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Abstract

In their paper, Davies and Gather (1993) formalized the task of outlier identi�ca-

tion, considering also certain performance criteria for outlier identi�ers. One of those

criteria, the maximum asymptotic bias, is carried over here to multivariate outlier

identi�ers. We show how this term depends on the respective biases of estimators

which are used to construct the identi�er. It turns out that the use of high-breakdown

robust estimators is not su�cient to achieve outlier identi�ers with bounded maximum

asymptotic bias.
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1 Introduction

The performance of outlier identi�cation rules cannot be judged by only one criterion. This

is immediately clear by imagining how many di�erent mechanisms may have created the

`outliers' and hence under how many situations our methods have to be compared w.r.t.

their capability of labelling the right observations as outliers (cf. Barnett, Lewis, 1994, p.

121 �). Important performance criteria describe e.g. the breakdown behaviour of such rules

as a worst-case plot, where such descriptions include the �nite-sample breakdown points of

estimators used in these rules in the sense of Donoho and Huber (1983) as well as masking

and swamping breakdown points of the identi�cation procedures themselves as introduced

by Davies and Gather (1993). These criteria concentrate on the question how large the

amount of `bad observations' in a sample has to be before the identi�cation procedure un-

der consideration breaks down in some sense. In this paper, we suggest a supplementary

criterion, the maximum asymptotic bias, which has been de�ned for outlier identi�ers by

Davies and Gather in the univariate setting. The formal concept of outlier identi�cation

1This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 475.
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itself in the � outlier framework has already been extended to the multivariate situation

in Gather and Becker (1997). Here, we give a de�nition of the maximum asymptotic bias

of multivariate procedures, making use of a de�nition by Tyler (1994), who regards pairs

of estimators for location and covariance. In contrast to breakdown criteria, the maximum

asymptotic bias re
ects the behaviour of an outlier identi�er under a certain �xed proportion

of `bad observations' in the data. We derive necessary and su�cient conditions for iden-

ti�ers with bounded maximum asymptotic bias. It turns out that using robust estimators

with bounded bias in such identi�cation procedures is only necessary, whereas a su�cient

condition demands consistent estimators with
p
N convergence rate.

This paper is organized as follows. In the following section, we recall the basic de�nitions

of � outliers and outlier identi�ers for the multivariate normal model. In Section 3, we

present the de�nition of the maximum asymptotic bias, starting with Tyler's approach for a

pair of estimators and adapting this notation to the necessities of outlier identi�ers. Section

4 contains the results on necessary and su�cient conditions for identi�ers with bounded

maximum asymptotic bias.

2 Preliminaries

Aiming at the identi�cation of outliers, we have to start with de�ning what we understand

by this task. Davies and Gather (1993) introduced the approach to \de�ne outliers in terms

of their position relative to the model for the good observations", which leads to the concept

of � outliers. Extending this to the situation of a multivariate normal distribution N(�;�),

� 2 IR
p, � 2 IR

p�p p. d., as the model distribution, Gather and Becker (1997) de�ne an

� outlier with respect to N(�;�) as an element of the � outlier region

out(�; �;�) := fx 2 IR
p : (x� �)T��1(x� �) > �

2
p;1��g:

For a sample of size N , the respective idea of an �N outlier region out(�N ; �;�) with

�N = 1� (1 � �)1=N can be given, such that

PN(�;�)(X 2 out(�; �;�)) = �
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and

PN(�;�)(X i
=2 out(�N ; �;�); i = 1; . . . ; N) = 1� �

for some � 2 (0; 1) in each case.

Knowing the outlier region, one can of course identify all � outliers. However, the

parameters � and � of the model distribution are usually unknown, which means that we

have to estimate this region. But, since we want to identify all �N outliers in the sample, we

already anticipate that this estimation must be based on a possibly corrupted sample, not

coming i.i.d. from the model distribution. In any case, the estimation of the outlier region

from a sample
�
xN = (x1; . . . ; xN ) yields an empirical or estimated outlier region

OR(
�
xN ; �N) := fx 2 IR

p : (x�m)TS�1(x�m) � cg:

The set OR is also called an �N outlier identi�er, because every sample element lying in OR

can be understood as identi�ed as an outlier in the sample at hand. Here,m = m(
�
xN) 2 IR

p

and S = S(
�
xN) 2 IR

p�p, positive de�nite and symmetric, estimate � and �, respectively,

and c = c(p;N; �N ) 2 IR is a normalizing constant, calculated from some normalizing

condition such as

PN(�;�)(X i
=2 OR(

�
XN ; �N ); i = 1; . . . ; N) = 1 � � (1)

with �N = 1 � (1 � �)1=N and � 2 (0; 1). This means that in a sample of size N really

coming from the multivariate normal, with probability 1�� no observation will be identi�ed

as an �N outlier.

