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1 Introduction

In this paper we consider linear hypotheses on variance components as

H0 : K� = d ; (1)

where � = (�21 ; : : : ; �
2
m
)T denotes a vector of unknown variance components, K is a known

(p �m){matrix with rk (K) = p � m and d 2 IRp a known constant. For special linear

combinations of variance components exact F{ and �2{tests can be derived and in El{

Bassiouni and Seely (1980) it is shown that under certain circumstances these tests are

uniformly most powerful unbiased. However, no exact tests for example are known for

testing that the variance of a certain factor is equal to a given d1 > 0 or that the di�erence

between two variance components equals a certain value. Here, we develop asymptotic

�2{tests for such hypotheses.
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In section 2 we consider the class of variance components models of commutative quadratic

type (see e. g. Seely (1971), Elpelt (1989), Hartung (1981, sec. 5)) and introduce repeated

variance components models (cf. Brown (1976)). Then, Wald and likelihood ratio test

statistics are derived in section 3 using the approach of repeated variance components

model, where the asymptotic results refer to a 'large' number of observations in the ex-

perimental designs which can be interpreted as several independent observations from a

reduced design. In practice, however, we deal with non{repeated models. Thus, in sec-

tion 4 we consider, as examples, the two{way nested classi�cation model and the two{way

crossed classi�cation model with interaction, where we explicitly study hypotheses about

the di�erences of two variance components. In both models wn can directly give the Wald

test statistics for the hypotheses as well as the unrestricted maximum likelihood estima-

tors. In the two{way nested classi�cation model, however, we use a numerical algorithm

to maximize the likelihood function under the hypothesis, whereas in the two{way crossed

classi�cation model with interaction we give in addition an explicit approximation of the

likelihood ratio test statistic which does not need a numerical algorithm. In a simulation

study we examine the �nite properties of the derived tests, especially in situations where

the sample sizes are really 'small' and show that the asymptotic works satisfactorily in

these cases. Hereby, a clear preference of the likelihood ratio test can be stated, on the

whole.

Throughout this paper we use the following notation. For a real matrix A let AT denote

the transposed, A+ the Moore{Penrose{inverse, rk (A) the rank, tr (A) the trace, and

R(A) the range of A. Further we denote by 
 the Kronecker product, by Ir the (r � r){

identity matrix, by 1r the vector of r ones, by Jr = 1r1
T

r
the (r � r){matrix of ones, and

by 0s�t the (s� t){matrix of zeros.
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2 The repeated variance components model

We consider a q{dimensional observable random vector, say Y , that follows the general

linear variance components model

E (Y ) = X� and Cov (Y ) =

mX
i=1

�2
i
Ui ; (2)

where the (q � l){matrix X and the symmetric positive semide�nite (q � q){matrices

U1; : : : ; Um are known, whereas the parameter vector � varies in IRl and the parameter

vector � = (�21; : : : ; �
2
m
)T varies in 
, a subset of IRm

(+), the nonnegative orthant of IR
m.

The variance component �2
m
is assumed to be strictly positive and Um is positive de�nite

to ensure the positive de�niteness of the variance{covariance matrix..

In this model we make the following assumptions.

Assumption 1: The random vector Y has a q{dimensional normal distribution.

Assumption 2: 	 = spanfXX+; U1; : : : ; Umg forms a (m+1){dimensional commutative

quadratic subspace of all real symmetric (q � q){matrices, i. e. 	 is a subspace and

A;B 2 	 implies A2 2 	 and AB = BA.

By lemma 6 in Seely (1971) there exists a basis P0; P1; : : : ; Pm of 	 with P0 = XX+,

where Pi, i = 0; 1; : : : ; m, is idempotent and PiPj = 0, i 6= j. Then there is a nonsingular

((m+ 1)� (m+ 1)){matrix

�� = ((�ij)i;j=0;1;::: ;m) (3)

such that

Ui =

mX
j=0

�ijPj ; i = 0; 1; : : : ; m; with U0 = P0 = XX+ : (4)

Assumption 3: For all j = 1; : : : ; m and � 2 
 it holds

�j =

mX
j=1

�ij �
2
i
> 0 : (5)
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The vector � = (�1; : : : ; �m)
T can be expressed as

� = �T� ; (6)

where the nonsingular (m � m){matrix � is the submatrix of ��, which results from

deleting the �rst row and the �rst column of ��.

The three assumptions are ful�lled, for example, in the balanced variance components

models if, as it is usually assumed, the residual variance is strictly positive.

