
Interindividual and interoccasion variability of

toxicokinetic parameters in population models

by Silvia Selinski and Wolfgang Urfer

Abstract

The determination of toxicokinetic parameters is an essential component in the risk
assessment of potential harmful chemicals. It’s a first step to analyse the processes
which are involved in the development of DNA adducts and might therefore lead to
the development of cancer.

The complete research depends on investigations with animals in vivo and in
vitro, so that a critical step is the extrapolation from experimental animals to the
human organism. Besides the investigation of the interspecific differences, the
intraspecific and the interoccasion variability have to be analysed to avoid serious
errors in the determination of the human risk.

The aim of extrapolation from one species to an other requires a characterisation
of the interesting processes which is valid for the whole species, i.e. population mean
parameters instead of sets of parameters for different individuals, occasions and
concentrations of the interesting chemical.

The theory of hierarchical models, basically the work of Racine-Poon et al.
(1985, 1986, 1990), provides a procedure, which incorporates both, modelling of the
variability structure and reduction of complexity in terms of estimates of population
mean parameter vectors.

This paper presents part of a strategy to determinate the processes of uptake,
elimination, and metabolism of the gas ethylene, which is a natural body constituent
and an important industrial chemical.

Key Words: EM algorithm, two-compartment model, population model, Bayes
estimates, toxicokinetics, nonlinear hierarchical model

1. Introduction

The determination of toxicokinetic parameters is an essential component in the risk assessment

of potential harmful chemicals. Most chemical carcinogens are transformed into a chemical

active form, its metabolite, that is able to interact with many of the cellular macromolecules

such as DNA, RNA, and protein, and might therefore lead to the development of cancer. It

seems that the relationship between applied dose and tumor response is usually nonlinear. This

nonlinearity is supposed to be due to the kinetic processes involved in the development of
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DNA adducts (Hoel et al., 1983). So a first step to assess the risk of a xenobiotic is to

investigate the kinetic processes of uptake, elimination, and metabolism.

As the complete research depends on experiments with animals in vivo and in vitro, a critical

step is the extrapolation from the risk observed in the experimental animals to the risk

associated with the human organism. Besides the examination of the interspecific differences,

the variability structure within the observed species has to be analysed to avoid serious errors

in the assessment of the human risk. Studies of the intraspecific variation of toxicokinetic

parameters require two main sources of variability to be accounted for: the interindividual

variability, and the interoccasion variability, i. e. the variation in the individual parameters at

repeated examinations. The latter appears to be the primary source of toxicokinetic variability.

The aim of extrapolation from one species to an other demands a characterisation of the

interesting processes which is valid for the whole species, i.e. population mean parameters.

Thus, analysing kinetic processes, we have to consider both, the modelling of the variability

structure and the evaluation of a population model.

Such a procedure is provided by the theory of hierarchical models, as given by Racine-Poon et

al. (1985, 1986, 1990). In this paper we present part of a strategy to investigate the processes

of uptake, elimination, and metabolism of the gas ethylene applying a two-compartment model,

and, moreover, incorporating prior information out of preceding experiments, which is often

available in toxicokinetic research. The actual study, performed at the Institut für

Arbeitsphysiologie an der Universität Dortmund, combines a repeated measurement design

with the investigation of a larger range of concentrations of ethylene.

2. Project

The aim of this investigation is to determinate the population mean kinetic parameters of

uptake, elimination, and metabolism of the chemical ethylene and to quantify the variability due

to interindividual and interoccasion differences.

Ethylene is an important industrial chemical, which is present in environmental and industrial

atmospheres. Ethylene is also a vegetable hormone involved in the process of ripening and,

moreover, it is a natural body constituent of mammalian organisms. Preceding studies reveal,

that ethylene is metabolised to ethylene oxide, which is a directly alkylating and genotoxic
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agent. Ethylene oxide is carcinogenic in experimental animals, its human carcinogenicity is still

debated (Bolt, 1998).

Former inhalation experiments with ethylene indicate that the metabolism can be well

approximated by first order kinetics at concentrations below 800 ppm. At higher

concentrations the metabolism becomes more and more saturated (Bolt & Filser, 1987).

Experimental design

Two different groups of experiments were performed, each of which with 10 male Sprague-

Dawley rats. The animals had an average weight of 300 g at the beginning of the investigation.

