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We consider a new estimator of scale for exponential samples which is most B-robust

in the sense of Hampel et al. (1986). This estimator is compared with two other

estimators which were proposed by Rousseeuw and Croux (1993) but for a Gaussian

model. All three estimators have the same breakdown point, but their explosion

bias curves are di�erent. It is shown that under a gross error model the explosion

bias curve of the new estimator performs better than the bias curves of the other

estimators.
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1 Introduction

Often, when some kind of non-aging property of a positive random variable can
be relied upon, it is assumed that i. i. d. observations x1; : : : ; xN > 0 of this
variable come from an exponential distribution with unknown scale parameter
� > 0. Thus, we have a likelihood

f�(x1; : : : ; xN) :=
�
1

�

�N
exp

 
�
1

�

NX
i=1

xi

!
; x1; : : : ; xN > 0:

Consider the unknown scale parameter �. Any scale estimator SN should be scale
equivariant, i. e.:

SN (ax1; : : : ; axN) = aSN(x1; : : : ; xN) for all a > 0:

Most popular is the maximum likelihood estimator

�̂ML(x1; : : : ; xN) =
1

N

NX
i=1

xi;
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because it is asymptotically e�cient. But �̂ML can be bad, if the sample is
contaminated. For instance one extremely large outlier in the sample su�ces to
make �̂ML arbitrarily large. In this case it is often said that \the estimator has
broken down".
Therefore, the aim of this paper is to introduce and to investigate some new robust
estimators for the unknown scale parameter � > 0 of an exponential distribution,
which can deal with such \bad" observations. Our paper is organized as follows:
In chapter 2, a new estimator is de�ned, which is a standardized version of the
sample median. Its robustness properties are investigated and it is shown that
its gross-error-sensitivity is minimal. As the price for this optimality property is
a low asymptotic e�ciency, other robust estimators (Rousseeuw and Croux,
1993) are considered in the third chapter. Finally, we compare the maximum
asymptotic biases of the estimators presented here.

2 The standardized median

M-estimators are very popular and well investigated candidates for robust esti-
mators. An M-estimator is de�ned as solution of the equation

NX
i=1

 (xi; SN ) = 0 (1)

with some function  (x; �). An M-estimator of scale should ful�ll  (x; �) =  (x
�
).

If GN denotes the empirical distribution function generated by the sample, then
a solution SN of (??) can be expressed as S(GN ), where S is a functional given
by Z

 (x; S(G))dG(x) = 0 :

The M-estimator corresponding to ~ (x; �) := sign(x� � log 2) is

SMN (x1; : : : ; xN ) :=
1

log 2
Med(x1; : : : ; xN ):

To ensure Fisher-consistency of the median in independent identically exponen-
tially distributed samples, the sample median must be multiplied by [log 2]�1.
The resulting estimate is called the standardized median and denoted by SM .
Some robustness properties of the standardized median can be investigated by
means of the in
uence function (Hampel, 1974). To begin with, the functional
version of the standardized median is de�ned as

SM(G) :=
1

log 2
G�1

�
1

2

�
; where G is a distribution on (R+;B):
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The in
uence function of the standardized median is equal to (Staudte and

Sheater, 1990, p. 59)

IF (x;SM;F�) =

8><
>:
� �

log2
x < � log 2

0 x = � log 2
�

log 2 x > � log 2

with gross-error sensitivity


�(SM;F�) := sup
x2R+

jIF (x;SM;F�)j =
�

log 2
:

The asymptotic variance (Staudte and Sheater, 1990, p. 64) can be expressed
as

V (SM;F�) =
1

(2(log 2)f�(� log 2))2
= 2 :0814�2:

In general, an estimator with limited gross-error-sensitivity is called B-robust. An
estimator with minimal gross-error sensitivity is called most B-robust (Hampel
et al., 1986, p. 133). The following theorem shows that for estimating the scale
paramter � of an exponential distribution the standardized median has smallest
possible gross-error sensitivity.

Theorem 2.1. Let 	exp be the class of all functions  : R+ !R satisfying:

(i) The function  is well-de�ned and continuous on R+ except for a �nite set
C( ). In each point of C( ), there exist �nite left and right limits of  
which are di�erent.

(ii)
R1
0  (y

�
)dF�(y) = 0 for all � > 0.

Let SN be an M-estimator corresponding to  2 	exp and S( ) be the corres
ponding functional then


�(S( ); F�) �
�

log 2
for all  2 	exp and F� 2 Fexp:

Proof.