Let us consider the quadratic forms

Tj = Y TPjY=fj ; j = 1; : : : ; m; (7)

where tr (Pj) = fj, j = 1; : : : ; m. In model (??) it holds that these quadratic forms

are stochastically independent and that fj � Tj=�j, j = 1; : : : ; m, is central �2{distributed

with fj degrees of freedom. It follows that the expectation vector of the random vector

T = (T1; : : : ; Tm)
T is given by the vector � and the variance{covariance matrix of T is

D(�) = 2 � diag (� 21 ; : : : ; � 2m) : (8)

Now the model (??) is �{times statistically independently repeated, i. e. we observe inde-

pendent random vectors Y�, � = 1; : : : ; �, which have the same distributional properties

as Y from (??). Thus, we get the following model

~Y = (Y T

1 ; Y
T

2 ; : : : ; Y
T

�
)T

with E ( ~Y ) = (1� 
X)� ; Cov ( ~Y ) =
mP
i=1

�2
i
(I� 
 Ui) :

(9)

Due to (??) the variance{covariance matrix of ~Y can be expressed as

Cov ( ~Y ) =

mX
i=1

�2
i
(I� 
 Ui) =

mX
j=0

�j (I� 
 Pj) ; (10)

where �0 is a linear combination of �1; : : : ; �m.

Note that in the repeated model (??) a corresponding property like the assumption 2 in

the non{repeated model (??) does not hold, so that we cannot refer to the results from

Seely (1971).
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Lemma 1:

In model (??) it holds

i) them+1 matrices (I�
Pi), i = 0; 1; : : : ; m, are idempotent and mutually orthogonal

matrices;

ii) the m+ 1 statistics

(I� 
 P0) ~Y ; ~Y T (I� 
 Pj) ~Y ; j = 1; : : : ; m ; (11)

are minimal su�cient statistics for this model.

Proof:

i) It is (I� 
 Pi)
2 = I� 
 P 2

i
= I� 
 Pi, i = 0; 1; : : : ; m

and (I� 
 Pi)(I� 
 Pj) = I� 
 PiPj = In 
 0q�q, i 6= j,

because the m+1 matrices Pi, i = 0; 1; : : : ; m, are idempotent and mutually orthogonal.

ii) Due to i) the inverse of the variance{covariance matrix Cov ( ~Y ) can be written as

Cov ( ~Y )�1 =

mX
j=0

1

�j
(I� 
 Pj): (12)

Using the fact that PjX = 0q�l , j = 1; : : : ; m, it holds for the argument of the exponential

function in the density of the � � q{dimensional normal distribution

( ~Y � (1� 
X)�)T (Cov ( ~Y ))�1 ( ~Y � (1� 
X)�) (13)

=
1

�0
( ~Y � (1� 
X)�)T (I� 
 P0)( ~Y � (1� 
X)�) +

mX
j=1

1

�j
~Y T (I� 
 Pj) ~Y :

Using the factorization criterion (see e. g. Graybill (1976), Theorem 2.6.1, p. 69) it follows

from (??) that the statistics (I� 
 P0) ~Y ; ~Y T (I� 
 Pj) ~Y ; j = 1; : : : ; m ; are su�cient

statistics. With Theorem 2.6.2 in Graybill (1976, p. 70) it can be stated that the set of

the above statistics is a set of minimal su�cient statistics.
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Lemma 2:

i) The GLS estimator of the parameter vector � in model (??) depends only on the

su�cient statistic (I� 
 P0) ~Y .

ii) Quadratic unbiased estimators of �1; : : : ; �m are based on the su�cient statistics

~Y T (I� 
 Pj) ~Y , j = 1; : : : ; m :

Proof:

i) With PjX = 0q�l , j = 1; : : : ; m and (??) the term (1� 
X)T (Cov ( ~Y ))�1 ~Y reduces

to 1
�0
(1� 
X)T (I� 
 P0) ~Y , so that the GLS estimator of � has the form

�̂ =
�
(1� 
X)T (I� 
 P0)(1� 
X)

�+
(1� 
X)T (I� 
 P0) ~Y .

ii) The expected value of ~Y T (I� 
 Pj) ~Y , j = 1; : : : ; m, is given by

E ( ~Y T (I� 
 Pj) ~Y ) = tr (I� 
 Pj)Cov ( ~Y ) = �j � tr (I� 
 Pj),

because PjX = 0q�l, j = 1; : : : ; m. Division by the trace of the projection matrix yields

the result. This completes the proof.

Due to (??) we have a unique relation between � and �. Hence, we use the quadratic forms

~Y T (I� 
 Pj) ~Y , j = 1; : : : ; m, to make inference about the unknown vector of variance

components.

3 Derivation of the test statistics

In model (??) we consider the quadratic forms ~Y T (I� 
 Pj) ~Y , j = 1; : : : ; m, and de�ne

for all j = 1; : : : ; m

T �

j
= ~Y T (I� 
 Pj) ~Y

�
(� � fj) =

1

�

�X
�=1

Y T

�
PjY�=fj =

1

�

�X
�=1

T
�

j
; (14)

where T
�

j
= Y T

�
PjY�=fj, � = 1; : : : ; �, j = 1; : : : ; m.

