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Abstract

In this paper, the task of identifying outliers in exponential samples is treated
conceptionally in the sense of Davies and Gather (1989, 1993) by means of
a so-called outlier region. In case of an exponential distribution, an empirical
approximation of such a region { also called an outlier identi�er { is mainly
dependent on some estimator of the unknown scale parameter. The worst-case
behaviour of several reasonable outlier identi�ers is investigated thoroughly
and it is shown that only robust estimators of scale should be used to con-
struct reliable identi�ers. These �ndings lead to the recommendation of an
outlier identi�er that is based on a standardized version of the sample median.
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1 Introduction

It is a common problem in applied statistics that in samples which are taken from

some target population some observations occur which seem to di�er strongly from

the bulk of the data. Such an observation is usually called an \outlier". However,

there exists no formal de�nition of what constitutes an outlier that has been widely

accepted.

In this paper we focus on outlying observations in life time data. A simple but nev-

ertheless useful model for such data assumes that the observed life times x1; : : : ; xN

form a random sample from an exponentially distributed random variable X with
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unknown scale parameter � > 0. Hence, the distribution and density function of X

are given by F�(x) = 1 � exp(�x=�); x � 0; and f�(x) = 1 =�exp(�x=�); x � 0;

respectively.

In the statistical literature, the problem of detecting the presence of outliers in

exponential samples has been investigated intensively. A comprehensive account

on contributions to this topic can be found in Gather (1995). Most of this work

is based on so-called outlier generating models. Here it is assumed that potential

outliers come from di�erent distributions than the rest of the data. The problem

of outlier detection is then seen as a testing problem with null hypothesis that all

observed life times come from the same exponential distribution { the null model {

and alternative that at least one life time comes from another distribution permitted

by the chosen outlier generating model. This approach has some drawbacks: One

is that it does not really take into account that the only property of outliers being

commonly supposed is that their position is quite unlikely under the null model,

irrespective which distribution they follow. Further, if a test rejects the null model

then one can only conclude that outliers are present, but not identify them.

To overcome these drawbacks, Davies and Gather (1989, 1993) (see also Gather,

1990) introduced the notion of an outlier region. Let F be an absolutely continuous

distribution function with density f . For any �; 0 < � < 1, the �-outlier region of F

is de�ned as out(�;F ) = fx 2 R j f(x)< �(�)g, where �(�) = supf� > 0 jP (f(X) <

�) � �g and X has distribution function F . Then, any real number x is called an �-

outlier with respect to F if it lies in out(�;F ). In case of an exponential distribution

F�, a corresponding �-outlier region is given by

out(�;F�) = fx � 0 jx > �� ln�g: (1)

Often, the level � = �N of an outlier region is chosen depending on the size N of a

given sample. One possible choice is based on the requirement that under the null

model for some ~�; 0 < ~� < 1; and for an i.i.d. sample XN = ( X1; : : : ;XN ) one has

P (Xi =2 out(�N ; F�); i = 1 ; : : : ; N) = 1� ~�;
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which leads to

�N = 1 � (1� ~�)1=N : (2)

The task of identifying all outliers in an exponential sample can now be formalized

in the following way: Given a realized sample xN = ( x1; : : : ; xN) with at least

n > N= 2 regular observations, i.e. these observations come from i.i.d.F�-distributed

random variables, for �xed �N , �nd all observations which lie in out(�N ; F�). Since

� is unknown, one has to �nd an empirical approximation of out(�N ; F�), such an

approximation is usually called an outlier identi�er. From (1) it is obvious that this

problem can essentially be solved by estimating the unknown scale parameter �.

Then it must be taken into account that estimators of � might be heavily distorted

if outliers are contained in the sample.

The rest of this paper is organized as follows: In Section 3, four di�erent outlier

identi�ers are presented which are based on di�erent reasonable estimators of the

scale parameter �. In Sections 3 and 4, these identi�ers are investigated with re-

spect to their worst-case behaviour. For this purpose, their masking and swamping

breakdown point as well as their maximum asymptotic bias are compared. It turns

out that only robust estimators of scale lead to reliable outlier identi�ers. In Section

5, the results of an extensive simulation study are presented. Finally, a real data

example is contained in Section 6.

