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Summary

The behaviour of group sequential tests in the two-sample problem is in-

vestigated if one replaces the classical non-robust estimators in the t-test

statistic by modern robust estimators of location and scale. Hampel's 3-part

redescending M-estimator 25A used in the Princeton study and the robust

scale estimators length of the shortest half proposed by Rousseeuw & Leroy

and Q proposed by Rousseeuw & Croux are considered. Of special interest

are level, power and the average sample size number of the tests. It is inves-

tigated, whether commerical software can be used to apply these tests.

Key words: Average sample size number; Group sequential test; Length of

the shortest half; Outliers; Redescending M-estimator; Robustness; Scale

estimator Q.
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1. Introduction

The famous Princeton study (Andrews et al., 1972) had a strong in
uence

for further research on robustness. Much recent research concentrates on ro-

bustness properties of estimators for a �xed sample size, e.g. the behaviour of

the in
uence function, breakdown point, maximal bias curve, and e�ciency

considerations, e.g. Huber (1981), Hampel et al. (1986) and Davies (1993).

There are di�erent strategies based on robust estimators to identify outliers,

c.f. Hampel (1985), Rousseeuw & van Zomeren (1990), and Davies & Gather

(1993). In some areas of applied statistics, e.g. in planning and analyzing

clinical trials, group sequential plans play an important role. Such plans

can reduce the average sample size number (ASN), i.e. the expected sample

size when the test stops, which is attractive from ethical, time and �nancial

aspects, c.f. Pocock (1977) and Pocock (1983, p.142�.). In contrast to the

�xed sample size case, much less research has been published on the applica-

tion of robust estimators to group sequential plans. However, already Pocock

(1977) considers in his fundamental paper a group sequential Wilcoxon test.

Mehta et al. (1994) investigate exact permutational tests for group sequential

clinical trials with special emphasis on the non-parametric group sequential

Wilcoxon test. Silvapulle & Sen (1993) propose robust tests based on a Wald-

type statistic in group sequential plans for one- and two-sided hypotheses in

the linear model. The authors demonstrate by simulating a two-way analysis

of variance model that their test based on an M-estimator corresponding to

Huber's Proposal 2 (Huber, 1981) is power robust in contrast to the test

depending on the least squares estimator.

The aim of the present paper is to study the behaviour of group sequential

two-sample tests for location di�erence if one replaces the classical non-robust

estimators in the t-test statistic by modern robust estimators for location

and scale. Four criteria will be considered: the actual level and power of the

test, the average sample size number, and the bias of the naive estimated

standardized treatment di�erence. It is investigated, whether commerical

software, e.g. EaSt (1993), can be used to apply these tests.
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2. Group sequential design

Consider the following group sequential plan for the two-sample situation.

Denote the maximal sample size for each of both treatment groups by N ,

and the maximal number of interim tests by K, K � 1. Let nj be the sample

size at stage j for each treatment group, and Nj = n1+ :::+nj be the sample

size up to stage j for each treatment group, 1 � j � K. Assume that there

are independent random variables X1; :::; XN each with distribution function

F ((� � �1)=�), and Y1; :::; YN each with distribution function G((� � �2)=�).

The location parameters �1 2 IR, �2 = �1+�� 2 IR, and the scale parameter

� 2 (0;1) are unknown. Let � = ��=� 2 (0;1) denote the standardized

treatment di�erence. The usual distribution assumption is that F and G are

Gaussian. We will consider the two-sided testing problem

H0 : � = 0 vs: H1 : � 6= 0: (2.1)

Of course, one-sided tests can be treated in an analogous manner. Group

sequential tests will be considered which can only reject the hypothesis H0

early, c.f. Pocock (1977). However, other group sequential test procedures

can also be used, e.g. procedures proposed by O'Brien & Fleming (1979),

Wang & Tsiatis (1987), Lan & DeMets (1983), and DeMets & Lan (1994).

De�ne the test statistic Tj at stage j by

Tj =
q
Nj

�̂1;Nj
� �̂2;Njq

�̂21;Nj
+ �̂22;Nj

; 1 � j � K: (2.2)

The test decision of the test at stage j is de�ned by :

jTjj > c(j) : STOP; Decision for H1

jTjj � c(j) and j < K : Continue with stage j + 1

jTK j � c(K) : STOP; Decision for H0,

where c(j) denotes the critical constant at stage j 2 f1; : : : ; Kg. In the

simulation we will consider the case c(j) = c ja�0:5 where a is some �xed

constant, c.f. Wang & Tsiatis (1987). The probability for an error of type I
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is distributed on the di�erent stages of the interim tests such that

P�=0(9 j 2 f1; : : : ; Kg; jTjj > c(j)) = �:

It is well-known that the maximum likelihood estimator of � will often be

biased even under the classical normality assumption if this estimator is

computed after a group sequential test has stopped and di�erent bias reduc-

tion methods have been proposed, e.g. Cox (1952), Whitehead (1986), and

Kim (1988, 1989). In this paper it is investigated how di�erent pairs of dis-

tributions (F;G) and di�erent pairs of robust estimators for (�1; �2; �1; �2)

in
uence the bias of the naive estimator for � given by �̂ = (�̂2� �̂1)=[(�̂
2
1+

�̂22)=2]
1=2.