Let us denote T � = (T �

1 ; : : : ; T
�

m
)T then it holds

E (T �) = �T� = � ; (15)
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and the variance{covariance matrix of T � is a diagonal (m�m){matrix given by

D�(�) = 2 � diag (� 21 =(� � f1); : : : ; � 2m=(� � fm)) = D(�)=v ; (16)

and D(�) is the variance{covariance matrix of T from (??) in the corresponding non{

repeated model (??).

For each � = 1; : : : ; � the random variables fj � T �

j
=�j, j = 1; : : : ; m, are independent �2{

distributed random variables with fj degrees of freedom. Thus, we consider the likelihood

function

L(�) =

�Y
�=1

mY
i=1

(Ci)
�1

�
fi

�i

�fi=2

(T
�

i
)(fi�2)=2 exp

�
� 1

2

fi � T �

i

�i

�
: (17)

with (Ci)
�1 = 2fi=2 �(fi=2), i = 1; : : :m, and �(x) denotes the gamma function.

So, the log{likelihood function reads

l(�) =

�X
�=1

mX
i=1

�
ln(Ci)

�1 +
fi

2
ln

�
fi

�i

�
+

�
fi � 2

2

�
lnT

�

i
� 1

2

fi � T �

i

�i

�
: (18)

For the �rst derivatives of the log{likelihood function (??) we get

@l(�)

@�2
j

=

�X
�=1

mX
i=1

�
fi

2� 2
i

� �ij � T �

i
� fi

2�i
� �ij

�

=

mX
i=1

�
� � fi
2� 2

i

� �ij � T �

i
� � � fi

2�i
� �ij

�
; j = 1; : : : ; m; (19)

so that

@l(�)

@�
= �(D�(�))�1(T � � �T�) : (20)

Due to (??) the maximum likelihood estimator of � has the form

�̂ = (�T )�1 � T � ; (21)

and thus, the maximum likelihood estimator of � is given by

�̂ = T � : (22)
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The maximum likelihood estimator in (??) coincides with the usual ANOVA{estimator

and asymptotically yields nonnegative estimates of the variance components (cf. Brown

(1976)).

For the second derivatives of the log{likelihood function (??) we obtain

@2l(�)

@�2
j
@�2

k

=

�X
�=1

mX
i=1

�
� fi

� 3
i

�ij �ik T
�

i
+

fi

2� 2
i

�ij �ik

�

=

mX
i=1

�
� � � fi

� 3
i

�ij �ik T
�

i
+
� � fi
2� 2

i

�ij �ik

�
; j; k = 1; : : : ; m; (23)

so that the mean values of these derivatives are

E

�
@2l(�)

@�2
j
@�2

k

�
= �

mX
i=1

� � fi
2� 2

i

�ij �ik ; j; k = 1; : : : ; m : (24)

Thus, the information matrix is given by

I�(�) = E

�
� @2l(�)

@�@�T

�
= �(D�(�))�1�T (25)

= � � �(D(�))�1�T = � � I(�) ;

where I(�) is the information matrix in the corresponding non{repeated model (??).

Due to the results of Anderson (1973) and Brown (1976), respectively, we can state the

following theorem.

Theorem 1:

In model (??) it holds that
p
� (�̂� �) is asymptotically normally distributed with mean

vector 0 and variance{covariance matrix (�(D(�))�1�T )�1 for � !1.

Corollary 1:

Under the hypothesis H0 : K� = d,
p
� (K�̂ � d) is asymptotically normally distributed

with mean vector 0 and variance{covariance matrix K(�(D(�))�1�T )�1KT for � !1.

Thus, the Wald{type test statistic for testing the general linear hypothesis (??) is given

by

W = (K�̂ � d)T (K(�(D�(�))�1�T )�1KT )�1(K�̂ � d) ; (26)
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which is under H0 asymptotically �
2{distributed with rk (K) degrees of freedom (cf. Rao

(1973), p. 188)). For an application of the Wald test a consistent estimator of �, usually

the maximum likelihood estimator �̂, has to be replaced in D�(�).

An asymptotically equivalent test to the Wald test is given by the likelihood ratio test.

Thus, we consider the ratio

max

� : K� = d

L(�)
.
max

�

L(�): (27)

Considering the Lagrangian function

L(�; �) = l(�)� �T (K� � d); (28)

the maximum likelihood estimator of � under H0, say �� = (��21 ; : : : ; ��
2
m
)T , is a solution of

(T � � �)�D�(�)��1KT� = 0

K� = d ;
(29)

where � 2 IRp is a vector of Lagrange multipliers.

