynamic ID Virtualization Mechanism for the Controller Area Network”. In:
IEEE Access 7 (2019), pp. 158237–158249. doi: 10.1109/ACCESS.2019.2950373
(Cited on page 113).

[SMB+16] M. A. Serrano, A. Melani, M. Bertogna, and E. Quinones. “Response-Time
Analysis of DAG Tasks under Fixed Priority Scheduling with Limited Preemp-
tions”. In: 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2016, pp. 1066–1071 (Cited on page 32).

[SSA+18] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio. “ROSCH: Real-Time
Scheduling Framework for ROS”. In: 2018 IEEE 24th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA).
08/2018, pp. 52–58. doi: 10.1109/RTCSA.2018.00015 (Cited on page 92).

https://doi.org/10.1109/TCAD.2018.2857362
https://doi.org/10.23919/DATE54114.2022.9774529
https://doi.org/10.1109/ACCESS.2021.3127852
https://doi.org/10.1109/ACCESS.2021.3127852
https://doi.org/10.1109/RTCSA.2018.00027
https://doi.org/10.1109/REAL.2004.15
https://doi.org/10.1007/11560333_12
https://doi.org/10.1109/ACCESS.2019.2950373
https://doi.org/10.1109/RTCSA.2018.00015

140 Bibliography

[SSC20] S. Schwitalla, L. Schönberger, and J.-J. Chen. “Priority-Preserving Optimization
of Status Quo ID-Assignments in Controller Area Network”. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2020, pp. 834–
839. doi: 10.23919/DATE48585.2020.9116565 (Cited on pages v, 113 sq., 120).

[SUC+23] J. Shi, N. Ueter, J.-J. Chen, and K.-H. Chen. “Average Task Execution Time
Minimization under (m, k) Soft Error Constraint”. In: 2023 IEEE 29th Real-
Time and Embedded Technology and Applications Symposium (RTAS). 2023,
pp. 1–13. doi: 10.1109/RTAS58335.2023.00008 (Cited on page 56).

[SZ18] S. Samii and H. Zinner. “Level 5 by Layer 2: Time-Sensitive Networking for
Autonomous Vehicles”. In: IEEE Communications Standards Magazine 2.2
(2018), pp. 62–68. doi: 10.1109/MCOMSTD.2018.1700079 (Cited on pages 3,
121).

[SZD+22] S. Saidi, D. Ziegenbein, J. V. Deshmukh, and R. Ernst. “Autonomous Systems
Design: Charting a New Discipline”. In: IEEE Design & Test 39.1 (2022), pp. 8–
23. doi: 10.1109/MDAT.2021.3128434 (Cited on page 4).

[UBC+18] N. Ueter, G. von der Brüggen, J.-J. Chen, J. Li, and K. Agrawal. “Reservation-
Based Federated Scheduling for Parallel Real-Time Tasks”. In: 2018 IEEE
Real-Time Systems Symposium (RTSS). 2018, pp. 482–494. doi: 10.1109/RTSS.
2018.00061 (Cited on page 33).

[Ves07] S. Vestal. “Preemptive Scheduling of Multi-criticality Systems with Varying
Degrees of Execution Time Assurance”. In: 28th IEEE International Real-Time
Systems Symposium (RTSS 2007). 12/2007, pp. 239–243. doi: 10.1109/RTSS.
2007.47 (Cited on page 14).

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P.
Puschner, J. Staschulat, and P. Stenström. “The Worst-Case Execution-Time
Problem—Overview of Methods and Survey of Tools”. In: ACM Trans. Embed.
Comput. Syst. 7.3 (05/2008). issn: 1539-9087. doi: 10.1145/1347375.1347389
(Cited on page 12).

[WGD14] Y. Wu, Z. Gao, and G. Dai. “Deadline and Activation Time Assignment for
Partitioned Real-Time Application on Multiprocessor Reservations”. In: J. Syst.
Archit. 60.3 (03/2014), pp. 247–257. issn: 1383-7621. doi: 10.1016/j.sysarc.
2013.11.011 (Cited on page 33).

