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Summary

In many applications we obtain test statistics by combining estimates from di�erent experiments or
studies. The usual combined estimator of the overall e�ect in independent studies leads to systematic
overestimates of the signi�cance level, see Li et al. (1994). This results in a great number of unjusti�ed
signi�cant evidences. By examination of the convexity of composed functions involved and application
of higher and inverse moments of the chi-square distribution we propose corrections for the estimated
standard deviation of the overall e�ect estimator. Analytical results and simulations show that we improve
the estimated signi�cance level in such models.
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Zusammenfassung

In vielen Bereichen werden Teststatistiken dadurch erhalten, da� Sch�atzer aus verschiedenen Experimen-

ten oder Studien kombiniert werden. Der �ublicherweise verwendete Sch�atzer des Gesamte�ektes aus un-

abh�angigen Studien f�uhrt zu systematischen �Ubersch�atzungen des Signi�kanzniveaus, vgl. Li et al. (1994),

und daher zu vielen ungerechtfertigten Signi�kanzen. Mit Hilfe der Konvexit�at zusammengesetzter Funk-

tionen und Anwendung h�oherer sowie inverser Momente der �2-Verteilung stellen wir Korrekturen f�ur die

gesch�atzte Standardabweichung des Gesamte�ektsch�atzers vor. Analytische Ergebnisse und Simulationen

zeigen, da� das nominelle Niveau durch diese Korrekturen besser eingehalten wird.

1. Introduction

The problem of estimating an overall e�ect from di�erent independent experiments occurs
in a variety of application �elds. Not only in meta-analysis but also in analysing multi-
center trials for instance we have di�erent samples with heterogeneous error variances to
assess the overall e�ect.

In such cases of k so called homogeneous (for the common mean �) independent studies
let yij be an observation in study i, i = 1 ;. . . ; k, at subject j from a normal distribution,
j = 1 ;. . . ; ni, with mean � and variance var(yij) = �2ei , i.e. yij � N (�; �2ei), �

2
ei

> 0,
i = 1 ;. . . ; k. The best estimator for � in each study is known as the individual sample
mean �yi: with variance var(�yi:) = �2ei=ni =: �

2
i , i = 1 ;. . . ; k.
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The standard procedure to estimate the common mean � in the present case of meta-
analysis is given by

�̂ =
kX

i=1

1

�̂2i
kX

i=1

1

�̂2i

�yi: : (1.1)

The estimate of the associated variance which is commonly used for the computation of
con�dence intervals or tests can be represented by

�̂2�̂ =
1

kX
i=1

1

�̂2i

:
(1.2)

This is known as the variance weight method, see Cochran (1937), Whitehead and
Whitehead (1991), Li et al. (1994). Here �̂2i is given by

�̂2i =
1

ni

� 1

ni � 1
�

niX
j=1

(yij � �yi:)
2 =

1

ni

� �̂2ei : (1.3)

To carry out tests for the common mean � we use the test statistic

Z :=
�̂q
�̂2�̂

; (1.4)

which is approximately normal with mean � and variance 1.

Due to the estimated weights we get too much signi�cant results because the estimator
(1.2) systematically underestimates the parameter �2�̂ := 1=

Pk
i=1

1

�2
i

, see Li et al. (1994).

Table 1 and table 2 show the simulated actual signi�cance levels (10000 runs) at nominal
level of 5 % for H0 : � = 0 with the test statistic (1.4) for some constellations of two or
three samples.
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Table 1

Simulated actual signi�cance levels (10000 runs) at nominal level of � = 5% for k = 2
and H0 : � = 0 with the test statistic (1.4)

(n1; n2) (�2e1 ; �
2
e2
) �̂(%)

(1,4) 9.2
(4,1) 11.5

(15,5) (2,3) 9.1
(1,1) 10.5
(1,4) 9.4
(4,1) 10.1

(12,8) (2,3) 9.2
(1,1) 9.1
(1,4) 8.1
(2,4) 9.1

(10,10) (2,3) 10.2
(1,1) 8.9

Table 2

Simulated actual signi�cance levels (10000 runs) at nominal level of � = 5% for k = 3
and H0 : � = 0 with the test statistic (1.4)

(n1; n2; n3) (�2e1 ; �
2
e2
; �2e3) �̂(%)

(5,5,5) (2,3,4) 19.2
(1,3,5) 13.8

(5,10,15) (5,3,1) 10.0
(1,3,5) 10.3

(10,10,10) (4,4,4) 10.7
(1,3,5) 10.5

(10,10,15) (5,3,1) 8.9

We assess some extremely high actual signi�cance levels particularly in cases of small
sample sizes, i.e. 19.2 % in the balanced case n1 = n2 = n3 = 5 with variances �2e1 = 2,
�2e2 = 3 and �2e3 = 4.