Theorem 2:

The test statistic

LR = 2
�
l(�̂)� l(��)

�
(30)

is under H0 : K� = d asymptotically �2{distributed with rk (K) degrees of freedom.

Proof: We note that the likelihood function (??) is built of independent identical dis-

tributed random vectors T � = (T
�

1 ; : : : ; T
�

m
)T , � = 1; : : : �, so that the proof is given using

standard arguments of maximum likelihood theory (see e. g. Rao (1973), p. 418{419).

Using the representation of the log{likelihood function from (??) the likelihood ratio test

statistic (??) can also be expressed as

LR =

mX
i=1

� � fi

(
T �

iP
m

j=1 �ij��
2
i

� ln

 
T �

iP
m

j=1 �ij��
2
i

!
� 1

)
: (31)
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4 Two Examples

4.1 Two{way nested classi�cation model

We consider the balanced two{way nested classi�cation model with random e�ects given

by

yijk = �+ ai + bij + eijk

i = 1; : : : ; r; j = 1; : : : ; s; k = 1; : : : ; t; n = rst;
(32)

where � 2 IR is a �xed e�ect and a1; : : : ; ar, b11; : : : ; brs, e111; : : : ; erst are independent

normally distributed random e�ects with E(ai) = E(bij) = E(eijk) = 0 and Var(ai) = �2
a
,

Var (bij) = �2
b
, Var (eijk) = �2

e
> 0 for all i, j, and k , so � = (�2

a
; �2

b
; �2

e
)T .

The unique basis of projection matrices in this model is given by

P0 =
1
n
Jn ;

Pa = (Ir � 1
r
Jr)
 1

st
Jst ; tr (Pa) = r � 1 ;

Pb = Ir 
 (Is � 1
s
Js)
 1

t
Jt ; tr (Pb) = r(s� 1) ;

Pe = Irs 
 (It � 1
t
Jt) ; tr (Pe) = rs(t� 1) ;

(33)

and the matrix � has the form

� =

0BBB@
st 0 0

t t 0

1 1 1

1CCCA : (34)

With y = (y111; y112; : : : ; yrst)
T let us denote the mean sum of squares of the random

e�ects as

M1 = yTPay=(r� 1) ;

M2 = yTPby=r(s� 1) ;

M3 = yTPey=rs(t� 1) :

(35)

For an application of the Wald test statistic we have to replaceD(�) in (??) by a consistent

estimator. Using a result from Hartung and Voet (1986) the best invariant unbiased

estimator for D(�) is given by

dD(�) = 2 � diag
�
M2

1

r + 1
;

M2
2

r(s� 1) + 2
;

M2
3

rs(t� 1) + 2

�
: (36)
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For testing the hypothesis H0 : �
2
a
= �2

b
with K = (1;�1; 0)T and d = 0 the Wald test

statistic has the form

W1 =

�
1
st(M1 �M2)� 1

t (M2 �M3)
�2

1
s2t2

�
2M2

1
r + 1 +

2 (s+ 1)2 M2
2

r(s� 1) + 2
+

2 s2 M2
3

rs(t� 1) + 2

� ; (37)

which can also be expressed in terms of the maximum likelihood estimators �̂2
a
and �̂2

b
as

W1 =
(�̂2

a
� �̂2

b
)2dVar (�̂2

a
� �̂2

b
)
: (38)

The test statistic W1 is under H0 asymptotically �
2{distributed with one degree of free-

dom.

In order to apply the likelihood ratio test statistic for testingH0 : �
2
a
= �2

b
we have to make

use of a numerical algorithm to maximize the log-likelihood under H0. In the following

simulation studies, which have been carried out in SAS 6.12 using PROC IML, we use

the Newton-Raphson ridge optimization algorithm to obtain the maximum likelihood

estimator under H0.

In the �rst simulation study we investigate the behaviour of the signi�cance level and

the power of both tests where we focus our attention on 'small' degrees of freedom of the

mean sum of squares. Due to the fact that a given two{way nested classi�cation model

can possibly be interpreted as a replication of a reduced design, which depends on the

the number r of levels of the A{factor, we only consider sample sizes with increasing r

and three pairs of sample sizes (s; t) to make the simulations not too complex. For the

error variance �2
e
we always choose the value one. In table 1 the result for the Wald and

likelikood ratio test concerning the estimated size of the tests given the nominal level of

� = 0:01 and � = 0:05, respectively, are presented based on 10 000 simulations of the

model.

