
1

Pitman-closeness and the linear combination of multivariate

forecasts

Thomas Wenzel

Department of Statistics, University of Dortmund, Vogelpothsweg 87,

D-44221 Dortmund, Germany

Abstract: We use the Pitman-closeness criterion to evaluate the performance of

multivariate forecasting methods and we also calculate optimal matrices of weights for the

linear combination of multivariate forecasts. These weights are identical with the optimal

weights under the matrix-MSE criterion.

Key words: Pitman-closeness, multivariate forecasting methods, combination of forecasts.

Acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft,

Sonderforschungsbereich 475.

AMS 1991 Subject Classification: 62H12.

1 Introduction

In the theory of combination of forecasts, most studies consider the univariate case only. In

that case several individual forecasts for a univariate random variable are combined, but

also the multivariate case is of great interest. Here, a multivariate forecasting technique

predicts a k-dimensional random vector (k≥2). Therefore, combination methods based for

example on the minimum-matrix-MSE criterion or the covariance-adjustment-technique

depend on the covariance structure of the errors of a special method and also on the

covariances between the errors of the different methods.

In this article we analyse the comparison of multivariate forecast combinations under

Pitman-closeness (Pitman, 1937). In the multivariate case, there are different ways to

interpret this evaluation criterion. We will focus on the component-by-component Pitman-

closeness and calculate weights for the optimal combination of multivariate forecasts. We

shall see that these weights also depend on the covariance structure of all forecast errors.



2

Furthermore this optimality criterion is equivalent to the matrix-MSE-optimality. A short

example is given for a better illustration.

Finally we present a brief description of the general Pitman-closeness approach for

multivariate forecasts and problems that occur in applications.

2 The Problem

First we give a description of the problem.

Assume that

( )′= k1 Y,...,Y:Y is a random vector to be forecasted (k≥2),

( )′= kii1i F,...,F:F are unbiased multivariate forecasts (i=1,...,n) for Y and

)FY,...,FY(: kiki11i ′−−=u is the error vector of  the i-th forecast method,

where ( )Σ,N~,...,: knn1 0uuu ⋅

′

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B IR k×k are matrices of weights,

where

∑
=

=
n

1i
ki IA , ∑

=
=

n

1i
ki IB , and kI denotes the identity matrix.

We make the assumption that the matrices of weights sum up to identity which guarantees

the unbiasedness of the combined forecast. The multivariate combinations of forecasts are

∑
=

=
n

1i
iiA FAF and ∑

=
=

n

1i
iiB FBF

and the corresponding error vectors are

∑ ∑
= =

=−=−=
n

1i

n

1i
iiiiAA )(: uAFYAFYu and

∑ ∑
= =

=−=−=
n

1I

n

1i
iiiiBB )(: uBFYBFYu .

Subsequently we are going to compare different combinations with the Pitman-closeness

criterion and also derive optimal weights.
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3 Component-by-component Pitman-closeness

In this section we compare multivariate forecasts in each component separately.

Definition 3.1. The forecast 1F is relative to component j Pitman-closer to jY than the

forecast 2F , j∈{1,...,k}, if and only if

( ) 5.0FYFYP 2jj1jj >−<− .

The probability statement of this definition can also be written as ( ) 5.0uuP 2j1j >< .

The first forecast method is Pitman-closer to jY if the probability that it has a smaller

absolute error in the j-th component than the second method is larger than 0.5.

Consequently, it is reasonable to introduce the following definition.

Definition 3.2. The forecast 1F is component-by-component Pitman-closer than the forecast

2F ( )21 FF ≠ if and only if

( ) { } .FFwhere,k,...,1j5.0FYFYP 2j1j2jj1jj ≠∈∀>−<−

The probability statement of Definition 3.2 is equivalent to

( ) { } .FFwhere,k,...,1j5.0uuP 2j1j2j1j ≠∈∀><

With this definition in mind we will now find a combination which is the component-by-

component Pitman-closest.

Let ( )′= )i(
jk

)i(
1j

)i(
j a,...,a:a and ( )′= )i(

jk
)i(

1j
)i(

j b,...,b:b , j=1,...,k, i=1,...,n be the j-th row vectors of

the i-th matrices of weights. Then the components of the error vectors of the two

combinations are given as
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and 1)kn(~ ×⋅u .