Our intention in this article is to derive some suitable corrections of the test statistic and
to receive consequently better approximations of the nominal signi�cance level.
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2. Theoretical methods

First we need some results of the examination for convexity in general cases, see
Hartung (1976).

De�nition 2.1.

(i) A function f : IRk ! IRl is called convex i�
( x;y 2 IRk; � 2 [0; 1] =) f(�x+ (1� �)y) � �f(x) + (1� �)f(y) )
with the natural semi-ordering, i.e. ordering by components.

(ii) A function f : IRk ! IRl is called quasi-convex i�
( y 2 IRl =) f x2 IRk j f(x) � yg is convex ).

(iii) A function f is called (quasi-)concave if (�f) is (quasi-)convex.

For composed functions we obtain the following results:

Lemma 2.2. Let f : IRk ! IRl be convex [concave] and T : IRl ! IRm be (quasi-)convex
[(quasi-)concave] and increasing by the natural semi-ordering in IRm. Then T � f is
(quasi-)convex [(quasi-)concave].

Lemma 2.3. Let f : IRk ! IRl be convex [concave] and T : IRl ! IRm be (quasi-)concave
[(quasi-)convex] and decreasing by the natural semi-ordering. Then T � f is
(quasi-)concave [(quasi-)convex].

Remark 2.4. Especially from lemma 2.3 we see that if y is a concave function, y�1 is
convex because (:)�1 is decreasing and convex.
Further if y is convex the function y�1 is quasi-concave because (:)�1 is decreasing and
quasi-concave.

Lemma 2.5. If f : IRl
+ ! IR+ is quasi-convex [quasi-concave] and f(�x) = �f(x), � > 0,

x 6= 0, (positively homogeneous), then f is also convex [concave].

For further considerations we need the well known Jensen Inequality.

Jensen Inequality 2.6. For a random variable �̂ we have Ef(�̂) � f(E�̂) if f is convex
and Eg(�̂) � g(E�̂) if g is concave.

Now we use the above considerations to receive results for combined functions.
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Lemma 2.7.

(i) h1 :=
kX

i=1

1p
�4i

=
kX

i=1

1

�2i
is convex in �i, �

2
i and �4i .

(ii) h2 :=

 
kX

i=1

1p
�4i

!2

=

 
kX

i=1

1

�2i

!2

is convex in �i, �
2
i and �4i .

(iii) h3 := �2�̂ =

 
kX

i=1

1p
�4i

!
�1

=

 
kX

i=1

1

�2i

!
�1

is quasi-concave in �i, �
2
i and �4i .

(iv) h3 := �2�̂ =

 
kX

i=1

1

�2i

!
�1

is concave in �2i .

(v) h4 := ��̂ =

 
kX

i=1

1

�2i

!
�1=2

is concave in �i.

(vi) h4 := ��̂ is concave in �2i .

(vii) h5 := (�2�̂)
2 =

 
kX

i=1

1p
�4i

!
�2

is concave in �4i .

(viii) h4 := ��̂ =

 
kX

i=1

1

�2i

!
�1=2

is convex in
1

�2i
.

(ix) h3 := �2�̂ =

 
kX

i=1

1

�2i

!
�1

is convex in
1

�2i
.

Proof.

(i): Because
1

x
is convex, (:)2 is increasing and convex, we get with lemma 2.2 that

1

x2
is convex and therefore we have the convexity of h1 in �2i and �i.

Now
p
x is concave and with remark 2.4 one sees that

1p
x
is convex. Therefore we

have the convexity of h1 in �4i .

(ii): The function (:)2 is increasing and convex. We conclude the statement 2.7 (ii) by
lemma 2.2 and 2.7 (i).

(iii): With h3 =
1

h1
we have the quasi-concavity with 2.7 (i) and remark 2.4.

(iv): The function h3 is concave in �2i because of 2.7 (iii) and the positive homogeneity
of h3 in �2i .
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(v): On account of 2.7 (iii) we conclude that h4 =
p
h3 is quasi-concave in �i. With

lemma 2.5 and the positive homogeneity of h4 in �i we have the concavity of h4 in
�i.

