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Summary

In many applications we obtain test statistics by combining estimates from different experiments or
studies. The usual combined estimator of the overall effect in independent studies leads to systematic
overestimates of the significance level, see LI et al. (1994). This results in a great number of unjustified
significant evidences. By examination of the convexity of composed functions involved and application
of higher and inverse moments of the chi-square distribution we propose corrections for the estimated
standard deviation of the overall effect estimator. Analytical results and simulations show that we improve
the estimated significance level in such models.
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Zusammenfassung

In vielen Bereichen werden Teststatistiken dadurch erhalten, dafl Schiitzer aus verschiedenen Experimen-
ten oder Studien kombiniert werden. Der iiblicherweise verwendete Schitzer des Gesamteffektes aus un-
abhiingigen Studien fiihrt zu systematischen Uberschitzungen des Signifikanzniveaus, vgl. LI et al. (1994),
und daher zu vielen ungerechtfertigten Signifikanzen. Mit Hilfe der Konvexitéit zusammengesetzter Funk-
tionen und Anwendung hoherer sowie inverser Momente der x2-Verteilung stellen wir Korrekturen fiir die
geschétzte Standardabweichung des Gesamteffektschétzers vor. Analytische Ergebnisse und Simulationen

zeigen, daf3 das nominelle Niveau durch diese Korrekturen besser eingehalten wird.

1. Introduction

The problem of estimating an overall effect from different independent experiments occurs
in a variety of application fields. Not only in meta-analysis but also in analysing multi-
center trials for instance we have different samples with heterogeneous error variances to
assess the overall effect.

In such cases of k so called homogeneous (for the common mean p) independent studies
let y;; be an observation in study ¢, 7 = 1 ..., k, at subject 7 from a normal distribution,
j =1,..,n; with mean g and variance var(yzj) = 0., ie yi ~ N(wo0?), o2 > 0,
1=1,.., k. The best estimator for x4 in each study is known as the 1nd1v1dual sample
mean f; with variance var(7;.) = o2 /n; =:07,1=1,..,k.

*to appear in: Biometrical Journal



The standard procedure to estimate the common mean p in the present case of meta-
analysis is given by
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The estimate of the associated variance which is commonly used for the computation of
confidence intervals or tests can be represented by
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This is known as the variance weight method, see COCHRAN (1937), WHITEHEAD and
WHITEHEAD (1991), L1 et al. (1994). Here 67 is given by
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To carry out tests for the common mean g we use the test statistic

o
Z = = (1.4)
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which is approximately normal with mean p and variance 1.

Due to the estimated weights we get too much significant results because the estimator
(1.2) systematically underestimates the parameter o := 1/ S %, see L1 et al. (1994).

Table 1 and table 2 show the simulated actual significance levels (10000 runs) at nominal
level of 5 % for Hy : u = 0 with the test statistic (1.4) for some constellations of two or
three samples.



Table 1

Simulated actual significance levels (10000 runs) at nominal level of @ = 5% for k = 2
and Hy : p = 0 with the test statistic (1.4)
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Table 2

Simulated actual significance levels (10000 runs) at nominal level of o = 5% for k = 3
and Hy : p = 0 with the test statistic (1.4)

(n]J n27 n3) (0—31 ’ 0—327 0—33) &(%)
(5,5,5) (2,3,4) 19.2
5 10,15 (1,3,5) 13.8

( 1Y, ) (573,1) 10.0
10.10.10 (1,3,5) 10.3

( 14U, ) (474,4) 10.7

(1,3,5) 10.5

(10,10,15) (5,3,1) 8.9

We assess some extremely high actual significance levels particularly in cases of small
sample sizes, i.e. 19.2 % in the balanced case n; = ny = n3 = 5 with variances le = 2,
o7, =3 and o7, = 4.

Our intention in this article is to derive some suitable corrections of the test statistic and
to receive consequently better approximations of the nominal significance level.



2. Theoretical methods

First we need some results of the examination for convexity in general cases, see
HARTUNG (1976).

Definition 2.1.

(i) A function f: IR* — IR' is called convex iff
(x,y € RF, A€ [0,1] = fAx+(1=N)y) <Af(x)+(1-N)f(y))
with the natural semi-ordering, i.e. ordering by components.

(i) A function f: IRF — IR' is called quasi-convex iff
(ye R = { xc RF| f(x) <y} is convex ).

(iii) A function f is called (quasi-)concave if (—f) is (quasi-)convex.

For composed functions we obtain the following results:

Lemma 2.2. Let f : IRF — IR’ be convex [concave] and T : IR' — IR™ be (quasi-)convex
[(quasi-)concave] and increasing by the natural semi-ordering in IR™. Then T o f is
(quasi-)convex [(quasi-)concave)].

Lemma 2.3. Let f : IRF — IR' be convex [concave] and T': IR' — IR™ be (quasi-)concave
[(quasi-)convex]| and decreasing by the natural semi-ordering. Then T o f is
(quasi-)concave [(quasi-)convex].