Both groups of experiments were carried out using the "closed chamber technique" as

reviewed by Filser (1992), which allows investigations of kinetics of volatile chemicals in vivo.

This technique is based on a closed inhalation chamber where during the exposure period the

atmospheric concentrations of the substance, in this case ethylene, are measured.

In the inhalation chamber, the experimental animals are exposed to the gas or vapour of

interest. The exhaled CO2 is absorbed by soda lime, and its volume is replaced by pure oxygen.

At the beginning of each experiment, the test material (here: ethylene) is injected into the

chamber. In the course of time, the change of the atmospheric concentration within the

chamber is measured by gas-chromatographic means. Due to the way of application, the actual

concentration in the inhalation chamber at the beginning of each experiment, i. e. at zero time,

is not exactly known.

The experiments of the first group (group A) had the following design:

Each of the ten rats was exposed to a concentration  of about 100 ppm ethylene for a time

period of about 8 hours. In that time the concentration of ethylene in the atmosphere was

measured at several time points. This procedure was repeated four times with the same initial

concentration of about 100 ppm ethylene, so that we finally received five short time series per

animal observed under the same conditions (cf. Fig. 1).
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Figure 1. Observations of one single Sprague-Dawley rat at five occasions (initial

concentrations about 100 ppm); time in hours since application of ethylene.

The experiments of the second group (group B) were realised with 10 other rats in a similar

way. For each animal we also observed five concentration-time curves but at five different

initial concentrations of 20 ppm, 50 ppm, 100 ppm, 200 ppm and 500 ppm ethylene (cf.

Fig. 2).

Figure 2. Observations of one single Sprague-Dawley rat at five initial concentrations of

about 20, 50, 100, 200, and 500 ppm; time in hours since application of ethylene.

The applied doses of ethylene were below the point of saturation of ethylene of about 800

ppm.
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3. Statistical models and methods

3.1 Two-compartment model

The two-compartment model used by Filser (1992) for the characterisation of exposure to

volatile xenobiotics describes uptake, endogenous production, excretion, and the metabolic

elimination of the substance. The model is depicted as follows: a xenobiotic gas, in this case

ethylene, enters the body and is exhaled. This process is represented by two compartments, the

first C1 being the environment outside the body, here the inhalation chamber of the exposition

system, and the second compartment C2 the body itself. The volatile xenobiotic transits from

one compartment to the other through a theoretical interface. During this process, a portion of

the xenobiotic within the organism at any stage is eliminated by metabolic processes, and

another portion is exhaled (cf. Fig. 3).

com partm ent C 1 com partm ent C 2

atm osphere

vo lum e V 1

organism

volum e V 2

k1 2

k2 1

kel

Figure 3. Two-compartment block model in the case of metabolic turnover

In the case of ethylene this substance is eliminated by the production of its reactive metabolite

ethylene oxide which leads to the alkylation of DNA. Special interest is given to the kinetics

governing these processes.

This paper concentrates on overall first order kinetic processes. Preceding investigations

indicated that the range of initial concentrations that we used here was below the point of

saturation of ethylene at about 800 ppm, so that the processes may be approximated well by

first order kinetics (Bolt & Filser, 1987).



6

Moreover Becka (1998) showed that first order kinetics can be used as good approximations

for nonlinear kinetic processes, Michaelis-Menten kinetics, for instance, if the observed

maximum concentrations don’t exceed the point of saturation.

Let yl(t) denote the concentration of a xenobiotic in compartment l at time t and let Vl describe

the volume of the compartment. A preliminary assumption is that the compound, in this case

ethylene, is metabolised within the body, and that there is no metabolism back to the parent

ethylene, the latter being very likely on toxicological grounds.

In the case of overall first order kinetics, each partial process can be characterised by one rate

or velocity constant k, that is k12 for the uptake, k21 for the exhalation, and kel for the metabolic

elimination (cf. Fig. 3). Thus the two-compartment model can be described by a system of

linear differential equations (Becka et al., 1993):

( ) ( )tyVktyVk
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V 22211112
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where ( ) ( ){ }elelel kkkkkkkk 12
2

211221122,1 4
2

1 −++±++−=λ are the eigenvalues of the

matrix A(ϕ) in (1.4) (Urfer & Becka, 1996).

