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Abstract

In investigations on the behaviour of robust estimators, typically their consistency

and their asymptotic normality are studied as a necessity. Their rates of convergence,

however, are often given less weight. We show here that the rate of convergence of a

multivariate robust estimator to its true value plays an important role when using the

estimator in procedures for identifying outliers in multivariate data.
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1 Introduction

In the past few years, there has been a growing interest in methods for identifying outliers in

multivariate data sets (see Barnett and Lewis [1]). Especially in the light of the existence of

mere data-
oods to be analysed in high dimensional online monitoring situations nowadays,

the development of such methods has become a real need.

Many researchers in this �eld suggest the use of robust estimators in outlier identi�cation

procedures to avoid masking and swamping (Hampel [17], Rousseeuw [19, 20]). When

investigating properties of these estimators, their convergence to some true underlying model

parameter, i.e. consistency, is often studied �rst, neglecting the order of this convergence

or just relying on
p
N -convergence. But similar to the importance of convergence rates in

limit theorems for distribution functions (Cram�er [9], Butzer, Nessel [8], Theorem of Butzer,
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Hahn, Westphal in G�anssler, Stute [14], p. 159, Butzer, Gather [6, 7], and many others), the

convergence rate in the weak or strong convergence of estimators should not be disregarded

either, especially when investigating outlier identi�cation rules. We will show here, that in

the case of so-called outlier identi�ers, as introduced for the multivariate setting by Gather

and Becker [16], following a univariate approach of Davies and Gather [12], the use of robust

estimators with a su�cient rate of convergence is highly recommendable.

In Section 2, we introduce the concept of outlier identi�ers and summarize some results

concerning estimators, which are used in such identi�cation procedures. The central part

of this paper is Section 3, which deals with relations between the convergence rate of an

estimator and properties of an identi�er that is based on this estimator.

2 Identi�cation of outliers in multivariate data

We concentrate here on methods for identifying outliers in data supposed to come from

a multivariate normal distribution, that is, the model distribution under consideration is

N(�;�), with � 2 IR, � 2 IRp�p positive de�nite. Following Gather and Becker [16], an

� outlier with respect to this distribution is de�ned as an element of the � outlier region

out(�; �;�) := fx 2 IRp : ( x� �)T��1(x� �) > �2
p;1��g

for some given � 2 (0; 1).

In the same way, we can consider an �N outlier region out(�N ; �;�) when dealing with

a sample of size N . In this case, for � 2 (0; 1) we have �N = 1� (1� �)1=N , where

PN(�;�)(X 2 out(�; �;�)) = �

and

PN(�;�)(X i =2 out(�N ; �;�); i = 1 ;. . . ; N) = 1 � �:

Usually, the outlier region will be unknown and it is a statistical task to identify all

�N outliers in a sample
�
xN = ( x1; . . . ; xN ) which is possibly corrupted by `bad' obser-

vations itself. One possibility to do this is to estimate the unknown outlier region and
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identify all observations of
�
xN lying in the estimated region as outliers. Such an empirical

outlier region may be de�ned by

OR(
�
xN ; �N) := fx 2 IRp : ( x�m)TS�1(x�m) � cg;

where m = m(
�
xN) 2 IRp and S = S(

�
xN) 2 IRp�p, positive de�nite and symmetric,

are estimators for � and �, respectively. The constant c = c(p;N; �N ) 2 IR is used for

normalization purposes, for example according to

PN(�;�)(X i =2 OR(
�
XN ; �N ); i = 1 ;. . . ; N) = 1 � � (1)

with �N = 1� (1 � �)1=N and � 2 (0; 1).

The set OR itself is also referred to as an �N outlier identi�er.

Investigations of the properties of such identi�ers show that the use of very robust

estimators m and S with high �nite-sample breakdown points (cf. Donoho and Huber [13])

helps to avoid unfavourable e�ects of such rules such as masking and swamping (see e.g.

Rosner [18], Simono� [22, 23], Hampel [17], Rousseeuw [19, 20], Bendre, Kale [5], Barnett,

Lewis [1], Becker [2], Becker, Gather [3]). Estimators of this kind are for example the

MCD estimators of Rousseeuw and Leroy [21] and the S-estimators introduced by Davies

[10]. At the same time, using estimators with this property yields �nite limits for the so-

called maximum asymptotic bias of outlier identi�ers. More precisely, the estimators m

and S must have a bounded maximum asymptotic bias themselves. We do not give the

exact de�nition of the maximum asymptotic bias here (cf. Becker, Gather [4] for details).

