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Abstract

In investigations on the behaviour of robust estimators, typically their consistency
and their asymptotic normality are studied as a necessity. Their rates of convergence,
however, are often given less weight. We show here that the rate of convergence of a
multivariate robust estimator to its true value plays an important role when using the
estimator in procedures for identifying outliers in multivariate data.
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1 Introduction

In the past few years, there has been a growing interest in methods for identifying outliers in
multivariate data sets (see Barnett and Lewis [1]). Especially in the light of the existence of
mere data-floods to be analysed in high dimensional online monitoring situations nowadays,
the development of such methods has become a real need.

Many researchers in this field suggest the use of robust estimators in outlier identification
procedures to avoid masking and swamping (Hampel [17], Rousseeuw [19, 20]). When
investigating properties of these estimators, their convergence to some true underlying model
parameter, i.e. consistency, is often studied first, neglecting the order of this convergence
or just relying on v/N-convergence. But similar to the importance of convergence rates in

limit theorems for distribution functions (Cramer [9], Butzer, Nessel [8], Theorem of Butzer,
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Hahn, Westphal in Ganssler, Stute [14], p. 159, Butzer, Gather [6, 7], and many others), the
convergence rate in the weak or strong convergence of estimators should not be disregarded
either, especially when investigating outlier identification rules. We will show here, that in
the case of so-called outlier identifiers, as introduced for the multivariate setting by Gather
and Becker [16], following a univariate approach of Davies and Gather [12], the use of robust
estimators with a sufficient rate of convergence is highly recommendable.

In Section 2, we introduce the concept of outlier identifiers and summarize some results
concerning estimators, which are used in such identification procedures. The central part
of this paper is Section 3, which deals with relations between the convergence rate of an

estimator and properties of an identifier that is based on this estimator.

2 Identification of outliers in multivariate data

We concentrate here on methods for identifying outliers in data supposed to come from
a multivariate normal distribution, that is, the model distribution under consideration is
N(p,X), with p € IR ¥ € IRP*? positive definite. Following Gather and Becker [16], an

« outlier with respect to this distribution is defined as an element of the a outlier region
out(oz,ﬁ, Y)y:={x e IRP: (a— E)Tz_l(g - g) > X?);l—a}

for some given o € (0, 1).
In the same way, we can consider an ay outlier region out(ay, ¢, X)) when dealing with

1/N

a sample of size N. In this case, for a € (0,1) we have ay =1 — (1 — a)'/", where

Prusy(X € out(a, 4, %)) = a

and

PN(&E)(XZ» ¢ out(ozN,E,Z),i =1,..,N)y=1—-oqa.

Usually, the outlier region will be unknown and it is a statistical task to identify all
ay outliers in a sample gy = (_g ...,2y) which is possibly corrupted by ‘bad’ obser-

vations itself. Omne possibility to do this is to estimate the unknown outlier region and



identify all observations of gy lying in the estimated region as outliers. Such an empirical

outlier region may be defined by

OR(zn,an) :={z € I : (z—m) 'Sz —m)> ¢},

—_—\~

where m = m(zy) € IRP and S = S(zgny) € [RP*P, positive definite and symmetric,
are estimators for p and X, respectively. The constant ¢ = ¢(p, N,an) € IR is used for

normalization purposes, for example according to
PN(&E)(Xigé@(%(NvaN)vi:l7"'7N):1_a (1)

with ay =1 — (1 — )N and a € (0,1).

The set OR itself is also referred to as an ap outlier identifier.