2 Outlier identi�ers

Let SN = SN (xN) be an arbitrary estimator of the scale parameter �. Then, a

one-step �N -outlier identi�er based on SN generally has the form

ORSN (xN ; �N) = ( SN (xN) g(N;�N );1);

where g(N;�N ) is a normalizing constant, whose choice is discussed later.

The following outlier identi�ers are considered in this paper:
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i) Standardized median identi�er (SM-Oi)

ORSMN
(xN ; �N ) = ( SMN(xN ) g(N;�N );1)

with SMN (xN ) = a Med (x1; : : : ; xN );

ii) RCS identi�er (RCS-Oi)

ORRCSN (xN ; �N) = ( RCSN (xN) g(N;�N );1)

with RCSN(xN) = b MedifMedjfjxi � xjj; i; j 2 f 1; : : : ; Nggg;

iii) RCQ identi�er (RCQ-Oi)

ORRCQN
(xN ; �N) = ( RCQN(xN ) g(N;�N );1)

with RCQN(xN) = c fjxi � xjj; i; j 2 f 1; : : : ; Ng; i < jg(l)

where l = d
N (N � 1)

8
e;

iv) Mean identi�er or Maximum likelihood identi�er (ML-Oi)

ORMLN (xN ; �N) = ( MLN (xN ) g(N;�N );1)

with MLN (xN) =
1

N

N

i=1

xi:

The estimator SMN has been suggested by Gather and Schultze (1998) as a

robust estimator of scale specially for exponential samples. To achieve Fisher-

consistency, the constant a must be set to a = 1 =ln 2 = 1 :4427. The estimators

RCSN and RCQN have been proposed by Rousseeuw and Croux (1993) and

are generally useful for estimating a scale parameter in samples from location-scale

distributions. When applied to estimate the standard deviation of a normal distri-

bution they are very robust and work quite well. To make them Fisher-consistent

in the exponential case, one has to choose b = 1 :6982 andc = 3 :4760:

It remains to specify the constants g(N;�N ). This is done by the requirement that

in samples without any outliers

P (ORSN (XN ; �N) � out(�N ; F�)) = 1� ~� (3)

or P (Xi 62 ORSN (XN ; �N); i = 1 ; : : : ; N) = 1� ~�: (4)
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Tables 1 { 4 contain the constants for ~� = 0 :05,�N determined according to (2),

and sample sizes N = 10 ;20; 50; 100, under both requirements. For the RCS and

the RCQ identi�er, the constants have been simulated, each value is based on 10000

runs. For the other two identi�ers, they have been calculated exactly.

SM-Oi N=10 N=20 N=50 N=100

(3) 11.39 10.36 9.76 9.65

(4) 6.97 7.01 7.54 7.99

Table 1. Values of g(N;�N ) for SM-Oi

RCS-Oi N=10 N=20 N=50 N=100

(3) 13.74 11.14 9.96 9.70

(4) 7.38 7.50 7.66 8.04

Table 2. Values of g(N;�N ) for RCS-Oi

RCQ-Oi N=10 N=20 N=50 N=100

(3) 11.23 9.51 9.21 9.18

(4) 5.81 6.45 7.16 7.75

Table 3. Values of g(N;�N ) for RCQ-Oi

ML-Oi N=10 N=20 N=50 N=100

(3) 9.72 9.00 8.83 9.00

(4) 4.45 5.41 6.57 7.38

Table 4. Values of g(N;�N ) for ML-Oi

3 Breakdown points

The reliability of an outlier identi�er can be judged by his proneness for false de-

cisions. There exist two possibilities of making mistakes. The �rst one is to fail to

identify a clear outlier and the opposite mistake is to discover more outliers than

are really existing.

