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Abstract. An important aim in forest-ecosystem investigation is to analyse the development of forest
damages and to quantify changes in the damage-states over time of individual trees by influential factors. In
addition to the ordinal measurement in such longitudinal studies one has to consider spatial correlations of the
trees within an ecosystem. We present a practical method to include such dependency structures using logistic
regression models. The strategy is to adopt the disposition model for correlated binary data (Bonney (1998))
and extend it to an ordinal-disposition-transitional model (ODT-model). This includes proportional-odds-
transitional models (POT-model) as a special case, assuming independence over time and space given a
markov model of first order. The ODT-model is used to analyse dynamic changes of damage in forest-
ecosystems. The analysed data was sampled with infrared aerial photos by the Swiss Federal Institute for
Forest, Snow and Landscape Research (Forschungsanstalt Wald, Schnee und Landschaft (WSL),
Switzerland). A comparison of the independent case (POT-model) with the dependent case (ODT-model)

shows that spatial correlations in forest-ecosystem should not be neglected.
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1. Introduction

Many ecological projects are concerned with the historical development of organism and
ecosystems in their environment over a prescribed period of time. So, an important aspect
in the research of forest-ecosystems consists of watching for the development of forest-
damages and to trace back temporal changes in the damage-states of individual trees to
several covariates. The response-variable damaged-state is usually measured in ordinal
categories. To account for time-dependencies of the individual trees such investigations are

often designed as longitudinal studies, sampling repeated observations over time. This



opens the possibility to model these changes with markov models, investigating the present

state of the trees given their individual history.

Moreover, in the analysis of data measured on groups (clusters) of individuals, e.g.
families, ecosystems, longitudinal measures, the possibility of dependence of the outcome
under study can be understood as the probability that a group member has the outcome is
not necessarily the same as that of an individual randomly selected from the population.
We shall therefore speak of disposition to denote the tendency to manifest the outcome,
and distinguish between the group disposition which is determined by group-specific
covariates, and individual disposition which is determined by both the group- and

individual covariates. Then, the disposition captures dependence, if any.

To analyse the effect of explanatory variables in markov models Bonney (1987) introduced
the regressive logistic model for binary dependent outcomes. There, previous states were
included in the set of regressors, obtaining conditional independent outcomes over time.
An application of the regressive logistic model to forest-ecosystem data is described in
Urfer (1993). An extension to ordinal regression analysis for modeling changes can be
achieved by using the cumulative logit regression analysis. Ware et al. (1988) introduced
such a model as a transitional model, refering to modeling transitions of individual states
over time. Furthermore, they proposed to model first-order markov-chains even if the
underlying markov-process is of higher order, using the methods of Stram et al. (1988).
The first-order transitions are there modeled within the regression-matrix, and excess
individual tree correlations over time are accounted by the empirical covariance matrix
proposed by Stram et al. Reviews for the analysis of longitudinal analysis with ordinal

outcomes are given in Diggle et al. (1994) and Fahrmeir and Tutz (1994).

Another problem occuring with ecosystem-data is the phenomenon of individual trees
within an ecosystem forming a community. One has to expect inter-individual tree
correlations within the ecosystem, apart from the dependencies of individuals over time.

Spatial correlations in forest-ecosystems have been investigated by Quednau (1989) or



Fahrmeir and Pritscher (1996). Fahrmeir and Pritscher apply the GEE-method of Liang and
Zeger (1986) and included global cross ratios.

In theory, the GEE-methods can be used to combine such spatial correlations with time
dependencies. However, the high dimension of the working covariance matrix in most
applications makes estimation often inpracticable. An interesting alternative is the full
likelihood procedure for the regression analysis of correlated binary data proposed by
Bonney (1995, 1998). By a decomposition of the logistic regression model one obtains
there the ratio of dispositions of the independent to the dependent case. Different
correlation structures, such as occuring in time- and spatial dependent data, can be included

by nesting.

