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Abstract

In this paper causality is seen from a pluralist point of view: About its physical reality one
can not claim to know anything as it is seen to be not a matter of fact but rather a matter of
human perception. Different philosophical concepts of causality are presented and their
philosophical impact and their limitations are sketched. They are shown to underlie
different statistical causal modelling. For Pearl’s (1995) causal graphical models, the
decision theoretic causal graphical models of Heckerman and Shachter (1995) and the
potential-response model of Rubin (1974) it is indicated how the advantages and
disadvantages of their underlying causal concepts influence their applicability in certain

scientific contexts and their acceptancy by individual researchers.
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Introduction

If we try to define causality as some physical entity for which we have sufficient reason to claim its
truth, we end in the so called Miinchhausen-Trilemma (Albert, 1968): Either we (1) continue the

argumentation in some infinite regress or we (2) produce a cycle and hope that no-one will realise it
or we (3) call some primitives self-evident so that any reasonable person simply must agree with us.

This situation is well known. Most researchers agree that causality is some helpful concept with
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which humans organise their surroundings, but its physical "truth" is not decidable. This could lead
to a very open and pragmatic dealing with causal models. Yet to me it seems, when the use of causal
models in empirical research is discussed the different believes about the "truth" of causality play an
important role - the more important and negative the less explicit people are about their believes.
Implicit believes can become implicit assumptions which are like hidden prejudices in social life:
they have a lot of influence but are hard to fight since they are not open to criticism. Not believing
in the possibility of prejudice-free science I see the plurality of believes as appropriate means to an
objective science. Important to that end is consciousness about the epistemological level of different
scientific questions and clarity of one’s own believes.

In this paper I will discuss the epistemological level of scientific questions concerning causality
using a three-level model of cognition that I will introduce in the second section of this paper. In the
third section I will present different plausible concepts of causality and in the forth section three
causal models in statistical science will be reviewed in the light of these concepts: the causal
graphical models of Pearl (1995) and Heckerman and Shachter (1995) and the potential-response

model of Rubin (1974). Some conclusions will be drawn in the last section.

Three Levels of Cognition

The presentation of this model follows Koch (1994). A basic assumption of the model is the
existence of a reality independent of our perception. It is called ontic level of cognition or ontic
world. Ontic reality is seen to produce the experiences that are accessible to our senses (including
their expansion by equipment). These experiences constitute the epistemic level of cognition. The
conceptual level finally is used to mediate between epistemic and ontic reality: the sensual
experiences get structured to build concepts about the ontic reality.

The interrelation between the three levels can be graphically represented as follows:



ontic

epistemic < > conceptual

The individual arrows mean:

ontic—>epistemic: the part of the ontic world that is accessible to our senses is observed and
understood as interaction between realising subject and ontic world.

ontic—> conceptual: this can be understood as representing the human analogue to computer
hardware that consists of the ontogenetic and phylogenetic developed characteristics of human
cognition that influence and limit the human urge and capability to organise sensual experiences.
This gives an interpretation of Kant’s (1724-1804) opinion that causality was a form that human
reason prescribed all experiences and thus can never been proven by experience (Kant, 1922).
conceptual = epistemic: ideas of the world influence the perception of it.

epistemic = conceptual: concepts are build on the basis of sensually experienced material.

Mackie (1985) gave an example of typical causal questions within each of these three levels.
Questions on the ontic level ask: ‘What is causation in reality, in the objective world: what actually
goes on in what we take as typical cases of causation?’. On the conceptual level we ask: ‘What is
our present established concept of causation, of what causes and effects are, and of the nature of
the relation between them?’ On the epistemic level we want to know: ‘What is causation in reality
so far as we know it? What can we observe or discover or establish or reasonably believe about
what we take as causes and effects?’ (Mackie, 1985, S.178).

Answers to causal questions on the ontic level I see as a matter of decision of the individual person.
Conceptual answers should be investigated with respect to their inner consistence and their

connection to other related ontic question as for example determinism and indeterminism. Any



causal concept should correspond to certain ways of enlarging our epistemic knowledge and thus

should correspond to certain epistemic observations.