3. Estimators

Three pairs of estimators will be considered for the unknown location and

scale parameters. Of course, the classical estimators 'mean' �X and 'standard

deviation' S are used. Hampel's three-part redescending M-estimator 25A

(Andrews et al., 1972) is one of the best location estimators in the Princeton

study because 25A is asymptotically normal distributed and it has good

robustness and good e�ciency properties. It is de�ned as solution of

nX
i=1

 (
yi � �

�̂
) = 0 ; (3.1)

where

 (r) = r if 0 � jrj � a

= a sign(r) a � jrj � b

= a c�jrj

c�b
sign(r) b � jrj � c

= 0 jrj > c ;

and a = 1:645, b = 3:0, c = 6:5, �̂ is a scale estimator. In the Princeton

study 25A is based on the scale estimator 1:483�MAD, where MAD denotes

the median of the absolute deviations from the median. Recent work shows
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that there are other robust scale estimators which are promising alternatives

to 1:483�MAD.

Denote the order statistics of Y1; : : : ; YN by Y1:N � : : : � YN :N . Rousseeuw

& Leroy (1988) propose the scale estimator 'length of the shortest half'

SH = 0:7413 � fYh+k�1:N � Yk:N ; k = 1; :::; [[(n + 1)=2]]g ; (3.2)

where h = [[n=2]]+1, and [[r]] is the greatest integer less than or equal to r, r �

0. The constant 0:7413 is a correction factor which yields Fisher-consistency

for normally distributed errors. Rousseeuw & Leroy (1988) consider also

a modi�cation of SH, say SH�, where the constant 0:7413 is replaced by a

constant cn to give approximately unbiased estimation results for normally

distributed errors. Rousseeuw & Leroy (1988) show that SH has a breakdown

point of approximately 0:5 and that the bias of SH can be much lower than

the bias of 1:483�MAD if there are many outliers, see also Martin and Zamar

(1993). Gr�ubel (1988) and Davies (1990) prove that SH is asymptotically

normal. Some other properties of SH are given in Christmann, Gather &

Scholz (1994).

Croux & Rousseeuw (1992a,b) and Rousseeuw & Croux (1993) consider other

robust alternatives to the median absolute deviation. They propose a class of

high breakdown point scale estimators based on subranges, e.g. Q, and gave

time e�cient algorithms to compute such estimates. The scale estimator Q

based on random variables Y1; : : : ; YN is de�ned by

Q = 2:2219 � dN � fjYi � Yjj; 1 � i < j � Ng
L:(N(N�1)=2)

; (3.3)

where h = [[N=2]] + 1, L = h(h � 1)=2, dN = N=(N + 1:4) for N odd, and

dN = N=(N + 3:8) for N even. Croux & Rousseeuw (1992b) propose to use

other values of dN for sample sizes N � 9. However, in the present paper Q

will only be used for sample sizes larger than 9. The estimator Q has a �nite

sample breakdown point of approximately 0:5 but in contrast to 1:483�MAD,

Q has a smooth and bounded in
uence function at the standard normal dis-

tribution. Further, Q is asymptotically normal. The gaussian e�ciency of Q
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is 82% in contrast to 37% for 1:483�MAD, c.f. Rousseeuw & Croux (1993).

In this article, the very robust estimator SH and the more e�cient estimator

Q are used as robust scale estimators.

