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1 Introduction

In his paper, Kibria (1996) investigated the prediction problem in presence of

uncertain prior information

H� = h (1.1)

about the parameter vector � of the linear regression model

Y = X� + e: (1.2)

Here Y is an n � 1 vector of observations, � is a p � 1 vector of unknown

regression coe�cients, X is an n�p known design matrix of rank p and e is an

n� 1 random error vector which follows a normal distribution with N(0; �2I),

�2 > 0 unknown. The q � p matrix H is assumed to be of full row rank and h

is a q � 1 vector of constants, both H and h being known.

Suppose X0 is a �xed n0�p matrix of additional observations on the regressor

matris that is used to predict the future development of

Y0 = X0�: (1.3)
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For this purpose, Kibria (1996) investigated the class of predictors

Ŷ0 = X0�̂
�; (1.4)

where �̂� is one of the estimators described below. When comparing these

predictors with bad other in terms of their mean square error (MSE) matrices

under the condition Hi : H� 6= h this author inverted matrices which are

potentially singular. Subsequently we shall resume and correct his analysis.

2 Predictors and their mean square error ma-

trices

We shall consider the following four predictors for Y0 = X0�:

1. Unrestricted predittor (URP)

~Y0 = X0
~�n; (2.1)

where ~�n = C�10X 0Y is the unrestricted least squares estimator (URLSE) of

�, C = X 0X.

2. Restricted predictor

Ŷ0 = X0�̂n; (2.2)

where �̂n = ~�nI(Ln>F1��) + �̂nI(Ln�F1��) is the preliminary test estimator

(PTLSD) for �, I(S) is the indicator function of the set S, F1�� is the up-

per 100� percentile of the central F{distribution with (p; (n � q) degrees of

freedom and Ln is the well{known test statistic for testing the null hypothesis

H0 : H� = h vs. H1 : H� 6= h:
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3 shrinkage predictor

The shrinkage predictor of Y0 = X0� is de�ned by

Ŷ SP = X0�̂
SE
n ; (3.1)

where �̂SEn = �̂n + (1� uL�1
n )( ~�n � �̂n) with

n =
(q � 2)(n� p)

q(n� p + 2)
(q � 3)

being the shrinkage constant.

Let Mi; i = 1 ; : : : ;4 denote the mean square error matrices of the four esti-

mators introduced above. Under H0, it was shown in Kibria (1996) that for

example

M1 �M2 = �2X0AX
0
0; (3.2)

where A = C�1H 0(HC�1H 0)�1HC�1. Unfortunately, it was also con�rmed

there that A andM1�M2 are positive dfeinite (p.d.) matrices. This is, however,

not the case. Both matrices can only shown to be nonnegative de�nite. Also

the other mean square error matrix di�erences in section 4 of Kibria (1996)

can namely be identi�ed as n.n.d. matrices. The dominance ranking of the

predictors under this weaker criterion fortunately remains valid.

The comparisons of section 5 of Kibira (1996) are based on the nonsingularity

of mean square error matricess which will be done in the next section, where

we use some results achived by Baksalary and Kala (1983).

4 Comparison of the predictors under H1

Assume thatH1 : H� 6= h is valid. Then the four predictors, except ~Y0 = X0
~�n,

will be biased. When comparing them, Kibria (1996) inverted X0AX
0
0. This is
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not permitted, since A is not p.d., and if it were, X0AX
0
0 need not be nonsin-

gular. Hence we have to use an alternative method.

Lemma 1: (Baksalary and Kala, 1983)

Suppose A is a symmetric n�n matrix, a is an a�1 vector and � is a positive

scalar. Then the following statements are equivalent

(i) �A� aa0 is n.n.d.

(ii) A is n.n.d., a 2 R (A) anda0A�a � � where A� is any generalized inverse

of A, i.e. AA�A = A and R(�) denotes the column space of a matrix. This

result enables us to perform the following comparisons.

Comparison between URP and RP

the di�erenc eof the MSE matrices of ~Y0 and Ŷ0 is

M1 �M2 = �2X0AX
0
0 �X0yy

0X 0
0; (4.1)

where

� = C�1H 0(HC�1H 0)�1(H� � h): (4.2)

By Lemma 1, M1 �M2 is n.n.d. if and only if

a) X0AX
0
0 is n.n.d.,

b) X0� 2 R (X0AX 0
0),

c) � 0X 0
0(X0AX

0
0)
�X0� � �2, wher (X0AX

0
0)
� is any generalized inverse of

X0AX
0
0.

Obviously condition a) is ful�lled. To show b) observe that R(X0AX
0
0) =

R(X0A). Hence if su�ces that � 2 R (A). SinceH is of full row rank we have

HH+ = I and consequently � = ACH+(H� � h) 2 R (A), whereH+ denotes

the Moore{Penrose inverse of H. ThusM1�M2 is n.n.d. if and only if condition

c) is satis�ed. This corresponds to condition (5.4) in Kibria (1996), where the

invers of X0AX
0
0 has to be replaced by a g{inverse.
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We shall not perform the other MSE{matrix comparisons in detail. The MSE{

matrix di�erences under H1 considered further in Kibria's paper are easily seen

to be of the form

Mi �Mj = 
X0AX
0
0 � �X0��

0X 0
0; (4.3)

where 
 and � are positive scalars. Proceeding as in the comparison between

URP and RP and applying Lemma 1 we can readily derive the dominance

criteria corresponding to those in Kibria's paper where, however, (X0AX
0
0)
�.

With one exception: The comparison between URP and SP in formula (5.17)

seems to be completely incorrect since it is based on the maximum character-

istic root of the "positive de�nite" matrix [X 0
0(X0AX

0
0)
�1X0]C�1.
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