3.2 Population model for interindividual and interoccasion variability

We fit two different nonlinear hierarchical models, each to one group of experiments

incorporating the results of the first into the model of the second.

Notation

The observed concentrations of ethylene in the atmosphere of the exposition system

(compartment 1) are denoted by yijk, with i = 1, . . ., 20 the number of the individual rat

( i = 1, . . ., 10 for the animals in group A, i = 11, . . ., 20 for group B),

j = 1, . . ., J the observations at time points tj and

k = 1, . . ., 5 the number of the experiments.

For group B the numbers k = 1, . . ., 5 of the experiments correspond to the five different initial

concentrations of about 20 ppm, 50 ppm, 100 ppm, 200 ppm and 500 ppm. For the

experiments of group A the index k serves to distinguish the five concentration-time curves per

individual with similar initial concentrations of about 100 ppm. Due to the different

experimental designs, the assumptions vary for both models:

Group A: y f tijk ik j ijk= +( , )β ε , i = 1, . . ., 10, j = 1, . . ., J, k = 1, . . ., 5,

where f tik j( , )β is a nonlinear function of the individual parameter vector βik and the time t.

The function f tik j( , )β denotes the expected concentration-time curve of the ith individual at

the kth occasion. The parameter vector  βik = (k12ik, k21ik, kelik, yik(0))T = ( T
ikϕ , yik(0))T, where

ϕik = (k12ik, k21ik, kelik)
T represents the vector of the kinetic parameters, differs from individual to

individual and is of dimension p = 4.

The initial concentration in compartment 1 for the ith rat in the kth experiment, yik(0), is

approximately 100 ppm ethylene.
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Group B: y f tijk i jk ijk= +( , )θ ε , i = 11, . . ., 20, j = 1, . . ., J, k = 1, . . ., 5,

where f ti jk( , )θ is a nonlinear function of the individual parameter vector θi and the time t.

The function f ti jk( , )θ denotes the expected concentration-time curve for the ith individual

under different experimental conditions. The parameter vector

θi = ( T
iϕ , yi1(0), yi2(0), yi3(0), yi4(0), yi5(0) )T, with ϕi = (k12i, k21i, keli)

T, differs from individual

to individual and is of dimension p = 8. The initial concentrations are about 20 ppm, 50 ppm,

100 ppm, 200 ppm and 500 ppm.

Due to the way of application, the initial concentrations yik(0), are not exactly known and have

to be treated as parameters, although we are merely interested in the kinetic parameters. Note

that, in contrast to group B, for group A these five initial concentrations per animal are of the

same magnitude.

For both groups of experiments we observe individual responses and get information about the

individual parameters  ϕik  and ϕi, respectively. Our main interest are not the individual

processes with individual parameters but a population mean process with parameters

ϕ = (k12, k21, kel)
T, which underlies the different individual processes. The individual parameter

vectors  ϕik and ϕi , respectively, may be regarded as to vary at random across a population

mean parameter vector ϕ. Additionally we suppose that the variances of the observed

concentration-time curves differ from individual to individual. The experiments of group A

provide information about the individual covariance structure as we have five observation per

time point and animal due to the same experimental conditions.

The idea is now to apply nonlinear hierarchical models to both data sets using a Bayesian

approach as suggested by Racine-Poon (1985). We obtain the information about the

intersubject and interoccasion variability from group A and use the results to estimate the

individual and population mean parameters from group B.
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3.2.1 Investigation of intersubject and interoccasion variability (Group A)

A Bayesian approach according to Racine-Poon (1985) and Racine-Poon and Smith (1990) is

applied to the data of group A, which consists of five concentration-time curves per individual

measured under similar experimental conditions. We are interested especially in the variation of

the individual responses at different dosing occasions, the so called interoccasion variability,

and the variation between the individuals, the intersubject variability.

We propose a four-stage nonlinear hierarchical model denoted by (◊).

We assume that our observations yijk of the concentration of ethylene in the atmosphere of the

exposition system are independent and have the following distribution:

given βik,
2
ikτ : yijk ~ N( f(βik,tj), 

2
ikτ ) i = 1, . . ., 10, j = 1, . . ., J and k = 1, . . ., 5,

with βik = ( T
ikϕ , yik(0) )T, and ϕik = (k12ik, k21ik, kelik)

T

given βi , Ωi: βik ~ N(βi , Ωi)i = 1, . . ., 10 and k = 1, . . .,5,

with βi = ( T
iϕ , yi(0) )T, and ϕi = (k12i, k21i, keli)

T,

given β, ΣA: βi ~ N(β , ΣA) i = 1, . . ., 10,

with β = (ϕT, y(0) )T, and ϕ = (k12, k21, kel)
T

p(β) ∝ 1 ∀ β ∈ 34.