4. Design of the simulations

The tests with test statistic (2.2) are based on three pairs of estimators:

( �X;S), (25A,SH), and (25A,Q). Three di�erent distributions will be con-

sidered. Let N(0; 1) be the standard normal distribution, t3 Student's t-

distribution with 3 degrees of freedom, and MIXN a mixture of two nor-

mal distributions, which is de�ned by 0:9N(0; 1) + 0:1N(10; 102). The stan-

dard normal distribution is choosen for two reasons. It is a symmetric

distribution with thin tails and many papers and commercial software for

planning and analyzing group sequential studies, e.g. EaSt (1993) and the

SAS/IML functions SEQ, SEQSCALE and SEQSHIFT (SAS, 1995) assume

normally distributed errors in the test problem given in (2.1). Student's

distribution t3 is symmetric with heavier tails than N(0,1) and is often a

good approximation to the distribution of high quality data, c.f. Ham-

pel et al. (1986, p. 23). The mixture distribution given above is asym-

metric and produces extreme outliers. We consider seven di�erent pairs of

distributions (F;G): (N(0; 1);N(0; 1)), (N(0; 1); t3), (N(0; 1);MIXN), (t3; t3),

(t3;MIXN), (MIXN;MIXN), and (MIXN;N(0; 1)). Five values of � are con-

sidered: � 2 f0; 0:25; 0:5; 0:75; 1:0g. The number of simulations for each

design point is 10; 000. In the simulations � = 0 and � = 1 are used which

is no limitation because the considered estimators have the usual invariance

properties.

Three di�erent group sequential plans are considered. The corresponding

critical constants are determined from simulations based on 10; 000 replica-

tions. The parameters are listed in Table 1. We assume n1 = : : : = nK.

The values of NK = K � n1 are chosen using the software package EaSt

(1993) such that the group sequential t-test has a power of approximately

1� � = 0:95 at (F;G) = (N(0; 1);N(�; 1)) and � = 0:5.
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Table 1

Parameters for group sequential plans

Plan � K n1 a c for estimator pair

( �X;S) (25A; SH) (25A;Q)

Pocock 0:05 3 40 0:5 2:2934 2:6473 2:3355

Pocock 0:01 5 34 0:5 3:0442 3:5630 3:1241

Wang & Tsiatis 0:01 5 34 0:4695 3:1308 3:6210 3:1902

Further, an O'Brien-Fleming design with Lan and DeMets boundaries with

K = 5 interim tests at the processing times 0:4, 0:7, 0:8, 0:9, 1:0 is used.

For level � = 0:05 and power 1� � = 0:90 the maximal total sample size of

36+27+9+9+9 = 90 is used for each treatment group. This simulation is

done to investigate, whether the same critical constants can be used for the

group sequential test based on (25A;Q) as the commerical software package

EaSt from Cytel uses for the classical test assuming normality provided that

the sample sizes are not too small. I.e. the critical values for both tests

at the 5 stages are 3:28492, 2:43011, 2:32008, 2:19412, and 2:08368, respec-

tively. In this simulation the test statistic for the group sequential test based

on (25A;Q) is divided by appropriate constants depending on the sample

sizes Nk such that the standardized test statistic has an approximately stan-

dard normal distribution under H0, k = 1; :::; 5. These constants are 1:0149,

1:0038, 1:0030, 1:0221, 1:0135, respectively. All simulations are based on

10000 replications.

5. Results

The results for all considered designs are very similar. Therefore, only the

results for Pocock's plan with K = 3 interim tests (Tables 2, 3 and 4) and

for O'Brien-Fleming's design with Lan and DeMets boundaries with K = 5

interim tests (Table 5) are shown in detail. The results for � = 0:75 are not

shown because they are intermediate to those for � = 0:5 and � = 1:0.

First, Pocock's plan is considered. If the distributions in both treatment

groups are normal, the group sequential t-test has higher power and lower
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average sample size number than the other two tests under consideration, c.f.

Tables 2 and 3. For most other situations considered in our simulations the

group sequential tests based on the robust estimators (25A,Q) and (25A,SH)

show a better behaviour than the t-test.

Please insert Table 2

If the distribution is not normal in at least one treatment group but t3 or

MIXN, the application of the t-test can be dangerous. It can happen that

the probability of an error of type I is approximately equal to �, but that the

power is drastically reduced and the average sample size number is markedly

higher than for normally distributed data. In the simulations this happens

for the pairs (F;G) equal to (N(0,1), t3), (t3, t3), and (MIXN, MIXN).

An application of the t-test can be very dangerous, too, for the other three

pairs of (F;G), i.e. (N(0,1), MIXN), (t3, MIXN), and (MIXN, N(0,1)), but for

other reasons. For these pairs of distributions the t-test can have a probability

for an error of type I which is drastically higher than �, in our simulations

even higher than 10�. In these cases, the average sample size number of the

t-test can be lower or higher than for normally distributed data.