If an outlier identifer is unable to recognize an arbitrarily large outlier because of

the presence of some other outliers, it is said that \the identi�er breaks down by

masking". A measure for the sensitivity of an identi�er w.r.t. this kind of failure

is its masking breakdown point (see Davies and Gather, 1993) which is de�ned

as the minimal fraction of badly placed observations which let the identi�er break

down. More formally, given an outlier identi�er, a sequence � = (�N)N2 with

�N 2 (0; 1), � 2 (0; 1), and a sample with n regular observations xrn, the masking
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breakdown point is given by

�M(�; xrn; �) =
kM

n+ kM
;

with kM = minfk : �M(�n+k; xrn; k; �) = 0 gand

�M(�n+k ; x
r
n; k; �) = inff� > 0 : there exist �-outliers xok = ( xo1; : : : ; x

o
k)

such that some point in out(�; F�) is not identi�ed

as an �k+n-outlierg:

If the presence of outliers in a sample has the e�ect that an identi�er classi�es some

non-outlying observations as outliers, then it is said that the identi�er su�ers from

swamping. The swamping breakdown point of an identi�er is the smallest fraction

of badly placed observations which cause a non-outlying observation to be identi�ed

as arbitrarily large outlier. More formally, for a given identi�er, a given sequence

� = (�N)N2 with �N 2 (0; 1), � 2 (0; 1), and a sample with n regular observations

xrn, the swamping breakdown point is de�ned as

�S(�; xrn; �) =
kS

n+ kS
;

with kS = minfk : �S(�n+k; xrn; k; �) = 0 gand

�S(�n+k; x
r
n; k; �) = inff� > 0 : there exist �-outliers xok such

that some non-�n+k -outlier is identi�ed as �-outlierg:

Theorem 3.1. Let xrn be a regular sample from an exponential distribution, � 2

(0; 1), and � = (�N)N2 with �N 2 (0; 1), then

i) for the standardized median identi�er: �M(�; xrn; �) = 1 =2;

ii) for the RCS identi�er: �M(�; xrn; �) = 1 =2;

iii) for the RCQ identi�er: �M(�; xrn; �) = 1 =2;

iv) and for the mean identi�er: �M(�; xrn; �) = 1 =(n+ 1) :
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Proof.

i) Consider a sample of size N = 2n containing a number n of �-outliers all

being equal to some xo which is larger than the maximal regular observation.

If xo !1 , then it follows that alsoSMN (xN)!1 and ORSMN
(xN ; �N)! ; .

So �M (�; xrn; �) = 1 =2.

ii) In addition to the regular sample, choose a number n of �-outliers xon =

(xo(1); : : : ; x
o
(n)) such that for some constant L > 0

xo(1) = xr(n) + L

xo(2) = xr(n) + 2L

...

xo(n) = xr(n) + nL;

where xr(n) denotes the largest regular observation. If L !1 , then it follows

that RCQN (xN )!1 and ORRCQN
(xN ; �N )! ; .

iii) Consider a sample of size 2n containing a number n of �-outliers as in part i).

If xo !1 , thenRCSN (xN)!1 and hence ORRCSN (xN ; �N)! ; .

iv) Choose a single �-outlier xo, henceN = n+1. If xo !1 , thenMLN (xN )!1

and hence ORMLN (xN ; �N )! ; .

2

The theorem shows clearly that only such outlier identi�ers should be used which

are based on robust estimators of the unknown scale parameter �. For n tending to

in�nity, the masking breakdown point of the mean identi�er tends to zero. Hence,

the mean identi�er works bad especially in large samples.

Theorem 3.2. Let xrn be a regular sample from an exponential distribution, such

that xri 6= xrj for i 6= j with i; j 2 f 1; : : : ; n g. Further, let� = (�N )N2 with

�N 2 (0; 1); and � 2 (0; 1). Then it follows
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i) for the standardized median identi�er: �S(�; xrn; �) = 1 ;

ii) for the RCQ identi�er: �S(�; xrn; �) = ( n+ 1) =(2n+ 1),

iii) for the RCS identi�er: �S(�; xrn; �) = ( n+ 1) =(2n+ 1) ;

iv) and for the mean identi�er: �S(�; xrn; �) = 1 :

Proof.

i) Since � > 0 it follows that no �-outlier added to the sample can be equal to

zero, and hence SMN(xN ) > 0 irrespective of how many outliers occur. Hence,

for no �nite N we have ORSMN
(xN ; �N ) = R

+ and hence �S(�; xrn; �) = 1.

