
Asymptotic Equivalence of Ordinary Least Squares and

Generalized Least Squares with Trending Regressors

and Stationary Autoregressive Disturbances1

by

Walter Kr�amer
Fachbereich Statistik, Universit�at Dortmund

D - 44221 Dortmund, Germany

Abstract

This note generalizes previous results on the asymptotic equiva-

lence of Ordinary and Generalized Least Squares estimates in Li-

near Regression models with trending data.

This note considers the relative e�ciency of OLS versus GLS in the linear

regression model

yt = x0t� + ut (t = 1 ;2; : : : ); (1)

where xt and � are K � 1 and where the unobservable disturbances ut are

autocorrelated but independent of the regressors xt = ( xt1; : : : ; xtK)0. It is well

known that, given the regressors, OLS is in general no longer BLUE when

disturbances are correlated, but as GLS (the BLUE) is often only of academic

interest due to lack of knowledge of the disturbance correlation structure, there

has been an enormous interest in statistics and econometrics in the relative

e�ciency of OLS (Watson 1968, Kr�amer 1980, Kr�amer and Donninger 1986,

Busse et al. 1994 among many others).
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One strand of this literature, originating with Grenander (1954), is concerned

with conditions on regressors and disturbances which guarantee that OLS is at

least asymptotically e�cient (Rosenblatt 1956, Chipman 1979, Kr�amer 1982,

1986, Phillips and Park 1988, Kr�amer and Hassler 1997). One su�cient condi-

tion for the asymptotic e�ciency of OLS that emerges in this literature is that

the regressors are in some sense trending" (for a precise de�nition see below).

In conjunction with stationarity, in particular stationary autoregressive distur-

bances, this is then shown to imply that the respective limiting distributions

of OLS and GLS are identical.

The present note extends and uni�es this literature by suggesting a generic

form of "trend", and by showing that it is this generic property of trending

data which implies the asymptotic equivalence of OLS and GLS.

In what follows the disturbances ut from (1) are assumed stationary AR(p),

ut + �1ut�1 + : : :+ �put�p = "t; (2)

where the "t's are i.i.d. (0; �
2), and where stationarity implies that all roots of

the polynomial 1 + �1z + : : :+ �pz
p are outside the unit circle.

Ignoring observations 1; : : : ; p , which are asymptotically irrelevant, the GLS{

estimator ~� for � is obtained by applying OLS to

~yt = ~x0t� + "t; where (3)

~xt = xt + �1xt�1 + : : :+ �pxt�p and (4)

~yt = yt + �1yt�1 + : : :+ �pyt�p (t > p ) (5)

i.e. �̂ = (
P

~xt~x0t)
�1P ~xŷt and

~� � � =

0
@ TX

t=p+1

~xt~x
0

t

1
A
�1

TX
t=p+1

~xt"t: (6)
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This compares with

�̂ � � =

 
TX
t=1

xtx
0

t

!�1 TX
t=1

xtut (7)

for the OLS{estimator �̂.

The regressors xti are assumed to be "trending", by which I mean that they

satisfy an invariance principle

1

gi(T )
x[Tr];i

d�! Bi(r) as T !1 ; (8)

where
d�! denotes convergence in distribution, [Tr] is the integer part of Tr,

gi(T )!1 and Bi(r) is some non{zero random element inD[0; 1] (which might

be degenerate;D[0; 1] is the set of all real valued functions on the unit interval,

endowed with the Skorohod topology, see Billingsley 1968, chapter 3). This

de�nition includes the well known cases of stochastic I(1){regressors, where

gi(T ) =
p
T and where (under suitable regularity conditions)Bi(r) is Brownian

Motion. It also includes the case of nonstochastic polynomial regressors, e.g.

xit = ti, where gi(T ) = T i and where Bi(r) is the function fi(r) = ri. And it

also includes the case of nonstationary fractionally integrated regressors, where

(1� L)dxti = "ti (9)

with d > 1
2
and stationary ARMA "'s, and where gi(T ) =

p
T 2d�1 and Bi(r) is

fractional Brownian Motion (Sowell 1990, Chung 1995). However, the de�ni-

tion does not allow for exponential trends, as it is easily seen that invariance

principles like (8) do then no longer hold.

The main theorem is concerned with the case where all regressors in the model

(1) are trending (extensions to the case where there are also nontrending re-
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gressors, in particular an intercept, are discussed in section 4). To that purpose,

let g(T ) := diag (g1(T ); : : : ; gK(T )) and assume in addition to (8) that

[g(T )]�1x[Tr]
d�! B(r); (10)

where B(r) is a random element in D[0; 1]K (with components Bi(r) de�ned

in (8)) and that
R 1
0 B(r)B(r)0dr is invertible with probability 1. Since ut and

x� are independent for all t and s, this implies that

0
BBB@

[g(T )]�1 x[Tr]

T�
1

2

P[Tr]
s=1 us

1
CCCA d�!

0
BBB@

B(r)

W (r)

1
CCCA ; (11)

where W (r) is Brownian Motion, independent of B(r), with variance

��2 =
�2

(1 + �1 + : : :+ �p)2
: (12)

THEOREM: Under the assumptions made above, we have

p
Tg(T )(�̂ � �)

d�!
�Z 1

0
B(r)B(r)0dr

��1 �Z 1

0
B(r)dW (r)

�
(13)

and the same applies to GLS.