In this paper we develop an extension of the nested version of Bonney’s disposition model
to ordinal outcomes and apply it to our data. The project that motivated the study is
introduced in section 2. This is followed by a description of the statistical issues raised by
the data. In the fourth section the statistical models are described. Non-stationary changes
over time of the ordinal response-variable damaged-state are explained by a modified
proportional-odds-transitional model in section 4.1. The nested disposition model is
introduced in section 4.2. and extended to an ordinal-disposition-transitional model in
section 4.3. In chapter 5 applications of the model to the project are described for the cases

of independence given a markov-model and dependence over time and space.

2. The project ''Monitoring of forest damage with infrared aerial photos

1:3000"

Preceding researches of the Swiss Federal Institute for Forest, Snow and Landscape
Research ("Forschungsanstalt Wald, Schnee und Landschaft" (WSL)), Birmensdorf,
Switzerland, for the extent and the development of forest damage in Switzerland have
shown, that the extent and intensity of forest damage varies between regions, locations and
species of the trees. Although, there are areas with different degrees of damage, these areas

often show a same behaviour with regard to improvements and deteriorations over time.



Besides, the changes of damage state can vary strongly within a stand of trees. So, it is
thoroughly possible to observe deteriorations and improvements of neighbouring trees
within a forest-ecosystem in the same time period. Therefore, one must keep in mind, that
the development of forest damage over time depends essentially on changes of the

individual trees.

Such reflections are the starting-points for the project "Monitoring of forest damage with
infrared aerial photos 1:3000" directed by Dr. F. H. Schwarzenbach and Dr. B. Oester of
the WSL, Switzerland. To observe the dynamic changes of the damage state over time,
infrared aerial photos on a scale 1:3000 of the forests were taken once a year in
July/August from 1984 to 1991 in the following three locations in Switzerland: Altdorf
(canton Uri, 536 - 870 m above sea-level), Flims (canton Graubiinden, 920 - 1010 m above

sea-level) and Zofingen (canton Aargau, 540 - 615 m above sea-level).

The aim of the project was to analyse the development of forest damage through repeatedly
observed individual trees and tracing back changes, of different proportions, to several
covariates. The judgement of the damaged-states of the individual trees results from
interpretation keys, developed separately for each species by Dr. Oester, with five ordinal
categories: O - healthy; 1 - slightly damaged; 2* - moderately damaged; 3 - strongly
damaged; 4 - dead. In doing so, the appearance of the whole tree on the infrared aerial
picture is judged, with the most important attributes concerned with the mass of the
conifer-needles or leaves (by tone of the tree on the aerial infrared picture, marbling
colouration of the tree, crown transparency). The interpretation keys are given in Oester
(1991). The classification of the damages is somewhat subjective, since present biological
knowledge cannot exactly distinguish healthy and damaged trees, including their damaged-
states. So, one does not know the real boundary between healthy and damaged trees (if they
lost 5%, 10% or perhaps 15% of its leaves or needles). The categories "moderately
damaged", "strongly damaged" and "dead" are summarized to a class 2’ - "severely
damaged", because for the present statistical analysis, in these groups are not sufficiently

enough observations.



Apart from the damaged-state, further variables have been measured on different scales,

which should describe the living conditions of the individual trees in the ecosystem. These

are investigated as influential factors. The inclusion of these covariates is restricted by the

fact that only the aerial pictures were to be used. By close interdisciplinary cooperation of

biologists and statisticians, the following are finally chosen for the statistical analysis:

Variable Code |Meaning
Altitude above sea-level 0 <601 m
(grouped) 1 601-700 m
2 701-800 m
3 801-900 m
4 901-1000m
5 > 1000m
Height of the tree 1 <15m
(grouped) 2 15-30 m
3 > 30 m
Social status of the tree 1 uppermost stratum of the canopy, dominant position
within a stand 2 uppermost stratum, rather dominant position
3 uppermost stratum, codominant position
4 uppermost stratum, subdominant position
5 middle stratum of the canopy
6 lowest stratum of the canopy
Degree of development 2 very thin stem
of the stand 3 small diameter of stem
4 medium diameter of stem
5 large diameter of stem
6 mixed 'degree of development’ within a stand

The location was transformed into two dummy-variables "location1" and "location2":

Location locationl location2
Altdorf 0 0
Flims 0 1
Zofingen 1 0




Further covariates were removed after careful consideration and discussion among
biologists and statisticians before the statistical analysis, for example such as exposition,
forest type or mean height of the canopy. A detailed description of the variables and of the

species specific interpretation keys is given in Oester (1991).