Some concepts of causality

The foundation for the modern view of causality is the regularity theory of Hume (1711-1776).
According to Hume (1995) there are two main characteristics that let people think two events might
be causally linked: succession in time and contiguity”. These components alone do not succeed to
capture the human notion of causality. Hume stated that humans have the idea of some necessary
connection between cause and effect. Knowing this necessary connection would allow us to draw
some a-priori inference from only the causes to their effects. Because of the problems of induction
this necessary connection can never be proven to exist and stays fictious. In real life it is replaced by
the observation of a constant conjunction between the cause and the effect. A causal statement of
singular events is considered to be true because of some generic causal statement that is inferred
from the observation of some or many "similar" singular events. Thus causality is a matter of human
perception and not of fact.

From the standpoint of a logical empiricist science should only be about epistemic phenomena and
not about some fictious entities. Consequently Russell (1872-1970) stated that causality should not
be used in scientific concepts at all (Russell, 1913). The statistician and logical empiricist K.
Pearson (1857-1936) wanted to replace the concept of causality by correlation and contingency
tables as he regarded nature as symmetric (Pearson, 1911). This strict rejection of causality by

logical empiricists was given up for example by the physicist Frank (1884-1966) who also did not
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accept causality as a concept of some fundamental law of reality but - like Hume - as some concept
to structure our surroundings (Frank, 1988).

A definition of causality that is in accordance with this perspective is the strict interventionistic
concept: It does not explain the human understanding of causality by the fictious necessary
connection but on self-reflection of actions in which we experience ourselves as originators of
changes. To say "p is a cause of ¢" then means that by doing p one can bring about g (von Wright,
1971). The strict interventionistic definition of cause is criticised because it is antropomorphistic
and because it does not capture the use of the word in daily life. If the concept shall be expanded to
cover events that can not really be manipulated then one needs hypothetical manipulations via
imagination and analogy. This makes the definition vulnerable to other critisism: the argumentation
is circular because one needs causal knowledge for the analogy to establish causal knowledge.

A further development of the interventionistic concept is what I call here the human motivation
concept (Stroker, 1992). In this concept causality is not a characteristic of the phenomena but of the
person who observes the phenomena. There are two main motivations: Enlarging our epistemic
knowledge by searching for strategies to reach a goal and enlarging our conceptual understanding by
searching for explanations for phenomena that are not covered by any existing concept.

The so-called counterfactual concept of causality replaces the necessary connection not by constant
conjunction or possible manipulation but by some counterfactual statement. Actually Hume himself
has brought forward the counterfactual argument directly following his well known definition of
cause:

we may define a cause to be an object, followed by another, and where all the objects
similar to the first are followed by objects similar to the second. Or in other words where, if
the first had not been, the second never had existed. (Hume, 1995)

To overcome the problem that the truth of counterfactual statements cannot be decided by classical
logic Lewis (1973) invented the idea of possible worlds: Two observed events ¢ and e are causally

dependent if a possible world exists in that not-c and not-e are true and if this possible world is



closest to the real world among all possible worlds in which not-c is true. On this basis one decides
that if ¢ had not been, e had not existed.

Lewis is very cautious in saying how the closest world can be found - especially how the distance of
world may be measured. This is not a necessary part of the axiomatic of his logic in general but it
gains importance when one wants to use it for causal analysis. Actually - hidden in the decision
about the closest world the generic causal statements still play an important role to decide on the
truth of singular causal statements. Any aspects of causality like contiguity, time sucession,
possibility of manipulation etc. can be used and at least some must be used to construct closest
worlds ( e. g. Mackie, 1985).

When the counterfactual causal analysis is used for generic statements about classes of "similar"
events C that are causes of events in class E if E follows C and Not-E follows Not-C then this means
that C is a necessary and sufficient condition for E. This is consistent with an pre- and post-
deterministic worldview: Similar causes lead to the same effects and similar effects have similar
causes. Many people agree with the first statement but would rather think that similar effects might
have different causes thus denying post-determinism. The non-post-deterministic variant of the
counterfactual definition of causality is the so-called INUS-condition for causes of Mackie (1974).
According to this condition some C is said to be a cause of E if "it is an insufficient but non-
redundant part of an unnecessary but sufficient condition..." for E. The counterfactual statement is
expressed by the requirement of non-redundancy: if not some other complex condition caused e then
¢ was necessary for e.

All the preceding concepts have to deal with epistemic indeterminism: In our experiences there is
(almost sure) no perfect constant conjunction. To explain this from a pre-deterministic point of view
we can invoke the so-called ceteris-paribus-clause: any causal statement is valid with the added

phrase "other things being equal”. If ¢ is not followed by e though we say C was a cause of E then



this is due to some things having been different from those singular events where the generic rule is
true.