(vi): With 2.7 (iv) h3 is concave in �2i . Because
p
(:) is increasing and concave we see

with lemma 2.2 that h4 =
p
h3 is concave in �2i .

(vii): The function h5 =
1

h2
is quasi-concave in �4i because of 2.7 (ii) and remark 2.4. h5

is even concave in �4i due to the positive homogeneity, see lemma 2.5.

(viii): Due to

vuut kX
i=1

1

�2i
is concave in

1

�2i
we conclude with remark 2.4 the convexity of

h4 =

0
@
vuut kX

i=1

1

�2i

1
A
�1

in
1

�2i
, see remark 2.4.

(ix): The function (:)2 is increasing and convex. Therefore h3 = h24 is convex in
1

�2i
with

2.7 (viii) and lemma 2.2.

Further we need the following moments, see Patel et al. (1976), making use of the �2ni�1-
distribution of (ni � 1)�̂2i =�

2
i from (1.3), i = 1 ;. . . ; k:

E

�q
�̂2i

�
=

1

ni�1
� �i with ni�1 :=

r
ni � 1

2
� �(

ni�1
2

)

�(ni
2
)

> 1 ; (2:1)

E(�̂4i ) = bni � �4i with bni :=
ni + 1

ni � 1
> 1 ; (2:2)

E

�
1

�̂2i

�
= cni �

1

�2i
with cni :=

ni � 1

ni � 3
> 1 ; (2:3)

for i = 1 ;. . . ; k.
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3. Upper estimates of the variance and standard deviation

The results of section 2 now serve for the construction of useful upper limits for the
standard deviation ��̂.

Theorem 3.1. For the estimator �̂2�̂ in (1.2) we have

var(�̂2�̂) � E

8<
:
 

kX
i=1

1

�̂2i

!
�2

�
 

kX
i=1

p
n2i � 1

ni � 3
� 1

�̂2i

!
�2
9=
; =: E(#̂) :

Proof. From the de�nition of variance we have

var(�̂2�̂) = E(�̂2�̂)
2 �

0
@E

 
kX

i=1

1

�̂2i

!
�1
1
A

2

� E(�̂2�̂)
2 �

 
kX

i=1

E

�
1

�̂2i

�!�2

after application of 2.7 (ix) and the Jensen Inequality 2.6.

With (2.3) and (2.2) it follows

E(�̂2�̂)
2 �

 
kX

i=1

E

�
1

�̂2i

�!�2

= E(�̂2�̂)
2 �

 
kX

i=1

cni �
1

�2i

!
�2

(3:1:1)

= E(�̂2�̂)
2 �

 
kX

i=1

cni �
s

1
1

bni
� E�̂4i

!
�2

� E(�̂2�̂)
2 � E

 
kX

i=1

cni �
p
bni �

1

�̂2i

!
�2

= E

8<
:
 

kX
i=1

1

�̂2i

!
�2

�
 

kX
i=1

p
n2i � 1

ni � 3
� 1

�̂2i

!
�2
9=
; ;

where the inequality results from the fact that

 
kX

i=1

1

�̂2i

!
�2

is concave in �̂4i (confer 2.7

(vii)) and the Jensen Inequality 2.6. This completes the proof.

Theorem 3.2. An upper limit for the variance of �̂2�̂ is given by

var(�̂2�̂) �
 

kX
i=1

r
ni � 1

ni + 1
� 1

�2i

!
�2

�
 

kX
i=1

ni � 1

ni � 3
� 1

�2i

!
�2

:
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Proof. With (3.1.1) we conclude

var(�̂2�̂) � E(�̂2�̂)
2 �

 
kX

i=1

cni �
1

�2i

!
�2

= E

 
kX

i=1

1p
�̂4i

!
�2

�
 

kX
i=1

cni �
1

�2i

!
�2

�
 

kX
i=1

1p
bni � �4i

!
�2

�
 

kX
i=1

cni �
1

�2i

!
�2

=

 
kX

i=1

r
ni � 1

ni + 1
� 1

�2i

!
�2

�
 

kX
i=1

ni � 1

ni � 3
� 1

�2i

!
�2

because (�̂2�̂)
2 is concave in �̂4i , see 2.7 (vii), and application of (2.2).

Note that both limit functions from theorem 3.1 and 3.2 are in no relation to each other.

