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1 Introduction

This paper is concerned with testing the null hypothesis of no cointegration

among I(1){variables when the cointegration residuals are I(d) with 0 < d < 1.

This possibility is entertained with increasing frequency in many applications

(see e.g. Cheung and Lai 1993, Baillie and Bollerslev 1994, Booth and Tse 1995

or Baillie 1996 for examples). We consider the power of various cointegration

tests both for the stationary case (d < 0:5) and for the nonstationary case

(d � 0:5).

When the potential cointegrating relationship is known, this problem boils

down to testing for unit roots against fractional alternatives, as discussed by

e.g. Sowell (1990), Diebold and Rudebusch (1991), Hassler and Wolters (1994),

Dolado and Marmol (1997) or Kr�amer(1998). When the potential cointegrating

relationship has to be estimated, we encounter the twin problems of nonstan-

dard regression properties due to I(d){disturbances and unobservability of the

true residuals. While the second problem has been solved for the case where

1Research supported by Deutsche Forschungsgemeinschaft and Volkswagenstiftung; we

are grateful to Ingolf Dittmann for helpful criticism and comments, and to Deutsche Finanz-

datenbank (DFDB) for providing us with the data for our empirical results
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the true residuals are I(0) (Phillips/Ouliaris 1990), an analoguous analysis of

the case where the true residuals are I(d) with d < 1 is still missing.

A related problem is the power of tests of the null hypothesis that cointegration

exists, against the alternative of fractionally integrated residuals. Again, this

problem has only been addressed for the case where true residuals are used

(Lee and Schmidt 1996, Marmol 1997).

Below we con�ne ourselves to testing the null hypothesis of no cointegration.

2 The Model and the Tests

Let fztg; t = 0; 1; 2; : : : be the m{vector integrated process under test, genera-

ted according to

zt = zt�1 + �t (t = 1; 2; : : :): (1)

As regards to this and subsequent notation and also as regards assumptions,

we follow Phillips and Ouliaris (1990). In particular, let z0 without loss of

generality be zero. The innovations �t in (1) are assumed to have mean zero

and to satisfy a multivariate invariance principle

XT (r) :=
1p
T

[Tr]X
t=1

�t
d�! B(r); (2)

where B(r) is an m{vector Brownian motion with covariance matrix


 := lim
T!1

1

T
E

( 
TX
t=1

�t

! 
TX
t=1

�0t

!)
: (3)

Under the null hypothesis of no cointegration, 
 has full rank m.

Below we consider the alternative that there is exactly one cointegrating rela-

tionship, i.e. that the z{vector can be split into

zt =

2
4 yt

xt

3
5 1

n
; m = n + 1 (4)
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such that

yt = � 0xt + ut; (5)

where ut is I(d) with d < 1. This generalizes Phillips and Ouliaris (1990), who

consider the case where under the alternative ut is I(0).

Given that the data follow (5), we consider the following tests of the null

hypothesis of no cointegration (i.e. ut � I(1)):

Augmented Dickey Fuller (ADF):

The t{statistic for � = 0 in the regression

�ût = �ût�1 + '1�ût�1 + : : :+ 'p�ût�p + vtp; (6)

where the ût are OLS{residuals from (5).

Phillips' Ẑ�:

Ẑ� = T (�̂� 1)� 1

2

S2
T` � S2

k

1
T 2

PT
t=2 û

2
t�1

; (7)

where �̂ is from the regression ût = �̂ût�1 + k̂t and where

S2
k =

1

T

TX
t=1

k̂2t ; (8)

S2
T` =

1

T

TX
t=1

k̂2t +
2

T

X̀
s=1

ws`

TX
t=s+`

k̂tk̂t�s; (9)

ws` = 1� s

`+ 1
: (10)

The extra term on the right in (7) takes care of nuisance parameters that

would otherwise a�ect the limiting rejection probability under H0: The

limiting distribution of the standard Dickey{Fuller statistic T (�̂� 1) depends

on the correlation structure of the residuals, and this dependency is thereby

(asymptotically) removed (see Hamilton 1994, chapter 17.6 for a didactical
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exposition of this issue).

Phillips' Ẑt:

Ẑt :=
�̂� 1r

S2
T`P

T

t=2
û2
t�1

� 1

2

S2
T` � S2

kq
S2
T` � 1

T 2
�PT

t=2 û
2
t�1

: (11)

Again, the second term is added to remove the dependency of the limiting

null distribution on the correlation structure of the residuals.