For unknown variances 2
ikτ and covariance matrices Ωi and ΣA Racine-Poon (1985) presents a

method to estimate the parameter vectors βik, βi and β as well as 2
ikτ , Ωi and ΣA using a vague

prior distribution for 2
ikτ . The inverse covariance matrices Ωi

-1 and 
1−

Σ A are assumed to follow

Wishart distributions with degrees of freedom ρ1 and ρ2 and matrices R1 and R2, respectively,

so that R1
-1/(ρ1-p-1) and R2

-1/(ρ2-p-1)  play the role of prior estimates of Ωi and ΣA. If there is

only little information about Ωi
-1 and 

1−
Σ A available, the degrees of freedom ρ1 and ρ2 are set
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equal to the dimension p of the parameter vectors βik and θi. Additionally the variances 2
ikτ ,

i = 1, . . ., 10, k = 1, . . ., 5, Ωi, i = 1, . . ., 10, ΣA and β should be independent.

The estimators for both cases, known and unknown variances and covariance matrices, are

given by Heiser (1997) for observations yij of time series or repeated measures and will be

adapted for the further analysis. In the latter case an EM algorithm as provided by Dempster et

al. (1977) is applied to estimate the parameter vectors as well as the covariance matrices.

Bayes estimates of the parameters in the nonlinear model for group A

We get the Bayesian estimators for the population mean and individual parameter vectors β, βi

and βik by transforming the nonlinear hierarchical model (◊) into a linear one, such as provided

by Lindley and Smith (1972). For that purpose the observations yijk are replaced by an "almost"

sufficient statistic ζik with

ζik ∼ N ( βik,
2
ikτ Cik) , i = 1, . . ., 10, k = 1, . . ., 5.

For example, ζik can be chosen as the mean of the posterior density of βik . In the case of

uninformative priors for the variances 2
ikτ , the posterior distribution of βik can be well

approximated by its likelihood, so that the maximum likelihood estimate of βik can be used as a

good approximation for ζik (Racine-Poon, 1985)

The resulting linear hierarchical model (◊◊) is given by:

given βik,
2
ikτ : ζik ∼ N (βik,

2
ikτ Cik), i = 1, . . ., 10, k = 1, . . ., 5

given βi ,Ωi: βik ∼ N (βi, Ωi), i = 1, . . ., 10, k = 1, . . ., 5

given β, ΣA: βi ∼ N (β, ΣA), i = 1, . . ., 10

p(β) ∝ 1, ∀θ ∈ 34.
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ikik Cτ is the Fisher Information matrix:
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The vectors of parameters βik in (2.1.2) are substituted by their maximum likelihood estimates

ζik, i = 1, . . ., 10, k = 1, . . ., 5.

First of all, we suppose that our concentration-time curves can be well approximated by first

order kinetic processes adapting the main idea of the approach of Becka (1998).

With the notation of Section 3.1 the transport processes in an open two-compartment model

are characterised by the differential equations (1.1) and (1.2).

Setting yik(tj) equal to f (βik , tj ) in (1.5) yields
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where λ1ik and λ2ik are the eigenvalues of the matrix A(ϕik), corresponding to the matrix A(ϕ) in

(1.4). The eigenvalues only depend on the kinetic parameters k12ik, k21ik, and kelik :

( ) ( ){ }elikikelikikikelikikikikik kkkkkkkk 12
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2
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with λ2ik < λ1ik < 0.
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The f (βik , tj ) are nonlinear functions that can be divided into the initial concentration yik(0)

and a nonlinear function g(ϕik, tj), which does only depend on the individual kinetic parameters

k12ik, k21ik, and kelik:

f (βik , tj ) = yik(0)⋅ g(ϕik tj) (2.1.4)

with ( ) ( ) { } ( ) { }
( )ikik

jikiikjikikik
jik
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ϕ
−
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This notation simplifies the calculation of the Fisher Information matrix (2.1.1).