Investigations of the properties of such identifiers show that the use of very robust
estimators m and S with high finite-sample breakdown points (cf. Donoho and Huber [13])
helps to avoid unfavourable effects of such rules such as masking and swamping (see e.g.
Rosner [18], Simonoff [22, 23], Hampel [17], Rousseeuw [19, 20], Bendre, Kale [5], Barnett,
Lewis [1], Becker [2], Becker, Gather [3]). Estimators of this kind are for example the
MCD estimators of Rousseeuw and Leroy [21] and the S-estimators introduced by Davies
[10]. At the same time, using estimators with this property yields finite limits for the so-
called maximum asymptotic bias of outlier identifiers. More precisely, the estimators m
and S must have a bounded maximum asymptotic bias themselves. We do not give the
exact definition of the maximum asymptotic bias here (cf. Becker, Gather [4] for details).
Roughly spoken, this bias indicates, how far away the respective estimator (m, S, OR) can
lie from the true (u, X, out), when there is a certain amount of maliciously placed outliers
in a sample. Therefore, a bounded maximum asymptotic bias is highly desirable.

However, the above mentioned condition of a bounded maximum asymptotic bias for the
estimators is only necessary, but not sufficient. We get an identifier with bounded maximum
asymptotic bias though, if we use estimators with this property and additionally guarantee
a certain maximum growth rate for the normalizing constant.

Let OR be an outlier identifier as defined above with corresponding normalizing constant

c(p, N,an). If the constant ¢ fulfills the condition c(p, N,an) = O(X2_o, (N = 00 ), then

3



the use of estimators m and S with bounded mazimum asymptotic bias in OR implies that
the bias of the identifier OR is bounded, too. (Proof: Becker, Gather [4]).
The growth of ¢(p, N, an) is related to the rate of convergence of the estimators m and

S used in OR.

3 Growth of the normalizing constant

The relationship between the growth rate of ¢ and the properties of m and S is not immedi-
ately obvious. First, notice that if m and S are consistent estimators for 4 and X, then with
Xy, Xy idd. ~ N(p, %), it follows that Y; := (X, —m)TS7Y( X, —m) are asymptotically

XZ distributed. Now, for the normalizing condition (1) we have

PN(EE)(XZ' € Rp\@(%(]\fva]\f)yi: 1 ,...,N) =] -«

& Pys( max (X, —m)"S(X, —m) < (p. N.ov)) = 1 —a

1=1,...,

Therefore, the constant ¢(p, N,an) equals the (1 — «)-quantile of the distribution of

'maXN(XZ» — m)TS_l(XZ» — m). This distribution can be determined asymptotically.
1=1,...,

Theorem 3.1 Let denote YV; := (X, —m)'S™YX, —m), i =1,..,N, with X; as above.
Then

lim PN fa(xp_yn)(max(Ye, .. Yn) = X2, _yyn) <y = exp(—exp(—y)).

N—oo

Here, fxz% denotes the Lebesque density of the x* distribution with p degrees of freedom.

Proof: Using a result of Galambos [15], p. 102, it can be shown that the y? distribution lies
in the maximum domain of attraction of the double exponential. Consider a distribution
function F' with Lebesgue density f and let w(F') < oo be the right endpoint of the support
of F. Further, let there exist some x; € IR such that Vo : 2y < 2 < w(F') the derivative
f'(x) exists and it holds that f(x) # 0. If

d 1-F
lim — J =0,



then I’ lies in the maximum domain of attraction of the double exponential. For the y?

distribution we only have to check the above limit, because all other conditions are obviously

fulfilled. Now, f(x) = fiz(x) = 2P (p/2) taP/? e/ 3 > 0, thus

d1=F@) _ @i Fe)
&I ()

and

S =P v
()

With the rules of I’'Hospital we get

L= Fe) ()

lim ——= = — L =—lm ————— =2
ehoo f(2) oo f1(2) PR E-1)L-1
Therefore, we can conclude that
. d 1—=F(x) 1
lim — ——= =—(—=)2—-1=0.
e de f(2) (=3)

Thus, the y? distribution lies in the maximum domain of attraction of the double exponen-

tial. That means, there exist sequences ay, by (by > 0), such that

L P max(Yi,...,Yy) —an
N—oo bN

<y =exp(—exp(—y)).