For normally distributed data the power of the test based on (25A,Q) is only

a few percents lower than for the t-test, and the average sample size number

is only slightly higher than for the t-test. If in at least one treatment group

the distribution is not normal, but t3 or MIXN, the application of a group

sequential test based on (25A,Q) is much safer with respect to level, power

and average sample size than the use of the t-test. For the robust test the es-

timated power values increase and the average sample size numbers decrease

with increasing treatment di�erences j�j. Both points are not always true

for the t-test, c.f. the pair of distributions (MIXN, N(0,1)).

Please insert Table 3

The group sequential test based on (25A,SH) shows a similar behaviour than

the one based on (25A,Q) in our simulations. In general, the test based on
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(25A,SH) has a somewhat lower power than the one based on (25A,Q) for

normally distributed data. There are pairs of distributions (F;G), where the

test based on (25A,Q) has higher power than the one based on (25A,SH) and

vice versa. A similar result holds for the average sample size numbers. This

behaviour is plausible because the scale estimator SH has a lower e�ciency

for normally distributed data than Q, and SH is more robust than Q, c.f.

Rousseeuw & Croux (1993).

The estimated values of Median(�̂��) are given in Table 4. Non-parametric

95% con�dence intervals based on the 4902�th and 5099�th order statistics

for Median(�̂ ��) are computed, c.f. Ser
ing (1980, p. 102f). The widest

con�dence interval, i.e. the greatest di�erence between these order statistics,

has the length 0:021.

Please insert Table 4

For normally distributed data the estimated values of Median(�̂) are approx-

imately equal to zero under H0 but tend to be greater than � for positive

values of �. For such data, �̂ based on ( �X;S) and (25A,Q) have comparable

biases, but - as could be expected - the bias is not negligible for � 6= 0, espe-

cially for � = 0:5. Note, that � = 0:5 is the value, for which the power of the

tests should be approximately 0:95. For normally distributed data, the ap-

plication of (25A,SH) yields greater biases than the other pairs to estimators

if � > 0.

For all six considered situations with non-normal data, the classical pair

( �X;S) yields values of Median(�̂) which can drastically di�er from � in

both directions. For such situations, the application of (25A,Q) or (25A,SH)

allows a much more stable estimation of �. However, none pair of estimators

which is considered dominates the others for all situations.

Overall, the pair (25A,Q) yields the best results in the simulations from

two aspects. For normally distributed data the results based on (25A,Q)

do not di�er too much from those produced by ( �X;S), whereas (25A,Q)

yields more robust results with respect to actual level and power of the
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test, average sample size number, and bias of the estimated standardized

treatment di�erence. In our simulations, the test based on (25A,SH) does not

give much more robust results than the one based on (25A,Q) for non-normal

data, but for normally distributed data the loss of power using (25A,SH) is

greater than for (25A,Q).

Therefore, for O'Brien-Fleming's design with Lan and DeMets boundaries

and K = 5 interim tests only the group sequential t-test and the test based

on (25A;Q) are considered. The results are very similar to those given before.

The strategy is to use the same critical values as are used in EaSt (1993) and

to divide the test statistic based on (25A;Q) by an appropriate constant,

such that the standardized test statistic has approximately a standard nor-

mal distribution under H0. This follows from (2.2) and Slutzky's theorem,

because the considered scale estimators are consistent and the M-estimator

25A is asymptotically normal. This strategy avoids to determine the exact

critical values via simulations. Table 5 shows that this is successful for mod-

erate sample sizes, because level, power, and averaged sample size number

are very similar to those for the group sequential t-test under normality, but

yield similar robustness properties under the considered alternatives. This is

also true for the naive estimator for �.

Please insert Table 5
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Table 2
Estimated values of level and power (in percent) for

two-sided group sequential Pocock tests;
Plan 1: K = 3, � = 5%, 1� � � 95% for � = 0:5.

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 5:0 5:0 5:0
t3 4:9 6:2 5:5
MIXN 59:2 4:6 3:6

t3 t3 5:2 7:5 6:0
MIXN 53:8 5:8 4:3

MIXN MIXN 4:1 3:9 2:8
N(0; 1) 59:3 4:5 3:8

� = 0:25 N(0; 1) N(0; 1) 42:3 37:9 40:7
t3 26:5 35:1 34:3
MIXN 88:7 35:7 36:5

t3 t3 20:0 32:6 29:4
MIXN 82:6 33:5 31:3

MIXN MIXN 6:4 28:3 24:9
N(0; 1) 26:5 29:7 27:0

� = 0:5 N(0; 1) N(0; 1) 95:2 93:1 94:5
t3 76:1 87:9 87:9
MIXN 98:7 91:3 92:0

t3 t3 60:1 82:9 80:4
MIXN 96:3 86:0 84:8

MIXN MIXN 13:7 85:7 83:0
N(0; 1) 10:8 88:7 87:2

� = 1 N(0; 1) N(0; 1) 100:0 100:0 100:0
t3 99:7 100:0 100:0
MIXN 100:0 100:0 100:0

t3 t3 98:2 100:0 100:0
MIXN 99:9 100:0 100:0

MIXN MIXN 39:6 100:0 100:0
N(0; 1) 14:8 100:0 100:0
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Table 3
Estimated average sample size number (ASN) for
two-sided group sequential Pocock tests; Plan 1