We observe that the estimated signi�cance levels of the likelihood ratio test are nearly

independent from the chosen sample sizes and mostly exceed the nominal signi�cance

levels but in a compatible manner; merely in �ve cases with � = 0:01 the estimated

sizes are somewhat smaller than 0.01. The estimated signi�cance levels of the Wald
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test, however, do not show such a homogeneous behaviour as the estimated sizes of the

likelihood ratio test. For all r with s = t = 3 the estimated sizes of the Wald test always

considerably fall below the nominal signi�cance level. Only the case r = 20 indicates

that for larger r the actual size of the test reaches the nominal size. If we choose s = 5

and t = 6 the estimated sizes always exceed the nominal level except for r = 3; 4; 5 with

� = 0:01, but the di�erences are not so severe. Regarding the sample size s = 8 and

t = 10 for all r the estimated signi�cance levels are considerably larger than the nominal

signi�cance levels. Again the case r = 20 indicates that for larger r the actual size of the

test may go towards the nominal signi�cance level. Consequently, the likelihood ratio test

seems to be preferable to the Wald test in small sample sizes.

Yet, we perform another simulation study to compare the power of both tests and we

restrict to all sample sizes r with s = 5 and t = 6, because in these cases the estimated

sizes of both tests are rather similar. As possible alternative hypotheses we consider the

cases � = �2
b
� �2

a
= 0:1; 0:25; 0:5; 0:75; 1; and 2. The results of this simulation study are

given in table 2, where again every estimated point of the power function is based on

10000 simulations. For all sample sizes the estimated signi�cance level of the Wald test

is always a little bit larger than the estimated signi�cance level of the likelihood ratio

test, so one may expect that the power function of the Wald test is also larger than the

one of the likelihood ratio test. The simulation study corroborates this presumption, but

the gain of the power of the Wald test is even much more intense than the one of the

likelihood ratio test, i. e. in situations with comparable sizes of both tests the Wald test

detects better deviations from the null hypothesis than the likelihood ratio test.
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4.2 Two{way classi�cation model with interaction

Let us consider the balanced two-way classi�cation random model with interaction given

by

yijk = �+ ai + bj + (ab)ij + eijk ;

i = 1; : : : ; r; j = 1; : : : ; r; k = 1; : : : ; t; n = rst;
(39)

where � 2 IR is a �xed e�ect and a1; : : : ; ar, b1; : : : ; bs, (ab)11; : : : ; (ab)rs, e111; : : : ; erst

are independent normally distributed random e�ects with E (ai) = E (bj) = E ((ab)ij) =

E (eijk) = 0 and Var (ai) = �2
a
, Var (bj) = �2

b
; Var ((ab)ij) = �2

ab
; Var (eijk) = �2

e
> 0 for

all i; j and k, so � = (�2
a
; �2

b
; �2

ab
; �2

e
)T .

Let M1;M2;M3 and M4 represent the A{factor, B{factor, AB{interaction and residual

error mean squares, it holds

E(M) = �T�; M = (M1;M2;M3;M4)
T ; (40)

and

� =

0BBBBBB@
st 0 0 0

0 rt 0 0

t t t 0

1 1 1 1

1CCCCCCA ; (41)

where the unique basis of projection matrices is given by

P0 =
1
n
Jn ;

Pa =
�
Ir � 1

r
Jr
�

 1

st
Jst ; tr (Pa) = r � 1 ;

Pb =
1
r
Jr 


�
Is � 1

s
Js
�

 1

t
Jt ; tr (Pb) = s� 1 ;

Pab =
�
Ir � 1

r
Jr
�


�
Is � 1

s
Js
�

 1

t
Jt ; tr (Pab) = (r � 1)(s� 1) ;

Pe = Irs 
 (It � 1
t
Jt) ; tr (Pe) = rs(t� 1) :

(42)

The best invariant unbiased estimator of the covariance matrix D(�) (cf. Hartung, Voet

1986) has the form

dD(�) = 2 � diag
�
M2

1

r + 1
;
M2

2

s+ 1
;

M2
3

(r � 1)(s� 1) + 2
;

M2
4

rs(t� 1) + 2

�
: (43)
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Thus, the Wald test statistic for testing the hypothesis H0 : �2
a
= �2

b
, with K =

(1;�1; 0; 0)T and d = 0, can be described as

W1 =

�
r(M1 �M3)� s(M2 �M3)

�2
2r2M2

1

r + 1
+
2s2M2

2

s+ 1
+

2(r � s)2M3
3

(r � 1)(s� 1) + 2

; (44)

which is under H0 asymptotically �
2{distributed with one degree of freedom.