�(S( ); F�) = sup
x2R+

�����  (x
�
)R1

0  (y
�
)s(y; �)f�(y)dy

�����
=

supx2R+ j (x
�
)j

j
R1
0  (y

�
)(y

�
� 1) 1

�2
e�

y

� dyj

=
supx2R+ j (x

�
)j

j
R1
0  (y

�
)(y

�
� t

�
) 1
�2
e�

y

� dyj

�
�Z 1

0

����y� �
t

�

���� 1�2 e�
y

� dy

��1

=
�
t

�2
+

2

�
e�

t
� �

1

�

��1
=: w(t)
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and w(t) � w(� log 2) = �

log2
for all t > 0.

2

In order to �nd the maximum number of \bad" observations, the standardized
median can deal with, a replacement version of the �nite sample breakdown point
of an estimator is used (Rousseeuw and Leroy, 1988). The breakdown point
��N(SN ; xN ) of SN is de�ned as

��N(SN ; xN ) := minf
m

N
; sup

~x
N

SN (~xN ) =1 or inf
~xN
SN (~xN ) = 0 g;

where ~xN is obtained from xN by replacing m values by arbitrarily chosen ones.

Theorem 2.2. The �nite sample breakdown point of the standardized median
is equal to

��N (SMN ; xN) =
dN2 e

N

and for the breakdown point ��(SM;F�) itself, we have

��(SM;F�) = lim
N!1

��N(SMN ; xN ) =
1

2
:

Proof. Let 0 < x(1) � ::: � x(n) denote the ordered sample. If x(bN
2
+1c); : : : ; x(N)

are replaced by an arbitrary z 2 R+, then ~xN := fx(1); : : : ; x(bN
2
c); z; : : : ; zg and

SMN (~xN ) converges to 1 for N tending to 1. Hence,

��N(SMN ; xN) �
dN
2
e

N
:

If x(bN
2
c); : : : ; x(N) are replaced by an arbitrary z 2 R+, then

�xN := fx(1); : : : ; x(bN
2
�1c); z; : : : ; zg and SMN (�xN ) = SMN (xN):

Hence,

��N(SMN ; xN) �
dN2 e

N
:

2

Rousseeuw and Croux (1993) also consider the behaviour of robust estimators
under a so called gross error model (Huber, p. 11). Let

F� := fG 2 M1jG = (1 � �)F� + �Hposg; � > 0;
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with
Hpos 2 f H2 M

1jH(0) = 0g:

The explosion bias curve of the functional S in F� is de�ned as

B�(S;F�) := sup
G2F�

S(G):

There exist several connections between the explosion bias curve, the gross-error
sensitivity and the breakdown point (Hampel et al., 1986, p. 177):

(i) If the explosion bias curve B�(S;F�), plotted as a function of the mixture
proportion � of contamination, is di�erentiable at � = 0, then the slope of
the tangent at 0 is the gross-error sensitivity 
�(S;F�).

(ii) The breakdown point ��(S;F�) is given by

��(S;F�) = min
�2(0; 1

2
)
fB�(S;F�) =1g

(Donoho and Liu 1988).

Theorem 2.3. If � 2 (0; 1
2
), then

B�(SM;F�) = �
log 2(1��)

1�2�

log 2
:

Proof. Let � be any value in (0; 1
2
). Because the standardized median SMN is

monotone in each observation xi, it follows that

B�(SM;F�) = lim
N!1

SM(GxN )

with
GxN := (1� �)F� + ��xN and lim

N!1
xN =1:

Substituting GxN yields

B�(SM;F�) =
1

log 2
lim

xN!1
[(1� �)F� + ��xN ]

�1
�
1

2

�
:

Without loss of generality let xN > � log 2. Then independently of N,

[(1� �)F� + ��xN ]
�1
�
1

2

�
= � log

2(1 � �)

1 � 2�
:

2

Figure 1 shows the explosion bias curve of the standardized median. The mini-
mum slope of the tangent at � = 0 re
ects, that SMN(x1; : : : ; xN) is a most
B-robust estimator. The value of � for which the explosion bias curve becomes
in�nite is the breakdown point ��.
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Figure 1: Explosion bias curve of the standardized median with � = 1.

