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Abstract

Objectives: Time series analysis techniques facilitate statistical analysis of variables in the course of
time. Continuous monitoring of the critically ill in intensive care offers an especially wide range of
applications. In an open clinical study time series analysis was applied to the monitoring of lab vari-
ables after liver surgery, and to support clinical decision making in the treatment of acute respiratory
distress syndrome.

Patients and Results: For the analysis of lab variables (blood lactate) in 19 patients after liver resec-
tions ARIMA (Auto Regressive Integrated Moving Average) models were developed for an estima-
tion period of at least 14 measurements. Prediction values from these models for the following data
points were then compared to the actual lab values. With these models in all cases of hepatic compli-
cations pathological changes in the lab values could be differentiated from random variance.
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Time series analysis in intensive care medicine. Applied Cardiopulmonary Pathophysiology 6:
263-281



2

In 25 patients with ARDS the effect of therapeutic interventions on pulmonary target variables (PVR,
QS/QT, AaDO2) was estimated with interrupted ARIMA models. The time series before the therapeu-
tic intervention was compared to changes under intervention using the same model including an in-
tervention regressor. With all therapeutic interventions clinically relevant therapeutic effects could be
statistically identified in all patients. Similarly, non-effective therapeutic maneuvers could be detect-
ed early, eventually changing therapeutic strategy.

Conclusions: Even on the basis of short time series of intensive care monitoring variables ARIMA
models could be successfully employed for the analysis of lab variables and of therapeutic interven-
tions. Nevertheless, due to high demands for manpower and to statistical methodological limitations
the general use of this methodology in clinical practice apart from controlled clinical studies cannot
be recommended today.
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1 Introduction

1.1 Decision making in intensive care

Today most of our bedside decisions are based on subjective judgement and experience rather than
on hard data and statistical analysis. Most of the time changes of a variable in time are more important
than one pathological value at the time of observation.

Traditional statistical methods, such as the t-test or the analysis of variance, are aimed at the analysis
of groups of measurements, i.e. groups of patients, at one or a limited number of points in time. None
of these methods helps with repeated measurements in a single, individual subject. This is exactly the
problem health care professionals face every day during their decision making process at the bedside.

The multitude of variables presented at the bedside precludes medical judgement. We can currently
be confronted with more than 200 variables in the critically ill during a typical morning round [1],
while an experienced physician may not be able to develop a systematic response to any problem in-
volving more than seven variables [2]. Moreover, humans are limited in their ability to estimate the
degree of relatedness between only two variables [3].
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This problem is most pronounced in the evaluation of the measurable effect of a therapeutic interven-
tion, where personal bias, experience, and a certain expectation of the respective intervention may dis-
tort an objective judgement [4].

Over the last two decades statistical methods have been developed that could help with these prob-
lems. Time series analysis techniques allow the assessments of single or multiple variables in the
course of time. Moreover, interrupted time series can be used to evaluate the effect of interventions
on a given variable of interest. Thus time series analysis techniques are statistical methods that may
offer a potential for statistically analyzing physiologic measurements in the individual patient.

1.2 Time series analysis in intensive care

Methods of time series analysis in general, intervention analysis and ARIMA models in particular,
first published in 1970 [5], are widely applied in psychology, psychometrics, sociology and epidemi-
ology [6, 7, 8, 9, 10]. Conversely there have been few investigations into this methodology in the field
of intensive care [11] or longitudinal physiological experiments [12]. This is surprising, as in inten-
sive care large amounts of data are acquired, registered and stored at regular or irregular time intervals
in one or multiple patients. Changes of single variables in the course of time due to pathophysiological
disturbances or therapeutic interventions offer in principal a broad range of potential applications for
time series analysis. Only with these statistical methods can so-called single case studies be done [13,
14].

ARIMA models appear to be very promising for intensive care time series analysis for a number of
reasons:

• ARIMA modeling facilitates very flexible and differentiated model development, which should in
theory well match and describe the complex underlying pathophysiology.

• ARIMA models assist forecasts with the use of confidence intervals.

• ARIMA models offer the statistical infrastructure for intervention analysis for the assessment of
the clinical effect of therapeutic interventions.

Still, four major problems with the application of ARIMA models to intensive care time series can be
anticipated:

• Missing observations are as frequent as variable time intervals between measurements. While reg-
ular time intervals can be accomplished by adaption of methods, missing values have to be bridged
through interpolation or by the application of a Kalman-filter.

• Artifacts constitute a further, notorious problem especially with on-line measurements of vital
signs, e.g. invasive blood pressure measurement or Holter ECG. Detected and identified artifacts
can be handled like missing values.

• A limited number of data points can mean a serious restriction to the applicability of time series
analysis in intensive care. The number of available measurements can be compromised both by the
critical state of the respective patient and the thus limited time for measurement, and by method-
ological and organizational problems (e.g. laboratory). From a conservative point of view, more
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than 50 observations are needed for a reliable estimation of an ARIMA-model [15]. But more re-
cent simulation experiments show that a number of 20 data points can be sufficient [16]. In recent
years different study groups could successfully develop ARIMA-models from time series of ap-
prox. 20 observations [6, 17].

• Although the calculation of ARIMA-models with intervention (interrupted time series) is regarded
more critical concerning the series length [8], intervention analysis have been successfully de-
scribed for time series with less than 20 observations on each side of the intervention [18].

The current study investigates two possible applications of time series analysis techniques in intensive
care medicine.

1.3 ARIMA-models

1.3.1 General

ARIMA-models are flexible and applied to a wide spectrum of time series analysis. The abbreviation
ARIMA stands for Auto Regressive Integrated Moving Average [19]. The general ARIMA-model
combines three processes: Autoregression (AR), differentiation in order to eliminate integration
(trend) of a time series (I), and moving average (MA). All three processes are based, generally speak-
ing, on the principle of random disturbances or shocks.