Remark 2.4. Especially from lemma 2.3 we see that if y is a concave function, y=! is

convex because (.)7! is decreasing and convex.
Further if y is convex the function y! is quasi-concave because (.)
quasi-concave.

~1 is decreasing and

Lemma 2.5. If f : R, — IR, is quasi-convex [quasi-concave] and f(Ax) = Af(x), A > 0,
x # 0, (positively homogeneous), then f is also convex [concave].

For further considerations we need the well known Jensen Inequality.

Jensen Inequality 2.6. For a random variable f we have Ef(0) > f(Ef) if f is convex
and Eg(#) < g(E) if ¢ is concave.

Now we use the above considerations to receive results for combined functions.



Lemma 2.7.
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Proof.

(1):

(ii):

(iii):
(iv):

L. . . .
Because — is convex, (.)? is increasing and convex, we get with lemma 2.2 that —
x x
is convex and therefore we have the convexity of h; in ¢? and o;.

: : L.
Now /z is concave and with remark 2.4 one sees that — is convex. Therefore we
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have the convexity of hy in oj.

The function (.)? is increasing and convex. We conclude the statement 2.7 (ii) by
lemma 2.2 and 2.7 (i).

1
With hs = 5o we have the quasi-concavity with 2.7 (i) and remark 2.4.
1

The function hj is concave in o? because of 2.7 (iii) and the positive homogeneity

of hg in O—ZZ'



(viii):

(ix):

: On account of 2.7 (iii) we conclude that hy = /hs is quasi-concave in ;. With

lemma 2.5 and the positive homogeneity of hy in 0; we have the concavity of h4 in
0.

2

: With 2.7 (iv) hs is concave in o;. Because y/(.) is increasing and concave we see

with lemma 2.2 that hy = \/hs is concave in o2

i-
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The function hs = . is quasi-concave in o} because of 2.7 (ii) and remark 2.4. hs
2
is even concave in o} due to the positive homogeneity, see lemma 2.5.
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in —, see remark 2.4.
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The function (.)? is increasing and convex. Therefore hy = h? is convex in —; with

2
2.7 (viii) and lemma 2.2.
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Further we need the following moments, see Patel et al. (1976), making use of the x2 _,-
distribution of (n; — 1)6?/0? from (1.3),i =1 .., k:
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E(6}) = by, -0} with by, = >1, (2.2)
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3. Upper estimates of the variance and standard deviation

The results of section 2 now serve for the construction of useful upper limits for the
standard deviation oy.

Theorem 3.1. For the estimator 67 in (1.2) we have
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— 0,
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after application of 2.7 (ix) and the Jensen Inequality 2.6.

With (2.3) and (2.2) it follows
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where the inequality results from the fact that g A—2> is concave in 6} (confer 2.7
ok

i=1 !

(vii)) and the Jensen Inequality 2.6. This completes the proof.

Theorem 3.2. An upper limit for the variance of 62 is given by
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Proof. With (3.1.1) we conclude
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because (07)* is concave in 67, see 2.7 (vii), and application of (2.2).

Note that both limit functions from theorem 3.1 and 3.2 are in no relation to each other.

Theorem 3.3. We have the following interrelations between the estimates and the pa-
rameter
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because 1 <. _,, see (2.1), and 6, is concave in 5, see 2.7 (v).




Now with (2.1) and (2.3) we conclude
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because ¢, is convex in —;, see 2.7 (viii).
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Definition 3.4. Let us now define the estimators

k —1/2
1
Ga(a) = (Za.w) cai=(ay,..a)", 0 >1,0=1,.k,
2

i=1 i

A =\ 1/2
6.0, k) = <5’3+I€'\/1§> > 0p

with ¥ defined in theorem 3.1, k > 0.

We state the following corollary to see further interrelations of estimates and parameters
which are implied by the theorem above.

Corollary 3.5. With theorem 3.3, the proof of theorem 3.3 and definition 3.4 we have

k 1 —1/2
() = o
< E(@a(v?))
< op
< E(Ga(c))
with 72 = (731717 T a?’qu)T and ¢ := (Cn17 Tt an)T



4. Simulation results

Now we demonstrate by simulations the actual significance levels of the defined estimators
in some constellations of three or five samples, see table 3 and table 4.

We have to note that o; is usually unknown and we have to replace it by estimators to
receive test statistics like (1.4). It is remarkable that the levels of &;(c) are in the same
order of magnitude like the levels achieved whith the theoretical value o, while results
with the usual estimator 0, extremely overestimate the significance level, see table 3, table
4 and also table 1. The improvements achieved with ¢;(c) are consistent and convincing
compared with the usual estimator 0.

The estimator 6ﬂ(1§, 0.5), with £ = 0 .5, results in some further improvement towards the
nominal level of 5% in moderate sample sizes for three or five samples, see table 3 and
table 4. For further improvement of the significance level x can be varied.