These sequences ay, by can be chosen according to (Galambos [15], p. 54, 105)

. 1 1—F(CLN)
=inf{z:1—-Fla)< =}, by = ———~
an = inf{z (x)—N}v N Flan)
Hence we get:
= inf{e il Fo) < =) = inf{e: F(a) > 1 — =} = F-1(1 — )
ay = Inf{z: x_N—m x: Flz)> N = ~

2
Xp;l—l/N?

2

where F'~! denotes the inverse of the X;

distribution function, and

1 - F(X?);I—I/N) . % _ 1
f(X?);l—l/N) f(X?);l—l/N) Nf(X?);l—l/N)

by =




2

Here, F, f denote the distribution function and Lebesgue density of the y;

distribution,
respectively.
Therefore, it follows that

lim PN fa(xa_yw)(max(Yy,..., Yy) = Xoq_in) <y = exp(—exp(—y))

N—oo

or, for large N,

P (max(Y,...,Yy) <y) >~ exp(— eXP(_foi(X?m—UN)(y - X?y;l—l/N)))‘

Corollary 3.1 Let OR be an outlier identifier, based on /N consistent estimators of lo-
cation and covariance and normalized according to (1). Then the normalizing constant
c(p, N,an) can, for large sample sizes N, be approzimated by

In(=In(1 — «a))
Nfa(X2y_yn)

e(p, N,an) ~ XZ;1—1/N -

where ay =1 — (1 — oz)l/N.

With this approximation, we can calculate the growth rate of ¢ for identifiers, which are

based on vV N consistent estimators.

Theorem 3.2 Consider an outlier identifier OR with m, S as above. Then the growth of

the normalizing constant ¢(p, N, an) is given by

C(p, N7 OéN) = O(X?);l—ozN) ( N_> oo )7

if condition (1) is used for normalization.

Proof: According to Corollary 3.1 we write (for large N)

In(=In(1 — «a))
fo% (nga;l—l/N) 7

C(p7 N7 aN) = X?);I—I/N -



where ay = 1 — (1 — a)'N. With this, we have

N
lim C(p; 7aN)
N—=co Xp;l—ozN
2
— lim Xpii—1/N N —In(=In(1 — a))

N—roo X;;(l_a)l/N X;;(l_a)l/NNfX%(X?p;l_l/N)

Application of the rules of I’'Hospital to the second summand yields

) ) 1 p—2 1
2 _ L b= 1
Nh_r}r;o foi(Xp;1—1/N) = Nh_lgr;o 5 2X129~1 o 5
thus
li ! 2
1m e
Noveo o Nfa(X34 4 /n)
and

m —In(=1In(1 — a))

=0.
N—roo X;;(l_a)l/NNfX%(XZ;l—I/N)

By similar arguments we calculate the limit of the first summand:

-1
lim M — lim FX% (1= 1/N)
Ve e N F((1T— o))
2
— lim USIHIENIY

N=eo  —(1 — a)l/N In(1 — O‘)fx%(X;g—UN)
p—2 1

QX;;(I_O[)l/N 2

= lim

—In(1 —a)fia(x2,_ + ==
( ) Xp( p,l I/N) QX;;l_l/N 2
=1

Therefore, we have
C(p ) N ) ON )

2 ”
Xp;l—ozN

lim
N—co

such that ¢(p, N,an) = O(X2q_a,) ( N— 00).

These results show that the use of v/ /N consistent estimators in outlier identifiers must

be strongly recommended.



4 Conclusion

Often, very robust estimators are proposed when having to deal with corrupted samples
or for the purpose of outlier identification. Sometimes we find the consistency of such
estimators proved, whereas the rate of convergence is not considered. For example, MVE
estimators, which are highly robust, only possess a converge rate of N'/? (Davies [11])
and can therefore not be recommended as a choice for the use in outlier identifiers as
defined above. On the other hand, MCD and S-estimators show the desired property of vV N
consistency. Our investigations show that the rate of convergence of robust estimators plays
an important role in multivariate outlier identification. Hence, calculating the convergence

rates of such estimators is indeed worth the trouble.
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