The notation of a general ARIMA-model expresses the order of each process with whole numbers.
An ARIMA-(p,d,q)-model, therefore, describes a time series with a p-th order autoregressive process,
a d-th order differentiation, and a q-th order moving average process.

The present discussion can only provide a general outline of this complex methodology. For a com-
plete description of these concepts, the comprehensive monographs by Box and Jenkins [19], and by
Schlittgen and Streitberg [20] are recommended for further reading, as well as the program libraries
from SPSS Inc. [23, 24, 25] for a complete description of the algorithms used in this paper.

1.3.1.1 Autoregressive (AR) Process

Definition [20]:

A stochastic process (Xt) is an autoregressive process of the order p, indicated by the notation AR(p),
where

εt is a white noise process.

Xt α1Xt 1– … αpXt p– εt t ℵ∈,+ + +=
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This equation formally represents a multiple regression, although, in this instance the determining
variable is not an independent variable, but the historic value of Xt itself.

Conceptually, an autoregressive process is one with a “memory”, in the sense that each value is cor-
related with all preceding values. Following this interpretation, each value in an AR(p)-process is de-
termined by p preceding values, where older values will have a fading effect. Low order processes,
therefore, only have a “short memory”. In an AR(1) process, also written as ARIMA (1,0,0), the cur-
rent value is a function of the preceding value, which is a function of the one preceding it, and so on.
Thus each shock or disturbance to the system has a diminishing effect on all subsequent time periods.
Low order AR-processes can be typically found to describe physiological variables.

1.3.1.2 Moving Average (MA) Process

Definition [20]:

A stochastic process (Xt) is a moving average process of the order q, indicated by the notation MA(q)
or ARIMA (0,0,q), where

εt is a white noise process.

The difference between an autoregressive process and a moving average process is subtle but impor-
tant. Each value in a moving-average series is a weighted average of the most recent random distur-
bances, while each value in an autoregression is a weighted average of the recent values of the series.
Since these values in turn are weighted averages of the previous ones, the effect of a given disturbance
in an autoregressive process dwindles as time passes. In a moving average process, a disturbance af-
fects the system for a finite number of periods (the order of the moving average) and then abruptly
ceases to affect it.

1.3.1.3 Differencing - Integration

A time series that reflects the cumulative effect of some process is called integrated. Such a time series
has a trend and is instationary.

The stationarity of a series is necessary for the estimation of AR and MA processes. Therefore, time
series that show a trend should be differenced, until stationarity is accomplished. In general first or
second order differencing will be sufficient for series with a trend to assure stationarity.

1.3.2 Steps in Using ARIMA

The model-building procedure, described by Box and Jenkins [19], consists of three steps: identifica-
tion, estimation, and diagnosis. These steps will be repeated until the model is satisfactory. This meth-

Xt εt β1εt 1–– …– βqεt q– q ℵ∈,–=
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od requires the active interaction of the investigator. Since the three steps will have to be repeated and
a number of repetitive steps are involved, this approach is also known as “iterative”.

A different approach is the application of a major number of models, where the order of the models
is varied over a wide range (e.g. AR processes with p = 1 - 20).

The models are then compared by a pre-defined goodness-of-fit criterion, and the best model will be
selected. This so-called (semi)automatic approach requires extensive computation times especially
for higher order models. For economic reasons it is, therefore, most often restricted to scientific ap-
plications.

1.3.2.1 Identification

The identification of the model is the determination of the order of the respective processes of the
ARIMA model.

It is necessary to difference the time series, until stationarity is accomplished. In addition, seasonal or
cyclical variation has to be eliminated through an appropriate seasonal differencing.

Then p and q will be determined. It should be noted that values for p and q between 0 and 2 are suf-
ficient to describe natural, observed time series.

The model identification will be derived from the analysis of the autocorrelation function and the par-
tial autocorrelation function of the respective time series (N = number of ob-
served time points). The plot of the autocorrelation coefficient as a function of
the lag τ is called the autocorrelation function (ACF) of the process.

The estimated ACF is given by

The ACF simply describes the autocorrelation between Xt and Xt+τ for τ ≥ 1, whereas the partial au-
tocorrelation function is the partial correlation of Xt and Xt+τ, for a constant process variable Xn, with
t < n < t + τ, between Xt and Xt+τ [20].

xt{ } t 1 …, N{ , }∈,
ρτ Corr Xt Xt τ+( , )=

ρ̂τ

1
N
---- xt x–( ) xt τ+ x–( )

t 1=

N

∑

1
N
---- xt x–( )2

t 1=

N

∑
------------------------------------------------------------= x

1
N
---- xt

t 1=

N

∑=,
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For practical purpose the calculation of the PACF is performed by use of the recursive formulas in-
troduced by Durbin [21]:

AR(p) processes have exponentially declining values of the ACF, and have precisely p spikes in the
first p values of the PACF.

MA(q) processes have precisely q spikes in the first q values of the ACF, and exponentially declining
values of the PACF.

For integrated processes (d > 0) the ACF declines very slowly. The processes first have to be differ-
enced before identifying the model.

Mixed AR and MA processes have more complex ACF and PACF patterns. Identifying them often
takes several cycles of identification - estimation - diagnosis. Beside the investigator’s experience and
knowledge handbooks with typical ACF and PACF plots can be helpful [25]. A selection of typical
ACF and PACF plots is depicted in diagram 1.

1.3.2.2 Estimation

The next step is the estimation of the individual parameters of the identified model. The number of
coefficients describing the model corresponds exactly to the order of the model. These coefficients
are then calculated using adequate algorithms. The values for the modeled series, the residuals, i.e.
the difference between the model and the actual series, the residual variance and the respective con-
fidence intervals are computed by applying the final coefficients. Even for simple models the compu-
tational demands are remarkable and require adequate hardware and software resources.