Given the nonlinear hierarchical model (◊) with f (βik , tj ) as specified in (2.1.3), the sums over

the index j in (2.1.2), which involve the partial derivatives with respect to the yik(0), can be

simplified to
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where * = 12, 21, el denotes the indices of the kinetic parameters.

Inserting these sums into (2.1.2) this yields
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The sums of first partial derivatives of f(βik, tj) are given by Becka (1994) as follows

[ ] ( )[ ]
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and finally
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(i) Estimators in the case of known covariance matrices

In the case of known variances 2
ikτ , and covariance matrices Ωi and ΣA the posterior

distribution of β, given ζik , 
2
ikτ , Ωi, and ΣA, i = 1, . . ., 10, k = 1, . . ., 5 is p-variate normal,

p = 4, with mean β* and covariance matrix D, where

( ) ( ) DdCC
i k

ik
A

iikik
i k

A
iikik ∑∑∑∑

= =

−
−

= =

−∗ =Σ+Ω+⋅



 Σ+Ω+=

10

1

5

1

12

110

1

5

1

12 ζττβ , (2.1.11)

with ( )∑∑
= =

−− Σ+Ω+=
10

1

5

1

121

i k

A
iikikCD τ and ( )∑∑

= =

−
Σ+Ω+=

10

1

5

1

12

i k
ik

A
iikikCd ζτ is the Bayes

estimator of the population mean parameter vector β.

The Bayes estimate β* is normally distributed (Heiser, 1997)

β* ∼ N4 (β , D).

The individual kinetic processes are characterised by an individual mean parameter vector βi

and experiment specific parameter vectors βik..
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The posterior distribution of βi, given ζ1,1, . . ., ζ10,5, β and ΣA, are independent p-variate

normals, p = 4, with means ∗
iβ , i = 1, . . ., 10, and covariance matrices Di,, where

( ) ( ) ii
A

k
ikiikik

A

k
iikiki dDCC =








⋅Σ+





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−
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−
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1
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1

12 , (2.1.12)

with ( ) 1
5

1

121 −

=

−− Σ+



 Ω+= ∑ A

k
iikiki CD τ and ( ) βζτ ⋅Σ+



 ⋅Ω+=

−

=

−∑ 1
5

1

12 A

k
ikiikiki Cd .

Hence we obtain the Bayes estimate ∗
iβ as given in (2.1.12), with mean

( ) ( ) ββτβ ⋅Σ+



 ⋅Ω+⋅=

−

=

−∗ ∑ 1
5

1

12 A

k
iiikikii CDE (2.1.13)

and covariance matrix

( ) ( ) i
k

iikikii DCDCov ⋅



 Ω+⋅= ∑

=

−∗
5

1

12τβ .

The posterior distributions for the parameter vectors βik, i = 1, . . ., 10, k = 1, . . ., 5, given

ζ1,1, . . ., ζ10,5, β, Ωi and ΣA are p-variate normal, p = 4, with means ∗
ikβ and covariance

matrices Dik. Thus the Bayes estimate ∗
ikβ is given by

( ) ( ) ( ) ( ) ikik
A

iikikik
A

iikikik dDCC =



 ⋅Σ+Ω+⋅⋅



 Σ+Ω+=

−−
−

−−∗ βζττβ 112
1

112 (2.1.14)

i = 1, . . ., 10, k = 1, . . ., 5,

with ( ) ( ) 1121 −−− Σ+Ω+= A
iikikik CD τ and ( ) ( ) βζτ ⋅Σ+Ω+⋅=

−− 112 A
iikikikik Cd .

The estimators are normally distributed with means

( ) ( ) ( ) 



 ⋅Σ+Ω+⋅⋅= −− ββτβ 112* A

iikikikikik CDE (2.1.15)

and covariance matrices

( ) ( ) ikikikikik DCDCov ⋅



⋅= −∗ 12τβ .

As β will be unknown in the practical application we replace it in (2.1.12) to (2.1.15) by its

Bayes estimate β*.

The previous estimators are based on known covariance matrices. But in fact we only have

rather vague knowledge about these covariance matrices and furthermore the aim of our
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investigation is to gain information about just these covariances, especially with regard to the

interoccasion and interindividual variability. So we need a method to estimate both the

parameter vectors and the covariance matrices. Such a method is presented in the following

section.