In this model we explicitly consider the equations (??) which has to be solved by the

maximum likelihood estimator under H0. Here, (??) has the form

(M1 � �1) + 2�
� 21

st(r � 1)
= 0

(M2 � �2)� 2�
� 22

rt(s� 1)
= 0

(M3 � �3) + 2�
�
1
rt �

1
st

�
� 23

(r � 1)(s� 1)
= 0

(M4 � �4) = 0

1
s�1 �

1
r �2 +

�
1
r �

1
s

�
�3 = 0

(45)

If both main e�ects have the same number of levels, i. e. r = s, we get the following

solution of (??)

��4 =M4 ; ��3 =M3 ; and ��2 = ��1 = (M1 +M2)=2 : (46)

So the test statistic (??) can be written as

LR1 = (r � 1)

�
ln

�
M1 +M2

2M1

�
+ ln

�
M1 +M2

2M2

��
: (47)

Under H0, the mean value of LR1 is given by

E (LR1) = 2(r � 1)
n
E ln

�
�2
2(r�1)

�
� E ln

�
�2
r�1

�
� ln 2

o
: (48)

In Bartlett and Kendall (1946) it is shown that the mean value of the logarithm of a

�2{distributed random variable with f degrees of freedom is given by

E ln(�2
f
) = ln 2 +  (f=2); (49)

where  (x) = d ln�(x)=dx is the psi function. With an approximation of the psi function

given in Abramowitz and Stegun (1964, p. 259) we get the following approximation of the
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mean value

E ln(�2
f
) � ln f � 1

f
� 1

3f 2
+ 2

1

15f 4
� � � � ; (50)

and so it holds for the likelihood ratio test statistic from ??)

E (LR1) � 1 +
1

2(r � 1)
: (51)

Therefore, we reject the hypothesis H0 : �
2
a
= �2

b
at the signi�cance level � if

LR�

1 =
LR1

1 +
1

2(r � 1)

> �2
1;1��

; (52)

and �2
1;
 denotes the 
{quantile of a �

2{distribution with one degree of freedom.

If the number of levels of the A{ and B{factor are di�erent, i. e. r 6= s, we get the

following solution of (??)

��4 =M4 ; ��3 = (s��2 � r��1)=(s� r) (53)

and ��1 and ��2 are solutions of

(M1 � �1)(s�2 � r�1)
2 + � 21 (s�2 � r�1 � (s� r)M3)r(s� 1) = 0

(M2 � �2)(s�2 � r�1)
2 + � 22 (r�1 � s�2 � (r � s)M3)s(r � 1) = 0

(54)

Instead of using a numerical algorithm for computing a solution of (??) we use the fol-

lowing approximation. It holds

D(�)��1K =

26666664
2�4

a
st=(r � 1)

� 2�4
b
rt=(s� 1)

0

0

37777775 +O(r; s) ; (55)

where O(r; s) 2 IR4 and limO(r; s) = 0 for r!1 and s!1 .

Thus, instead of solving (??) we consider the following system of equations, where we

15



omit the term O(r; s),

(M1 � �1) + 2��4
a
st=(r � 1) = 0

(M2 � �2)� 2��4
b
rt=(s� 1) = 0

(M3 � �3) = 0

(M4 � �4) = 0

1

s
�1 �

1

r
�2 +

�
1

r
� 1

s

�
�3 = 0

(56)

The estimators for �3 and �4 are now given by

��3 =M3 and ��4 =M4 : (57)

With

2� =
s� 1

rt

M2 + �2

�4
b

(58)

the �rst equation in (??) can be written as

(M1 � �1) +
st(s� 1)

rt(r � 1)

�4
a

�4
b

(M2 � �2) = 0 ; (59)

which under H0 : �
2
a
= �2

b
reduces to

(M1 � �1) +
s(s� 1)

r(r � 1)
(M2 � �2) = 0 : (60)

Finally, we yield for �1 and �2 the estimators

��1 =
1

(r � 1) + (s� 1)

�
(r � 1)M1 + (s� 1)

�s
r
M2 + (1� s

r
)M3

��
��2 =

1

(r � 1) + (s� 1)

�
(s� 1)M2 + (r � 1)

�r
s
M1 + (1� r

s
)M3

�� (61)

We note that the approximate solution of (??) coincides with the exact solution of (??),

if the numbers of levels of the A{ and B{factor are identical.