A detailed description of the necessary algorithms and computational procedures can be found in the
relevant literature.

1.3.2.3 Diagnosis

A number of different procedures can be employed to test whether the selected model is really a sta-
tistically sufficient description of the time series.

α̂p 1+ j, α̂pj α̂p 1+ p 1+, α̂p p j 1+–,–= j 1 … p, ,=,

α̂p 1+ p 1+,

ρ̂p 1+ α̂pjρ̂p 1 j–+
j 1=

p

∑–

1 α̂pjρ̂ j
j 1=

p

∑–

--------------------------------------------------------------=
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The diagnosis is based on the analysis of the residuals of the model. The ACF and PACF of the resid-
ual series should, especially with low order models, not be significantly different from zero.

After proper model identification and estimation residuals should constitute a white noise series. This
can be tested with the Box-Ljung Q-statistics, a modified Box-Pierce statistics [26], although it is con-
sidered unreliable with short time series below 50 observations. The use of Ansley residuals can offer
a better diagnostic estimation for short time series [27]. Unfortunately, this option is currently not
available in any commercial statistical software package.

The Durbin-Watson statistics can be used as an additional test for stationarity. Test values around 2
imply a lack of correlation, values close to 0 indicate a positive and values close to 4 a negative cor-
relation [28].

ACF PACF

ARIMA (0,0,1)

ACF PACF

ARIMA (0,0,2)

ACF PACF

ARIMA (1,0,0)

ACF PACF

ARIMA (2,0,0)

ARIMA (0,1,0)
[Integrated Series]

Diagram 1 Model identification: typical ACF and PACF plots for different ARIMA-Models.
Details in text.
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1.4 Clinical background

1.4.1 Blood lactate after liver resections

Elimination of peripheral lactate is a sensitive and reliable marker for hepatic function, as long as
states of abnormally high lactate production (e.g. septic shock, intestinal ischemia) can be ruled out
[29]. Recent clinical [30] and animal studies [31, 32] have demonstrated that blood lactate is a very
sensitive variable for hepatic function. Moreover, serial patterns of blood lactate levels after liver re-
sections appear to have prognostic value [33].

With very sensitive variables like blood lactate a marked variance can be observed even in healthy
subjects. Major changes, however, point to the presence of a pathological process. Therefore, the
problem is to differentiate between physiological variability and clinically important changes. Time
series analysis may help to determine the limit, where random changes become too large to be attrib-
uted to physiological variability.

1.4.2 Acute respiratory distress syndrome

Acute respiratory distress syndrome is a serious complication after trauma or surgery. The broad
range of etiological factors is contrasted by the rather uniform reaction of the lung [34, 35]:

• Pulmonary hypertension.

• Elevated intrapulmonary shunt, causing a decrease of paO2, and

• Release of mediators leading to secondary organ dysfunction (kidney, liver, coagulation, cardio-
vascular).

A release of arachidonic acid metabolites is characteristic of the early stages of ARDS [36, 37, 38].
In the course of the disease the intrapulmonary shunt (QS/QT) increases [39], which may be accom-
panied by mediator and mechanical destruction induced permeability edema of the lung induced by
mediators and mechanical stress [40]. This pathophysiological sequence results in a rapid increase in
the alveolar-arterial oxygen difference (AaDO2), which can be regarded as one of the most important
general parameters of pulmonary function [41, 42].

All ventilatory and medical support in ARDS is only a symptomatic treatment, which may also ex-
plain the great variety of therapeutic approaches, among which two basic therapeutic principles can
be distinguished:

The increase of the functional residual capacity of the lung (FRC) is to recruit alveolar space and re-
duce intrapulmonary shunt (“open up the lung”, [43]). This can typically be done by positive end-ex-
piratory pressure (PEEP) [44] as well as by inversed-ratio ventilation (IRV) [45, 46], or a combination
of both. Both techniques can induce volo- and barotrauma of the lung [47, 48]. Further side effects
are a cardio-vascular depression and renal impairment, as well as compensatory volume overload [34,
35, 38, 49]. Therefore, IRV and PEEP should be limited to the shortest possible time.
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Reducing elevated pulmonary vascular pressures is also an important approach to ARDS. Animal ex-
periments have shown an advantageous effect of nifedipine on thromboxane synthesis and thromb-
ocyte aggregation with a consecutive reduction of pulmonary vascular resistance [50, 51, 52]. Early
clinical studies in patients with ARDS and COLD had corresponding results [53, 54]. Studies in poly-
traumatized patients with ARDS showed a decrease of PVR and an improvement of pulmonary com-
pliance during the infusion of nifedipine [34, 35].

With either concept effectiveness in the individual patient cannot be predicted. Pronounced negative
effects on pulmonary function can be induced both by high airway pressures as well as by the vasodi-
lating potency of nifedipine. Therefore, it is of major importance to make therapeutic decisions on the
basis of statistical analysis of pulmonary variables in the individual patient.

1.5 Goal of the study

The use of ARIMA models for the analysis of intensive care data and for therapy control should be
evaluated under actual clinical conditions. ARIMA models were tested in two different applications.

• How time series analysis can contribute to a better and more precise description of lab variables,
and eventually support the clinical evaluation of the patient, compared to the physician’s profes-
sional judgement alone.

• Intervention analysis was also applied as a tool for testing effectiveness of intensive care therapeu-
tic interventions in the individual patient.

The primary goal of the present study is to evaluate the clinical applicability of time series analysis
techniques to medical problems. The actual medical applications used in this study have been chosen
at will from a large number of potential applications, and should serve as a vehicle to allow the use of
ARIMA-models. This study is not intended to evaluate the efficacy or effectiveness of any of the ther-
apeutic or pathophysiological principles presented in this paper.