We only consider a�ne equivariant estimates m and S, leading to identi�ers with the

same property.

3 The Maximum Asymptotic Bias

Davies and Gather (1993) consider, among others, especially two important types of worst-

case performance criteria for univariate outlier identi�ers: breakdown criteria (namelymask-

ing and swamping breakdown points) and the maximum asymptotic bias. The masking
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breakdown point of multivariate identi�ers is investigated in detail by Becker and Gather

(1997a). We will concentrate here on the maximum asymptotic bias, which expresses the

behaviour of an outlier identi�cation rule under a certain �xed amount of badly placed

observations in a sample.

The de�nition of the maximum asymptotic bias of a multivariate outlier identi�er is not

straightforward. On the one hand, we have to determine the di�erence between the regions

OR and out, the complements of two ellipsoids or, equivalently, the di�erence between the

ellipsoids IRpnOR and IR
pnout themselves. On the other hand, we want to use properties

of the estimators m and S to derive properties of the resulting identi�er OR. Therefore, we

start with a de�nition of Tyler (1994, p. 1027), who introduces the maximum bias of a pair

(m;S) of estimators of location and covariance caused by "m corruption of a sample, which

in our notation with "m = k=N reads

b(
k

N
;
�
xN ;m;S) = sup

�
xN;k

[maxfkS(
�
xN )

�1=2(m(
�
xN )�m(

�
xN;k))k;

tr(S(
�
xN)S

�1(
�
xN;k) + S

�1(
�
xN)S(

�
xN;k))g]:

Here,
�
xN denotes a sample of size N and

�
xN;k is constructed from

�
xN by replacing k obser-

vations out of N by arbitrary vectors.

Several steps are needed to adjust this de�nition to the necessities of outlier identi�ers

and to reach an analogous de�nition of the maximum asymptotic bias for the univariate

case as given in Davies and Gather (1993).

First, instead of considering the values of m and S at the sample
�
xN as a reference,

we retain to the true parameters � and �. Second, we are only interested in the bias

caused by \explosion" of the covariance part, thus we can reduce the term within the

trace operator. Third, we do not regard samples with arbitrarily replaced observations but

samples consisting of n regular observations from N(�;�) and an amount k = N � n of �N

outliers (for some �N 2 (0; 1)). Therefore, the above supremum will be taken here over all

combinations of the �N outliers. This is the same approach as in Davies and Gather (1993)

who adapt a de�nition of Huber (1981, p. 12) to the outlier setting. Up to this point, our
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modi�ed de�nition reads as follows:

b(
k

N
;
�
xN ;m;S) = sup

�
x0

k

[maxfk��1=2(��m(
�
xN ))k; tr(��1S(�xN ))g]; (2)

where
�
xN = (

�
x
r

n
;
�
x
0
k
) denotes a sample with n regular observations,

�
x
r

n
= (xr1; . . . ; x

r

n
), from

N(�;�), and a number k of �N outliers,
�
x
0
k
= (x01; . . . ; x

0
k
). The supremum is taken over all

�
x
0
k
2 out(�N ; �;�), meaning that x0

i
2 out(�N ; �;�)8i = 1; . . . ; k.

This is still a de�nition of a property of a pair of estimators and not of an outlier

identi�er. So, the next steps have to adjust the de�nition to the situation of an identi�er.

The normalizing constants c(p;N; �N ) and �
2
p;1��N

of the region OR and of the region

`out' must be taken into account, because we actually compare c(p;N; �N )S with �
2
p;1��N

�

instead of comparing S and �. For the second part of the above modi�cation (2), we then

get tr (c(p;N; �N )=�
2
p;1��N

)��1S . From an inequality of Theobald (1975, p. 462) we see

that

tr
c(p;N; �N )

�
2
p;1��N

��1S �
p

i=1

c(p;N; �N )

�
2
p;1��N

�i

�i
;

where �i; �i are the eigenvalues of � and S, respectively. Therefore, we can use the terms

(c(p;N; �N )�i)=(�
2
p;1��N

�i) as characteristics of the bias of c(p;N; �N )S. On the other hand,

c(p;N; �N )�i and �
2
p;1��N

�i are equal to the lengths of the main axes of the ellipsoids

IR
pnOR and IR

pnout and thus can be interpreted in terms of the outlier identi�er and the

outlier region. To incorporate not only the lengths of the axes but also their orientations, we

additionally introduce the eigenvectors of the matrices S and �, which results in de�ning the

di�erence of the covariance part of the identi�er and of the outlier region via the endpoints

of the main axes by

1

2

p

i=1

ku
i
�

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k+ ku

i
+

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k � p;

where u
i
and v

i
denote the eigenvectors of � and S to the eigenvalues �i and �i, respectively.