ii) Consider a sample of size N = 2n+1 containing a number n+ 1 of �-outliers

all being equal to some xo > 0. Then one has RCQN(xN) = 0, and hence

ORRCQN
(xN ; �N) = R

+. It follows that �S(�; xrn; �) = ( n+ 1) =(2n+ 1) :

Part iii) of the theorem can be proven similary to part ii), and part iv) similary to

part i). 2

Davies and Gather (1993) have pointed out that masking and swamping break-

down point of an identi�er behave contrary if the regular observations come from

a normal distribution. This means that if an identi�er has a small masking break-

down point, it usually has a high swamping breakdown point. In samples where

the regular observations come from an exponential distribution, this is not necessar-

ily true: e.g. the median identi�er has both a high masking and a high swamping

breakdown point. The reason is that here, in opposite to the normal distribution,

outlier regions only extend over the upper tail of the distribution. Hence, extremely

small observations are never considered as outliers, so the median identi�er cannot

break down by swamping.
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4 Asymptotic bias and large outliers

Another interesting problem is the search for the largest outlier which cannot be

discovered by an identi�er. It has already been pointed out that the reason why

outlier identi�ers fail to detect outliers in a sample are the outliers themselves.

They distort the scale estimators on which the identi�ers are based. The following

de�nition of Davies and Gather (1993) quanti�es this distortion.

Let � 2 (0; 1) and � = (�N)N2 , �N 2 (0; 1); be given. Consider a sequence (xi)i2

of regular observations from an exponential distribution F�. For each N , let xN

be a sample of size N which contains the �rst n regular observations of the given

sequence and k = b�nc nonregular observations xok which lie in out(�N ; F�). Now,

let SN be an estimator of the scale parameter �. Then the maximum asymptotic

bias of SN is de�ned as

bS(S; �; �) = lim sup
N!1

sup
xo
k
2out(�N ;F�)

ln
SN (xN )

�
:

For all estimators considered here, the maximum asymptotic bias is independent of

the sequence (xi)i2 .

Theorem 4.1.

i) The maximum asymptotic bias of SMN (xN) is

bS(SM; �; �) = ln �1:4427 ln
1� �

2
:

ii) The maximum asymptotic bias of RCQN (xN ) is

bS(RCQ; �; �) = ln(RCQ(�))

with RCQ(�) = 3 :476F�1
�

5 (1 + �)2 � 8 � (1 + �) + 4 �2

8

and F�1
�
(x) =

ln(2x); 0 < x � 1=2

� ln(2� 2x); 1=2 < x < 1:
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iii) The maximum asymptotic bias of RCSN (xN) is

bS(RCS; �; �) = ln(1:6982xS (�));

where xS(�) is the smallest positive solution of

(1� �) e2x � (1 + �) ( ex � e�x)� 2 = 0 :

iv) The maximum asymptotic bias of the sample mean is

bS(ML; �; �) = 1:

Proof. Since we only allow distortion of the estimators due to k � n badly posi-

tioned �N -outliers, the expressions for the maximum asymptotic bias in parts i) {

iii) can easily be deduced from the corresponding explosion bias curves developed in

Gather and Schultze (1998) { note that � there must be replaced by �=(1 + �).

Part iv) is clear form the proof of Theorem 3.1 iv). 2.

Independently of (3) or (4), one has

lim
N!1

g(N;�N )� (� ln�N) = 0 ; (5)

because the four estimators are consistent in i.i.d. samples. Now, let SN be equal

to the standardized median or one of the two estimators proposed by Rousseeuw

and Croux (1993). Then the size of the largest nonidenti�able �N -outlier in large

samples with a given fraction �=(1 + �) of �N -outliers can easily be approximated

by

ALO(ORSN ) = �� ln�N exp bS(S; �; �) :

This approach does not work for the mean identi�er, because its maximum asymp-

totic bias is in�nite. However, at least for � su�ciently small, a di�erent approach

is possible. Consider samples with k = b�nc outliers all being equal to some

xo 2 out(�N ; F�). If �N is large enough, xo will also be the maximum of the entire

sample. Consider now the case that xo lies on the left border of the approximated
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outlier region so that it is the largest value that the mean identi�er cannot identify

as �N -outlier, that is

xo =
1

N

N

i=1

xi g(N;�N ):

If N is large enough, by (5) one has

xo

1=N N
i=1 xi

= � ln�N :

Approximating the mean of the n = N � k regular observations by � leads to

x0

n=(n+ k) � + k=(n+ k)xo
= � ln�N ;

and replacing k by � n yields

xo =
�� ln�N

1 + � + � ln�N
:

Hence, if 1+�+� ln�N > 0; then the largest nonidenti�able �N -outlier of the mean

identi�er can be approximated by

ALO(ORMLN ) =
�� ln�N

1 + � + � ln�N
:

In other cases, the corresponding largest nonidenti�able outlier is not bounded.