Roughly spoken, this bias indicates, how far away the respective estimator (m, S, OR) can

lie from the true (�, �, out), when there is a certain amount of maliciously placed outliers

in a sample. Therefore, a bounded maximum asymptotic bias is highly desirable.

However, the above mentioned condition of a bounded maximum asymptotic bias for the

estimators is only necessary, but not su�cient. We get an identi�er with bounded maximum

asymptotic bias though, if we use estimators with this property and additionally guarantee

a certain maximum growth rate for the normalizing constant.

Let OR be an outlier identi�er as de�ned above with corresponding normalizing constant

c(p;N; �N ). If the constant c ful�lls the condition c(p;N; �N ) = O(�2
p;1��N

)(N !1 ), then
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the use of estimators m and S with bounded maximum asymptotic bias in OR implies that

the bias of the identi�er OR is bounded, too. (Proof: Becker, Gather [4]).

The growth of c(p;N; �N ) is related to the rate of convergence of the estimators m and

S used in OR.

3 Growth of the normalizing constant

The relationship between the growth rate of c and the properties of m and S is not immedi-

ately obvious. First, notice that if m and S are consistent estimators for � and �, then with

X1; . . . ;XN i.i.d. � N(�;�), it follows that Yi := (X i�m)TS�1(X i�m) are asymptotically

�2
p distributed. Now, for the normalizing condition (1) we have

PN(�;�)(X i 2 IRpnOR(
�
XN ; �N ); i = 1 ;. . . ; N) = 1 � �

, PN(�;�)( max
i=1;...;N

(X i �m)TS�1(X i �m) < c (p;N; �N )) = 1� �:

Therefore, the constant c(p;N; �N ) equals the (1 � �)-quantile of the distribution of

max
i=1;...;N

(X i �m)TS�1(X i �m). This distribution can be determined asymptotically.

Theorem 3.1 Let denote Yi := (X i �m)TS�1(X i � m); i = 1 ;. . . ; N , with X i as above.

Then

lim
N!1

P Nf�2p(�
2
p;1�1=N)(max(Y1; . . . ; YN)� �2

p;1�1=N) < y = exp(� exp(�y)):

Here, f�2p denotes the Lebesgue density of the �2 distribution with p degrees of freedom.

Proof: Using a result of Galambos [15], p. 102, it can be shown that the �2 distribution lies

in the maximum domain of attraction of the double exponential. Consider a distribution

function F with Lebesgue density f and let !(F ) �1 be the right endpoint of the support

of F . Further, let there exist some x1 2 IR such that 8x : x1 � x < !(F ) the derivative

f 0(x) exists and it holds that f(x) 6= 0. If

lim
x!!(F )

d

dx

1� F (x)

f(x)
= 0 ;
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then F lies in the maximum domain of attraction of the double exponential. For the �2

distribution we only have to check the above limit, because all other conditions are obviously

ful�lled. Now, f(x) = f�2p(x) = 2�p=2�(p=2)�1xp=2�1e�x=2, x > 0, thus

d

dx

1 � F (x)

f(x)
= �f

0(x)(1� F (x))

f2(x)
� 1

and
f 0(x)(1� F (x))

f2(x)
= (

p

2
� 1)

1

x
� 1

2

!�1=2(x!1)

1� F (x)

f(x)
:

With the rules of l'Hospital we get

lim
x!1

1� F (x)

f(x)
= � lim

x!1

f(x)

f 0(x)
= � lim

x!1

1

(p
2
� 1) 1

x
� 1

2

= 2 :

Therefore, we can conclude that

lim
x!1

d

dx

1� F (x)

f(x)
= �(�1

2
) 2 � 1 = 0 :

Thus, the �2 distribution lies in the maximum domain of attraction of the double exponen-

tial. That means, there exist sequences aN ; bN (bN > 0), such that

lim
N!1

P
max(Y1; . . . ; YN )� aN

bN
< y = exp(� exp(�y)):

These sequences aN ; bN can be chosen according to (Galambos [15], p. 54, 105)

aN = inffx : 1� F (x) � 1

N
g; bN =

1� F (aN)

f(aN)
:

Hence we get:

aN = inffx : 1 � F (x) � 1

N
g = inffx : F (x) � 1 � 1

N
g = F�1(1� 1

N
)

= �2
p;1�1=N ;

where F�1 denotes the inverse of the �2
p distribution function, and

bN =
1 � F (�2

p;1�1=N)

f(�2
p;1�1=N)

=
1
N

f(�2
p;1�1=N)

=
1

Nf(�2
p;1�1=N)

:
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Here, F; f denote the distribution function and Lebesgue density of the �2
p distribution,

respectively.

