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Abstract:

Necessary and su�cient conditions for the equality of ordinary least squares

and generalized least squares estimators in the linear regression model with

�rst-order spatial error processes are given.
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1 Introduction

Consider the linear regression model for spatial correlation

y = X� + u ; u = C� ; (1)

where y is a T � 1 observable random vector, X is a T � k matrix of known

constants with full column rank k, � is a k � 1 vector of unknown para-

meters, � is a T � 1 random vector with expectation zero and covariance

matrix Cov(�) = �
2

�
I (I is the T -dimensional identity matrix and �

2

�
an

unknown positive scalar). C denotes a T � T matrix such that the product

CC
0

is positive de�nite.

The ordinary least squares (OLS) and the generalized least squares (GLS)
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estimators of the vector of unknown parameters � in model (1) are given by

�̂ = (X
0

X)�1X
0

y and ~� = (X
0

V
�1

�

X)�1X
0

V
�1

�

y, respectively with covariance

matrices Cov(�̂) = �
2

�
(X

0

X)�1X
0

V
�
X(X

0

X)�1, Cov( ~�) = �
2

�
(X

0

V
�1

�

X)�1,

where V
�
= CC

0

.

When the covariance of the disturbance vector u is not a scalar multiple of

the identity matrix, that is Cov(u) 6= �
2

�
I as in model (1), it is well known

that the GLS estimator provides the best linear unbiased estimator (BLUE)

of � in contrast to OLS. Since Cov(u) usually involves unknown parameters

like spatial correlation coe�cient, it is natural to ask when both estimators

coincide so that the OLS estimator can be applied without loss of e�ciency.

Many of the criteria developed for the purpose of checking the equality of least

squares estimators are not operational because of the unknown parameters

involved (see Puntanen and Styan, 1989).

In this paper, conditions under �rst-order spatial error processes which can be

veri�ed in practice by using spatial weights matrix with known nonnegative

weights and the matrix X of known constants are developed. The �rst group

of conditions is based on the invariance property of the column space of

the matrix X under V
�
(Kruskal, 1968), whereas the second one uses the

symmetry of the product PXV� (Zyskind, 1967), with PX = X(X
0

X)�1X
0

.

2 Equality of OLS and GLS estimators

In assessing the conditions for the equality of OLS and GLS estimators, the

structure of the covariance of the disturbance vector u plays an important

role. So, we start by giving possible structures of Cov(u) under �rst-order

spatial error processes.

Let the components of u follow a �rst-order spatial autoregressive (AR(1))

process

ui = �

TX
j=1

wijuj + �i
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or, in matrix form

u = �W u + � ; (2)

where � denotes a spatial correlation coe�cient for a given area partitioned

into T nonoverlapping regions Ri, i = 1; � � � ; T . W is a weights matrix with

known nonnegative weights de�ned by (see Cli� and Ord, 1981, pp. 17-19)

wij

8><
>:
> 0 ; if Ri and Rj are neighbours (i 6= j)

= 0 ; otherwise :

The element wij of the weights matrix indicates the strength of the e�ect of

region Rj on region Ri. Under �rst-order spatial moving average (MA(1))

process the components of u follow the pattern

ui = �

TX
j=1

wij�j + �i

or, in matrix form

u = �W � + � : (3)

Equations (2) and (3) can be written as

u = (I � �W )�1 � and u = (I + �W ) � (4)

respectively, where in AR(1) case the matrix I � �W must be nonsingular.

From (1) and (4), we get four possible structures of Cov(u) = �
2

�
V
�
for �rst-

order spatial error process:

V
�
=

8>>>>>>><
>>>>>>>:

(I + �W )(I + �W
0

) : MA(1)

(I + �W ) : MA(1)� conditional

(I � �W )�1(I � �W
0

)�1 : AR(1)

(I � �W )�1 : AR(1)� conditional :

(5)

Note that the possible values of � must be identi�ed to ensure that V
�
is

positive de�nite.

In the following we investigate conditions for the equality of OLS and GLS

estimators by applying the result: two unbiased estimators coincide almost
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surely if and only if their covariances are equal (see Puntanen and Styan,

1989, p. 154). This means, OLS and GLS are equal if and only if their

covariances are equal.

Let R(X) denote a k-dimensional space spanned by the columns of X. The

well known Kruskal's (1968) column space condition for the equality of OLS

estimator �̂ and GLS estimator ~� in model (1) states that both estimators

coincide if and only if

R(V
�
X) = R(X) ; (6)

where V
�
is assumed to be a nonsingular matrix.

In order to apply Kruskal's condition, the value of the unknown parameter �

in the Matrix V
�
must be given in addition to X. In practice � typically will

be unknown and one needs a more applicable condition to check the equality.

