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Summary

We show that OLS and GLS are asymptotically equivalent in the

linear regression model with AR(p){disturbances and a wide range

of trending regressors, and that OLS{based statistical inference is

still meaningful after proper adjustment of the test{statistics.

1 Notation and assumptions

We consider the standard linear regression model

yt = x0t� + ut ; t = 1; 2; : : : ; (1)

where xt and � are k � 1 and ut is a stationary, zero mean AR(p){process,

ut + �1ut�1 + : : :+ �put�p = "t (2)
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with iid(0; �2) "t's and all roots of the polynomial 1 + �1z + : : :+ �pz
p outside

the unit circle. Our main concern is OLS{based statistical inference when the

regressors xt are independent of the disturbances and "trending", by which we

mean that they satisfy an invariance principle

1

gi(T )
x[Tr];i

d�! Bi(r) as T !1; (3)

where
d�! denotes convergence in distribution, [Tr] is the integer part of

Tr; gi(T ) ! 1 and Bi(r) is some non{zero, possibly degenerate random ele-

ment in D[0; 1] (the set of all real{valued functions on the unit interval who

are right continuous and have left{hand{limits, endowed with the Skorohod{

Topology; see Billingsley 1968, chapter 3). Also, we assume that

g(T )�1x[Tr]
d�! B(r); (4)

where g(T ) = diag(g1(T ); : : : ; gk(T )) and where B(r) is a random element

in D[0; 1]k with components Bi(r), and that
R 1
0 B(r)B(r)

0dr is invertible with

probability 1.

The crucial condition (3) covers various special cases: (i) Stochastic I(1){

regressors, where gi(T ) =
p
T and where (under suitable regularity conditi-

ons) Bi(r) is Brownian Motion. (ii) Nonstochastic polynomial regressors, where

xit = ti and gi(T ) = T i, and where Bi(r) = ri. (iii) Nonstationary fractionally

integrated regressors, where (1�L)dxti = "ti with d >
1
2
and stationary ARMA

"ti's, where gi(T ) =
p
T 2d�1 and where Bi(r) is fractional Brownian Motion

(Sowell 1990, Chung 1995, Dolado and Marmol 1998). It does not cover expo-

nential trends, as it is easily seen that invariance principles like (3) do then no

longer hold.

The topic of the paper is the asymptotic performance of the OLS{estimator

�̂ =

 
TX
t=1

xtx
0

t

!�1 TX
t=1

xtyt; (5)

both relative to GLS and as regarding inference, generalizing Grenander

(1954), Rosenblatt (1956), Kr�amer (1985, 1998), Phillips and Park (1988),
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Kr�amer and Hassler (1998) or Dolado and Marmol (1998), who either consi-

der only special cases of trend or focus on the asymptotic e�ciency of OLS,

disregarding inference. We show that OLS is asymptotically e�cient, thus esta-

blishing the invariance principle (3) as the heart of the well known e�ciency

results in the papers above, and show that OLS{based F{tests are still asymp-

totically valid in the context of autocorrelated disturbances if the OLS{based

variance estimator is divided by an estimator of the long{term variance of the

disturbances. This was �rst noted by Kr�amer (1987) and Phillips and Park

(1988) in the context of polynomial and I(1){regressors, but extends to all

types of trend comprised by (3).

2 Asymptotic properties of OLS{based

coe�cient estimates

We �rst compare the properties of OLS to those of the OLS{estimator ~�, which

in the present context is obtained by applying OLS to

~yt = ~x0t� + "t; where (6)

~xt = xt + �1xt�1 + : : :+ �pxt�p and (7)

~yt = yt + �1yt�1 + : : :+ �pyt�p (t > p) (8)

and where observations t = 1; : : : ; p, which are asymptotically irrelevant, are

ignored.

THEOREM 1: Let W (r) be Brownian Motion, independent of B(r), with va-

riance ~�2 = �2=(1 + �1 + : : : + �p)
2. The limiting distributions as T ! 1 of

p
Tg(T )( ~� � �) and

p
Tg(T )(�̂ � �) are then identical and given by

[

Z 1

0
B(r)B(r)0dr]�1

Z 1

0
B(r)dW (r): (9)
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PROOF: We have

�̂ � � =
TX
t=1

(xtx
0

t)
�1

TX
t=1

xtut ; (10)

0
@ g(T )�1 X[Tr]

T�
1

2

P[Tr]
s=1 us

1
A d�!

0
@ B(r)

W (r)

1
A ; (11)

1

T
g(T )�1

TX
t=1

xtx
0

tg(T )
�1 d�!