Therefore, it follows that

lim
N!1

P Nf�2p(�
2
p;1�1=N)(max(Y1; . . . ; YN)� �2

p;1�1=N) < y = exp(� exp(�y))

or, for large N ,

P (max(Y1; . . . ; YN) < y) ' exp(� exp(�Nf�2p(�
2
p;1�1=N)(y � �2

p;1�1=N))):

2

Corollary 3.1 Let OR be an outlier identi�er, based on
p
N consistent estimators of lo-

cation and covariance and normalized according to (1). Then the normalizing constant

c(p;N; �N ) can, for large sample sizes N , be approximated by

c(p;N; �N ) ' �2
p;1�1=N �

ln(� ln(1� �))

Nf�2p(�
2
p;1�1=N)

;

where �N = 1� (1� �)1=N .

With this approximation, we can calculate the growth rate of c for identi�ers, which are

based on
p
N consistent estimators.

Theorem 3.2 Consider an outlier identi�er OR with m, S as above. Then the growth of

the normalizing constant c(p;N; �N ) is given by

c(p;N; �N ) = O(�2
p;1��N

) ( N!1 );

if condition (1) is used for normalization.

Proof: According to Corollary 3.1 we write (for large N)

c(p;N; �N ) ' �2
p;1�1=N �

ln(� ln(1� �))

Nf�2p(�
2
p;1�1=N)

;
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where �N = 1� (1 � �)1=N . With this, we have

lim
N!1

c(p;N; �N )

�2
p;1��N

= lim
N!1

�2
p;1�1=N

�2
p;(1��)1=N

+
� ln(� ln(1 � �))

�2
p;(1��)1=N

Nf�2p(�
2
p;1�1=N)

:

Application of the rules of l'Hospital to the second summand yields

lim
N!1

Nf�2p(�
2
p;1�1=N) = lim

N!1

1

2
� p � 2

2�2
p;1�1=N

=
1

2
;

thus

lim
N!1

1

Nf�2p(�
2
p;1�1=N)

= 2

and

lim
N!1

� ln(� ln(1� �))

�2
p;(1��)1=N

Nf�2p(�
2
p;1�1=N)

= 0 :

By similar arguments we calculate the limit of the �rst summand:

lim
N!1

�2
p;1�1=N

�2
p;(1��)1=N

= lim
N!1

F�1
�2p
(1 � 1=N)

F�1
�2p

((1� �)1=N)

= lim
N!1

f�2p(�
2
p;(1��)1=N

)

�(1 � �)1=N ln(1� �)f�2p(�
2
p;1�1=N)

= lim
N!1

p � 2

2�2
p;(1��)1=N

� 1

2

� ln(1 � �)f�2p(�
2
p;1�1=N) +

p � 2

2�2
p;1�1=N

� 1

2

= 1 :

Therefore, we have

lim
N!1

c(p;N; �N )

�2
p;1��N

= 1 ;

such that c(p;N; �N ) = O(�2
p;1��N

) ( N!1 ).

2

These results show that the use of
p
N consistent estimators in outlier identi�ers must

be strongly recommended.
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4 Conclusion

Often, very robust estimators are proposed when having to deal with corrupted samples

or for the purpose of outlier identi�cation. Sometimes we �nd the consistency of such

estimators proved, whereas the rate of convergence is not considered. For example, MVE

estimators, which are highly robust, only possess a converge rate of N1=3 (Davies [11])

and can therefore not be recommended as a choice for the use in outlier identi�ers as

de�ned above. On the other hand, MCD and S-estimators show the desired property of
p
N

consistency. Our investigations show that the rate of convergence of robust estimators plays

an important role in multivariate outlier identi�cation. Hence, calculating the convergence

rates of such estimators is indeed worth the trouble.
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