Theorem 3.3. We have the following interrelations between the estimates and the pa-
rameter

��̂ =

 
kX

i=1

1

�2i

!
�1=2

:

E(�̂�̂) � ��̂ � E

 
kX

i=1

1

cni
� 1

�̂2i

!
�1=2

;

where �̂�̂ =
q
�̂2�̂, see (1.2), and cni =

ni�1
ni�3

, i = 1 ;. . . ; k.

Proof. For the standard deviation we have

E(�̂�̂) = E

 
kX

i=1

1

�̂2i

!
�1=2

� E

 
kX

i=1

1

2ni�1 � �̂2i

!
�1=2

�
 

kX
i=1

1

2ni�1 � (E
p
�̂2i )

2

!
�1=2

because 1 < 2ni�1, see (2.1), and �̂�̂ is concave in �̂i, see 2.7 (v).

8



Now with (2.1) and (2.3) we conclude

 
kX

i=1

1

2ni�1 � (E
p
�̂2i )

2

!
�1=2

= ��̂

=

 
kX

i=1

1

cni
� cni �

1

�2i

!
�1=2

=

 
kX

i=1

1

cni
� E
�

1

�̂2i

�!�1=2

� E

 
kX

i=1

1

cni
� 1

�̂2i

!
�1=2

because �̂�̂ is convex in
1

�̂2i
, see 2.7 (viii).

De�nition 3.4. Let us now de�ne the estimators

�̂�̂(a) :=

 
kX

i=1

1

ai � �̂2i

!
�1=2

; a := (a1; . . . ; ak)
T ; ai > 1; i = 1 ;. . . ; k;

�̂�̂(#̂; �) :=
�
�̂2�̂ + � �

p
#̂
�1=2

� �̂�̂

with #̂ de�ned in theorem 3.1, � > 0.

We state the following corollary to see further interrelations of estimates and parameters
which are implied by the theorem above.

Corollary 3.5. With theorem 3.3, the proof of theorem 3.3 and de�nition 3.4 we have

 
kX

i=1

cni �
1

�2i

!
�1=2

� E(�̂�̂)

� E(�̂�̂(
2))

� ��̂

� E(�̂�̂(c))

with 
2 := (2n1�1; . . . ; 

2
nk�1

)T and c := (cn1 ; . . . ; cnk)
T .
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4. Simulation results

Now we demonstrate by simulations the actual signi�cance levels of the de�ned estimators
in some constellations of three or �ve samples, see table 3 and table 4.

We have to note that ��̂ is usually unknown and we have to replace it by estimators to
receive test statistics like (1.4). It is remarkable that the levels of �̂�̂(c) are in the same
order of magnitude like the levels achieved whith the theoretical value ��̂, while results
with the usual estimator �̂�̂ extremely overestimate the signi�cance level, see table 3, table
4 and also table 1. The improvements achieved with �̂�̂(c) are consistent and convincing
compared with the usual estimator �̂�̂.

The estimator �̂�̂(#̂; 0:5), with � = 0 :5, results in some further improvement towards the
nominal level of 5% in moderate sample sizes for three or �ve samples, see table 3 and
table 4. For further improvement of the signi�cance level � can be varied.

For large sample sizes like ni � 20, i = 1 ;. . . ; k, we recommend the use of �̂�̂(c) in the

test statistic to avoid the conservatism of �̂�̂(#̂; 0:5) in such sample sizes, regardless of the
variance pattern.

When there are very small sample sizes like ni = 5, i = 1 ;. . . ; k, the estimator �̂�̂(c
3)

with c
3 := (cn1

3
n1�1; . . . ; cnk

3
nk�1

)T leads to acceptable actual levels in our simulation
study.

Table 3

Simulated actual signi�cance levels (10000 runs) at a nominal level of � = 5% for k = 3
and H0 : � = 0 with test statistics like (1.4) using the theoretical value ��̂ and di�erent
estimators of it

test statistic Z = �̂=x, nominal level � = 5%

x

(n1; n2; n3) (�2e1 ; �
2
e2
; �2e3) ��̂ �̂�̂ �̂�̂(

2) �̂�̂(c) �̂�̂(#̂; 0:5) �̂�̂(c
3)