The Phillips/Ouliaris variance ratio test:

P̂u :=
T !̂11:2

1
T

PT
t=1 û

2
t

; (12)

where !̂11:2 = !̂11 � !̂021
̂
�1
22 !̂21 and


̂ =
1

T

TX
t=1

�̂t�̂
0

t +
1

T

X̀
s=1

ws`

0
@ TX

t=s+1

�̂t�̂
0

t�s + �̂t�s�̂
0

t

1
A (13)

and where the �̂t are the residuals from the least squares regression

zt = �̂zt�1 + �̂t: (14)

The Phillips/Ouliaris multivariate trace statistics:

P̂z = T tr
�

̂M�1

zz

�
; (15)

where Mzz =
1
T

PT
t=1 ztz

0

t.

The Ẑ�- and Ẑt-tests can be viewed as generalizations of the standard Dickey{

Fuller tests based on either T (�̂�1) or on the standard t{statistic forH0 : � = 1

in the regression

ut = �ut�1 + kt: (16)
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The variance-ratio and multivariate trace-statistic tests explore the relation-

ship between direct and indirect estimates of the conditional variance of yt

given xt, along the lines of Hausman (1978): Under the null hypothesis of no

cointegration, both estimates are close together, but they diverge when there

is cointegration.

Sowell (1990) has shown that �̂�1 from the regression (16) is Op(T
1�2d) when

the ut's are I(d), (0:5 < d < 1) so

T (�̂� 1) = Op(T
2�2d); (17)

i.e. the Dickey{Fuller{test is consistent as it diverges under the alternative,

albeit much slower than when the disturbances in (16) are I(0). Similarly,

the Dickey{Fuller{t{test diverges, again much slower than under the I(0){

alternative.

Below we extend these results to the case where estimated rather than true

residuals are used, and where the tests account for the fact that there is auto-

correlation among the kt's from (16) under the null hypothesis.
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3 Divergence Rates under Nonstationary

Alternatives

THEOREM 1: Under the assumptions speci�ed in Section 2, when the residuals

ut in yt = � 0xt+ut are I(d) with 0:5 < d < 1, we have the following divergence

rates of the various test{statistics:2

(i) Ẑ� = Op(T
2�2d),

(ii) Ẑt = Op(T
1�d),

(iii) ADF = Op(T
1�d),

(iv) P̂u = Op(T
2�2d),

(v) P̂z = Op(T
2�2d),

REMARK: The theorem shows that the tests remain consistent, but the

divergence rates are smaller in the context of fractional cointegration, so

conventional tests will often fail to pick it up. Also, the relative di�erences

established by Phillips and Ouliaris (1990, Theorem 5.1 and 5.2) remain:

the Ẑt and ADF-tests diverge still slower than the rest, which explains why

there tests are particularly poor in detecting fractional cointegration in the

empirical example discussed in section 5.

PROOF OF THEOREM: For ease of exposition and notation, we initially

con�ne ourselves to bivariate systems, i.e. to the case n = 1 and m = 2. Then

� and xt in (5) are scalars, and we have in obvious notation:

�̂ � � =
x0u

x0x
and (18)

2Here and elsewhere, "Opg(T )" is taken to imply that g(T ) is the largest function of

T such that the respective expressions divided by g(T ), remain stochastically bounded,

but do not tend to zero in probability either. f(T )=g(T ) ! 1 implies that the respective

expressions are op(f(T )).
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û := y � �̂x = u� (�̂ � �)x = u� x0u

x0x
x where (19)

x0u

x0x
= Op(T

d�1): (20)

(see Cheung and Lai 1993, p. 106). This latter relationship implies that, with

nonstationary fractional alternatives, we no longer have

ût;T = ut + op(1); (21)

since

ûT;T = uT �
x0u

x0x
xT = uT +Op

�
T d� 1

2

�
: (22)

This makes various subsequent derivations rather complicated, since estimated

residuals do no longer tend in probability to the true residuals uniformly in t.3

In the regression

ût;T = �̂ût�1;T + k̂t (23)

we have

�̂� 1 =
û0
�1(û� û

�1)

û0
�1û�1

=

1
2

�
û2T;T �

PT
1 (�ût;T )

2
�

û0
�1û�1

; (24)

3Unlike Phillips/Ouliaris (1990), we have added a second subscript to ût in (21) and (22),

to highlight the fact that OLS residuals depend on sample size. This dependence on sample

size is inconsequential in the case of ARMA{residuals, as then

ût;T = ut +Op(T
�

1

2 ) uniformly in t;

(see Phillips/Ouliaris 1990, p. 184), so the subscript T can without danger be omitted.