(ii) Estimators in the case of unknown covariance matrices

In the case of unknown variances 2
ikτ , i = 1, . . ., 10, k = 1, . . ., 5, Racine-Poon and Smith

(1990) suggest to replace them by suitable estimates 2
îkτ . Under the assumptions of our model

(◊) and furthermore assuming independent variances 2
ikτ with vague prior distribution

( ) 12 ∝ikp τ , the posterior mode of 2
ikτ is equivalent to its maximum likelihood estimate 2

îkτ .

Thus, we approximate the Bayes estimate of 2
ikτ by

( )( )∑
=

−⋅=
J

j
jikijkik tfy

J 1

22 ,
1

ˆ ζτ , i = 1, . . ., 10, k = 1, . . ., 5. (2.1.16)

For unknown covariance matrices Racine-Poon and Smith (1990) suggest an EM-type iterative

algorithm as proposed by Dempster et al. (1977) to estimate the individual and the population

mean parameters as well as the covariance matrices Ω1, . . ., Ω10 and ΣA. We adapt this

algorithm to our four stage model assuming, as already mentioned, that the inverse covariance

matrices 1−Ω i , i = 1, . . ., 10, and 
1−

Σ A follow Wishart distributions with degrees of freedom ρ1

and ρ2 and matrices R1 and R2, respectively. Thus 1
1
−R /(ρ1- p-1) and 1

2
−R /(ρ2- p-1) play the role

of prior estimates of Ωi and ΣA and the joint posterior density for β1,1, . . ., β10,5, β1, . . ., β10, β,

1
1
−Ω , . . ., 1

10
−Ω and 

1−

Σ A , given ζ1,1, . . ., ζ10,5, is proportional to
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(2.1.17)

Vague knowledge about the inverse covariance matrices 1
1
−Ω , . . ., 1

10
−Ω , and 

1−

Σ A can be

expressed by choosing ρ1 and ρ2 as small as possible, i. e. ρ1 = ρ2 = p = 4. The choice of R1 and

R2, respectively, seems to have little influence on the estimates (Racine-Poon, 1985).

Substituting 2ˆikτ for 2
ikτ , if necessary, we obtain the approximations of the Bayes estimates at

the lth iteration of the EM-algorithm, )(l
ikβ , )(l

iβ , )(lβ , )(l
iΩ , and )(lAΣ , i = 1, . . ., 10,

k = 1, . . ., 5, by replacing the covariance matrices by their current approximations

)1(
1

−Ω l , . . ., )1(
10

−Ω l , and )1( −Σ lA in (2.1.11), (2.1.12), and (2.1.14) (E-Step) and subsequent

calculation of )(
1
lΩ , . . ., )(

10
lΩ , and )(lAΣ as the posterior modes using )(l

ikβ , )(l
iβ , and )(lβ ,

i = 1, . . ., 10, k = 1, . . ., 5 ( M-Step).

E-Step

Approximating Ω1, . . ., Ω10, ΣA in (2.1.11) by )(
1
lΩ , . . ., )(

10
lΩ , and )(lAΣ we obtain

( ) ( )∑∑∑∑
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l CC ζττβ (2.1.18)

Substituting β, Ωi, and ΣA in (2.1.12) by )(lβ , )1( −Ω l
i , and )1( −Σ lA , respectively, yields

( ) ( ) 
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l
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k

l
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l
i CC βζττβ

(2.1.19)
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In the same way we get )(l
ikβ by replacing the unknown parameters by their current estimates in

(2.1.14):

( ) ( ) ( ) ( ) 



 ⋅Σ+Ω+⋅⋅
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lAl
iikik

l
ik CC βζττβ . (2.1.20)

M-Step

Conditioning on βik =
)(l

ikβ , βi = )(l
iβ and β = )(lβ , i = 1, . . ., 10, k = 1, . . ., 5, the conditional

posterior mode of (2.1.17) is given by
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Both steps are repeated until )(
1
lΩ , . . ., )(

10
lΩ , and )(lAΣ converge. Racine-Poon (1985)

suggests as criterion for convergence, that the maximum change in the elements of the

covariance matrices between successive iterations should be less than 0.001.