Now, we consider the expected value of the 'approximate' likelihood ratio test statistic

using the estimators from (??) and (??) and observe that the last term in both equations

on the right hand side of (??) is O(r; s) so that estimators from (??) can be written as

��1 = ��2 �
1

((r � 1) + (s� 1)
((r � 1)M1 + (s� 1)M2) : (62)
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Using (??) the likelihood ratio test statistic LR can be approximated as

LRy = (r � 1) ln

�
(r � 1)M1 + (s� 1)M2

((r � 1) + (s� 1))M1

�
+ (s� 1) ln

�
(r � 1)M1 + (s� 1)M2

((r � 1) + (s� 1))M2

�
;

(63)

which under H0 is appproximately

LRy � ((r � 1) + (s� 1)) ln�2(r � 1)� (s� 1)� (r � 1) ln�2
r�1 � (s� 1) ln�2

s�1

�((r � 1) + (s� 1)) ln((r � 1) + (s� 1)) + (r � 1) ln(r � 1) + (s� 1) ln(s� 1) : (64)

With the approximation formula (??) we yield for the expected value of the likelihood

ratio test statistic

E (LRy) � 1 +
1

3(r � 1)
+

1

3(s� 1)
� 1

3((r � 1) + (s� 1))
: (65)

Using the inequality

1

(r � 1) + (s� 1)
� 1

4

�
1

r � 1
+

1

s� 1

�
(66)

the expected value of (??) can also be approximated by

E (LRy) � 1 +
1

4(r � 1)
+

1

4(s� 1)
: (67)

Therefore, we reject the hypothesis H0 : �
2
a
= �2

b
, if

LRz = LRy=c > �2
1;1��

with c from (??): (68)

We note that (??) and (??) are identical if r = s.

In a simulation study, which has been carried out in similar way like the ones in example

4.1, we study the sizes of the proposed tests. We consider the likelihood ratio test using

the Newton-Raphson ridge optimization algorithm to maximize the likelihood function

under H0, the 'approximate' likelihood ratio test from (??), and the Wald test from (??).

The results are based on 10 000 simulations and the variance components �2
ab
and �2

e
have

been set equal to one. The results of this simulation study are presented in table 3, where

only the results with increasing r and three pairs of (s; t) are reported, because the results

with increasing s and di�erent pairs (r; t) are quite similar.
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The estimated sizes of the likelihood ratio statistic (LR) exceed for all sample sizes the

nominal signi�cance level, but in an acceptable manner. Moreover, the estimated sizes do

not depend on the sample sizes on the whole, they are rather homogeneous. Regarding

the 'approximate' likelihood statistic (LRz) we see that the consideration of a factor, who

corrects for the expected value of the likelihood ratio test statistic in small smaple sizes,

has an important impact on the estimated sizes. In all considered cases, the variation of

the estimated signi�cance levels about the nominal signi�cance is rather small. The Wald

test mainly produces very conservative results. In our simulation study for � = 0:01 the

Wald test never rejects the hypothesis, except for r = 20. For � = 0:05 the estimated sizes

are also very small, but sometimes we observe estimated sizes, which seriously exceed 0.05,

e. g. the case r = 3, s = 10, t = 15. Thus, the test statistics LR and LRz, respectively,

are more appropriate for testing the hypothesis H0 : �
2
a
= �2

b
than the Wald test.
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Table 1: Estimated size of the likelihood ratio (LR) and Wald test for di�erent sample

sizes r, s, t (� = 0:01 and � = 0:05) in model (??) for testing H0 : �
2
a
= �2

b
.

� = 0:01 � = 0:05

r s t LR Wald LR Wald

3 3 3 0.0133 0.0023 0.0575 0.0136

3 5 6 0.0151 0.0007 0.0654 0.0698

3 8 10 0.0140 0.0734 0.0674 0.1860

4 3 3 0.0124 0.0016 0.0558 0.0155

4 5 6 0.0112 0.0029 0.0579 0.0723

4 8 10 0.0116 0.0732 0.0602 0.1508

5 3 3 0.0110 0.0033 0.0560 0.0163

5 5 6 0.0095 0.0097 0.0521 0.0705

5 8 10 0.0136 0.0653 0.0587 0.1364

6 3 3 0.0125 0.0021 0.0571 0.0243

6 5 6 0.0101 0.0115 0.0540 0.0696

6 8 10 0.0139 0.0546 0.0555 0.1149

7 3 3 0.0091 0.0015 0.0533 0.0224

7 5 6 0.0125 0.0156 0.0542 0.0680

7 8 10 0.0123 0.0526 0.0551 0.1130

8 3 3 0.0092 0.0013 0.0521 0.0247

8 5 6 0.0117 0.0162 0.0509 0.0653

8 8 10 0.0134 0.0522 0.0569 0.1082

9 3 3 0.0112 0.0029 0.0527 0.0258

9 5 6 0.0096 0.0172 0.0569 0.0650

9 8 10 0.0124 0.0481 0.0567 0.0994

10 3 3 0.0102 0.0022 0.0579 0.0315

10 5 6 0.0126 0.0174 0.0509 0.0603

10 8 10 0.0112 0.0451 0.0537 0.0932

20 3 3 0.0105 0.0049 0.0520 0.0402

20 5 6 0.0094 0.0165 0.0519 0.0571

20 8 10 0.0123 0.0321 0.0528 0.0731
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Table 2: Estimated power of the likelihood ratio (LR) and Wald test for di�erent values