With the definitions from above we are able to compare the two combinations of

multivariate forecasts. AF is in the j-th component Pitman-closer to jY than BF if and only

if

( ) ( ) 5.0uuP5.0uuP 2
jB

2
jAjBjA ><⇔><

⇔ 5.0P jjjj >


 ′′<′′ ubbuuaau ⇔ 5.00P jjjj >


 <


 ′−′′ ubbaau

⇔ 5.00P 5.05.0
jjjj

5.05.0 >


 <


 ′−′′ −− ubbaau ΣΣΣΣ (1)

This is similar to the characterization of Pitman-Closeness for the univariate case as in

Wenzel (1998).

The eigenvalues of the matrix 5.0
jjjj

5.0
j : ΣΣ 


 ′−′= bbaaC are

2
:,

2
:

jjjj

2

j

2

j

2j

jjjj

2

j

2

j

1j

dcdcdcdcdcdc −+−−
=λ

−++−
=λ ,

with corresponding eigenvectors 2j1j and vv , where

j
5.0

j : ac Σ=  and  j
5.0

j : bd Σ=  .

Then

(1)⇔ 5.00P 5.0
2j2j

5.0
2j

5.0
1j1j

5.0
1j >


 <′′λ+′′λ −−−− uvvuuvvu ΣΣΣΣ

⇔ ( ) 5.00XXP 2
2j2j

2
1j1j ><λ+λ , (2)

where

,:X,:X 2j
5.0

2j1j
5.0

1j vuvu −− ′=′= ΣΣ

( ) ( ) ( ) ( ) ( ) .0X,XCov,1XVarXVar,0XEXE 2j1j2j1j2j1j =====

As a weighted sum of normal distributed random variables, the s’X are also normally

distributed. Since they are independent with zero mean and unique variance, the ratio 
2j

1j

X

X

is Cauchy(0,1)-distributed. Hence we have the following equivalences:
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With the same conclusions as in the univariate case this is equivalent to

2

j

2

j dc < ⇔ jjjj bbaa ΣΣ ′<′ .

An optimal combination of forecasts for the j-th component is given by a vector ja which

minimizes jj aa Σ′ . Since the weight matrices sum up to the identity matrix, we have

j
)n(

j
)1(

j eaa =++K where je is the j-th unit vector. This leads to the minimization problem:
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Now, defining

,1n,,1s,r,: nsnrnnrsrs −=Σ−Σ−Σ+Σ= KV

( ) ,k)1n(k)1n(~: 1n,,1s,rrs ⋅−×⋅−= −= KVV

( ) jinnnji ew ΣΣ −= ∼ k×1 and therefore  ( )ninnjji : ΣΣ −′=′ ew , j=1,..,k, i=1,..,n−1,