The �rst part of (2) can be directly interpreted in terms of the identi�er and the outlier

region: k��1=2(��m(
�
xN ))k describes the di�erence between the centers of the two ellipsoids

IR
pnOR and IR

pnout, thus representing the location part of the di�erence.
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The last step of our modi�cation consists in summing up the di�erences instead of calcu-

lating their maximum. Otherwise two identi�ers would have the same maximum asymptotic

bias if they were based for example on identical estimators of covariance but di�erent lo-

cation estimates, and both location estimates were superior to the estimator of covariance.

Di�erences between the two location estimators would not be taken into account. But in

such a case the identi�er using a better location estimator should have the smaller bias.

This leads to the following de�nition.

De�nition 3.1 The maximum asymptotic bias of an outlier identi�er OR is given as

B(OR; �; ) := lim sup
N!1

( sup

�
x0

k
2 out(�N ;�;�)

(k��1=2(��m)k

+
1

2

p

i=1

ku
i
�

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k+ ku

i
+

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k � p));

where k := [�n], 0 < � < 1, N := n + k, := (�i)i2IN , �i 2 (0; 1). Here, k:k denotes the

euclidean norm and [x] is the integer part of x 2 IR. The notation
�
x
0
k
2 out(�N ; �;�) is an

abbreviation for \x
0
i
2 out(�N ; �;�), for all i = 1; . . . ; k".

To �nd relationships between the bias of the estimators involved and the bias of the

resulting outlier identi�er, we also have to consider the maximum asymptotic bias for esti-

mates of location and covariance. With the same notations as in the above de�nition, the

maximum asymptotic bias of a location estimator m(
�
xN ) for the parameter � is given by

b(m; �; ) := lim sup
N!1

( sup

�
x0

k
2 out(�N ;�;�)

km(
�
xN )� �k)

and the maximum asymptotic bias of an estimator S(
�
xN) for the covariance matrix � is

de�ned as

b(S; �; ) := lim sup
N!1

( sup

�
x0

k
2 out(�N ;�;�)

kS(
�
xN )� �k2);

where k:k2 denotes the spectral norm of IRp�p. The choice of the spectral norm for measuring

the distance between two matrices follows a proposal of Woodru� and Rocke (1993, p. 70).
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4 Outlier Identi�ersWith BoundedMaximumAsymp-

totic Bias

With the above de�nitions, it is now possible to derive necessary conditions for outlier

identi�ers to have bounded maximum asymptotic bias.

Theorem 4.1 For an outlier identi�er OR, based on estimators m and S, the following

holds:

(a) If b(m; �; ) =1, then also B(OR; �; ) =1.

(b) If b(S; �; ) =1, then also B(OR; �; ) =1.

The proof is given in the Appendix. From Theorem 4.1 it is obvious that only estimators of

location and covariance which both possess bounded maximum asymptotic bias yield outlier

identi�ers with the same property. Estimators with bounded maximum asymptotic bias are

high-breakdown robust estimators as for example Rousseuw's (1985) MVE estimators or the

MCD estimators proposed by Rousseeuw and Leroy (1987, p. 262) as well as the location-

covariance S-estimates (Davies, 1987). In each case it can be seen from the proofs of the

high breakdown points that those estimators have bounded maximum asymptotic bias if

the proportion of outliers in the sample stays below the breakdown point.

For a su�cient condition, however, we need more.

Theorem 4.2 Let OR be an outlier identi�er as above with corresponding normalizing con-

stant c(p;N; �N ). If the constant c ful�lls the condition c(p;N; �N ) = O(�2
p;1��N

)(N !1),

then from b(m; �; ) <1 and b(S; �; ) <1 it follows that B(OR; �; ) <1.

We give the proof in the Appendix. At �rst sight, the condition on c(p;N; �N ) does not seem

to depend on properties of the estimators m and S. But actually, under normalizing con-

dition (1), the use of
p
N consistent estimators guarantees that c(p;N; �N ) = O(�2

p;1��N
).

This is shown in detail in Becker and Gather (1997b); we just give a short sketch here.