11

2 Methods and materials

2.1 Patients

2.1.1 Blood lactate after liver resection

Nineteen patients (13 male, 6 female, mean age 52 years) were included in this study after liver resec-
tions of variable extent (5 right trisegmentectomies, 8 right hemihepatectomies, 1 left hemihepatec-
tomy, 5 segmental resections).

Starting two hours after end of surgery blood lactate levels were measured in the arterial blood in ad-
dition to other standard lab variables (blood count, coagulation, blood chemistry) every 12 hours. All
values were measured with automatic or semi-automatic standard methods [55].

In all patients elevated lactate levels (3.3 - 20.1 mmol/l) were rapidly eliminated during the first 24 to
36 postoperative hours. This period was excluded from model estimation.

2.1.2 Acute respiratory distress syndrome

In 25 cases (20 male, 5 female, mean age 58 years) of severe secondary ARDS after major gastrointes-
tinal surgery an extended hemodynamic monitoring with Swan-Ganz catheter was performed.

All patients met the NHLBI criteria [56] for severe ARDS for more than 24 hours. All patients were
ventilated in controlled ventilation (CMV) mode and with PEEP (PEEP = 8 -14 mbar), and received
catecholamines (dopamine/dobutamine) and analgosedation with opiates and benzodiazepines.

After the onset of ARDS the following measurements were recorded every hour:

• arterial and mixed-venous blood gas analysis,

• heart rate, arterial and pulmonary arterial pressures, central venous pressure, cardiac output (ther-
modilution),

• ventilatory variables.

The observation time ranged from 28 to 225 hours with a mean of 61 hours. Pulmonary vascular re-
sistance (PVR), intrapulmonary right-left shunt (Qs/Qt) and alveolar-arterial oxygen difference
(AaDO2) were calculated from the measured values with standard formulae.

Patients with an elevated intrapulmonary right-left shunt (QS/QT > 15%) were ventilated with inverse-
ratio ventilation (I:E > 1,5:1, max. 4:1) and increased PEEP (PEEP > 10 mbar, max 20 mbar).
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13 patients with elevated PVR (PVR > 200 dyn•sec•cm-5) received a continuous infusion of nife-
dipine at a dosage of 5 -10 µg/kg/h (20-30 mg/die). At the end of treatment the dose of nifedipine was
reduced slowly over 48 hours. 9 patients with an elevated intrapulmonary right-left shunt (QS/QT >
15%) were ventilated with inverse-ratio ventilation (I:E > 1,5:1, max. 4:1) and/or with PEEP (PEEP
> 10 mbar, max 20 mbar). 3 patients with both pathologies first received the continuous nifedipine
infusion and than the described change of ventilation mode after the nifedipine infusion had been
stopped.

2.2 Methods

For each patient after liver resection a time series analysis was done to differentiate significant chang-
es in blood lactate levels from random fluctuations.

For each patient in ARDS an intervention analysis was performed to access therapeutic effects.

Starting with twelfth hour of measurement in ARDS or with the seventh day after liver resection ARI-
MA models were developed for the previous measurements. Where possible, 20 or more observations
were used for estimation.

For model diagnosis a classical, iterative approach was preferred and only simple, low order models
with AR[p] ≤ 2, MA[q] ≤ 2, I[d] ≤ 1 used.

The initial values for p, q, and d were derived from the autocorrelation function and partial autocor-
relation function (ACF, PACF) of the original series, and after first order differentiation if necessary.
The final parameters of the model were calculated using Marquardt’s algorithm. If more than one
model appeared suitable for the series, all models were computed and the definite model selected by
the goodness of fit [20].

The goodness of fit was estimated by the ACF and PACF of the residual series. In addition, the Box-
Ljung statistics was applied [26], although it has only limited value with short time series [57]. Models
were only accepted when the residual series did not surpass the 95% confidence interval of the ACF
and the PACF.

The Akaike Information Criterion (AIC) and the Schwartz Bayesian Criterion (SBC) were also com-
puted [58, 59]. These criteria were especially useful to choose between different models for one se-
ries.

For each coefficient the t-statistics were determined, derived from the quotient of the coefficients and
the respective standard error, to test, whether the addition of the respective coefficient to the model
was appropriate. Only models were selected, in which the coefficients were significant on an 0.05-
level.

Finally, the root mean square error (RMS) and the Durbin-Watson statistics were computed, where
test values between 1.5 and 2.5 for the Durbin-Watson statistics were accepted. The later statistics be-
ing used to detect violations of stationarity.



13

After liver resection patients typically show elevated blood lactate levels, which is due to the intraop-
erative vascular exclusion of the liver. These levels return to normal after the first 24 to 36 hours[33].
This period was excluded from model estimation. After the first week of observation the actual values
for the last 24 hours were compared to the values predicted from the model for the previous measure-
ments. In the case of a normal clinical course the new values for these 24 hours were then integrated
into the model for the following 24 hours. Thus the estimation period was constantly enlarged and,
therefore, the reliability of the model improved.

For the prediction period of 24 hours maximum the values predicted by the model (including the 95%
confidence interval) were compared to the actual lab values. The clinical statement was reduced to the
dichotomous question of whether or not the actual measurements surpassed the 95% confidence in-
terval of the prediction period.

For patients suffering from ARDS in case of continuous compromised pulmonary function over the
estimation period of the model, one of two therapeutic interventions was done depending on the actual
physiological measurements.

For the period of infusion or the change of the ventilation mode, respectively, a dummy variable
(“STEP”) was set from 0 to 1.