[WJG+19] K. Wang, X. Jiang, N. Guan, D. Liu, W. Liu, and Q. Deng. “Real-Time Schedul-
ing of DAG Tasks with Arbitrary Deadlines”. In: ACM Trans. Des. Autom.
Electron. Syst. 24.6 (10/2019). issn: 1084-4309. doi: 10.1145/3358603 (Cited
on pages 32 sq.).

[XYY+19] F. Xu, H. Ye, F. Yang, and C. Zhao. “Software Defined Mission-Critical Wireless
Sensor Network: Architecture and Edge Offloading Strategy”. In: IEEE Access
7 (2019), pp. 10383–10391. doi: 10.1109/ACCESS.2019.2890854 (Cited on
page 80).

[YCC18] M. Yayla, K.-H. Chen, and J.-J. Chen. “Fault Tolerance on Control Applications:
Empirical Investigations of Impacts from Incorrect Calculations”. In: 2018 4th
International Workshop on Emerging Ideas and Trends in the Engineering of
Cyber-Physical Systems (EITEC). 2018, pp. 17–24. doi: 10.1109/EITEC.2018.
00008 (Cited on page 13).

https://doi.org/10.23919/DATE48585.2020.9116565
https://doi.org/10.1109/RTAS58335.2023.00008
https://doi.org/10.1109/MCOMSTD.2018.1700079
https://doi.org/10.1109/MDAT.2021.3128434
https://doi.org/10.1109/RTSS.2018.00061
https://doi.org/10.1109/RTSS.2018.00061
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1016/j.sysarc.2013.11.011
https://doi.org/10.1016/j.sysarc.2013.11.011
https://doi.org/10.1145/3358603
https://doi.org/10.1109/ACCESS.2019.2890854
https://doi.org/10.1109/EITEC.2018.00008
https://doi.org/10.1109/EITEC.2018.00008

[ZZL+19] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang. “Deep Learning
Empowered Task Offloading for Mobile Edge Computing in Urban Informatics”.
In: IEEE Internet of Things Journal 6.5 (2019), pp. 7635–7647. doi: 10.1109/
JIOT.2019.2903191 (Cited on page 80).

https://doi.org/10.1109/JIOT.2019.2903191
https://doi.org/10.1109/JIOT.2019.2903191

	I Fundamentals
	Introduction
	Selected Challenges Arising in a Connected World
	Contributions of this Dissertation
	Author's Contribution to this Dissertation
	Outline

	Background
	Typical Task Model
	Priority-Based Scheduling
	Worst-Case Execution Time
	Quality of Service

	II Distributed Systems
	System and Application Model
	System Architecture
	Application Model

	Contract-Based Quality of Service Assurance
	Introduction
	Problem Statement
	Assume-Guarantee Contracts
	Quality of Service Contracts
	Detection of Contract Violations
	Evaluation
	Summary

	Robustness-Aware Quality of Service Contracts
	Introduction
	Related Work
	Problem Statement
	Soft Quality of Service Contracts
	Evaluation
	Summary

	III Embedded Systems
	System and Application Model
	Endpoint and Local System
	Application Model
	Task Model
	Execution Behavior and Execution Scenarios

	Safe Offloading under Unreliable Connections
	Introduction
	Problem Statement
	Related Work
	Recovery Protocols
	Workload Characteristics
	System Behavior and Response Time Analysis
	Evaluation
	Summary

	Hardware Message Filter Optimization
	Introduction
	Problem Statement
	Perfect Filters
	Imperfect Filters
	Evaluation
	Related Work
	Summary

	IV Conclusion and Outlook
	Conclusion
	Summary
	Open Problems and Future Research Directions

	List of Figures
	List of Tables
	Bibliography