3 The RCS- and the Q-estimator

The drawback of the standardized median is that it has a small asymptotic rela-
tive e�ciency (ARE) at the exponential distributions of only 48%. Therefore, two
alternatives, which are of the same type of those proposed by Rousseeuw and

Croux (1993) to estimate the variance in normal samples and which work well in
this situation, are tried out for the exponential case, too. The �rst is an estima-
tor which Rousseeuw and Croux (1993) called \S-estimator". To distinguish
between the \S-estimator" and the general class of S-estimators (Rousseeuw
and Yohai, 1984), this estimator is called RCS-estimator here, it is given by

RCS(x1; : : : ; xN) := 1 :6982MedifMedjfjxi � xjjgg

with xi; xj > 0 and i; j 2 f 1; : : : ; Ng:

The constant 1:6982 ensures Fisher-consistency of the RCS-estimator for samples
from an exponential distribution. The asymptotic version of the RCS-estimator
is de�ned as follows: Let G 2 M1, X, Y be stochastically independent with
X � G, Y � G and

gG(x) :=MedY jx� Y j; x > 0:

Then the functional RCS(G) is equal to

RCS(G) = 1 :6982MedX gG(X):
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It can be shown (Rousseeuw and Croux, 1993) for the gross-error sensitivity


�(RCS;F�) = 1 :8447�;

the asymptotic variance equals

V (RCS;F�) = 1 :8217�2;

and the asymptotic relative e�ciency of the RCS-estimator at exponential dis-
tributions is 55%. In these respects the RCS-estimator is comparable with the
20%-trimmed mean x20.
More exactly the gross-error sensitivity of the trimmedmean is 
�(x20; F�) = 1 :72
and the asymptotic relative e�ciency is ARE(x20; �̂ML) = 0 :72 (Kimber, 1983),
but its breakdown point is ��(x20; F�) = 0 :2 which indeed is quite smaller than
the breakdown point of the RCS-estimator, which is equal to 0:5.

Theorem 3.1. The explosion bias curve of the RCS-estimator is

B�(RCS;F�) = 1 :6982�x0(�)

where x0(�) is the smallest positive solution of

(1 � 2�)(e2x0(�) � 1)� (ex0(�) � e�x0(�))� 1 � 0:

Proof. Let � be any value in (0; 1
2
). First consider F1(x) = 1 � e�x; x > 0, then

B�(RCS;F1) = lim
N!1

RCS(GxN )

with GxN := (1��)F1+��xN and limN!1 xN =1. Let X � GxN and Y � GxN .
Then gGxN

(x) is the smallest positive value for which

P (jY � xj � gGxN
(x)) �

1

2

or equivalently

GxN (x+ gGxN
(x))�GxN (x� gGxN

(x)) + P (Y = x� gGxN
(x)) �

1

2
:

Substituting GxN yields

(1� �)fF1(x+ gGxN
(x))� F1(x� gGxN

(x))g

+�f�xN (x+ gGxN
(x))��xN (x� gGxN

(x))g

+�1(x�gGxN (x)=xN) �
1

2
:
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With � < 1
2
, for each M > 0 there exists N0 such that for all N > N0

sup
x<M

(x+ gGxN
(x)) < xN ;

because if N is large enough, then

sup
x<M

[x+ gGxN
(x)] � sup

x<M

[x+MedY jY � xj]

� 2M +MedY (Y ) � xN :

This means that gGxN
is the solution of

(1 � �)[F1(x+ gGxN
(x))� F1(x� gGxN

(x))] =
1

2
if x � gGxN

(x)

and (1� �)F1(x+ gGxN
(x)) =

1

2
if x � gGxN

(x)

which leads to

gGxN
(x) =

8<
:
gu(x) x � � log

q
1�2�
2(1��)

go(x) x � � log
q

1�2�
2(1��)

with

gu(x) := �x� log

"
1� 2�

2(1 � �)

#
;

go(x) := log

2
4 ex

4(1 � �)
+

vuut e2x

16(1 � �)2
+ 1

3
5

and

g�1u (x) = �x� log

"
1 � 2�

2(1 � �)

#
;

g�1o (x) = log[2(1 � �)(ex � e�x)]:

This implies that

B�(RCS;F1) = 1 :6982 lim
xN!1

[MedXgGxN
(X)]:

Let xN0 (�) :=MedXgGxN
. Then xN0 (�) is the smallest positive value for which

P (gGxN
(X) � xN0 (�)) �

1

2
:

If M(�) is chosen such that xN0 (�) < M , then

P (X � g�1o (xNo (�)))� P (X � g�1u (xNu (�))) + P (X = g�1u (xNo (�))) �
1

2
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or equivalently

(1� �)F1(g
�1
o (xN0 (�))) + ��xN (g

�1
o (xN0 (�)))

�(1� �)F1(g
�1
u (xN0 (�)))� ��xN (g

�1
u (xN0 (�))) + �1(xN=g�1u (xN

0
(�))) �

1

2
:

Because limN!1 xN =1, there exists N0 such that for all N > N0

xN > g�1o (xN0 (�)) and xN > g�1u (xN0 (�)):

This yields
(1� 2�)(e2x0(�) � 1) � (ex0(�) � e�x0(�))� 1 � 0

and B�(RCS;F1) = 1 :6982x0(�).

The result for arbitrary � > 0 follows from the scale equivariance of the RCS-
estimator.

2

The second estimator presented by Rousseeuw and Croux (1993) is the Q-
estimator

QN(x1; : : : ; xN) := 3 :476fjxi � xjj; i < jg(l)

with xi; xj > 0 and l = d

�
N

2

�
4
e:

Again, the constant 3.476 yields Fisher-consistency for an exponential sample.
An asymptotic version of this estimator is given as follows: Let G 2 M1 and
X � G;Y � G be stochastically independent. Further let (X � Y ) � KG. Then
Q(G) is de�ned as

Q(G) := 3 :476K�1G

�
5

8

�
:

If again GN is the empirical distribution function of G, then Q(GN) is not exactly

the same as QN where one takes an order statistic out of
�
n

2

�
elements instead of

n2, however asymptotically this makes no di�erence.

Theorem 3.2. The gross-error sensitivity of the Q-estimator is given by


�(Q;F�) = 2 :3173�:

Proof. The theorem is proven for � = 1. Then the in
uence function of the
Q-estimator equals

IF (x;Q;F1) = 3 :476
0:25 � F1(x+ 0 :2877) +F1(x� 0:2877)R

f1(y + 0 :2877)f1(y)dy
:
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Substituting F1(x) = 1� e�x; x > 0, and f1(x) = e�x; x > 0, yields

IF (x;Q;F1) =

8><
>:

2:3173; x � � 0:2877
�6:952 + 6:952e�x; �0:2877 � x � 0:2877
2:3173 � 5:407e�x; x � 0:2877:

This means
IF (x;Q;F1) � 2:3173 for all x 2 R+:

For arbitrary � > 0, the proposition follows from the scale equivariance of the
Q-estimator.

2

The asymptotic variance of the Q-estimator is

V (Q;F�) = 1 :3433�2

and the asymptotic relative e�ciency is 74% (Rousseeuw and Croux, 1993).
In these respects the Q-estimator is comparable with the 10%-trimmed mean x10
(Kimber, 1983).
More exactly the gross-error sensitivity of the trimmed mean is 
�(x10; F�) = 2 :1
and the asymptotic relative e�ciency is ARE(x10; �̂ML) = 0 :85, but the break-
down point is well known as ��(x10; F�) = 0 :1, while the breakdown point of the
Q-estimator is ��(Q;F�) = 0 :5. Hence, the Q- and the RCS-estimator have the
same breakdown point, which is the highest possible breakdown point for scale
equivariant estimators of �.
The explosion bias curve of the Q-estimator is given by (Rousseeuw and

Croux, 1993)

B�(Q;F�) = 3 :476�F�1�

 
5� 8�+ 4 �2

8(1 � �)2

!

where F�(x) is the distribution function of the Laplace distribution with

F�(x) :=

(
1
2e

x; x � 0
1 � 1

2e
�x; x � 0:

Figure 2 compares the explosion bias curves of the above three robust estimators.
It can be noted that the standardized median can be recommended here, because

(i) this estimator is very easy to calculate,

(ii) it has minimal gross-error sensitivity,

(iii) its breakdown point is the highest possible for a scale equivariant estimator,
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Figure 2: Comparison of the explosion bias curves for � = 1.

(iv) for all � 2 (0; 12), the explosion bias curve of the standardized median
performs better than the explosion bias curves of the RCS- and the Q-
estimator.

A comparison of the RCS-estimator and the Q-estimator shows similarly that for
all � 2 (0; 12) the explosion bias curve of the RCS-estimator takes smaller values
than the bias curve of the Q-estimator. Hence, it can be stated that an increase of
the asymptotic relative e�ciency causes an increase of the gross-error sensitivity
which is not surprising.
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