Based on Kruskal's theorem Kr�amer and Donninger (1987) give a su�cient

condition which can be veri�ed in practice when the disturbances follow a

�rst-order spatial autoregressive process. Baksalary (1988) generalizes this

result for �rst-order spatial error processes as follows.

Theorem 1

Let W be a T �T weights matrix and V
�
be a T �T positive de�nite matrix

of the form

V
�
= (I + �W

0

)(I + �W ) or V
�
= (I + �W )(I + �W

0

) ;

where � 6= 0 is a scalar. If R(WX) � R(X) and R(W
0

X) � R(X), then

�̂ = ~�.

Proof:

The conditions R(WX) � R(X) and R(W
0

X) � R(X) imply that

R((I + �W )X) = R(X) and R((I + �W
0

)X) = R(X)

irrespective of �. From this we get

R(V
�
X) = R((I + �W

0

)(I + �W )X) = R(X)
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and the equality of the estimators follows from Kruskal's theorem. 3

The following su�cient condition for the equality under a speci�c matrix V
�

is also based on condition (6).

Theorem 2

Let b1 and b2 be T �1 vectors, and let V
�
be a T �T positive de�nite matrix

of the pattern

V
�
= cI + b1 b

0

2
+ b2 b

0

1

with a scalar c. If b1 2 R(X) and b2 2 R(X), then R(V
�
X) = R(X):

Proof: See Mathew, 1984, pp. 207-208. 3

By combining the results in theorems 1 and 2 the following su�cient condi-

tion for the equality of OLS and GLS estimators can be formulated.

Corollary 1

Let d be a T � 1 vector and V
�
be a T � T positive de�nite matrix of the

pattern

V
�
= c1I + c2W

� + c3 dd
0

;

where c1; c2; c3 are scalars, and W
� is a T � T matrix. If R(W �

X) � R(X)

and d 2 R(X), then �̂ = ~�.

Proof: The proof follows from Theorems 1 and 2. 3

Simple examples show that the conditions of the above results are not neces-

sary for the equality of OLS and GLS estimators (see Baksalary, 1988 and

Gotu, 1997). The theorem below, based on the result given by Baksalary

(1988), provides necessary and su�cient conditions.

Theorem 3

Let W be a T � T weights matrix and V
�
be a T � T matrix of the form

V
�
= (I + �W )(I + �W

0

) :
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Further, let � be given by: � = f� 6= 0 : V
�
positive de�nite and j�j < 1g:

Then the following conditions are equivalent:

(i) R(V
�
X) = R(X) for all � 2 �.

(ii) R(V
�
X) = R(X) for two di�erent �1; �2 2 �.

(iii) R((W +W
0

)X) � R(X) and R(W
0

WX) � R(X).

Proof:

(i) =) (ii):

The condition R(V
�
X) = R(X) for � 6= 0 holds if and only if

R((W +W
0

+ �WW
0

)X) � R(X): (7)

If (7) is valid for all � 2 �, then

R((W +W
0

+ �1WW
0

)X) � R(X)

R((W +W
0

+ �2WW
0

)X) � R(X): (8)

(ii) =) (iii):

From equation (8) we get R((�1 � �2)WW
0

X) � R(X). This implies

R(WW
0

X) � R(X), and R((W
0

+W )X) � R(X) follows from (7).

(iii) =) (i): Follows direct from (7). 3

Remarks:

� The matrix V
�
is positive de�nite if I + �W is nonsingular and the

nonsingularity of I + �W holds if there exists a matrix-norm which

satis�es the inequality j�j jjW jj < 1 (see Horn and Johnson, 1985, p.

301). For any given weights matrix W with row sums equal to one, the

maximum row sum matrix-norm is equal to one, so the matrix I + �W

is nonsingular for j�j < 1.

6



� Let A be a symmetric matrix. Then R(AX) � R(X) if and only if

PXA = APX . This means condition (iii) is equivalent to (W+W
0

)PX =

PX(W +W
0

) and WW
0

PX = PXWW
0

.

� Theorem 3 applies also for V
�
matrix of the form

V
�
= ((I � �W

0

)(I � �W ))�1 ;

because R(V
�
X) = R(X) () R(V �1

�

X) = R(X) :

� If OLS and GLS estimators are equal for two di�erent values of �, that

is R(V
�
X) = R(X) for di�erent �1; �2 2 �, then from the equivalence

of (i) and (ii) follows that both estimators are equal for all � 2 �.

� Condition (iii) can be applied to check the equality of OLS and GLS

without specifying the value of �.

� For V
�
matrix of the form (I��W )�1 or I+�W , whereW is symmetric,

condition (iii) should be restated as R(WX) � R(X).