3. Some statistical issues raised by the given project

The aim of a statistical analysis is to quantify time-dependend individual changes in the
"damaged-state" of individual trees in connection with several covariates. The response-
variable damaged-state is ordinal, so that classical linear regression analysis seems to be
unsuitable. The classification of the states is somewhat subjective and it would be
advantageous, to have a statistical model that is invariant against shifting of the damaged-
state-boundaries. In the data to be analysed, the last three categories were combined, so an
invariant model is definitely of interest. Such considerations lead to proportional-odds
models (McCullagh (1980), McCullagh and Nelder (1989)). Assuming the proportional-
odds-assumption is fulfilled, there are additional difficulties, arising from spatial and

temporary dependencies of the response-variables.

First, one has to take into consideration the longitudinal nature of the observations on
individual trees and therefore the need to account for intra-individual tree correlations. To
model the changes of the state, transitional models are a possible solution. For our data
these can be assumed to be time-discrete and equidistant. However, the possibilities to
model transitions are restricted by the fact that forests form ecosystems. There can be non-
stationary behaviour from sources such as a unique historical development of an ecosystem
or long-term adaptations to changing conditions of the environment. Furthermore, a high
order of the underlying markov-chain is possible, because of time-lags between a stimulus

and a visible reaction of the ecosystem or by long-term adaptations.

Second, the trees within an ecosystem form a community, having inter-individual tree
correlations of the trees within this ecosystem. Trees from different ecosystems can be

assumed to be independent. These spatial correlations should be included in the statistical



modeling. The relations of dependencies between locations, trees and time is shown in

figure 1.

As for the attribute of forests being ecosystems, compare for example Schwarzenbach
(1987), Urfer (1993) or Urfer et al. (1994). The following statistical analysis is restricted to
spruces, because only they are sufficiently represented in all three regions. The sample size

amounts to 321.

Locationl Location2 Location3

Tree 1 Tree 1 Tree 1
dep. dep. dep.
Indep.| Indep.
Tree n; Tree n, Tree n3

Figure 1. Dependence structures between locations, trees and time

4. Statistical models

4.1 Proportional-odds-transitional-model

To take account of ordinal outcomes and to model changes we will use a cumulative logit

regression model and define it as a transitional model. The previous states of the response-



variable are then included into the set of regressors, as proposed by Bonney (1987) or
Ware et al. (1988). For the time-points i=1,..,.D let ye {0,1,..q} represent the ordinal
response-variable having gq+1 ordinal categories. The vector of covariates is given by
xe RP. Because of the possibility of non-stationarity over time we define a covariate vector
Te ]RD'Z, belonging to the time-points i=3,..,.D as indicator variables. Because we are
dealing with transitions of first order we have a look to D-1 time-points. The transition
between the first and the second time-point is used as a reference category to avoid

identyfiability problems. Therefore we need only to model D-2 transitions. Thus we define

1.210,..0,10,...0) {0,13° =2 1> at position (i — 2)°
0,..00e{o}P~2 | if i=2

The additional regression-vector describing the previous damaged-states at time i-1 is

represented by indicator-variables, too. At time i = 3,..,D , we have

pie 1 (0-0.10,...0)€ {0,1}9 .1’ at position’m’,if y;_; =m, m=0,..,q—1
0,...0ef{o1}9, if yi_1 =q

Then, a first order proportional-odds-transitional model at times 1 = 3,..,D is defined by

P(y<ulx, T, b)

n =My +XTB + Tl + bTK, u=0,1,.4q-1
I-P(y<ulx, T, b)

with thresholds A, <A <...< A q-1 and Be RP, 1e ]RD'2, ke RY as unknown parameters.