Reasonable starting values )0(
1Ω , . . ., )0(

10Ω , and )0(AΣ are given by
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ik

i
i ζζζ .
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3.2.2 Population model for group B

For the experiments of group B, where the animals will be investigated under different initial

conditions, also a Bayesian approach is applied to model the individual responses and their

variation across the population mean response.

We state here a three-stage nonlinear hierarchical model denoted by (∗).

We assume that our observations yijk of the concentration of ethylene in the atmosphere of the

exposition system are independent and have the following distribution:

given θi , σ i
2 : yijk ∼ N (f (θi , tjk ), σ i

2 ) i = 11, . . ., 20 j = 1, . . ., J, k = 1, . . ., 5,

with θi = ( T
iϕ , yi1(0), yi2(0), yi3(0), yi4(0), yi5(0))T, and ϕi = (k12, k21, kel)

T,

given θ, ΣB: θi ∼ N (θ, ΣB) i = 11, . . ., 20,

with θ = (ϕT, y1(0), y2(0), y3(0), y4(0), y5(0))T, and ϕ = (k12i, k21i, keli)
T,

p(θ) ∝ 1 ∀ θ ∈IR8.

The Bayes estimate of ΣA can be used as the corresponding components of the prior estimate

( )1/ˆ 1 −−=Σ − pRB ρ and hence as prior information of ΣB. Another possibility is to use ΣA* as

the corresponding components of the starting value ΣB(0) and include further information from

preliminary examinations.

Estimation of the parameters of the nonlinear model for group B

The nonlinear hierarchical model (∗) is transformed into a linear one corresponding to the

procedure in Section 3.2.. So the observations yijk are replaced by the maximum likelihood

estimates ii ζθ =ˆ with

ζi ∼ N (θi , σ i
2 Ci) , i = 11, . . ., 20.
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Hence we obtain the linear hierarchical model (∗∗):

given θi , σ i
2 : ζi ∼ N (θi , σ i

2 Ci), i = 11, . . ., 20

given θ, ΣB: θi ∼ N (θ, ΣB), i = 11, . . ., 20

p(θ) ∝ 1, ∀ θ ∈ IR8,

where the Fisher Information matrix
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The vectors of parameters θi in (2.2.1) are substituted by their maximum likelihood estimates

ζi, i = 11, . . ., 20.

Just like in Section 3.2.1 we assume first order kinetic processes and divide the concentration-

time function f (θi, tjk) into the initial concentration yik(0) and the nonlinear function g(ϕi, tjk),

which does not further depend on the different experimental conditions.
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with ( ) ( ){ }λ 1 2 12 21 12 21
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Thus, given the nonlinear hierarchical model (∗) with f (θi , tjk ) as specified in (2.2.2), the sums

over the index k in (2.2.1), which involve the partial derivatives with respect to the yik(0), can

be simplified to
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with l = 1, . . ., 5, and
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with l, m = 1, . . ., 5, l ≠ m, respectively.

Inserting these sums into (2.2.1) this yields
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with 
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1 , where indices l and m correspond

to 12, 21, and el. The partial derivatives are given by (2.1.8) to (2.1.10) substituting ϕik by ϕi.

(i) Estimators in the case of known covariance matrices

In the case of known variances σ i
2 and covariance matrix ΣB the posterior distribution of θ,

given ζi, σ i
2 , and ΣB, i = 11, . . .,20, is p-variate normal, p = 8, with mean θ* and covariance

matrix D, where
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ii Cd ζσ , is the Bayes estimator of the

population mean parameter vector θ.

Besides the population parameters we also pay attention on the individual kinetic processes.

The posterior distributions of the corresponding parameter vectors θ11, . . ., θ20 given

ζ11, . . ., ζ20, θ and ΣB are independently p-variate normals, p = 8, with means θ i
∗ ,

i = 11, . . ., 20, and covariance matrices Di, where
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The Bayes estimate θ i
∗ as given in (2.2.8) is normally distributed with mean

( ) ( ) 



 Σ+= −−∗ θθσθ 112 B

iiiii CDE (2.2.9)

and covariance matrix

( ) ( )Cov D C Di i i i iθ σ∗ −
= 2 1

.

