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Abstract

We show that previous results on the asymptotic e�ciency of OLS

versus GLS in the context of trending data carry over to regressors

of the fractionally integrated type.

1 Introduction

We consider the standard linear regression model yt = �0xt+ ut (t = 1 ; : : : ; T)

with stochastic regressors xt, where the disturbances ut are possibly autocor-

related but independent of the regressors xt. There is a huge literature in

econometrics and statistics in this context on the e�ciency of the Ordinary

Least Squares (OLS) estimates of the �'s, which ignore the correlation of the

errors, relative to the Generalized Least Squares (GLS) estimates, which take

this correlation into account. In particular, starting with Grenander (1954),

there has been much interest in conditions on the regressors and the error
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correlation structure which guarantee that OLS is asymptotically as e�cient

as GLS (Grenander and Rosenblatt 1957, Chipman 1979, Kr�amer 1980, 1982,

1986, Phillips and Park 1988). For nonstochastic regressors and stationary

errors, Grenander (1954) shows that in the bivariate model with a single non-

stochastic regressor, the limiting ratio of the respective estimator variances

depends on the spectral distribution functions of the regressor and error se-

quences, respectively, taking the value of one when the spectral density of the

disturbances is constant on the spectrum of the regressor sequence, a condi-

tion which is easily seen to be satis�ed for arbitrary stationary disturbances

with �nite spectral density when the regressor sequence is a polynomial or tri-

gonometric function of time. This result has been generalized to multivariate

regressors by Grenander and Rosenblatt (1957) and to stochastic regressors of

the ARIMA{type by Kr�amer (1986) and Phillips and Park (1988).

Below we consider the bivariate regression

yt = �+ �xt + ut (t = 1 ; : : : ; T); (1)

where the regressor is nonstationary fractionally integrated:

(1� L)dxt = vt; (2)

where 0; 5 < d < 1; 5 and vt is i.i.d. (0; �2
v). Variables of this type are enter-

tained with increasing frequency as models for economic time series such as

interest rates, exchange rates and other variables which are not exactly inte-

grated but are not stationary either (Robinson 1994, Hassler and Wolters 1995

or Baillie 1996 and the recent special issue of the Journal of Econometrics that

is devoted to this topic). If one such variable is used to explain, say, individual

investment or savings or some other economic micro variable, one can reasona-

bly assume that the disturbances in this regression are possibly autocorrelated

but stochastically independent of the regressor, so the problem of the relative

e�ciency of OLS immediately suggests itself.
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2 Limiting e�ciency of GLS

Following Kr�amer (1986) and Phillips and Park (1988), we focus on theAR(p){

case where

ut + �1ut�1 + : : :+ �put�p = "t; (3)

where the "t's are i.i.d. (0; �2
") and where all roots of the polynomial �(z) =

1+�1z+ : : :+�pz
p are outside the unit circle. Also we con�ne ourselves to the

estimation of the slope parameter � in (1). We consider both the case where

an intercept is included (� 6= 0) and where an intercept is excluded (� = 0) in

(1).

Without an intercept the OLS{estimator for � is given by

�̂ = x0y=x0x; (4)

where x = ( x1; : : : ; xT )0 and y = ( y1; : : : ; yT )0. With an intercept, one has

to replace x and y by the deviations from the respective means. The GLS

estimator ~� for � is obtained by applying OLS to the transformed model

~yt = �+ �~xt + "t (t = p+ 1 ; : : : ; T); (5)

where

~yt = yt + �1yt�1 + : : :+ �pyt�p and

~xt = xt + �1xt�1 + : : :+ �pxt�p: (6)

i.e.

~� =
~x0~y

~x0~x
: (7)

In the model with an intercept, we again take deviations from the respective

means (while it is not at all obvious that one can do this in the case of GLS,

this procedure is legal here, see Kr�amer (1986) or Fiebig et al. 1996).
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For ease of notation, we have in (5) discarded observations 1; : : : ; p . As we are

only interested in large sample asymptotics, this involves no loss in generality

(in our �nite sample Monte{Carlo{estimates below, however, all data are used

for GLS).

When both the disturbances ut in (1) and the innovations vt in the I(d){

representation of xt in (2) are i.i.d., the limiting distribution of �̂ = ~� in the

model without an intercept is derived by Wright (1996), who shows that

T d(�̂ � �)
d
�! (

Z 1

0
Wd(r)

2dr)�1
Z 1

0
Wd(r)dV (r); (8)

where 1
�u
V (r) is standard Brownian Motion,

Wd(r) =
1

�(d)

Z r

0
(r � s)d�1dW (s) (9)

is fractional Brownian motion and where Wd(r) and V (r) are the probability

limits of

T
1

2
�dx[Tr] and T

1

2

[Tr]X
t=1

ut; (10)

respectively.

In particular, we see from (8) that �̂ converges to the true � faster than in the

case of stationary regressors.

The proof of (8) rests on �̂ � � = x0u=x0x and

1

T d
x0u

d
�!

Z 1

0
Wd(r)dV (r); (11)

1

T 2d
x0x

d
�!

Z 1

0
Wd(r)

2dr: (12)

With autocorrelated disturbances, these results do not apply.