It should be emphasized that by including b, we are not comparing the probability
distributions of the response-variable for different time-points and different values in the
covariates X, but we are modeling a comparison between the rows of transition-matrices (of
first order). The vector of parameters k describes the effects of the previous states on the

present state; T can be interpretated as the year effect in comparison with the baseline year



category; [ is the vector of regression-coefficient. By using proportional-odds, these
relative effects correspond to the logarithm of cumulative odds ratios and they are
independent of the response-category. McCullagh (1980), McCullagh and Nelder (1989)

and Agresti (1990) provide more detailed accounts of proportional-odds models.

This model can be used to cover time-dependent changes in the individual damaged-states
of trees. The proposed first-order model can be generalized to higher order models by
extensions of b to the farther states. However, problems often arise from linear

dependencies and the increasing number of parameters.
4.2 Disposition model for correlated response-variables

The model proposed in the preceding section account for the longitudinal structure.
However, figure 1 shows that we also need to consider dependence among trees. To do

this, we now introduce the nested version of the disposition model for correlated binary
outcomes developed by Bonney (1998). The ni trees within the ecosystem in location k,
k=1,..,K, are assumed to be spatially dependent, because they share common attributes
observed as in location-specific covariates Z:(Zl,..,Zq)T or unobserved as in latent or

missing variables. Simultaneously, we consider measures on a given tree as a subgroup

nested within location, where i=1,..,t, over the time repeated observations of the single

K
trees are nested within. In this section we are concerned with the outcome of y
dichotomized as binary response-variable y}jzl, if tree j is damaged (ye {1,2}) and y}j =0
if the j-th tree is observed healthy. Now, we distinguish three types of covariates: location-
specific covariates Z=(Zy,.., Zq)T, tree-specific covariates x=(x1,.., xp)T and time-specific
covariates Ty;. In analogous, we differentiate location-disposition Oy, tree-disposition J;
and individual tree disposition over time Skij. As for disposition see also the introduction of

this paper. Jy;; is considered to be the probability observing the outcome y}’:l for the j-th

tree in location k at time i. 8o resp. Oy are the location- resp. the tree-specific tendency to

observe a damaged tree. The dispositions also account for the strength of the correlation



over time not accounted for by the observed covariates. Now, as a measure of dependence

Bonney (1998) defines o’s as ratios of disposition of the independent to the dependent

cases:
o disposition to tree damage in location k assuming independence Hko
k0= —. - - - : =
disposition to tree damage in location k assuming dependence S0
ko
= 8k0 = ,
Oko

with oo as measure of dependence within an ecosystem and analogous O = !vlkj/skj as
measure of dependence within a tree over time. Then oy = 1 means independence of the

trees within location k and o = 1 means there is no excess dependence across time over
that between trees at the same location. There can not be within independence when there

is between dependence. For regression analysis some function of 9 can be related to Z

and some function of 5kj can be related to xkj. Modeling the effects of the covariates

results from the following decomposition for the individual disposition over time:

S kij | dj
n =1n
I_Skij I—Skj

1 + TTTkij

i ki i
in RO g OKO gy Bko g TN Ok0 g g TR G TR )
I-ugo  1-8ko  I-Hko  I7HK 1-8x  1-8k 1Kk

= Mio(Zxo) + Dxo(Zxo) + Myj(Xj) + Dyj(Xj) + Wiij(Tp)
= ’YTZk() + CTZko + BTij + pTij + TT Tkij ,
where

10



Myo(Zyo) = lnlui -is the location logit mean risk
— Mxo

Dio(Zixo) = (In Ok0 -In Hko )  -is the excess location logit disposition because of
1-8x0  1-Hyo

dependencies between the trees

Hkj
Mi(xi5) = (In ! -lnai) -is the excess on the logit scale of mean risk for the
I-ugi  1-8yg

J-th tree of the location disposition

Ok; | Hj
-1n
1=-8y;  1-py;