� Let W1 and W2 be T � T weights matrices, and D1 and D2 be T � T

diagonal matrices with full rank. Suppose that W
0

1
D
�1

1
= D

�1

1
W1 and

D2W
0

2
= W2D2. If V

�
is of the pattern (I� �W1)

�1
D1 or (I+ �W2)D2,

condition (iii) should, accordingly, be restated as

R(D�1

1
X) � R(X) and R(D�1

1
W1X) � R(X);

R(D2X) � R(X) and R(D2W2X) � R(X).

In the following, conditions for the equality of least squares estimators for a

subvector of � will be discussed.

Suppose that X1 and X2 are submatrices of X, and �1 and �2 be subvectors

of �. Further, let �̂2 and ~�2 be the respective subvectors of �̂ and ~�. Splitting

model (1) into

y = X1�1 +X2�2 + u ;
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Kr�amer et al. (1996) give the following necessary and su�cient condition for

the equality of �̂2 and ~�2:

�̂2 = ~�2 () R(V
�
X
?) � (R(X1)�R(X

?)) ;

where X? is a matrix such that R(X?) = R(X)?, the orthogonal comple-

ment of R(X), and � is the direct sum of subspaces.

The problem with the above condition is, as in Kruskal's theorem, that the

unknown parameter � in the matrix V
�
should be given. The following result,

which is based on Theorem 3, provides a necessary and su�cient condition

for the equality of �̂2 and ~�2 under the �rst-order spatial error process that

works without specifying the value of �.

Corollary 2

Let W be T � T weights matrix and V
�
be a T � T matrix of the form

V
�
= (I + �W )(I + �W

0

) ; (9)

where � 2 �. Then the following statements are equivalent:

(a) R(V
�
X
?) � R(X1)�R(X

?) for all � 2 �.

(b) R(V
�
X
?) � R(X1)�R(X

?) for two di�erent

�1; �2 2 �.

(c) R((W +W
0

)X?) � R(X1)�R(X
?) and

R(WW
0

X
?) � R(X1)�R(X

?).

Proof: See Theorem 3. 3

Remarks:

� In order to check the equality of �̂2 and ~�2, statement (iii) can be applied

independent of �.
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� For the matrix of the form (9) the following holds (see Theorem 3): If

R(WX
?) � R(X1)�R(X

?) and R(W
0

X
?) � R(X1) �R(X

?) ;

then �̂2 = ~�2.

Another well known condition for the coincidence of OLS and GLS estimators

in the linear regression model (1) is based on the symmetry of the matrix

product PXV�. That is, in the regression model (1)

�̂ = ~� () PXV� = V
�
PX : (10)

For the application of this condition the values of the unknown parameters

in the matrix V
�
should again be given. The following su�cient condition

can be applied under the �rst-order spatial error processes, irrespective of

the parameters in V
�
.

Corollary 3

Assume that the components of the disturbance vector u in model (1) follow

a �rst-order spatial moving average or autoregressive process. Let W be a

T � T weights matrix. The estimators �̂ and ~� coincide if

PXW =WPX : (11)

Proof:

MA(1) process:

Under spatial MA(1) error process the matrix V
�
is given by

V
�
= (I + �W )(I + �W

0

) :

From equation (10) the estimators �̂ and ~� coincide if and only if

PXV� = V
�
PX :

The above equation holds if for � 6= 0

PXW
0

+ PXW + �PXWW
0

= W
0

PX +WPX + �WW
0

PX : (12)
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By equation (11), applying the symmetry of PX , we get PXW
0

= W
0

PX and

from (12) follows PXV� = V
�
PX implying the equality of the estimators �̂

and ~�.

AR(1) process:

Under spatial AR(1) error process we have

V
�
= ((I � �W

0

)(I � �W ))�1 and V
�1

�

= (I � �W
0

)(I � �W ):

Furthermore, PXV� = V
�
PX if and only if

PXV
�1

�

= V
�1

�

PX : (13)

Equation (13) holds if

�PXW
0

W � PXW
0

� PXW = �W
0

WPX �W
0

PX �WPX (14)

with � 6= 0. By equation (14), applying the symmetry of PX and equation

(11), we obtain PXV
�1

�

= V
�1

�

PX implying the equality of �̂ and ~�. 3

Remarks:

It can be shown that the condition of Corollary 3 is also necessary if

(see Gotu, 1997)

{ the weights matrix W is symmetric and orthogonal.

{ the components of the disturbance vector u follow a conditional

�rst-order spatial process with V
�
given in (5).

A counter-example that the condition of Corollary 3 is necessary in

general can be obtained by taking

W =

0
BBBB@

0 2=3 1=3

1=3 0 2=3

2=3 1=3 0

1
CCCCA

X =

0
BBBB@

1 0

1 1

1 �1

1
CCCCA

V
�
= (I + �W

0

)(I + �W ) and � = 3=4. In this case PXV� = V
�
PX

although PXW 6= WPX .
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