With that explanation the probabilistic definition of causality by Suppes (1970) can be used from a
deterministic point of view. But Suppes’ concept is also open to an indeterministic worldview as
causes do not have to determine their effects but only need to increase their probability. But by this
one can not avoid the necessity to take into account other circumstances: the increase must occur
whatever the other circumstances are. This can be seen to be some inversed ceteris-paribus-clause.
And to differentiate between a cause and its effect the probabilistic definition of cause and effect

can not do without time-succession.

Pearl’s interventionistic concept

For Pearl (1997) the shaded existence of causality in statistics has two main reasons: the logical
empiricists rejection of the concept as such e.g. by the famous statistician Pearson plus the lack of a
mathematical formalism to distinguish causal from equational relationships. Pearl’s aim is to supply
the language of probability with a symbolic representation of causal statements so that causal
reasoning can be done in an open and formal way in the statistical research.

The core of the causal graphical model of Pearl is a finite set of variables {X},..., X,,} that represent
some entities of interest. The assumptions about their causal relationships are encoded in a directed
acyclic graph in the well-known way (e. g. Pearl, 1988). The conceptual understanding of causal
relationships among those variables is a probabilistic version of the expanded interventionistic
definition: The causal effect of a variable X on a variable Y is defined as the influence on the
probability for Y=y when by an atomic external intervention one fixes X=x. Formally it is defined as

the function from the possible values x € Val(X) to the space of the probability distributions of Y

when X is forced to have a certain value x € Val(X). The probability distribution of ¥ when X=x is



set, is denoted by P, . This is in contrast to the probability distribution P, of ¥ when X was
observed to have a certain value x € Val(X). The calculation of P,. is possible through an

underlying pre-deterministic model of the causal relationships among the variables: Each child-
parent family {X;, pa;}, i=1,...,n, in the graph represents a deterministic function X;=fi(pa;, &),
i=1,...,.n, where the &, i=1,...,n, are mutually independent, arbitrarily distributed random
disturbances, representing the explanation for factual indeterminism between X; and its direct causes

pai, i=1,...,n. Then Py ij € {1,...,n}, i #j, can calculated in a submodel where the mechanism

Xi=fi(pa, €) is replaced by X;=x; and in all other equations X;=fi(pay, &), k=1,...,n, k #i, X; is
replaced by x;.

Pearl’s model is widely applicable and uses highly efficient algorithms to guide causal analyses.
Problems occur for users of the causal model of Pearl when there are variables where even
hypothetically it is hard to imagine any possible atomic intervention. Modeling them as so-called
latent variables would mean to ignore the information one has about their observed values - taking
them in as "core" variables might arise doubts in the correctness of the model.

From an expanded interventionists point of view this problem can (almost) anytime be
circumvented. If the entity itself can not be hypothetically manipulated then may be what we really
want to model is not this entity but something else. As an example Pearls (1995, rejoinder) says
gender in a study about gender discrimination might not be the entity of interest but rather the

perception of the gender of a person by others.

Potential-Response Model

The two main developers of the potential-response model Rubin (1974) and Holland (1986)
combine a strict interventionistic conceptual view of the "cause of an effect" with a counterfactual

way to establish "effects of causes" on the epistemic level. The definition of cause is restricted to an



experimental milieu - with a universe U or population of "units" u € U as basic objects of study and
a finite set of variables {X, Y, ...} which are real-valued functions that are defined for each unit in U.
Causes in this model are equivalent to a set B of at least two different treatments (e. g. B = {b,b’})
that the experimenter assigns - not necessarily at random - to the units. Only by this those objects
can be seen as causes that are potentially exposable to the units in an experiment and all other
characteristics of units are mere attributes. Any causal effect is defined relative to the effect of
another treatment: If the Variable Y is chosen as the variable of interest, then Y,(u) - Y;(u) is the
effect of b in comparison to the effect of 4°. This definition is counterfactual: It is impossible to give
both treatments to a unit at the same time - thus one of the statements either Yj(u) or Y,{u) is
necessarily counterfactual. This is called by Holland (1986) the "fundamental problem of causal
inference".

To handle the problem one needs some additional assumptions: For example, when the units are
said to be "similar" or homogeneous then Y(u) - Yy (1) = Yp(u) - Ypr(u’), u” #u, u’ € U. Or when
there is no causal transience and the effects are stable over time then Y,(u) and Y, (u) can be
measured at different times. In general there will be assumptions about the joint distribution of (Y5,
B) on the universe U that helps to estimate Yj(u) - Y (1) or Ey(Yp(u)- Yip(ur)).