For large sample sizes like n; > 20, i =1, .., k, we recommend the use of 6;(c) in the
test statistic to avoid the conservatism of 6, (1, 0.5) in such sample sizes, regardless of the
variance pattern.

When there are very small sample sizes like n, = 5, ¢ = 1, .., k, the estimator 6,(cy3)
with ey3 == (¢a, 75, 15+ a7, 1)" leads to acceptable actual levels in our simulation
study.

Table 3

Simulated actual significance levels (10000 runs) at a nominal level of a = 5% for k = 3
and Hj : p = 0 with test statistics like (1.4) using the theoretical value o; and different
estimators of it

test statistic Z = [i/x, nominal level a = 5%
A
(nla N2, n3) (Uzl ] 0327 033) 9h 6ﬂ 6ﬂ (72) 6;}(0) 6/1 (197 0'5) 6ﬂ(c73)
(5,5.5) 23,4 86192 166 84 125 6.5
(135) |76 138 125 76 8.6 6.2
(5,10,15) 531 [70]100 94 71 6.1 6.3
(135 60103 96 7.0 6.3 6.0
(10,10,10) (444) |70] 107 99 74 6.9 6.5
(135 67105 95 69 6.1 6.0
(10,10,15) (531) |66 89 83 65 5.4 5.8
(135) |53 64 62 53 1.0 1.9
(20,30,40) (531) |51] 58 56 50 3.8 4.7
(135) |54 62 61 55 12 5.3
(40,50,60) | (531) |53( 58 56 54 1.2 5.3
(135) (52 55 55 52 11 5.1
(60,70,80) | (531) |50 55 55 5.1 4.0 5.0
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Table 4

Simulated actual significance levels (10000 runs) at a nominal level of @ = 5% for k =5
and Hj : p = 0 with test statistics like (1.4) using the theoretical value o; and different
estimators of it

test statistic Z = i/, nominal level a = 5%

xT

(nl,ng,ng,n4,n5) (021,022,023,024,025) Uﬂ &ﬂ &ﬂ(’)’z) &ﬂ(c) &ﬂ(ﬁ,O.S) &ﬂ(C’)’:})
L1110 113221 199 106 153 8.3
(5,5,5,5,5) (9,9,4,4,1) 104 ][ 209 186 9.6 14.2 7.5
(LLLLY) 73 119 110 78 71 6.6
(10,10,10,10,10) (9,9,4,4,1) 6.7 | 100 9.0 66 6.0 5.6
1,110 81 | 126 116 83 7 71
(6,8,10,12,14) (9,9,4,4,1) 67 | 99 91 67 5.7 5.8
(1,4,4,9,9) 75 [ 130 118 78 8.3 6.5
(1,LL1,1) 64 | 87 81 65 5.1 5.7
(15,15,15,15,15) (9,9,4,4,1) 64 | 87 81 6.6 5.3 6.0
(1L,LLL1) 70 | 97 91 72 6.0 6.5
(9,9,4,4,1) 61 80 76 62 47 5.7
(6,10,14,18,22) (1,4,4,9,9) 71 | 118 106 7.3 7.0 6.2
(1,4,4,1,1) 68 | 95 89 6.9 5.6 6.2
(L,LLL1) 53 | 60 58 53 41 5.1
(9,9,4,4,1) 51| 58 57 53 4.0 5.1
(20,25,30,40,50) (1,4,4,9,9) 55 | 66 63 5.7 43 5.3
(81,81,16,16,1) 50 | 54 53 5.0 3.9 4.8
(1,16,16,81,81) 52 | 64 60 52 4.0 47
AL 51 | 57 56 51 38 5.0
(40,45,50,60,70) (9,9,4,4,1) 51 | 54 52 49 4.0 4.8
(1,4,4,9,9) 51 | 58 56 5.1 3.8 4.9
(1,LL1,1) 54 | 58 57 54 12 5.3
(60,65,70,75,80) (9,9,4,4,1) 53 | 59 58 55 4.3 5.4
(1,4,4,9,9) 5.7 | 61 61 5.7 4.6 5.6

There is no obvious reason to see why the test statistics are nearly insensitive with respect
to the error variances, see the 6th example with higher sample sizes and increased variances
in table 4.

It is worth to note that with increasing sample sizes one observes a stabilization of the
actual significance levels at all estimators and no growing conservatism.
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5. Final remark

In this paper we have shown the consequences of the estimated weights in the test statistic
for tests about the common effect in combining estimates from independent studies or
experiments. We recommend to use the proposed corrections for the standard deviation
to achieve better approximations of the nominal significance level.

The next step in this direction would be to try an extension of the considered methods
to the case of random effects models where with the standard procedures we observe the
same deficiencies as in the fixed effects models considered above. But more problems will
arise in estimating the involved parameters as well as distributional problems with the
test statistics.
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