With fractionally integrated residuals, we still have ût;T
p

! ut for any given t, as for given

t, ût;T � ut = Op(T
d�1)), but this convergence is no longer uniform in t.
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where

û2T;T =

 
uT �

x0u

x0x
xT

!2

= Op

�
T 2d�1

�
; (25)

TX
1

(�ût;T )
2 = Op(T ) (26)

and

û0
�1û�1 = Op(T

2d): (27)

Taken together, (24) { (27) imply that under the alternative

�̂� 1 = Op(T
1�2d); (28)

which is the same convergence rate that obtains when true residuals are used

(Sowell 1990).

In the general case where m > 2, the simple formula (19) for the cointegration

residuals û is replaced by û = y �X�̂ = Zb̂ (b̂ = [1;��̂ 0]0), where

b̂ = b +Op(T
d�1) and ût = b0zt +Op(T

d� 1

2 ) (29)

and where it can again be shown, using the fact that

T�d
[Tr]X
t=1

b0zt
d�! fractional Brownian Motion; (30)

that �̂� 1 = Op(T
1�2d).

Now consider Ẑ� from (7). From (28), we have

T (�̂� 1) = Op(T
2�2d); (31)

and as the second term in Ẑ� does not diverge any faster, this gives at the

same time the divergence rate of the Ẑ�{test.
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As to Ẑt, we have from (27) and (28) that

q
û0
�1û�1(�̂� 1) = Op(T

1�d); (32)

which again is equal to the divergence rate of the complete test statistic.

As to ADF, the t{statistic for H0 : � = 0 in the regression (6) can be written

as

ADF = (û0
�1QXp

û
�1)

1

2

�̂

Sv

; (33)

where QXp
= I �Xp(X

0

pXp)
�1Xp and Xp is the matrix of observations on the

p regressors (�û
�1;�û�2; : : : ;�û�p) in (6). We have

û0
�1QXp

û
�1 = û0

�1û�1 � û0
�1Xp(X

0

pXp)
�1Xpû�1;

where

û0
�1û�1 = Op(T

2d) and

û0
�1Xp(X

0

pXp)
�1Xpû�1 = Op(T

2d)

if p does not tend to in�nity too fast (see Kr�amer 1998), implying

û�1QXp
û
�1 = Op(T

2d): (34)

In the same vein, if p does not tend to in�nity too fast, we have

�̂ = Op(T
1�2d) (35)

Sv

p! constant > 0; so (36)

ADF = Op(T
1�d): (37)

As to P̂u, one �rst veri�es that the steps in the proof of Theorem 5.2 in Phil-

lips/Ouliaris (1990, p. 186) that lead to

ŵ11:2
p�! constant > 0 (38)
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are still valid in the present context. The divergence rate under fractional

cointegration of P̂u then follows from û0û = Op(T
2d) (see (27)).

As to P̂z, we decompose Mzz =
1
T

PT
t=1 ztz

0

t in into

Mzz =
1

T

2
4 y0y y0X

X 0y X 0X

3
5 ; (39)

where

M�1
zz = T

2
4 (û0û)�1 �

� (X 0X �X 0yy0X=y0y)�1

3
5 = Op(T

1�2d): (40)

As 
̂ remains Op(1) under fractional cointegration, the theorem follows from

the de�nition (15).

4 Divergence rates under stationary

alternatives

THEOREM 2: Under the assumptions speci�ed in section 2, where the residuals

ut in yt = � 0xt + ut are I(d) with �0 < d < 1
2
, we have

(i) Ẑ� = Op(T )

(ii) Ẑt = Op(T
1

2 )

(iii) ADF = Op(T
1

2 )

(iv) P̂u = Op(T )

(v) P̂z = Op(T )

REMARK: The theorem shows that the divergence rates under stationary

long memory alternatives are identical to divergence rates under stationary

short memory alternatives, as given by Phillips/Ouliaris (1990, Theorem 5.2).

In particular, they no longer depend on d. Also, the relative di�erences in
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divergence speeds from the nonstationary case are retained.