Neither can they be used to deduct the limiting distribution of GLS in (5), as

the innovations ~vt in

(1� L)d~xt = ~vt (13)
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are no longer i.i.d. (rather, ~vt = vt+ �1vt�1+ : : :+ �pvt�p). However, appealing

to Phillips and Park (1988, p. 114, proof of theorem 2.2) with V (r)=�"(��i)

a standard Brownian Motion, it is easily seen that (11) continues to hold. So

(8) continues to hold as well, the only di�erence being that V (r) must now be

divided by �"(��i) (which is di�erent from �u) to obtain a standard Brownian

Motion.

THEOREM:

In the model (1) without an intercept, the limiting distributions (as T !1 ) of

OLS and GLS are identical. The same applies for the model with an intercept.

The theorem shows that OLS is asymptotically as e�cient as GLS despite

the presence of autocorrelated disturbances in the regression. As in Grenander

(1954), the proof relies heavily on the fact that there is only one regressor.

However, we conjecture that similar results obtain if the regressors can be re-

presented as a multivariate I(d){process or as independent I(d) processes with

(possibly) di�erent d0s > 0; 5, but this has be shown along di�erent lines, per-

haps emulating Phillips and Park (1988) or Grenander and Rosenblatt (1957).

Proof of Theorem:

The key to the proof is the result from Hassler (1994, 1997) that empirical

autocorrelations of I(d){processes for d > 0; 5 tend in probability to one.

Using this result, we show that

~� � �

�̂ � �

p
�! 1 as T !1 ; (14)

which in turn immediately implies the theorem: From (14) we have

~� � � = �̂ � � + (�̂ � �)op(1); so (15)

T ( ~� � �) = T (�̂ � �) + op(1); so (16)

T ( ~� � �̂)
p
�! 0: (17)
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We �rst prove (14) for a regression without an intercept. We can then write

~� � �

�̂ � �
=

~x0"

x0u
�

x0x

~x0~x
; (18)

where

~x0~x

x0x
=

(
P
(�ix�i))

2

x0x
=

pX
i;j=0

�i�j
x0
�ix�j

x0x

p
�!

pX
i;j=0

�i�j = (
X

�i)
2 (19)

and where the crucial relationship is

x0
�ixj=x

0x
p
�! 1 for all i; j = 0 ; : : : ; p:

Similarly, we have

~x0"

x0u
=

(
P
�ix�i)0(

P
�iui)

x0u
=

pX
i;j=0

�i�j
x0
�iu�j

x0u
; (20)

where once again, the second factor tends in probability to one. This can be

seen along the lines of Kr�amer (1986), by verifying that

x0
�iu�j = x0u+Op(T

1

2 ) (21)

and noting that x0u = Op(T
d).

To prove (15) for regressions with an intercept, one simply replaces all relevant

vectors with deviations from their respective means, and veri�es that (20) and

(21) continue to hold.

Note that our proof shows slightly more than is asserted in the statement of the

theorem: Not only have T (�̂��) and T ( ~���) identical limiting distributions;

in addition, T (�̂ � ~�)
p
�! 0.

3 Relative e�ciency of OLS in �nite samples

Next we provide someMonte Carlo evidence as to the �nite{sample relevance of

our theorem. Table 1 gives the empirical mean square errors for various values
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of d; T and � obtained from N = 1000 replications when the disturbances are

stationary AR(1). It shows that the convergence to one of the relative

Table 1: Var(OLS) / Var(GLS)

�
T

-0.9 -0.3 0.3 0.9

a) d = 0.6

25 7.13 1.14 1.10 6.17
50 12.33 1.14 1.07 5.65
100 16.63 1.13 1.09 4.54
250 19.14 1.14 1.07 4.34
400 20.02 1.12 1.04 3.65

b) d = 0.8

25 6.40 1.14 1.06 4.28
50 9.06 1.13 1.06 3.73
100 10.90 1.08 1.04 2.83
250 10.54 1.04 1.04 2.21
400 8.05 1.04 1.05 1.86

c) d = 1.0

25 4.14 1.10 1.10 4.62
50 5.74 1.04 1.10 2.40
100 5.74 1.06 1.03 1.86
250 4.28 1.03 1.03 1.45
400 3.06 1.01 1.00 1.18

d) d = 1.2

25 3.50 1.07 1.06 2.66
50 3.54 1.07 1.01 2.52
100 3.06 1.03 1.03 1.40
250 2.10 1.02 1.00 1.24
400 1.53 0.99 1.00 1.09

e) d = 1.4

25 2.34 1.07 1.03 2.11
50 2.53 1.03 1.01 1.92
100 1.76 1.02 1.00 1.34
250 1.51 1.00 1.01 1.16
400 1.21 1.00 1.01 1.11

e�ciency of OLS is not uniform in � and that large ine�ciencies persist for

sample sizes up to T = 400 and disturbance{autocorrelation coe�cients close
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to the border of the parameter space, in particular for � ! � 1, i.e. for large

positive correlations among the disturbances. Not surprisingly, the relative

e�ciency increases ceteris paribus as d increases (i.e. the more pronounced

the trend, the closer comes OLS to GLS); however, it is not monotone in

sample size: for large disturbance correlations, the relative e�ciency of OLS

�rst decreases as T increases, before the large sample asymptotics take e�ect,

con�rming Kr�amer (1986, table 1).
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