Dyj(xxj) = (In ) -is the excess on the logit scale of the dispositions

over time that cannot be explained by location logit

mean risk and the differences in p;j

Wiij(Thj) -is a function of the individual specific covariates

Then the values of the dispositions and correlations can be calculated from the parameters
as:
1 |+ e~ Mx0(Zko)+Dxo(Zko)}

’ (xk —
14 e~ Mk0(Zko)+Dio(Zko)} ’ | + e~ Mko(Zio)}

do=

1

5.
J ,
1+ e_{Mko(Zko)+Dk0(ZkO)+Mkj (Xkj)+Dyj (ij)}

+ o MK0(Zk0)+ Dio(Zio)+ Mij(xkj) + Dijxig) }

1
(xk.:

J
1+ e_{MkO(Zk0)+Dk0(Zk0) +Mkj(xkj)}

1

+e_{MkO(ZkO)"'DkO(ZkO)"'Mkj (xkj)+Dyj (Xkj) +Wyij (Tkij)}

Skij:
1

11



Using a moment series representation of the shared risk within the locations and within the
trees (compare Bonney (1998)) the joint likelihood function for all three locations of the

proposed model is given by:

K ng g
b
P(YP=yP... YD =y P 1Zoxiy, i) = [ | a-a) [T I] - Yiij) *
k=1 =1 izl

tnk

t

Ny ng b

b, 1=y

agol [{0=ai) T =y + g [ 8u7kii (1= 8y
=1 i=1 i=1

4.3 Disposition model for the analysis of changes in ordinal outcomes

For ordered outcome with three or more categories we propose a combination of the
models of section 4.1 and 4.2. As in transitional models, the vector b is included in the set

of the time-specific covariates to model the changes of damage states. Furthermore, the

ordinal nature of the response-variable can be modeled by replacing Skij by BLJ-U, where

SLju: P(ywij< u | Zko, Xij, Tiij» biij) , u=0,1,..q. Thus, one obtains an ordinal-disposition-

transitional model for spatial- and time dependent data. The case of the cumulative logit

will be considered here:

%
Sy

ln% = Dy + V' Zao +§' Zug+ B xig + p xig+ T Tigj+ K iy =t Oy
~ Okiju

I, ygj=u

. the likelihood function of the used model is given by
0 , otherwise

Defining syj, := {

12



K ny tnk
P(Y1=y1l..» Yn=Yn | Zxo, Xkj, Txij» biij) = H (1-0u,) H H (I=syjj0) +

k=1 j=1 izl
ny Ty thy q eekij(u) eekij(u—l) Skiju
ago[ [ -] a=sigo)+og [TT1 o (w enah
. . iy kij{u kijlu
j=1 i=1 i=lu=0\1+e I+e

5. Analysis of data on dynamic changes of damage in forest-ecosystems

To analyse the data of the project "Monitoring of forest damage with infrared aerial photos

1:3000" introduced in section 2, we use the following types of covariates

® ecosystem-specific covariates: Zy := (Zlocl,Zlocz)T:: (locationl, location2)T;

® tree-specific covariates: X = (XHg(, Xsoc), describing the height of the trees and the social
status as shown in section 2;

e time-specific covariates: Tiij= (Tk.1986,,---> Tk, 199 l,j)T with Ty;=1 if year 1 is the actual year

of the observation, i=1986,..,1991, and Ti;=0 otherwise; and the previous state by; with

(1,0) T healthy state
biij= 1(0, l)T for a  slightlydamaged state  of the j— th treein the previous yeari — 1

(0,0) T severely damaged state

For a comparison we fit a first-order proportional-odds-transitional-model (POT-model) as
in section 4.1 and an ordinal-disposition-transitional-model (ODT-model) as in section 4.3.
In both cases the covariates ‘altitude above sea-level’ and ‘degree of development’ are
removed during a variable selection using Akaike’s Information Criterion. The estimates
are obtained by a likelihood optimization software MULTIMAX developed at the Fox
Chase Cancer Center, Philadelphia, USA.