(5,5,5) (2,3,4) 8.6 19.2 16.6 8.4 12.5 6.5
(1,3,5) 7.6 13.8 12.5 7.6 8.6 6.2

(5,10,15) (5,3,1) 7.0 10.0 9.4 7.1 6.1 6.3
(1,3,5) 6.9 10.3 9.6 7.0 6.3 6.0

(10,10,10) (4,4,4) 7.0 10.7 9.9 7.4 6.9 6.5
(1,3,5) 6.7 10.5 9.5 6.9 6.1 6.0

(10,10,15) (5,3,1) 6.6 8.9 8.3 6.5 5.4 5.8
(1,3,5) 5.3 6.4 6.2 5.3 4.0 4.9

(20,30,40) (5,3,1) 5.1 5.8 5.6 5.0 3.8 4.7
(1,3,5) 5.4 6.2 6.1 5.5 4.2 5.3

(40,50,60) (5,3,1) 5.3 5.8 5.6 5.4 4.2 5.3
(1,3,5) 5.2 5.5 5.5 5.2 4.1 5.1

(60,70,80) (5,3,1) 5.0 5.5 5.5 5.1 4.0 5.0
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Table 4

Simulated actual signi�cance levels (10000 runs) at a nominal level of � = 5% for k = 5
and H0 : � = 0 with test statistics like (1.4) using the theoretical value ��̂ and di�erent
estimators of it

test statistic Z = �̂=x, nominal level � = 5%

x

(n1; n2; n3; n4; n5) (�2e1 ; �
2
e2 ; �

2
e3 ; �

2
e4 ; �

2
e5) ��̂ �̂�̂ �̂�̂(

2) �̂�̂(c) �̂�̂(#̂; 0:5) �̂�̂(c
3)

(1,1,1,1,1) 11.3 22.1 19.9 10.6 15.3 8.3
(5,5,5,5,5) (9,9,4,4,1) 10.4 20.9 18.6 9.6 14.2 7.5

(1,1,1,1,1) 7.3 11.9 11.0 7.8 7.1 6.6
(10,10,10,10,10) (9,9,4,4,1) 6.7 10.0 9.0 6.6 6.0 5.6

(1,1,1,1,1) 8.1 12.6 11.6 8.3 7.7 7.1

(6,8,10,12,14) (9,9,4,4,1) 6.7 9.9 9.1 6.7 5.7 5.8

(1,4,4,9,9) 7.5 13.0 11.8 7.8 8.3 6.5

(1,1,1,1,1) 6.4 8.7 8.1 6.5 5.1 5.7
(15,15,15,15,15) (9,9,4,4,1) 6.4 8.7 8.1 6.6 5.3 6.0

(1,1,1,1,1) 7.0 9.7 9.1 7.2 6.0 6.5

(9,9,4,4,1) 6.1 8.0 7.6 6.2 4.7 5.7

(6,10,14,18,22) (1,4,4,9,9) 7.1 11.8 10.6 7.3 7.0 6.2

(1,4,4,1,1) 6.8 9.5 8.9 6.9 5.6 6.2

(1,1,1,1,1) 5.3 6.0 5.8 5.3 4.1 5.1

(9,9,4,4,1) 5.1 5.8 5.7 5.3 4.0 5.1

(20,25,30,40,50) (1,4,4,9,9) 5.5 6.6 6.3 5.7 4.3 5.3

(81,81,16,16,1) 5.0 5.4 5.3 5.0 3.9 4.8

(1,16,16,81,81) 5.2 6.4 6.0 5.2 4.0 4.7

(1,1,1,1,1) 5.1 5.7 5.6 5.1 3.8 5.0

(40,45,50,60,70) (9,9,4,4,1) 5.1 5.4 5.2 4.9 4.0 4.8

(1,4,4,9,9) 5.1 5.8 5.6 5.1 3.8 4.9

(1,1,1,1,1) 5.4 5.8 5.7 5.4 4.2 5.3

(60,65,70,75,80) (9,9,4,4,1) 5.3 5.9 5.8 5.5 4.3 5.4

(1,4,4,9,9) 5.7 6.1 6.1 5.7 4.6 5.6

There is no obvious reason to see why the test statistics are nearly insensitive with respect
to the error variances, see the 6th example with higher sample sizes and increased variances
in table 4.

It is worth to note that with increasing sample sizes one observes a stabilization of the
actual signi�cance levels at all estimators and no growing conservatism.
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5. Final remark

In this paper we have shown the consequences of the estimated weights in the test statistic
for tests about the common e�ect in combining estimates from independent studies or
experiments. We recommend to use the proposed corrections for the standard deviation
to achieve better approximations of the nominal signi�cance level.

The next step in this direction would be to try an extension of the considered methods
to the case of random e�ects models where with the standard procedures we observe the
same de�ciencies as in the �xed e�ects models considered above. But more problems will
arise in estimating the involved parameters as well as distributional problems with the
test statistics.
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