For a therapeutic period of at least 12 hours the same ARIMA model was applied as for the estimation
phase. The dummy variable was integrated as an additional regressor to describe the therapeutic in-
tervention.

The model equation for an AR(I)MA model with an integrated step function

is given by

The parameter ω represents the size of the intervention effect and has to be estimated. The addition
of more step functions follows the same notation.

The analysis of the therapeutic effect was only done, when the model met the goodness-of-fit criteria
mentioned above.

A significant therapeutic effect was assumed, if PVR or QS/QT were reduced by at least 20% and the
t-statistics for the dummy variable showed a significance level of p < 0.05.

St
T( ) 0 t T<

1 t T≥



=

Xt α1Xt 1– … αpXt p– εt

β1εt 1– …– βqεt q– ωSt
T( )

–

p q, ℵ∈

,–

–+ + +=
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Over the whole observation period the cross-correlation function between PVR or QS/QT respectively
with AaDO2 was calculated. The values for PVR or QS/QT at the respective lags were introduced into
a linear regression analysis with AaDO2. Only if more than 50% of the variance of AaDO2 could be
statistically explained by the changes of PVR or QS/QT respectively, a positive treatment effect on
pulmonary function was accepted.

All analyses were computed with SPSS-X Release 5 and SPSS-X TRENDS for Sun Solaris 2.x.

All investigations were done at a 16-bed surgical intensive care unit in a tertiary care center during
routine operation.

3 Results

3.1 General Results

Simple models (p, q ≤ 2) were sufficient for a good model description in all time series. Actually, all
series could be described with first or second order autoregressive models. This appears plausible, be-
cause physiological measurements will typically exhibit a strong correlation to the most recent values
of the same variable.

Also for short estimation periods a model could always be developed, that met the goodness-of-fit cri-
teria. Twelve to sixteen observations appeared to be sufficient for a reliable model estimation under
the condition of a relatively small overall variance.

In most cases the models could be directly identified from the analysis of the autocorrelation and par-
tial autocorrelation functions. In only a limited number of cases was it necessary to develop more than
one model and select the final model by the goodness-of-fit criteria.

3.1.1 Liver resections

For the analysis of blood lactate values the final model could be directly diagnosed in 11 cases, where-
as in 8 cases two models each had to be develop, from which the final model was then selected.

For those cases where two models had to be calculated the estimation period was significantly shorter
than for those where the model could be directly derived from the ACF and PACF (19.75 vs. 27.5
observations; p < 0.02, U-test).

In 12 cases a first order AR-model was used, in 5 cases a second order AR-model, in one case each
an ARIMA-(1,1,0)-model and an ARIMA-(0,0,0)-model.
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The demographic data, models, parameters and variables for each patient are listed in table 1.

Three out of 19 patients died from hepatic failure in the postoperative phase.

In case of an uncomplicated course lactate levels stayed stable around 2 mmol/l (in some cases up to
4 mmol/l, a value that is considered pathologic in healthy subjects), and did never surpass the 95%
confidence interval of the individual ARIMA model.

With the onset of complications, e.g. portal venous thrombosis, fulminant hepatic failure, lactate lev-
els rose sharply and rapidly left the 95% confidence interval of the respective ARIMA model. In all
fatalities lactate levels left the 95% confidence interval at least 36 hours before death. Time series
analysis of lactate levels allowed a differentiation between random fluctuations and clinically relevant
changes.

Table 1 Liver resections. Demographic data, models, parameters, and diagnostic effect. Details
in text. (Sheet 1 of 3)
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3.1.2 Acute respiratory distress syndrome

In 16 patients with nifedipine therapy for 10 patients the model for PVR could be directly identified.
In the other 6 cases the final model had to be selected from up to three initial models. In 5 out of 12
interventions with IRV (including 3 patients after nifedipine therapy) more than one model had to be
developed to find the final estimate.

Thus in a total 28 therapeutic intervention analyses 11 cases required the comparative calculation of
more than one model. Also these 11 cases had a shorter estimation period (19.6 vs 24.8 observations),
although this difference is not significant (p < 0.1, U-test).

The majority of time series (22 cases) could be described with first order AR-models. One case re-
quired a second order AR-model, and in five cases a linear model was used.

The therapeutic effect could always be assessed after 12 to 24 hours. In most of those cases that
showed a significant effect of the dummy variable on the time series of PVR or QS/QT a significant
decrease of AaDO2 could also be observed after a time lag of 1 to 48 hours. Moreover, between 50%
and 96% percent of the overall variance of AaDO2 could be explained by the lagged values of PVR
or QS/QT, derived from the cross-correlation function. These observations were also well reflected in
the clinical course.
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In those cases where no significant therapeutic effect could be detected the therapeutic intervention
was reduced to initial values. A number of patients received an alternate therapy (e.g. IRV/PEEP after
futile nifedipine treatment). This new intervention was than controlled by time series analysis again.

Intervention analysis supported a more differentiated approach to therapeutic selection. It helped to
limit aggressive therapy to short time periods and to decide, whether a therapeutic intervention result-
ed in a detectable effect.

Ten of sixteen patients showed a significant drop in PVR in the time series model. In the other 6 cases
the therapeutic intervention (i.e. nifedipine) was, according to the statistical analysis, phased out.
From these, 3 patients were subjected to IRV in the later course.

These 3 (patients 2, 9, and 11) and another 9 patients were treated with IRV and PEEP. Again in 8
subjects a instantaneous effect on QS/QT could be observed. Two patients (patients 18 and 25) showed
no significant changes and were consequently returned to the initial ventilation pattern. In two other
patients (patients 19 and 24) the initial significant improvement displayed in the intervention analysis
could not be maintained in the later course. All four patients were then placed in prone position.