CORROLLARY: Since g(T )!1 , we have

�̂ � � = op
1p
T
; (14)

i.e. the OLS-estimator converges to the true parameter vector faster than in

the standard case with no trend in the regressors.

PROOF OF THE THEOREM: The relationship (13) follows immediately

from

1

T
[g(T )]�1

TX
t=1

xtx
0

t[g(T )]
�1 d�!

Z 1

0
B(r)B(r)0dr (15)

4



and

1p
T
[g(T )]�1

TX
t=1

xtut
d�!
Z 1

0
B(r)dW (r); (16)

where the �rst relationship follows from (10) and the continuous mapping

theorem (Billingsley 1968, p. 30), and where the latter convergence follows from

the independence of W (r) and B(r) and a general theorem on the convergence

to stochastic integrals in Hansen (1992, p. 491).

The analogue for GLS follows along similar lines. Emulating the proof of theo-

rem 2.2 in Phillips and Park (1988, p. 114), one veri�es, using

g(T )�1~x[Tr] = g(T )�1(1 + �1 + : : :+ �p)x[Tr] + op(1) (17)

and

T�
1

2

[Tr]X
s=1

"s = T�
1

2 (1 + �1 + : : :+ �p)
[Tr]X
s=1

ut + op(1) (18)

that the regressors ~xt and the disturbances "t in (3) satisfy the invariance

principle

0
BBB@

g(T )�1~x[Tr]

T�
1

2

P[Tr]
s=1 "s

1
CCCA d�!

0
BBB@

~B(r)

~W (r)

1
CCCA (19)

where

~B(r) = (1 + �1 + : : :+ �p)B(r)

~W (r) = (1 + �1 + : : :+ �p)W (r) (20)

and where ~W (r) is independent of ~B(r). In conjunction with

1

T
[g(T )]�1

TX
t=1

~xt~x
0

t[g(T )]
�1 d�!

Z 1

0

~B(r) ~B(r)0dr; (21)
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and

1p
T
[g(T )]�1

[Tr]X
t=1

~xt"t
d�! ~B(r)d ~W (r); (22)

this implies (as the term
Pp

i=1 �i cancels out) that

p
Tg(T )( ~� � �)

d�!
�Z 1

0

~B(r) ~B(r)0dr
��1 �Z 1

0

~B(r)d ~W (r)
�

=
�Z 1

0
B(r)B(r)0dr

��1 �Z 1

0
B(r)dW (r)

�
; (23)

proving the theorem.

A central requirement for the theorem above is that all regressors are trending,

and that the limiting matrix
R 1
0 B(r)B(r)0dr is invertible with probability 1.

Both conditions are often violated in empirical applications.

Consider for instance the case of a singular limiting matrix
R 1
0 B(r)B(r)0dr, for

example K = 2, xt1 = t, xt2 = t+ (�1)t. Here we have gi(T ) = T ,

TX
t=n

xtx
0

t =

2
6664

PT
t=1 t

2 PT
t=1 t

2 + (�1)t

PT
t=1 t

2 + (�1)t PT
t=1 t

2 + 2(�1)t + T

3
7775 (24)

and

1

T 3

TX
t=1

xtx
0

t!
Z 1

0
B(r)B(r)0dr =

1

3

2
6664
1 1

1 1

3
7775 : (25)

The limiting matrix
R 1
0 B(r)B(r)0dr is therefore noninvertible with probability

1, and the right{hand side of (13) does not exist.
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The limiting distribution of both OLS and GLS is in such cases best derived

by a reparametrization of the model:

yt = �1t+ �2(t+ (�1)t) + ut (26)

= ( �1 + �2)t+ �2(�1)t + ut

= �1t+ �2(�1)t + ut

Now we have one regressor with trend and one without, and, from a general

result in Rosenblatt (1956), we know that the limiting distribution of
p
T (�̂2�

�2) has a larger variance than the limiting distribution of
p
T (~�2��2). As the

limiting distribution of both �̂1 = (�̂1 + �̂2) and ~�1 = (~�1 + ~�2) is dominated

by �̂1 and ~�1, respectively, this implies that the existence of a second trend

destroys both the superconsistency and the asymptotic e�ciency of OLS.

However, there is still hope that in a model with nontrending regressors, OLS

retains both superconsistency and e�ciency at least for the coe�cients of the

trending regressors. Consider the model:

yt = x0t� + z0t�+ ut; (27)

where the components of xt are trending and the components of zt are not. In

view of the Frisch{Waugh{Theorem (see Fiebig et al. 1996), the OLS{estimate

for � in (27) is numerically identical to the OLS{estimate for � in

y�t = x�t� + ut; (28)

where y�t and x�t are the residuals from a regression on zt. Therefore, if the

x�t satisfy the invariance principle (10), the OLS estimate for � in (28) is a-

symptotically as e�cient as the GLS{estimate in (28).

Unfortunately, the GLS{estimate for � in (28) need not be numerically iden-

tical to the GLS{estimate for � in (27). Fiebig et al. (1996) give conditions

for this be the case, from which it is seen that at least for the most impor-

tant case of a regression with an intercept, i.e. zt = 1 and x�t = xt � �x, the

superconsistency and limiting e�ciency of OLS prevails.
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