′



 ′′= −1n,j1jj ,,: www K ∼ (n−1)⋅k×1,

′





 ′′= − )1n(

j
)1(

jj ,,:~ aaa K ∼ (n−1)⋅k×1

and inserting in equation (3) yields

=′
jj aa Σ jnnjjjjjjj

~~~~ eeawwaaVa Σ′+′−′−′ )~(L: ja= .

The necessary condition for a minimum is

0wVa
a

a !

′=′−′=
δ

δ
jj

j

j 2~2~
)~(L

,

and the sufficiency condition

.d.p2~
)~(L

j
2

j
2

V
a

a
=

δ
δ

follows from the assumption that )(Cov: zV = with ( )′′−′−= − )(,,)(: n1nn1 uuuuz K is p.d.

Thus we get:  j
1)opt(

j
~ wVa −= .

Now we are able to formulate the following two theorems.

Theorem 3.1. The Pitman-closest-combination of n multivariate forecasts for the j-th

component of a random vector Y of dimension k (k≥2) is given by the vector of weights

′



 ′−′′=
′






 ′′= −− *

k
1

jj
1

j
opt),n(

j
opt),1(

j
)opt(

j ,,...,: IVweVwaaa ,

where [ ] kk)1n(~,,: kk
*
k ×⋅−′= III K .
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Theorem 3.2. The component-by-component Pitman-closest-combination of n multivariate

forecasts for a random vector Y of dimension k (k≥2) is given by the matrix of weights

],[],,[: *
k

1
k

1)opt(
n

)opt(
1

)opt( IVWIVWAAA −− ′−′== K

where ),,(: k1 wwW K= ∼ (n−1)⋅k× k,

[ ] kk)1n(~,,: kk
*
k ×⋅−′= III K .

The proofs of these two theorems follow directly from the calculations above. It is obvious

that the optimal weights in each component depend on the covariance structure of the

whole system of forecast errors.

Looking again to the minimization problem (MP) we get the following theorem:

Theorem 3.3. With the assumptions in Section 2 the optimal matrix-MSE-combination is

identical with the component-by-component Pitman-closest-combination.

Proof: The matrix-MSE of the errors of the combined forecast AF is given as
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 ′= jiij E: uuΣ .

Odell et al. (1989) analysed the minimization problem for the linear combination of

multivariate estimators with the assumptions of Section 2. They pointed out that in this case

minimizing the matrix-MSE in the sense of the Löwner-ordering implies that the scalar-

MSE is also minimized. The scalar-MSE is defined as the trace of 


 ′
AAE uu . The trace is

j

n

1j
jAAEtr aauu Σ∑

=

′=




 


 ′ .

We see that the j-th term of the sum depends only on the j-th weight vector. Thus the

minimal trace is given by the minimum of each of the n components in the sum and
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therefore by the optimal weight vectors )opt(
ja . This means that the optimal matrix-MSE-

combination is also the component-by-component Pitman-closest.

On the other hand, if we calculate the component-by-component Pitman-closest-

combination, we begin by minimizing the trace of 


 ′
AAE uu . Consulting again the paper

of Odell et al. (1989) it follows that the matrix-MSE is also minimized in the sense of the

Löwner-ordering.

Application. The theoretical description of the problem will now be underlined by a short

example. We analyse a problem where n=3 forecasts are given for a random vector of

dimension k=2. The 6×6 covariance matrix of the forecast errors which, in pratice, can be

calculated using the general ML-estimators is
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Now we take the forecast combination given by the the component-by-component Pitman-

closest technique as AF and intuitive combination techniques for BF , i.e. the three

individual multivariate forecasts, the technique which uses for each component the optimal

univariate combination and a combination with the weight matrices given below.
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The following table shows the probabilities for each of the two components that the

component-by-component Pitman-closest-combination outperforms the other combinations.
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combination component j ( )jBjA uuP <

1 0,91992first individual

forecast 2 0,95241

1 0,84555second individual

forecast 2 0,92287

1 0,87810third individual

forecast 2 0,95739

1 0,81172optimal univariate

combination 2 0,91234

1 0,84373combination with

the weights above 2 0,93091

4 General Pitman-closeness

In Section 3 we considered Pitman-closeness for each component. In this case the

probability that all components of the Pitman-closest-combination have a smaller absolute

forecast error than another combination could be less than 0.5. Therefore, it is reasonable to

define a general Pitman-closeness criterion.

Definition 4.1. The forecast 1F is general Pitman-closer than the forecast 2F if and only if

( ) 5.0P 21 >−<− FYFY .

Thus, if ( ) 5.0P 21 >< uu then 1F is general Pitman-closer than 2F . Here yx < means

that k,,1i,yx ii K=∀< .

With the transformations in Section 3 we can write this as
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It is obvious that for the calculation of the probability we have to take into account the

multivariate distribution of the k components ,k,,1j,
X

X

2j

1j K= which are dependent

Cauchy(0,1)-variables. Another point is that two multivariate forecasts could be not

comparable which means that none of them is general Pitman-closer. Especially in

situations of ″high″ dimensions (k ″large″) it might be possible that no general Pitman-

closest-combination exists.

5 Conclusions

We derived the component-by-component Pitman-closest-combination of forecasts which

is equivalent to the optimal matrix-MSE-combination. With the component-by-component

Pitman-closeness criterion we are able to specify a probability that a multivariate forecast in

a special component performs better than another forecast. We have to emphasize that the

assumption of normal distributed errors is needed. Furthermore we discussed the general

Pitman-closeness criterion. By transforming each component as in the component-by-

component case it was possible to calculate the distribution of each component but their

joint distribution is needed. Therefore more research in the area of multivariate distributions

is necessary. Finally as a new problem the case of incomparable forecasts may occur.
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