5.1 Application of the proportional-odds-transitional-model (POT-model)

First, we fit a POT-model as the special case of the ordinal-disposition-transitional-model,

assuming independence, given a first-order markov model for the data. This is equivalent

13



to the usual cumulative logit regressive or transitional models, and can be fit with standard-
software (for example SAS PROC-Logistic). One obtains this POT-model in the proposed

ODT-model, by setting Dyo(Zko)=0 and Dy;(xi;)=0. The other functions are given as

Mio(Ziyo) = YTZko = Yoo+ (Yioc1» Yioc2) Zic
Mij(xi) = B Xk = Brets Bsoo) Xig

Wiii( Tiij, biij) = At + (T1986s-.» Tio91) Tigg+ (Ko,K1) bugj

In this model Yy can be regarded as the usual threshold A separating healthy and damaged
trees, whereas A, represents the threshold separating severely damaged trees from the other
ones. The result of maximum-likelihood estimation is shown in table 2. Level-o-tests are
obtained by using Wald X*-tests. Here, significant estimates at the level a=5% can be

observed for the parameters Ky, K, T,qy,» T Bsoc and Yioc2. The AIC value is calculated

19872 1988 T1989’

to 2121.0.

The high positive value of K means that the odds of staying in a healthy state is very

much higher (e”2! -times) than the odds of a transition from damaged-state ‘2’ into a
damaged-state ‘0’. The positive value of K indicates a higher probability for a severely

damaged tree to stay in damage-class ‘2’ relative to an one-year transition from state ‘1’

into state 2’.

The negative values for T1987 and 71988 indicates more transitions into the damaged
states in the one-year periods 1986/1987 and 1987/1988 than in 1984/1985, whereas the

positive T1989 shows less deteriorations or more improvements for the period 1988/1989

Table 2: POT-model (independence given a markov chain of order one): Estimates of the

parameters (standard error)

x N N B B N N N N N N
0 . Yioc1 Yioc2 Hgt Soc | T1986 | T1987 | T1988 | T1989 | T1990 | T1991 | Ko

-6.131-1.80 ]-0.03 |-0.53 |-0.14 ]0.40 | 0.09 |-1.36 |-0.58 10.48 |-0.06 |-0.06 |7.21

3.76
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(0.46)1(1.01)1(0.23)}(0.19)]1 (0.13) ] (0.08) | (0.21)] (0.22) ] (0.22) | (0.23) ] (0.21) ] (0.21) | (0.24)

(0.16)

in comparison with the period 1984/1985. The other time-periods are not significantly
different from the reference-period 1984/1985.

The significant positive value entirely for Bsoc means that the more dominant a spruce is
within its social status the higher is the odds to change into the damaged states ‘1 or 2’
respectively 2. Y1oc2 = -0.53 indicates more changes into the damaged classes in Flims
than in Altdorf, whereas for the comparison between Altdorf and Zofingen and for the

height of the trees no significant differences can be shown.

5.2 Application of the ordinal-disposition-transitional-model (ODT-model)

Now, we are assuming dependencies over trees within an ecosystem and that a Markov-
chain of order one will not fully describe time-dependencies. To consider these additional
intra-individual tree correlations over time and the inter-individual tree correlations within

locations we are using the nested model. The fitted model has the form

ES
8kj'u
In— = Mio(Zxo) + Dro(Zxo) + Myj(Xkj) + Dij(Xkj) + Wiij( Tiij» brij)

1- ngu
with
Mio(Ziko) = Yoo
Dio(Zio) = &' Zio= (ioets Yioe2) Zic
Mi(xig) = BTij = (Brgt> Psoc) Xij
Dyj(Xkj) = pPo

Wiij(Tiij, brig) = M + (T1986,---» T1991) Tiij+ (Ko,K1) big
The result of maximum likelihood estimation is given in table 3. An AIC value of 2095.7

indicates a better fit of the ODT-model than for the POT-model, which assumes
independence (AIC=2121.0). The correlations of the trees within an ecosystem are

contained in Dyo(Zxo). However, the strength of dependencies within location can not be