Again we have to substitute the unknown population mean parameter vector in (2.2.8) and

(2.2.9) by its Bayes estimate θ*.
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(ii) Estimators in the case of unknown covariance matrices

For unknown variances σ i
2 , i = 11, . . ., 20, we assume a vague prior distribution and replace

them by a suitable estimate $σ i
2 , the posterior mode, for instance. Using the previous

assumptions and, furthermore, assuming independently distributed variances σ i
2 ,

i = 11, . . ., 20, we can approximate the Bayes estimate of σ i
2 by its maximum likelihood

estimate
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In the case of unknown covariance matrix ΣB we suppose that its inverse 
1−

ΣB follows a

Wishart distribution with degrees of freedom ρ and matrix R. Using the estimated ΣA as the

corresponding components of the prior estimate ( )1/ˆ 1 −−=Σ − pRB ρ or of the starting value

ΣB(0) and incorporating further information from preliminary examinations we estimate the

individual and population parameters and the covariance matrix ΣB by means of the EM

algorithm given by Dempster et al. (1977). The joint posterior density of θ11, . . ., θ20, θ, and ,

1−

ΣB , given ζ11, . . ., ζ20, is proportional to
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Applying the EM algorithm as described in Section 3.2.1 the lth iteration is given by

E-Step

Approximating ΣB in (2.2.7) by )1( −Σ lB we obtain
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Substituting θ and ΣB in (2.2.8) by )(lθ and )1( −Σ lB , respectively, yields
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M-Step

Conditioning on θi =θ i
l( ) and θ = )(lθ , the posterior mode of (2.2.11) is given by
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Both steps are repeated until )(lBΣ converges, i. e. the maximum change in the elements of

)(lBΣ between successive iterations is less than 0.001.

Using the estimated ΣA to determinate R a reasonable starting value )0(BΣ is given by
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iζζ .

4. Discussion

The present approach simplifies the complex biological processes of highly organised living

organisms by the reduction to two compartment models and the approximation of nonlinear

kinetics by linear ones. Using linear kinetics we have to be aware of the possible errors which

result from the dependence of the parameters on the concentration if the underlying processes

are nonlinear. So before summarising the information provided by experiments within a range

of concentrations, like in group B, it is necessary to verify that a first order approximation of

the processes is valid. In a further paper we will present a procedure to detect such critical

departures from linearity.
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Determining the processes involved in the formation of reactive metabolites is just a first step

to establish a dose-response relationship for the interesting chemical. The metabolites may be

transformed partly into an inactive form. Others form various DNA, RNA and protein adducts.

These processes may also contribute to the nonlinearity of the dose-tumor response curve.

Hoel et al. (1983) presume a linear DNA adduct–tumor relation and conclude that a valid

characterisation of the processes of uptake, elimination, and metabolism is a necessary part of

the risk assessment of potential mutagens and carcinogens.

There exist various attempts to determine toxicokinetic parameters. Holländer et al. (1998)

compared log-linear regression, a noncompartmental method, unweighted and weighted

nonlinear least squares regression, multicompartmental methods, using different weighting

schemes. They found out that the parameters depend on the model and the weighting scheme

and stressed the importance of correct assumptions with respect to the variability, presenting

an approach to use information about the analytical method in order to estimate the variability

of the observation.

Gilberg and Urfer (1998) discussed an extension of the nonlinear random effects model for the

Michaelis-Menten enzyme kinetic by adding a flexible transformation to both sides of the

model. The so called weighted transform-both-sides models are very adaptable with respect to

the error structure. An EM algorithm, which updates the transformation and weighting

parameters every iteration step, is applied to estimate regression and covariance parameters.

Our genotoxicological data reflect profound complexities of the biology of living individuals.

Recent research on Gibbs sampling has great potential for estimating the parameters of

complex models, because it reduces the problem of dealing simultaneously with a large number

of related parameters into a much simpler problem of dealing with one unknown quantity at a

time.

Gilks et al. (1993) reviewed applications of Gibbs sampling in immunology, pharmacology,

cancer screening, industrial and genetic epidemiology.

Wikle et al. (1998) propose the use of hierarchical Bayesian space-time model with five stages

to achieve more flexible models and methods for the analysis of environmental data distributed

in space and time. They implement their models in a Markov chain Monte Carlo framework

using the Gibbs sampler approach.
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Increasing familiarity and experimentation with new Markov chain Monte Carlo methods for

exploring and summarising posterior distributions in Bayesian statistics will lead to new

insights in toxicokinetics.
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