PROOF OF THEOREM: By assumption,

ut = yt � � 0zt =: qt

is stationary, and from

b̂ = b+Op(T
d�1) we have

ût = qt +Op(T
d� 1

2 ) and (41)

�̂ =
1
T
�qtqt�q
1
T
�q2t�1

+Op(1)
p�! E(qtqt�1)

E(q2t�1)
=: � < 1: (42)

Therefore

T (�̂� 1) = Op(T ); (43)

which is also the divergence rate of the Ẑ�{test.

In the same vein, the divergence rate of the Ẑt{test follows from

q
û0
�1û�1(�̂� 1) = Op(T

1

2
); (44)

and the divergence rates of the P̂u and P̂z{tests are obtained by replicating the

proof of theorem 5.2 in Phillips/Ouliaris (1990, p. 186) (this proof establishes

the divergence rates under stationary short memory alternatives, but goes

through with stationary long memory alternatives as well).

It is more di�cult to establish the divergence rate of the Augmented Dickey

Fuller test. We have

û0
�1û�1 = Op(T ) and (45)

û0
�1Xp(X

0

pXp)
�1X 0

pû
0

�1 = OP (1); so (46)

û0
�1QXp

û
�1 = Op(T ): (47)
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Also, if p does not tend to in�nity too fast (see Kr�amer 1998), we have

�̂ = Op(1)

and

S2
V

p�! �2
" ; (48)

where the "t's are the innovations in the in�nite AR{representation of qt = b0zt

(see Fuller 1996, p. 374), and the divergence rate of the test statistic follows.

5 An Empirical Illustration

Next we apply the tests discussed so far to three time series of German com-

mon stocks (logarithms, daily, from Jan. 4, 1960 to Dec. 30, 1991, comprising

T = 7928 observations adjusted for dividends, stock splits etc.): Chemical com-

panies Bayer, BASF and Hoechst. In an e�cient market, stock prices cannot

be cointegrated (since returns would otherwise be predictable, using the Gran-

ger representation theorem), but as Figure 1 seems to imply, there is certainly

cointegration among the stocks above (we show only log prices of Bayer of

Hoechst in order not to overload the picture).

Figure 1:

log prices of Bayer and Hoechst plotted against time

Figure 2, a three{dimensional scatterplot of all three stocks against each other,

corroborates this visual impression of cointegration: Prices seem to stick closely

to a line in IR
3 (implying two cointegrating relationships).

Figure 2:

log prices of Bayer, Hoechst and BASF plotted against each other
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However, applying formal tests of the null hypothesis of no cointegration to

the residuals û of the regression

`n (Bayer) = �̂1 `n (Hoechst) + �̂2 `n (BASF) + û (49)

(and similarly to the residuals of alternative regressions where the roles of de-

pendent and independent variables are reversed), one scarcely can reject: Table

1 gives the test statistics and the respective 5%{values of the tests discussed

above | more often than not, the null hypothesis of no cointegration cannot

be rejected.

Table 1: Residual based cointegration test applied to

`n (Bayer), `n (BASF) and `n (Hoechst)

test statistic critical values rejection

(5 %)

ADF(p=3) -2,97 -3,76 no

ADF(p=7) -2,82 -3,76 no

Ẑ� -7,94 -22,27 no

Ẑt -1,87 -3,33 no

P̂u 20,73 53,97 no

P̂z 100,46 89,87 yes

The reason for this apparant failure to recognize a cointegrating relationship

when visual inspection strongly suggests that one exists appears to be the long

memory in the cointegrating residuals: Figure 3 gives the �rst 100 empirical

autocorrelations of the residuals from the regression (37), and Figure 4 the

estimated spectral density: Both �gures strongly suggest that the cointegra-

ting residuals are best modelled as an I(d){process, and that the conventional

cointegration theory with ARMA{residuals does not apply.

Figure 3:

Empirical autocorrelations of estimated cointegration residuals
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Figure 4:

Estimated spectral density of estimated cointegration residuals

We also estimated the d{parameter by both the Geweke{Porter{Hudak method

and by Range{Scale analysis, with estimated values clustering around 0.5. The

lesson from this empirical application therefore seems to be that even blatant

cointegration (in the sense that trending variables stick very close to each

other) is easily overlooked by standard tests when the cointegrating residuals

are fractionally integrated.
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Figure 1:

log prices of Bayer and Hoechst plotted against time

Figure 2:

log prices of Bayer, Hoechst and BASF plotted against each other
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Figure 3:

Empirical autocorrelations of estimated cointegration residuals

Figure 4:

Estimated spectral density of estimated cointegration residuals
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