A comparison of the other three identi�ers which are based on robust estimators

of scale shows that the median identi�er behaves best and that the approximated

largest nonidenti�able outlier is generally smaller for the RCS than for the RCQ

identi�er.

5 Simulations

To give an idea of the sample sizes which are necessary for a good approximation

of the largest nonidenti�able outlier, the asymptotic results are supported by some

simulations. We consider sample sizes of N = 10, 20, 50 and 100, with the number

of �-outliers chosen as k = 1 ;2; 3; 5; 7; 10; 15; 20; 25;30; 49, but only if k=N < 1=2.
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All identi�ers are standardized according to either (3) or (4) and are designed to

detect �N -outliers, where �N is chosen according to (2) with ~� = 0 :05.

For the simulation, for each combination of k and N , 2000 samples were generated

as follows: First n = N � k observations were taken from a standard exponential

distribution (i.e. � = 1). Then the remaining k observations were placed such that

the identi�er could not detect them as outliers, but their values were as large as

possible. For � small enough, the resulting samples had n regular observations

and k observations in out(�; F1). Now, for each sample, the size of the largest

nonidenti�able outlier was determined, and their average was calculated.

The tables in the Appendix contain the simulated (SLO) as well as the approximated

(ALO) largest nonidenti�able outlier, further the quality of the approximation is

described by Pr = 100ALO=SLO. It turns out that the approximation works quite

well if standardisation according to (4) is choosen. Further, the following results

can be stated: Independently of N , k, and condition (3) or (4), for SLO one has:

SLO(ORSMN
) < SLO(ORRCSN ):

Hence, for the standardized median identi�er the largest nonidenti�able outlier is

always smaller than for the RCS identi�er. For samples with only few outliers and

large sample sizes, one has

SLO(ORRCQN
) < SLO(ORRCSN ) and SLO(ORRCQN

) < SLO(ORSMN
):

If the number of outliers increases, one has

SLO(ORRCSN ) < SLO(ORRCQN
):

6 Example and Conclusions

As an example for the application of the outlier identi�ers discussed in this paper,

we consider a data set taken from Nelson (1982, p. 104). This data set containes

the times to breakdown of an insulating 
uid between two electrodes, recorded at a
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voltage of 34 kV. The recorded breakdown times in ascending order are 0.19, 0.78,

0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52,

33.91, 36.71, 72.89. The following table contains �N -outlier identi�ers for these

data set, where �N is chosen as in (2) with ~� = 0 :05, and with standardization

according to either (3) or (4).

SN

Outlier identi�er,

standardization according to

(3) (4)

SM-Oi 9.38 (99:71;1) (66:69;1)

RCS-Oi 9.32 (109:42;1) (72:70;1)

RCQ-Oi 11.12 (106:97;1) (71:17;1)

ML-Oi 14.36 (129:67;1) (76:68;1)

Table 5. Outlier identi�ers for the insulating 
uid example

As is seen from Table 5, no observation is identi�ed as �N -outlier if standardization

is made according to (3). However, it is also seen that the median identi�er has

the smallest lower border of the four competing identi�ers. When standardized

according to (4), all identi�ers based on robust estimators of scale detect the largest

observation 72.89 as �N -outlier, even though for the RCS and RCQ identi�er it lies

very close to their lower border. The mean identi�er, however, does not �nd any

outlying observation in this case, too.