Some distrust in the potential response model might arise in researchers "because it has been only
partially formalized and, more significant, because it rests on esoteric and seemingly metaphysical
vocabulary of counterfactuals" (Pearl, 1997). As a clarifying formalism the Lewis logic can be used:

the tupels {(Ys, b), b € B } can be seen as a set of possible worlds so that per definition when (Y}, b)

represents the true world the closest one is (Y5, b’) when the causal effect of b is defined relative to
b’. With that transformation in mind the counterfactual analysis of the potential-response model can
use the axiomatic of the Lewis logic to have rules to handle the counterfactual statements. Another

possibility would be to see the joint distribution of (Y3, B) as marginal distribution of a causal



network and to use the causal semantic of Pearl (1995) or Heckerman and Shachter (1995) to guide
the inference. Galles and Pearl (1997) show that the approaches with Pearls or Lewis framework
differ only (according to the valid counterfactual statements in the respective semantics) when the
causal model is allowed to be non-recursive: then the causal framework poses more restrictions on
the set of valid statements than does the Lewis axiomatic.

An unambiguous advantage of this model is its adequacy and adaptability for different not
necessarily randomised experimental settings - including observational studies. The clear definition
of what causes are can be considered as positive or negative. The latter because for many
investigations especially in the social context it can be seen as being too restrictive. The model
cannot be used to answer causal questions in the sense of Stroker's second motivation where one

wants to find explanations for certain observed effects.

Decision Theoretic Causal Model

The definition of causality in the model of Heckerman and Shachter (1995) can be seen as Mackie's
INUS-condition transposed in a decision theoretic framework. The model consists of a finite set of
decisions D={D,,...,D,,} on certain actions, possible (relevant) states of the world s € S, and a finite
set U of consequences of interest represented by variables X, Y,... . The worldview is pre-
deterministic: Givend = (d,,...,d,,) € D and s € S the value of X(d, s) = x is fixed.

Causality is defined via a notion of limited (un)responsiveness. The consequences X < U are said to
be unresponsive to D in states limited by Y < D U U if we believe that for all states of the world s €
S and decisions dj, d> € D whenever Y(s, d;) = Y(s, d>) is true then X(s, d;) = X(s, d>) is true as
well. A change in the decisions that does not change Y can not change X. Then the variables in C c
D U U are said to be causes of a variable X € U when C is a minimal set such that X is unresponsive

to D in states limited by C.
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This definition matches Mackie’s INUS-condition: Let Y € C be a variable of interest. Then Y is

insufficient for X as long as Y # C. And Y is non-redundant. Both statements are true because
otherwise C would not be a minimal set. The set C is unnecessary for X as the definition does not

claim that C was unique in D U U and also because there might be s € S so that X was unresponsive
to D. The set C is sufficient for X in the sense that for all ¢ € C the outcome of X is only dependent

of s and no longer of d. Thus sufficiency means that nothing more can be done to control or
influence X.

An advantage of this definition of causality is the possibility that variables that can not be
manipulated (attributes in Holland’s notion) can be called causes without being unclear what a cause
is and without adventurous hypothetical manipulations. With this model causal questions with both

motivations in Stroker's sense can be analysed.

Conclusions

All three causal models presented here have advantages and disadvantages. Their main drawbacks
are related to their underlying conceptual understanding of causality. As no-one can claim any
conceptual model to be the true ontic one the decision to use a causal model at all or which causal
model to use depends first of all on the adequacy of the model for the scientific question at hand:
Some might be difficult to model in the decision theoretic or experimental milieu so that Pearl's
model is the only one that can support the causal analysis. For other studies finding hypothetical
atomic interventions for the entities of interest might render the whole analysis dubious. In the
second place the decision on using causal models is dependent on the conceptual preferences of the
researcher: Whoever wants science to be restricted to the epistemic level will not use of causal
models at all. The requirements of a strict interventionist are only met by the potential-response

model though the counterfactual argumentation can still be regarded as being awkward. For those

11



who want the scientific use of causality to match the intuitive use in daily life the model of Pearl
may be the favorite. A model where entities that can not be manipulated can be called causes and
that still has a distinctive definition of what a cause is, is provided by the decision theoretic concept
of Heckerman and Shachter (1995).
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