Fourteen of twenty-five patients deceased. In 13 cases the cause of death was an irreversible multi
organ failure. One patient suffered from an acute myocardial infarction during weaning, which could
not be seen as a direct consequence of ARDS.

With the exception of the latter case all patients displayed a good correlation between the clinical re-
sults and the findings of time series analysis.

The demographic data, models, parameters and variables for each patient are listed in tables 2 and 3.
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3.2 Casuistics

The following casuistics exemplify the practical application of ARIMA-models to clinical problems.
Two cases after liver resections and two cases of ARDS are chosen to show in detail the process of
development of the time series model, its diagnosis, and finally the clinical relevance of these find-
ings.

3.2.1 Liver resection

3.2.1.1 Patient 7: K.A., 64 years, male

This patient underwent a right hemihepatectomy for a hepatocellulary cancer. The postoperative
course was without complication and the patient was discharged from hospital on the 17th day after
surgery.

For the estimation period from 36 to 300 hours postop a first order AR model could be developed from
the analysis of the ACF and PACF. The final parameters with the corresponding t-statistics were:

AR1 = 0.63 S.E. = 0.14 t = 4.42 p < 0.001

const. = 1.19 S.E. = 0.14 t = 8.63 p < 0.001

The residual series never left the 95% confidence interval of the ACF and PACF. The Box-Ljung sta-
tistics showed no significant deviations.

Goodness-of-fit criteria:

AIC = 14.8 SBC = 17.2

root mean square error = 0.31

Durbin-Watson = 1.92

The actual lactate values did not surpass the predicted 95% confidence interval of the ARIMA model
for the time from the 312th hours postop until discharge (diag. 2).

3.2.1.2 Patient 2: J.K., 66 years, male

In this patient a right trisegmentectomy was done for a hepatocellulary carcinoma. A portal venous
thrombosis occurred 312 hour postop. The patient died on the 17th day after surgery.

The estimation period from 24 to 312 hours postop a first-order AR-model could be developed from
the ACF and PACF:

AR1 = 0.74 S.E. = 0.14 t = 5.33 p < 0.001

const. = 1.38 S.E. = 0.18 t = 7.77 p < 0.001



23

Again, the residual series never left the 95% confidence interval of the ACF and PACF. The Box-
Ljung statistics showed no significant deviations.

Goodness-of-fit criteria:

AIC =5.4 SBC = 7.8

root mean square error = 0.25

Durbin-Watson = 1.70

Starting at 324 hours postop lactate values deviated from the predicted model, immediately left the
95% confidence interval, and showed a steady increase until death of the patient (diag. 3).

3.2.2 Acute respiratory distress syndrome

3.2.2.1 Patient 4: A.P., 73 years, female

This patient was treated for a hepatocellulary carcinoma with a right hemihepatectomy. An ARDS of
unclear etiology developed immediately after surgery. During the first 16 hours the patient had a pul-
monary hypertension with a mean PVR of 250 dyn·sec·cm-5. The initial AaDO2 with a mean of 287

Diagram 2 Patient K.A., 64 years, male. Hepatocellulary carcinoma. Right hemihepatec-
tomy. Postoperative time series of lactate levels and ARIMA (1,0,0) model.
Details in text.
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mmHg reflected seriously damaged pulmonary function. For this initial period three different ARI-
MA models were diagnosed from the ACF and PACF. The goodness-of-fit criteria identified a first
order AR-model as the final model:

AR1 = 0.40 S.E. = 0.24 t = 1.65 p < 0.15

const. = 201.79 S.E. = 7.33 t = 27.55 p < 0.001

The residual series met the goodness-of-fit criteria:

AIC = 140.7 SBC = 142.3

root mean square error = 17.3

Durbin-Watson = 1.71

At the 17th hour a continuous nifedipine infusion was started at a rate of 0.8 mg/h. For the period of
infusion the intervention regressor “STEP” was set from 0 to 1.

For the following 16 hours the same ARIMA model was applied to the series with “STEP” as an ad-
ditional regressor (diag 4). The analysis showed a significant decrease of PVR by approx. one third
during nifedipine treatment:

AR1 = 0.62 S.E. = 0.14 t = 4.54 p < 0.001

const. = 197.81 S.E. = 8.45 t = 23.42 p < 0.001

Diagram 3 Patient J.K., 66 years, male. Hepatocellulary carcinoma. Right trisegmentec-
tomy. Postoperative time series of lactate levels and ARIMA (1,0,0) model.
Details in text.
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STEP = -77.15 S.E. = 10.69 t = -7.21 p < 0.001

The residual series did not violate the goodness-of-fit criteria. Neither the ACF and PACF nor the
Box-Ljung statistics showed significant deviations.

Goodness-of-fit criteria:

AIC = 266.1 SBC = 270.5

root mean square error = 14.0

Durbin-Watson = 1.73

The cross-correlation function showed a maximum at lag 8. The linear regression between PVR at
lag8 and AaDO2 revealed a significant correlation (r2 = 0.81; diag 5).