To come to a �nal conclusion, it can be stated that with respect to their worst-case

behaviour, for samples from an exponential distribution, only robust estimators of

scale lead to reliable one-step outlier identi�ers. The mean identi�er is only suit-

able in case of one single outlying observation, because of its very small masking

breakdown point. In summary, the use of the standardized median identi�er is

recommended, because the median is easy to calculate, the corresponding identi-

�er has optimal breakdown points, and especially in large samples, for the largest

nonidenti�able outlier one has SLO(ORSMN
) < SLO(ORRCSN ) < SLO(ORRCQN

):
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Appendix: Tables of the largest nonidenti�able outliers

a) Standardization according to (3):

N = 10 : out(�10; F1) = (5 :28;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 10.04 3.23 6.77 41.26 6.44 37.42 6.18 42.47

SLO 310.69 16.41 17.21 14.55

2 ALO . . 9.09 38.58 8.12 36.30 7.47 42.40

SLO > 106 23.56 22.37 17.62

3 ALO . . 13.10 37.27 10.78 34.84 9.53 42.62

SLO > 106 35.15 30.94 22.36

N = 20 : out(�20; F1) = (5 :97;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 8.08 51.56 6.73 58.67 6.57 53.24 6.44 55.28

SLO 15.67 11.47 12.34 11.65

2 ALO 13.31 16.31 7.66 58.16 7.28 53.02 6.98 55.22

SLO 81.63 13.17 13.73 12.64

3 ALO 48.24 . 8.81 57.51 8.13 52.69 7.46 55.36

SLO > 106 15.32 15.43 13.80

5 ALO . . 12.20 55.25 10.49 51.47 9.46 55.26

SLO > 106 22.08 20.38 17.12

7 ALO . . 18.59 52.35 14.50 50.24 12.63 55.59

SLO > 106 35.51 28.86 22.72
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N = 50 : out(�50; F1) = (6 :88;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 7.82 74.12 7.21 72.61 7.14 68.65 7.08 68.54

SLO 10.55 9.93 10.40 10.33

2 ALO 9.17 68.23 7.57 72.65 7.42 68.77 7.30 68.74

SLO 13.14 10.42 10.79 10.62

3 ALO 11.02 62.33 7.95 72.54 7.72 68.74 7.53 68.83

SLO 17.68 10.96 11.23 10.94

5 ALO 19.87 29.29 8.83 72.44 8.39 68.66 8.05 69.04

SLO 67.84 12.19 12.22 11.66

7 ALO 162.18 . 9.87 72.10 9.16 68.41 8.64 68.95

SLO > 106 13.69 13.39 12.53

10 ALO . . 11.85 71.77 10.58 68.26 9.74 69.13

SLO > 106 16.51 15.50 14.09

15 ALO . . 17.07 65.25 14.02 67.57 12.44 69.30

SLO > 106 26.16 20.75 17.95

20 ALO . . 28.36 68.06 20.69 66.92 17.79 69.87

SLO > 106 41.67 30.92 25.46

15



N = 100 : out(�100; F1) = (7 :58;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 8.11 82.17 7.76 81.09 7.72 77.59 7.69 77.21

SLO 9.87 9.57 9.95 9.96

2 ALO 8.75 80.79 7.94 81.02 7.87 77.61 7.81 77.25

SLO 10.83 9.80 10.14 10.11

3 ALO 9.51 78.99 8.14 81.16 8.02 77.71 7.92 77.27

SLO 12.04 10.03 10.32 10.25

5 ALO 11.58 74.04 8.55 81.12 8.34 77.65 8.17 77.29

SLO 15.64 10.54 10.75 10.57

7 ALO 15.00 65.99 8.99 81.14 8.68 77.57 8.44 77.43

SLO 22.73 11.08 11.19 10.90

10 ALO 28.19 34.67 9.73 81.02 9.24 77.58 8.87 77.40

SLO 81.31 12.01 11.91 11.46

15 ALO . . 11.19 81.00 10.33 77.61 9.70 77.54

SLO > 106 13.81 13.31 12.51

20 ALO . . 13.05 80.71 11.65 77.51 10.73 77.70

SLO > 106 16.17 15.03 13.81

25 ALO . . 15.49 80.51 13.22 76.86 12.01 77.78

SLO > 106 19.24 17.20 15.44

30 ALO . . 18.81 80.25 15.47 77.31 13.70 77.80

SLO > 106 23.44 20.01 17.61

49 ALO . . 85.60 61.75 50.61 68.11 43.00 76.87

SLO > 106 138.63 74.31 55.94

b) Standardization according to (4):