Z 1

0
B(r)B(r)0dr and (12)

1p
T
g(T )�1

TX
t=1

xtut
d�!
Z 1

0
B(r)dW (r); (13)

where (12) follows from (4) and the continuous mapping theorem (Billingsley

1968, p. 30) and where (13) follows from the independence of W (r) and B(r)

and a general theorem on the convergence to stochastic integrals in Hansen

(1992, p. 491). Taken together, (12) and (13) give (9) as the limiting distribu-

tion of OLS.

As to GLS, we have

g(T )�1~x[Tr] = g(T )�1(1 + �1 + : : :+ �p)x[Tr] + op(1) and (14)

T�
1

2

[Tr]X
s=1

"s = T�
1

2 (1 + �1 + : : :+ �p)
[Tr]X
s=1

us + op(1); (15)

which implies, emulating the proof of Theorem 2.2 in Phillips and Park (1988,

p. 114) that

0
@ g(T )�1~x[Tr]

(T )�1
P[Tr]

s=1 "s

1
A d�!

0
@ ~B(r)

~u(r)

1
A : (16)

However,

~B(r) = (1 + �1 + : : :+ �p)B(r) and (17)

~W (r) = (1 + �1 + : : :+ �p)W (r); (18)
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where ~B(r) is independent of ~W (r). In view of

~� � � =

 
TX
t=1

~xt~x
0

t

!�1
TX
t=1

~xt"t; (19)

this implies that

p
Tg(T )( ~� � �)

d�! [

Z 1

0

~B(r) ~B(r)0dr]�1
Z 1

0

~B(r)d ~W (r)

= [

Z 1

0
B(r)B(r)0dr]�1

Z 1

0
B(r)dW (r); (20)

as the term 1 + �1 + : : :+ �p cancels out. 2

Theorem 1 shows also, in view of g(T ) ! 1, that OLS and GLS are con-

sistent and converge to the true parameter vector faster than in the case of

nontrending regressors, con�rming well known results from regression analysis

("superconsistency"). One can also extend Theorem 1 to include the feasible

GLS{estimator, which is obtained by plugging estimated �'s into (7) and (8).

It is easy to show that these estimates, if based on OLS{residuals yt�x0t�̂, are

consistent, and that the limiting distribution (9) obtains for feasible GLS as

well.

To derive the limiting null distribution of the F-test, which will be the

concern of section 3, it is more useful to normalize the estimation errors �̂� �

di�erently, as is done in our next result.

THEOREM 2: Assume that B(r) can be expressed as a uniformly continuous

functional of a K{dimensional Brownian Motion. Then, as T ! 1, both

(�xtx
0

t)
�

1

2 (�̂ � �) and (�(xtx
0

t))
�

1

2 ( ~� � �) tend in distribution to N(0; ~�2I).

PROOF: From Theorem 1 and the continuous mapping theorem, we deduce

that

(�xtx
0

t)
1

2 (�̂ � �)
d�! (

Z 1

0
B(r)B(r)0dr))�

1

2

Z 1

0
B(r)dW (r): (21)
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As B(r) is by assumption a continuous functional of Brownian Motion ~B, we

deduce from Phillips and Park (1988, p. 114) that

Z 1

0
B(r)dW (r)j�( ~B) � N

�
0; ~�2

Z 1

0
B(r)B(r)0dr

�
; (22)

from which (21) follows.

As to GLS, we have

(�xtx
0

t)
1

2 ( ~� � �) =

�
(�xtx

0

t)
1

2 (�~xt~x
0

t)
1

2

� �
(�~xt~x

0

t)
1

2 �~x0t"t

�
; (23)

where the �rst term tends to (1+�1+ : : :+ �p)
�1Ik and the second term tends

to N(0; �2I), which completes the proof of the theorem. 2

The additional requirement in Theorem 2 that B(r) can be written as a functio-

nal of Brownian Motion does not seem to be very restrictive. It is for instance

satis�ed for arbitrary I(d) regressors (d > 1=2), including d = 1, so the cases

that are of interest in practice are covered. Also, an analogous version of Theo-

rem 2 holds which establishes that both (�~xt~x
0

t)
1

2 (�̂ � �) and (�~x0t~xt)
1

2 ( ~� � �)

tend in distribution to N(0; �2I).