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 117:5 117:3 117:6
t3 117:6 116:6 117:3
MIXN 104:1 117:5 118:3

t3 t3 117:5 116:1 117:1
MIXN 105:1 116:8 117:8

MIXN MIXN 118:2 117:9 118:7
N(0; 1) 103:9 117:4 118:0

� = 0:25 N(0; 1) N(0; 1) 103:9 104:6 104:7
t3 109:7 105:3 107:1
MIXN 86:2 106:0 107:1

t3 t3 112:3 106:5 108:9
MIXN 89:1 106:3 108:5

MIXN MIXN 117:1 108:7 111:3
N(0; 1) 114:0 108:0 110:4

� = 0:5 N(0; 1) N(0; 1) 67:8 69:7 69:6
t3 85:2 74:6 77:2
MIXN 66:6 72:5 74:1

t3 t3 94:6 78:8 83:2
MIXN 71:5 77:1 80:7

MIXN MIXN 114:2 78:5 83:6
N(0; 1) 116:1 75:7 79:7

� = 1 N(0; 1) N(0; 1) 40:6 40:8 40:8
t3 47:2 42:1 42:7
MIXN 44:9 41:3 41:6

t3 t3 55:3 43:7 45:1
MIXN 48:5 42:9 43:9

MIXN MIXN 102:8 42:3 43:8
N(0; 1) 110:4 41:8 42:7
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Table 4

Estimated values for Median(�̂��) for
two-sided group sequential Pocock tests; Plan 1

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) �0:001 0:001 0:000
t3 0:001 0:003 0:003
MIXN 0:320 0:012 0:017

t3 t3 0:002 0:002 0:002
MIXN 0:307 0:013 0:016

MIXN MIXN 0:000 �0:003 �0:002
N(0; 1) �0:320 �0:014 �0:018

� = 0:25 N(0; 1) N(0; 1) 0:011 0:030 0:010
t3 �0:057 0:015 �0:018
MIXN 0:159 0:024 �0:003

t3 t3 �0:091 �0:004 �0:042
MIXN 0:147 0:009 �0:026

MIXN MIXN �0:192 �0:009 �0:045
N(0; 1) �0:482 �0:006 �0:041

� = 0:5 N(0; 1) N(0; 1) 0:047 0:123 0:049
t3 �0:079 0:096 �0:004
MIXN 0:019 0:101 0:017

t3 t3 �0:145 0:046 �0:054
MIXN �0:008 0:060 �0:039

MIXN MIXN �0:382 0:037 �0:061
N(0; 1) �0:650 0:069 �0:029

� = 1 N(0; 1) N(0; 1) 0:001 0:140 �0:007
t3 �0:223 0:066 �0:112
MIXN �0:327 0:075 �0:093

t3 t3 �0:342 �0:006 �0:195
N(0; 1) �0:358 0:006 �0:174

MIXN MIXN �0:752 0:000 �0:191
N(0; 1) �0:984 0:053 �0:127
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Table 5
Estimated values of level, power (in percent) and ASN for
two-sided group sequential O'Brien-Fleming tests with

Lan and DeMets boundaries; K = 5, � = 5%, 1� � � 90% for � = 0:5.

Hypothesis Distributions P�(decision for H1) ASN
F G ( �X;S) (25A;Q) ( �X;S) (25A;Q)

� = 0 N(0; 1) N(0; 1) 5:0 5:0 89:2 89:2
t3 5:3 5:9 89:2 89:0
MIXN 51:4 4:4 82:9 89:3

t3 t3 5:5 6:1 89:2 89:0
MIXN 47:5 4:6 83:5 89:3

MIXN MIXN 4:9 3:0 89:4 89:5
N(0; 1) 51:8 4:4 83:0 89:4

� = 0:5 N(0; 1) N(0; 1) 90:9 89:8 66:1 66:6
t3 69:6 81:6 74:7 70:4
MIXN 95:7 86:4 67:3 69:0

t3 t3 53:5 73:5 79:4 73:5
MIXN 92:4 78:6 69:7 72:4

MIXN MIXN 13:4 77:1 87:9 73:8
N(0; 1) 9:7 80:2 88:7 71:8
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6. Discussion

The investigated group sequential tests based on modern robust location

and scale estimators give much more stable results than the group sequential

t-test under the distributions considered here. On the other hand, under

normality one does not loose much information if one uses tests based on

modern robust estimators instead of the t-test.