3.2.2.2 Patient 9: G.H., 58 years, female

This patient was shot in the thoracic and abdominal cavities at the site of a robbery. A central hepatic
laceration led to a severe hemorrhagic shock. During emergency surgery the patient developed a se-
vere ARDS. During the first estimation period of 12 hours both PVR and AaDO2 were significantly

Diagram 4 Patient A.P., 73 years, female. ARDS of cryptogenic origin after right hemihepa-
tectomy. Pulmonary hypertension. Therapeutic intervention (nifedipine-infu-
sion). PVR and ARIMA (1,0,0) model with 95% confidence interval. Details in
text.
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elevated to a mean of 250 dyn·sec·cm-5 and 377 mmHg respectively. For this period a linear model
could be identified:

const. = 249.73 S.E. = 6.97 t = 35.82 p < 0.001

Goodness-of-fit criteria:

AIC = 111.5 SBC = 112.0

root mean square error = 23.1

Durbin-Watson = 2.01

From the 13th hour on nifedipine was continuously infused at a rate of 1.2 mg/h. For the period of
infusion the intervention regressor “STEP” was set from 0 to 1. For the following 16 hours the same
ARIMA model was applied to the series with “STEP” as an additional regressor (diag. 6). The time
series analysis revealed no significant reduction of PVR but did reveal a slight but significant in-
crease:

const. = 249.73 S.E. = 9.42 t = 26.49 p < 0.001

STEP = 59.72 S.E. = 13.34 t = 4.45 p < 0.002

Goodness-of-fit criteria:

Diagram 5 Patient A.P., 73 years, female. PVR, AaDO2 and predicted values for AaDO2
based on a linear correlation between PVR at lag 8 and AaDO2. Details in text.
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AIC = 237.5 SBC = 239.8

root mean square error = 31.3

Durbin-Watson = 1.17

Thus the intervention analysis suggested a phase out of the nifedipine infusion was in order. Later it
was determined, that the patient had a long history of fixed pulmonary hypertension. Still, no satis-
factory explanation for the paradoxical increase of PVR under nifedipine infusion could be found.

During the following hours no improvement occurred and QS/QT remained high (between 25% and
30%) Thus IRV was applied.

For the 36 hours prior to the change of ventilation mode a first order autoregressive model was devel-
oped from the ACF and PACF for the series of QS/QT:

AR1 = 0.65 S.E. = 0.12 t = 5.32 p < 0.001

const. = 25.08 S.E. = 1.03 t = 24.30 p < 0.001

Goodness-of-fit criteria:

AIC = 168.4 SBC = 171.6

root mean square error = 2.3

Diagram 6 Patient G.H., 58 years, female. Thoracic and abdominal gunshot. ARDS. Thera-
peutic intervention 1 (nifedipine-infusion). PVR and ARIMA (0,0,0) model with
95% confidence interval. Details in text.
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Durbin-Watson = 1.99

Neither the ACF and PACF nor the Box-Ljung statistics showed significant deviations of the residual
series.

The effect of this therapeutic intervention was analyzed for the period from hour 37 to 54. The inver-
sion of I:E-ratio was assigned the intervention regressor “STEP1”.

A significant decrease of QS/QT was detected, where the model met the goodness-of-fit criteria
(diag. 7):

AR1 = 0.73 S.E. = 0.08 t = 8.81 p < 0.001

const. = 24.19 S.E. = 1.14 t = 21.25 p < 0.001

STEP1 = -8.20 S.E. = 1.63 t = -5.03 p < 0.001

Goodness-of-fit criteria:

AIC = 236.7 SBC = 242.7

root mean square error = 2.1

Durbin-Watson = 1.99

Diagram 7 Patient G.H. 58 years, female. Thoracic and abdominal gunshot. ARDS. Thera-
peutic intervention 2 (IRV). Qs/Qt and ARIMA (1,0,0) model with 95% confi-
dence interval. Details in text.
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As the intrapulmonary right-left shunt was still elevated, PEEP was increased from 14 to 20 mbar as
a second therapeutic intervention. This intervention was assigned the intervention regressor “STEP2”.
For a total of 87 hours the same first order autoregressive model was applied with the two intervention
regressors (STEP1 = 1 from hour 37, STEP2 = 1 from hour 55). Both regressors had a significant ef-
fect, and reduction of Qs/Qt by more than half could be observed (diag. 8):

AR1 = 0.76 S.E. = 0.06 t = 12.43 p < 0.001

const. = 23.59 S.E. = 1.12 t = 20.99 p < 0.001

STEP1 = -9.20 S.E. = 1.46 t = -6.31 p < 0.001

STEP2 = -5.05 S.E. = 1.49 t = -3.40 p < 0.001

Goodness-of-fit criteria:

AIC = 363.7   SBC = 373.6

root mean square error = 1.9

Durbin-Watson = 2.04

The residual series did not violate the goodness-of-fit criteria. Neither the ACF and PACF nor did the
Box-Ljung statistics show significant deviations.

Diagram 8 Patient G.H. 58 years, female. Thoracic and abdominal gunshot. ARDS. Thera-
peutic intervention 3 (IRV + PEEP increase). Qs/Qt and ARIMA (1,0,0) model
with 95% confidence interval. Details in text.
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The cross-correlation function showed a maximum at lag 0. The linear regression between Qs/Qt at
lag 0 and AaDO2 revealed a significant correlation (r2 = 0.68; diag. 9).

In both situations with ARDS intervention analysis helped choose the appropriate of two different
therapeutic modalities. The decision could be based on significant statistics for each individual pa-
tient. The results of time series analysis related well to the clinical course.

4 Discussion

In this study intervention analysis could be successfully applied to all cases. Also from short time se-
ries with 20 or less observations significant and interpretable models could be developed, if the anal-
ysis was restricted to simple, low order models. This assertion is supported by other recent studies on
short time series [6, 17]. Thus time series analysis for short series with approximately 20 data points,
as described by Zinkgraf and Wilson [16], appears to be a valuable method for studies in intensive care
medicine.

A combination of an iterative, or classical [19] and a so-called semi-automatic approach comparing
different models for one series [20] yields advantageous results especially for short time series.

Diagram 9 Patient G.H. 58 years, female. Thoracic and abdominal gunshot. ARDS. QS/QT,
AaDO2 and predicted values for AaDO2 based on a linear correlation between
QS/QT at lag 8 and AaDO2. Details in text.
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Short series and missing values present an important problem to the application of time series analysis
in intensive care medicine. Series with 12 to 16 observations appear sufficient for a successful model
estimation if the series has a moderate variance [11]. Such short series should not have missing values.