3 Asymptotic inference

Next we consider the standard OLS{based F-Test of the hypothesis

H0 : R� = r; (24)

where R is q � k with rank q(q < k). The test statistic is

F = (R�̂ � r)0[R(�xtx
0

t)
�1R0]�1(R�̂ � r)=s2; (25)

where

s2 =
TX
t=1

(yt � x0t�̂)
2=(T � k): (26)
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It has long been known that the most serious implications of autocorrelated

disturbances is not the resulting ine�ciency of OLS but the misleading

inference when standard tests are used. One way out of this dilemma are the

well known autocorrelation{consistent covariance matrix estimates, but in the

present context, the remedy is much simpler.

THEOREM 3: Given H0 and the assumptions from Theorem 2, we have, as

T !1

F
d�! ~�2

�2
u

�2
q; (27)

where �2
u = E(u2

t ) = �2(1 + �21 + : : :+ �2p).

PROOF: We have

[R
h
�xtx

0

t)
�1R0

i
�

1

2

(R�̂ � r)

=

"
R

�
1

T
g(T )�1�xtx

0

tg(T )
�1

��1

R0

#
�

1

2 p
Tg(T )(R�̂ � r)

=

"
R

�
1

T
g(T )�1�xtx

0

tg(T )
�1

��1

R0

#
�

1

2

R
p
Tg(T )(�̂ � �) (underH0):

Using (9), (12) and the continuous mapping theorem, we have that under H0,

[R
h
�xtx

0

t)
�1R0

i
�

1

2

(R�̂ � r)

d�!
"
R

�Z 1

0
B(r)B(r)0dr

��1

R0

#
�

1

2

R

�Z 1

0
B(r)B(r)0dr

��1 Z 1

0
B(r)dW (r)

�
"
R

�Z 1

0
B(r)B(r)0dr

��1

R0

#
�

1

2

R

�Z 1

0
B(r)B(r)0dr

�� 1

2

N (0; ~�2Ik); (28)

where "�" denotes equality in distribution.

Expression (28) implies that
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(28) � N
2
40; ~�2

 
R

�Z 1

0
B(r)B(r)0dr

��1

R0

!
�1

� R

�Z 1

0
B(r)B(r)0dr

��1

R0

#

= N (0; ~�2Iq): (29)

On the other hand we have

s2 =
1

T � k

TX
t=1

(yt � x0t�̂)
2

=
1

T � k

TX
t=1

u2
t �

1

T � k

 
TX
t=1

xtut

!0  TX
t=1

xtx
0

t

!�1

�
 

TX
t=1

xtut

! 
1p
T
g(T )�1

TX
t=1

xtut

!

=
1

T � k

TX
t=1

u2
t �

1

T � k

 
1p
T
g(T )�1

TX
t=1

xtut

!0

�
 
1

T
g(T )�1

TX
t=1

xtx
0

tg(T )
�1

!�1  
1p
T
g(T )�1

TX
t=1

xtut

!

=
1

T � k
u2
t + op(T )

p�! E(u2
t ) = �2

u: (30)

The theorem then follows from (25), (29), (30) and standard results. 2

Theorem 3 immediately yields an operational test as follows: Let

�̂2 =
1

T � k

TX
t=1

(yt � x0t
~�)2 (31)

be an estimator for �2 based on GLS{residuals; and let

~s2 = �̂2=(1 + �̂1 + : : : �̂2p)
2; (32)

where �̂i, i = : : : ; p denote the OLS{based estimates of �i in (1) - (2).

8



Then, it is easy to show that

�̂2 p�! �2; (33)

~s2
p�! ~�2: (34)

Together (27) and (33) - (34) imply that, under H0

s2

~s2
F

d�! �2
q; (35)

which gives an operational and asymptotically valid test.

Likewise, it is easy to show that the Wald statistics

F1 = (R ~� � r)0

2
4R

 
TX
t=1

~xt~x
0

t

!�1

R0

3
5
�1

(R ~� � r)=�̂2 (36)

and

F2 = (R�̂ � r)0

2
4R

 
TX
t=1

xtxt

!�1

R0

3
5
�1

(R�̂ � r)=ŝ2 (37)

are both asymptotically �2
q under H0.
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