For
p
N consistent estimators m and S, we have that, if X1; . . . ;XN

are i.i.d. according to
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N(�;�), then Yi := (X
i
�m)TS�1(X

i
�m) are asymptotically �

2
p
distributed. Hence, we

can derive the asymptotic distribution of max(Y1; . . . ; YN ), using results of Galambos (1987,

p. 54, 102, 105) which show that the �2
p
distribution lies in the (maximum) domain of attrac-

tion of the double exponential. From the normalizing condition (1) we see that c(p;N; �N )

is the (1 � �) quantile of the distribution of max(Y1; . . . ; YN ). Therefore, for large N , we

can approximate c(p;N; �N ) by the respective quantile of the double exponential, namely

c(p;N; �N ) ' �
2
p;1�1=N �

ln(� ln(1� �))

Nf�2p(�
2
p;1�1=N)

;

where �N = 1 � (1 � �)1=N and f�2p denotes the Lebesgue-density of the �2
p
. Calculating

limN!1 c(p;N; �N )=�
2
p;1��N

with the above relation gives a limiting value of 1. Thus, the

following corollary holds.

Corollary 4.1 If an identi�er OR is based on
p
N consistent estimators m and S for � and

�, and if the normalizing condition (1) is used, then c(p;N; �N ) = O(�2
p;1��N

)(N !1).

As shown above, the use of robust estimators of location and covariance with high break-

down points does not su�ce to get an outlier identi�er with bounded maximum asymptotic

bias. Additionally, the used estimators should be
p
N consistent. From the above men-

tioned examples both MCD and S-estimators ful�ll this condition, but, in contrast to this,

the MVE estimators do not, cf. Davies, 1992. We therefore rather recommend the use of

MCD and S-estimators in multivariate outlier identi�cation procedures.

Appendix: Proofs

Proof of Theorem 4.1

(a) Let b(m; �; ) =1. Then

k��1=2(� �m)k

+
1

2

p

i=1

ku
i
�

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k+ ku

i
+

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k � p

� k��1=2(� �m)k � p

�
1

k�1=2k2
k��mk � p =

1
p
�1

k� �mk � p; (3)
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where �1 denotes the largest eigenvalue of �.

The above inequality remains valid for every N 2 IN , if sup
�
x0

k
2 out(�N ;�;�) is taken on either

side. Because of the condition on b(m; �; ), it holds that

lim sup
N!1

( sup

�
x0

k
2 out(�N ;�;�)

(k��mk)) =1:

Therefore, for every R 2 IR we can �nd IR � IN , jIRj =1, such that

sup

�
x0

k
2 out(�N ;�;�)

(k��mk) > R 8N 2 IR:

From this, it follows immediately that

lim sup
N!1

sup

�
x0

k
2 out(�N0

;�;�)

(
1
p
�1

k��mk � p) =1;

which together with (3) completes the proof.

(b) The proof is similar to part (a). Here, we use the inequality

k��1=2(� �m)k

+
1

2

p

i=1

ku
i
�

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k+ ku

i
+

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k � p

�
c(p;N; �N )

�
2
p;1��N

p

i=1

�i

�i
� p

�
c(p;N; �N )

�
2
p;1��N

�1
kSk2 � p: (4)

With similar arguments as before, we �nd that

lim sup
N!1

sup

�
x0

k
2 out(�N ;�;�)

kSk2 =1;

and this, together with (4) gives the stated result.

2

Proof of Theorem 4.2
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We �nd

k��1=2(� �m)k

+
1

2

p

i=1

ku
i
�

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k+ ku

i
+

c(p;N; �N )�i

�
2
p;1��N

�i
v
i
k � p

�
1

�p

k��mk+
c(p;N; �N )

�
2
p;1��N

p

i=1

�i

�i

�
1

�p

k��mk+ p
c(p;N; �N )

�
2
p;1��N

�p

maxf1; �1g

�
1

�p

k��mk+ p
c(p;N; �N )

�
2
p;1��N

�p

maxf1; kS � �k2 + �1g:

Applying sup
�
x0

k
2 out(�N ;�;�) on either side of the inequality and calculating the lim sup leads

to

B(OR) �
1

�p

b(m)

+
p

�p

lim sup
N!1

c(p;N; �N )

�
2
p;1��N

sup

�
x0

k
2 out(�N ;�;�)

(maxf1; kS � �k2 + �1g) :

Taking into account that c(p;N; �N ) = O(�2
p;1��N

), which means that there exists some

M 2 IR such that
c(p;N; �N )

�
2
p;1��N

< M (N !1);

we can further conclude that

B(OR) �
1

�p

b(m) +
p

�p

maxf1;
p
Mgmaxf1; �1 + b(S)g <1:

2
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