The group sequential test based on Hampel's 3-part M-estimator 25A and the

scale estimator Q proposed by Rousseeuw and Croux (1993) is an attractive

alternative to the group sequential t-test, at least if the subsample sizes nk

for each group are not too small at the beginning of the test procedure, i.e.

for k = 1. This test behaves very similar to the group sequential t-test under

normality, but the behaviour is more stable for all 4 criteria - level, power,

averaged sample size number and naive estimated standardized treatment

di�erence - under the model deviations considered here.

It can be argued that the mixture model considered here may be too pes-

simistic for 'real life data' although the percentage of outliers is only 10%.

However, the dramatic impact of such outliers on the group sequential t-test

shows that the behaviour of this test can be very unstable. As mentioned

earlier, Student's distribution with 3 degrees of freedom is often a good ap-

proximation to the distribution of high quality data, c.f. Hampel et al. (1986,

p. 23). But even under these circumstances the group sequential t-test looses

much more power and the average sample size number is substantially higher

than for the alternative tests in the situations considered here.

Rousseeuw & Leroy (1988) propose a small sample modi�cation of SH, say

SH�, to reduce the bias of SH in a �xed sample size problem. Although the

sample sizes we considered in the simulations are not very small, all simula-

tion are repeated for the considered group sequential Pocock test with k = 3

groups. The results for (25A,SH�) are very similar to those for (25A,SH).

E.g. consider the pair of distributions (t3; t3). The simulated values of

Median(�̂ � �) for � = 0; 0:25; 0:5 for the GST based on (25A,SH�) are

0:002; �0:005; and 0:043, respectively. The corresponding values for the

15



GST based on (25A,SH) are 0:002; �0:004; and 0:046, respectively.

An investigation of more complex estimators to reduce the bias and con�-

dence intervals for the standardized treatment di�erence � from a robustness

point of view is beyond the scope of this paper.
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APPENDIX: ADDITIONAL TABLES

Table 6a
Estimated values of level and power (in percent) for

two-sided group sequential Pocock tests;
Plan 2: K = 5, � = 1%, 1� � � 95% for � = 0:5.

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 1:0 1:0 1:0
t3 0:9 1:1 0:8
MIXN 40:4 0:9 0:6

t3 t3 0:8 1:6 1:2
MIXN 35:2 1:2 0:8

MIXN MIXN 0:4 0:6 0:3
N(0; 1) 40:8 0:8 0:7

� = 0:25 N(0; 1) N(0; 1) 29:2 22:1 27:0
t3 14:2 20:0 20:5
MIXN 81:2 18:9 20:9

t3 t3 8:5 17:7 15:8
MIXN 73:6 17:5 16:6

MIXN MIXN 1:1 13:2 11:7
N(0; 1) 10:3 14:2 13:8

� = 0:5 N(0; 1) N(0; 1) 95:0 90:4 93:8
t3 69:5 84:0 85:0
MIXN 98:3 88:1 90:4

t3 t3 47:1 76:8 75:2
MIXN 95:1 80:9 80:5

MIXN MIXN 4:2 79:6 78:3
N(0; 1) 2:8 82:8 83:2

� = 0:75 N(0; 1) N(0; 1) 100:0 99:9 100:0
t3 97:0 99:8 99:8
MIXN 99:9 99:9 99:9

t3 t3 87:6 99:1 99:0
MIXN 99:6 99:6 99:6

MIXN MIXN 12:1 99:8 99:8
N(0; 1) 5:4 99:9 99:9

� = 1 N(0; 1) N(0; 1) 100:0 100:0 100:0
t3 99:7 100:0 100:0
MIXN 100:0 100:0 100:0

t3 t3 98:4 100:0 100:0
MIXN 99:9 100:0 100:0

MIXN MIXN 25:8 100:0 100:0
N(0; 1) 11:0 100:0 100:0
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Table 6b
Estimated average sample size number (ASN) for
two-sided group sequential Pocock tests; Plan 2