15




determined, because Myy(Zgo) and Dyo(Zxe) can not be separated for the same covariates of

Zxo, due to the small numbers of location (K=3). Nevertheless, these dependencies are
included because of modeling dy( = Wk /0o, and in doing so, they influence the estimates

of the parameters and variances. In contrast to the POT-model, using Wald X*-tests at the
level 0=5%, here is no longer a significant influence in the changes of damaged-states

between Flims and Altdorf. Furthermore, we cannot show significant different transitions

between Zofingen and Altdorf.

Po shows no significant value for the excess of the mean risk of the trees explained by
time dependencies not modeled by the first-order markov chain at the o-level of 5%.

Therefore, it can be assumed, that for the analysed data-set a markov chain of order one

describes the intra-individual correlation over time entirely.

The tree-specific covariate having significant influence with regard to the changes in
damaged-states is the social-status variable. The positive value indicates higher odds for
transitions into the damaged states ‘1 or 2’ or ‘2’ the higher the stratum of the canopy and

the more dominant the tree within a stand is.

The positive values for ﬁoresp. K| describe, that there are higher probabilities to observe
healthy states of a tree, having healthy resp. slightly damaged states for the same tree one

year before than for trees which are oberved as severely damaged trees in the previous year.

The negative T1987 -parameter describes more changes into the damaged states in the
period 1986/1987 than in the period 1984/1985.

Table 3: ODT-model (nested correlations): Estimates of the parameters (standard error)

AN
’YO{)

X C QA B B\ AN N\ N N N N N N
. locl loc2 Hgt Soc Po I T1986 | T1987 | T1988 | T1989 | T1990 | Ti991 | Ko

-5.71

-1.821-0.22 1-0.30 |-0.27 | 0.58 |-0.28 |-0.11 |-1.42]-0.62 ]0.38 |0.40 |-0.14 |7.83

3.92
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(1.36)1(1.01)1(0.25)](0.32)] (0.37)1 (0.21) | (0.49)] (0.49) ] (0.31) | (0.32) | (0.40) } (0.39) ] (0.38) | (0.41)

(0.19)

A comparison with the POT-model shows, that not considering the correlation of trees
within an ecosystem leads to significant values for the parameters of the covariates Zj,
Tiogs and Tjog9 in contrast to modeling the ODT-model. A markov chain of order one

seems to be sufficient for time-dependencies over the individual trees.

6. Discussion

For the analysis of dynamic changes of the damaged-states in forest ecosystems with
regression models one has to take into consideration the ordinal measurement of the
response-variable, intra-individual tree correlations over time, presumably with an
underlying non-stationary markov-chain of high order, and inter-individual tree
correlations of the trees forming an ecosystem. In this paper we developed an ordinal
disposition model for changes, which take account of such feature simultaneously, by
extending the nested disposition model of Bonney (1998) to ordinal-disposition-transitional
models. A great advantage of this model is its applicability to real data with such complex

dependency-structures.

In comparison with the POT-model of first order, assuming no further correlations over
time and space, the ODT-model shows a better fit of the data, by Akaike’s Information
Criterion. The spatial correlation within the ecosystem seems not to be negligible. The
small number of locations in the given project (K=3) causes numerical problems. So, it is
questionable that the three locations are sufficient to assume an approximated normal
distribution for the Wald X*-tests. In such cases maybe it could be interesting to develop
methods for calculating the true underlying probability distribution for testing hypothesis.
Usually, the number of locations in forest-ecosystem researches are much more higher.

Besides, an increasing number of locations open the possibility to estimate M(Z) and D(Z)
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at the same time and to calculate the values of u and a. Therefore, further researches of the

model will be worthwhile.

Furthermore, in the development of the disposition model for correlated binary outcomes
genetic applications were discussed by Bonney (1995, 1998), in which a large number of
families were used. An application of the developed models to the analysis of human

genetics are in the development.
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