N = 10 : out(�10; F1) = (5 :28;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 10.04 134.58 6.77 77.37 6.44 67.79 6.18 72.03

SLO 7.46 8.75 9.50 8.58

2 ALO . . 9.09 74.88 8.12 66.89 7.47 73.09

SLO 32.37 12.14 12.14 10.22

3 ALO . . 13.10 71.86 10.78 64.63 9.53 74.05

SLO > 106 18.23 16.68 12.87
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N = 20 : out(�20; F1) = (5 :97;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 8.08 109.93 6.73 84.13 6.57 77.00 6.44 79.21

SLO 7.35 8.00 8.54 8.13

2 ALO 13.31 123.93 7.66 84.64 7.28 77.45 6.98 80.05

SLO 10.74 9.05 9.40 8.72

3 ALO 48.24 195.86 8.81 84.31 8.13 77.58 7.64 80.85

SLO 24.63 10.45 10.48 9.45

5 ALO . . 12.20 81.33 10.49 76.24 9.46 81.34

SLO > 106 15.00 13.76 11.63

7 ALO . . 18.59 77.14 14.50 74.55 12.63 82.01

SLO > 106 24.10 19.45 15.40

N = 50 : out(�50; F1) = (6 :88;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 7.82 103.30 7.21 90.69 7.14 86.65 7.08 86.03

SLO 7.57 7.95 8.24 8.23

2 ALO 9.17 108.52 7.57 91.65 7.42 87.50 7.30 86.80

SLO 8.45 8.26 8.48 8.41

3 ALO 11.02 110.87 7.95 92.12 7.72 87.93 7.53 87.35

SLO 9.94 8.63 8.78 8.62

5 ALO 19.87 121.38 8.83 92.75 8.39 88.60 8.05 88.36

SLO 16.37 9.52 9.47 9.11

7 ALO 162.18 283.83 9.87 92.59 9.16 88.67 8.64 88.80

SLO 57.14 10.66 10.33 9.73

10 ALO . . 11.85 92.29 10.58 88.61 9.74 96.44

SLO > 106 12.84 11.94 10.10

15 ALO . . 17.07 90.85 14.02 87.79 12.44 89.63

SLO > 106 18.79 15.97 13.88

20 ALO . . 28.36 87.50 20.69 87.00 17.79 90.40

SLO > 106 32.41 23.79 19.68
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N = 100 : out(�100; F1) = (7 :58;1)

k ML-Oi Pr RCQ-Oi Pr RCS-Oi Pr SM-Oi Pr

1 ALO 8.11 100.12 7.76 93.72 7.72 91.25 7.69 91.00

SLO 8.10 8.28 8.46 8.46

2 ALO 8.75 102.46 7.94 94.19 7.87 91.72 7.81 91.24

SLO 8.54 8.43 8.58 8.56

3 ALO 9.51 103.59 8.14 94.76 8.02 92.08 7.92 91.56

SLO 9.18 8.59 8.71 8.65

5 ALO 11.58 104.80 8.55 95.42 8.34 92.67 8.17 92.11

SLO 11.05 8.96 9.00 8.87

7 ALO 15.00 106.76 8.99 95.74 8.68 93.03 8.44 92.65

SLO 14.05 9.39 9.33 9.11

10 ALO 28.19 114.08 9.73 95.77 9.24 93.33 8.87 93.10

SLO 24.71 10.16 9.90 9.53

15 ALO . . 11.19 95.80 10.33 93.57 9.70 93.54

SLO > 106 11.68 11.04 10.37

20 ALO . . 13.05 95.53 11.65 93.50 10.73 93.71

SLO > 106 13.66 12.46 11.45

25 ALO . . 15.49 95.32 13.22 92.64 12.01 93.83

SLO > 106 16.25 14.27 12.80

30 ALO . . 18.81 95.00 15.47 93.25 13.70 94.00

SLO > 106 19.80 16.59 14.59

49 ALO . . 85.60 73.14 50.61 82.16 43.00 92.80

ALO > 106 117.04 61.60 46.34
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