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 169:2 169:0 169:2
t3 169:2 168:9 169:3
MIXN 157:7 169:1 169:5

t3 t3 169:3 168:3 168:9
MIXN 159:0 168:8 169:3

MIXN MIXN 169:8 169:3 169:7
N(0; 1) 157:8 169:1 169:5

� = 0:25 N(0; 1) N(0; 1) 154:6 156:9 155:9
t3 162:4 157:9 159:2
MIXN 132:6 159:2 159:9

t3 t3 165:5 159:1 161:7
MIXN 137:8 159:6 161:7

MIXN MIXN 169:4 162:8 164:7
N(0; 1) 167:3 161:6 163:0

� = 0:5 N(0; 1) N(0; 1) 93:4 100:6 97:1
t3 125:3 109:1 111:3
MIXN 100:2 106:1 106:6

t3 t3 143:1 117:1 122:8
MIXN 108:4 114:2 119:1

MIXN MIXN 167:6 117:2 123:8
N(0; 1) 167:9 112:7 116:8

� = 0:75 N(0; 1) N(0; 1) 53:6 56:1 55:8
t3 78:9 63:0 65:8
MIXN 75:3 59:9 61:9

t3 t3 102:2 69:7 75:8
MIXN 83:0 66:9 71:7

MIXN MIXN 162:8 67:0 73:5
N(0; 1) 163:5 63:3 67:3

� = 1 N(0; 1) N(0; 1) 38:9 39:9 39:9
t3 53:9 44:0 46:0
MIXN 59:7 42:1 43:5

t3 t3 70:5 47:8 51:6
MIXN 65:8 46:0 49:3

MIXN MIXN 154:6 45:7 50:1
N(0; 1) 157:2 43:5 46:3
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Table 6c

Estimated values for Median(�̂��) for
two-sided group sequential Pocock tests; Plan 2

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 0:002 0:003 0:003
t3 0:001 0:002 0:002
MIXN 0:311 0:013 0:016

t3 t3 0:000 0:000 0:000
MIXN 0:299 0:011 0:014

MIXN MIXN 0:001 0:001 0:002
N(0; 1) �0:311 �0:012 �0:016

� = 0:25 N(0; 1) N(0; 1) 0:005 0:019 0:004
t3 �0:063 0:002 �0:025
MIXN 0:153 0:013 �0:009

t3 t3 �0:098 �0:015 �0:047
MIXN 0:137 �0:004 �0:033

MIXN MIXN �0:192 �0:013 �0:045
N(0; 1) �0:480 �0:012 �0:041

� = 0:5 N(0; 1) N(0; 1) 0:042 0:095 0:044
t3 �0:086 0:052 �0:019
MIXN �0:010 0:062 �0:004

t3 t3 �0:182 0:018 �0:059
MIXN �0:034 0:028 �0:047

MIXN MIXN �0:385 0:017 �0:059
N(0; 1) �0:651 0:033 �0:038

� = 0:75 N(0; 1) N(0; 1) 0:048 0:163 0:049
t3 �0:139 0:118 �0:036
MIXN �0:171 0:129 �0:005

t3 t3 �0:235 0:036 �0:114
MIXN �0:196 0:055 �0:093

MIXN MIXN �0:577 0:044 �0:111
N(0; 1) �0:820 0:098 �0:058

� = 1 N(0; 1) N(0; 1) 0:010 0:163 0:004
t3 �0:184 0:084 �0:091
MIXN �0:321 0:105 �0:073

t3 t3 �0:321 0:026 �0:157
MIXN �0:363 0:037 �0:145

MIXN MIXN �0:767 0:036 �0:155
N(0; 1) �0:987 0:082 �0:104
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Table 7a
Estimated values of level and power (in percent) for
two-sided group sequential Wang & Tsiatis tests;
Plan 3: K = 5, � = 1%, 1� � � 95% for � = 0:5.

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 1:0 1:0 1:0
t3 0:9 1:1 0:9
MIXN 44:1 1:0 0:7