� = �2
b
� �2

a
, di�erent sample sizes r, and, s = 5, t = 6 (� = 0:05) in model (??) for

testing H0 : � � a2 = �2
b

� = �
2
b
� �

2
a

r Test 0 0.1 0.25 0.5 0.75 1 2

3 LR 0.0654 0.0699 0.0825 0.0986 0.1119 0.1224 0.1516

Wald 0.0698 0.0877 0.1270 0.2030 0.2638 0.3090 0.4114

4 LR 0.0579 0.0625 0.0816 0.1119 0.1329 0.1493 0.2045

Wald 0.0723 0.0962 0.1461 0.2345 0.2957 0.3438 0.4656

5 LR 0.0521 0.0609 0.0843 0.1292 0.1604 0.1848 0.2553

Wald 0.0705 0.1019 0.1633 0.2589 0.3242 0.3779 0.5180

6 LR 0.0540 0.0662 0.0970 0.1505 0.1856 0.2210 0.3149

Wald 0.0696 0.1062 0.1751 0.2823 0.3593 0.4202 0.5712

7 LR 0.0542 0.0738 0.1130 0.1652 0.2132 0.2524 0.3681

Wald 0.0680 0.1099 0.1891 0.2948 0.3811 0.4496 0.6128

8 LR 0.0509 0.0701 0.1142 0.1814 0.2362 0.2850 0.4260

Wald 0.0653 0.1071 0.1997 0.3203 0.4146 0.4870 0.6541

9 LR 0.0569 0.0756 0.1284 0.2079 0.2718 0.3267 0.4774

Wald 0.0650 0.1119 0.2043 0.3430 0.4433 0.5138 0.6913

10 LR 0.0509 0.0733 0.1286 0.2185 0.2926 0.3528 0.5206

Wald 0.0603 0.1115 0.2023 0.3559 0.4586 0.5320 0.7222

20 LR 0.0519 0.1019 0.2218 0.3798 0.5020 0.5951 0.8175

Wald 0.0571 0.1417 0.3039 0.4956 0.6237 0.7224 0.8963
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Table 3: Estimated size of the likelihood ratio (LR), the approximate likelihood ratio

(LRz), and Wald test for di�erent sample sizes r, s, t (� = 0:01 and � = 0:05) in model

(??) for testing H0 : �
2
a
= �2

b
.

� = 0:01 � = 0:05

r s t LR LRz Wald LR LRz Wald

3 5 6 0.0144 0.0082 0 0.0716 0.0466 0

3 8 10 0.0158 0.0094 0 0.0720 0.0501 0.0616

3 10 15 0.0167 0.0083 0 0.0689 0.0487 0.1229

4 5 6 0.0163 0.0100 0 0.0682 0.0505 0

4 8 10 0.0165 0.0098 0 0.0654 0.0508 0.0265

4 10 15 0.0146 0.0102 0 0.0658 0.0504 0.069

5 5 6 0.0141 0.0089 0 0.0636 0.0502 0

5 8 10 0.0141 0.0098 0 0.0626 0.0475 0.0114

5 10 15 0.0133 0.0100 0 0.0604 0.0489 0.0383

6 5 6 0.0131 0.0095 0 0.0596 0.0461 0

6 8 10 0.0141 0.0104 0 0.0618 0.0506 0.0057

6 10 15 0.0122 0.0095 0 0.0580 0.0479 0.0228

7 5 6 0.0137 0.0090 0 0.0625 0.0514 0.0011

7 8 10 0.0147 0.0110 0 0.0584 0.0493 0.0026

7 10 15 0.0134 0.0109 0 0.0588 0.0502 0.0152

8 5 6 0.0144 0.0101 0 0.0648 0.0505 0.0113

8 8 10 0.0120 0.0095 0 0.0586 0.0503 0.0018

8 10 15 0.0145 0.0116 0 0.0604 0.0543 0.0126

9 5 6 0.0153 0.0106 0 0.0598 0.0495 0.0272

9 8 10 0.0131 0.0100 0 0.0582 0.0489 0.0061

9 10 15 0.0118 0.0091 0 0.0559 0.0487 0.0092

10 5 6 0.0151 0.0112 0 0.0620 0.0517 0.0413

10 8 10 0.0125 0.0098 0 0.0586 0.0522 0.0115

10 10 15 0.0111 0.0095 0 0.0555 0.0470 0.0097

20 5 6 0.0154 0.0115 0.046 0.0599 0.0524 0.1312

20 8 10 0.0123 0.0105 0.012 0.0585 0.0515 0.0637

20 10 15 0.0133 0.0082 0.005 0.0642 0.0483 0.0466
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