Missing values in series of more than 20 data points should be no obstacle for a reliable model esti-
mation. In these series missing values can be eliminated through linear interpolation or a Kalman fil-
ter.

In the majority of cases in this study where estimation periods of less than 20 observations were ob-
tained more than one model had to be developed, and that the final model could then be found by the
comparison of these different models. Although this approach proved to be clinically useful, it shows
a general limitation of ARIMA-models with very short time series.

The limitation to dichotomous questions, e.g. whether or not an observation lies within the confidence
interval of a time series model, can produce clinically significant statements even with short series.

Reliable intervention analysis with about 20 data point prior to and after the intervention were done
in several earlier studies [18]. Moreover, it has become obvious that symmetrical distribution of ob-
servations on both sides of the intervention is not required [60, 61]. Both results are of major impor-
tance for the application of interrupted time series analysis to intensive care problems.

The individual model identification and individual statistical evaluation of a single patient constitutes
an important and successful methodology in intensive care monitoring. Gordon [13] showed positive
results from the application of a multi-state Kalman filter to follow-up after kidney transplantation.
Moreover, several other authors propose so-called single-case studies with the help of time series
analysis [14, 62]. With these methods therapeutic effects can be reliably detected in a intra-individual
cross-over, so that the course of the individual patient can be statistically analyzed [63, 64].

In socio-economics intervention analysis techniques have seen a broad recognition. With these meth-
ods the effect of a single event on a target variable can be easily and reliably estimated [8, 18, 60, 61].

In the assessment of changes in time of lab variables time series analyses can help to differentiate be-
tween random fluctuations and clinically relevant, pathological changes with high precision. As
shown in this study, changes can be quickly and reliably detected with further diagnostic and thera-
peutic measures initiated at an early stage. Other work groups have succeeded in the application of
this statistical approach to the lab monitoring of the chronically ill [65].

In the field of intensive care monitoring intervention analysis helps to detect and evaluate the effects
of therapeutic interventions in the individual patient. Our study shows, that the effects of therapeutic
measures in ARDS can be precisely analyzed. For the individual patient statistically relevant conclu-
sions can be derived. This offers the opportunity to decide whether a specific therapy should be con-
tinued.

Therefore, time series analysis supports a differentiated statistical approach to intensive care monitor-
ing and to the clinical assessment of the effectiveness of therapeutic interventions.
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Despite the great potential value time series analysis methods in general and ARIMA models in par-
ticular may exhibit in intensive care medicine, a number of serious practical problems became obvi-
ous in our investigation:

• Due to the interactive model development a profound personal understanding of the statistical
methodology is indispensable.

• The determination of the correct span of the confidence intervals still needs clinical validation.

• ARIMA models are relatively vulnerable to violations of model assumptions (stationarity, normal
distribution of the disturbances), which cannot be ruled out in intensive care databases. ARIMA
models are especially sensitive to the presence of outliers. The application of robust methods
seems to be necessary for further research.

• The models used in this study represent univariate analyses. More complex relationships in the
course of time can only to a limited extent, if at all, be described.

Therefore, the development of medical time series analysis should aim at the analysis of complex re-
lationships and at an improvement of robustness of the statistical models. Moreover, it is desirable
that methods that offer an automatic model diagnosis and estimation for use in clinical routine at the
bedside will be developed.

5 Speculations

Time series analysis techniques hold a great potential for clinical applications.

In the research field they allow to quantify and test changes in time in the individual subject, which
can help e.g. in phase 1 and 2 pharmacological studies. Currently univariate single case studies with
and without intervention are feasible. Future developments are directed at algorithms for multiversity
time series analysis.

In clinical practice time series analysis support a more analytical and reproducible approach toward
the evaluation of pathological changes and therapeutic effects in the individual patient. Present re-
search aims at the development of automatic methods for time series analysis, that would allow an
instantaneous statistical analysis at the bedside. This would offer an option to the health care profes-
sional for a more reliable evaluation of the individual treatment.

Some time series analysis methods, e.g. the Kalman-filter, could also be used for on-line analysis of
physiologic monitoring data. The generation of time series models including confidence intervals
could dramatically enhance trend analysis, not only could the slope of a trend be calculated but also
outliers, which could represent clinically significant changes. Moreover, in the long run these tech-
niques could be employed to generate smart alarms, that may be more reliable and less error prone
than currently used simple limit alarms.
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Therefore, it appears that it may be rewarding to invest further efforts into the development of medical
time series analysis techniques.
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7 List of abbreviations

7.1 Abbreviations in text

7.2 Abbreviations and symbols in formulas

AaDO2 alveolar-arterial oxygen tension gradient

ACF autocorrelation function

AR autoregression

ARIMA autoregression integration moving average

HR heart rate

IRV inverse ratio ventilation

lag number of time intervals between observations (measure-
ments)

MA moving average

PACF partial autocorrelation function

PEEP positive end-expiratory pressure

PVR pulmonary vascular resistance

Qs/Qt intrapulmonary shunt

SpO2 pulse oximetry

process variable at time t

observed value (measurement) at time t

number of observed values (= number of measurements in time
series

autocorrelation between  and

estimate of

process mean (estimated)

order of an AR-process

order of an MA-process

Xt

xt

N

ρτ Xt Xt τ+

ρ̂τ ρτ

x

p

q
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running index

coefficient in AR-model

estimate of

estimate of the j-th coefficient in an AR(p)-model

coefficient in AR-model

estimate of

estimate of the j-th coefficient in an MA(q)-model

time lag

white noise process at time t

size of the intervention effect

j

α j

α̂ j α j

α̂p j,

β j

β̂ j β j

β̂q j,

τ

εt

ω