t3 t3 0:8 1:7 1:2
MIXN 38:7 1:3 0:8

MIXN MIXN 0:5 0:7 0:3
N(0; 1) 44:2 0:9 0:7

� = 0:25 N(0; 1) N(0; 1) 30:9 22:1 29:2
t3 15:1 21:8 22:3
MIXN 83:6 21:0 23:0

t3 t3 9:2 19:6 17:3
MIXN 76:2 19:8 18:4

MIXN MIXN 1:3 15:2 13:3
N(0; 1) 12:1 15:8 15:2

� = 0:5 N(0; 1) N(0; 1) 95:5 90:4 94:8
t3 71:0 86:0 86:7
MIXN 98:6 89:9 91:7

t3 t3 48:9 79:3 77:4
MIXN 96:0 83:2 82:6

MIXN MIXN 4:5 82:3 80:7
N(0; 1) 3:0 85:1 85:1

� = 0:75 N(0; 1) N(0; 1) 100:0 99:9 100:0
t3 97:2 99:9 99:9
MIXN 100:0 99:9 100:0

t3 t3 88:4 99:3 99:1
MIXN 99:7 99:7 99:7

MIXN MIXN 12:7 99:8 99:8
N(0; 1) 5:2 99:9 99:9

� = 1 N(0; 1) N(0; 1) 100:0 100:0 100:0
t3 99:7 100:0 100:0
MIXN 100:0 100:0 100:0

t3 t3 98:5 100:0 100:0
MIXN 99:9 100:0 100:0

MIXN MIXN 26:8 100:0 100:0
N(0; 1) 10:8 100:0 100:0
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Table 7b
Estimated average sample size number (ASN) for

two-sided group sequential Wang & Tsiatis tests; Plan 3

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 169:3 169:1 169:3
t3 169:3 168:9 169:3
MIXN 157:0 169:1 169:5

t3 t3 169:4 168:4 169:0
MIXN 158:4 168:8 169:4

MIXN MIXN 169:8 169:3 169:7
N(0; 1) 157:0 169:2 169:6

� = 0:25 N(0; 1) N(0; 1) 154:7 156:4 155:6
t3 162:6 157:4 158:8
MIXN 131:9 158:8 159:6

t3 t3 165:6 158:7 161:5
MIXN 137:2 159:1 161:4

MIXN MIXN 169:4 162:5 164:5
N(0; 1) 167:1 161:3 162:8

� = 0:5 N(0; 1) N(0; 1) 94:2 99:6 97:0
t3 125:7 108:1 110:8
MIXN 100:6 105:1 106:1

t3 t3 143:3 116:2 122:2
MIXN 108:5 113:2 118:3

MIXN MIXN 167:7 116:0 123:0
N(0; 1) 167:9 111:5 116:1

� = 0:75 N(0; 1) N(0; 1) 54:9 56:7 56:7
t3 80:0 63:2 66:4
MIXN 76:6 60:2 62:7

t3 t3 103:0 69:8 76:3
MIXN 84:2 67:1 72:2

MIXN MIXN 163:0 67:2 74:0
N(0; 1) 163:8 63:5 67:9

� = 1 N(0; 1) N(0; 1) 39:7 40:3 40:5
t3 55:1 44:5 46:7
MIXN 61:4 42:5 44:2

t3 t3 71:8 48:2 52:3
MIXN 67:4 46:6 50:2

MIXN MIXN 154:9 46:3 50:9
N(0; 1) 157:5 44:0 47:1
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Table 7c

Estimated values for Median(�̂��) for
two-sided group sequential Wang & Tsiatis tests; Plan 3

Hypothesis Distributions Group sequential test
F G ( �X;S) (25A; SH) (25A;Q)

� = 0 N(0; 1) N(0; 1) 0:002 0:003 0:003
t3 0:001 0:002 0:002
MIXN 0:311 0:013 0:016

t3 t3 0:000 0:000 0:000
MIXN 0:299 0:011 0:014

MIXN MIXN 0:001 0:001 0:002
N(0; 1) �0:311 �0:012 �0:016

� = 0:25 N(0; 1) N(0; 1) 0:005 0:019 0:004
t3 �0:063 0:002 �0:025
MIXN 0:152 0:013 �0:008

t3 t3 �0:098 �0:015 �0:047
MIXN 0:136 �0:004 �0:033

MIXN MIXN �0:192 �0:013 �0:045
N(0; 1) �0:480 �0:012 �0:041

� = 0:5 N(0; 1) N(0; 1) 0:041 0:095 0:043
t3 �0:087 0:051 �0:021
MIXN �0:012 0:061 �0:006

t3 t3 �0:181 0:014 �0:061
MIXN �0:035 0:026 �0:048

MIXN MIXN �0:385 0:014 �0:062
N(0; 1) �0:651 0:031 �0:040

� = 0:75 N(0; 1) N(0; 1) 0:053 0:166 0:054
t3 �0:142 0:110 �0:042
MIXN �0:172 0:132 �0:016

t3 t3 �0:240 0:029 �0:118
MIXN �0:197 0:048 �0:096

MIXN MIXN �0:578 0:038 �0:115
N(0; 1) �0:820 0:087 �0:065

� = 1 N(0; 1) N(0; 1) 0:011 0:164 0:005
t3 �0:178 0:086 �0:087
MIXN �0:329 0:106 �0:071

t3 t3 �0:330 0:028 �0:154
MIXN �0:367 0:040 �0:142

MIXN MIXN �0:767 0:038 �0:152
N(0; 1) �0:987 0:084 �0:101
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