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Abstract. The best linear unbiased estimator BLUE(CXg) of a linear transform CXg in
the general Gauss-Markov model {y,E(y) = X8, Cov(y) = 02V} is the linear transform
CBLUE(XJ) of the best linear unbiased estimator BLUE(X3) of X3. Similarly, for the
ordinary least squares estimator, OLSE(CX3) = C OLSE(X/3). The problem of equality
of OLSE(X3) and BLUE(X/3) has been widely discussed in the literature. In this note,
characterizations of the equality COLSE(X3) = CBLUE(X/) are given in terms of
projectors and subspaces.
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1. Introduction. Consider the general Gauss-Markov model denoted by
M = {y,XB,0°V}, (1.1)

where y is an observable n x 1 random vector with E(y) = X3 and Cov(y) = 02V,
X is a known n X p matrix of rank r, 0 < r < n ,V is a known n X n symmetric
nonnegative definite matrix (possibly singular), B is a p x 1 vector of unknown
parameters, and o2 > 0 is either known or unknown.

Our interest focuses on estimation of a linear transform CX3 of X3, where C
is a given k x n matrix. Recall that estimation of Xy3 with known X, = CX can

also be seen as (classical) prediction of an unobservable random vector y, satisfying
E(yo) = XoB-
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It is well known [10, 11] that a representation of the best linear unbiased estimator
(BLUE) of CXg is given by

BLUE(CXB) = CX(X'T*X)"X'T"y, (1.2)

where T = V+XX'. Here, A’ and A denote the transpose and the Moore-Penrose

inverse of an arbitrary matrix A, respectively. Since we have
BLUE(X3) = X(X'T*X)*X'T?y, (1.3)

it is clear that BLUE(CX3) = CBLUE(X(). Although there exist further repre-
sentations of BLUE(X3), all of them coincide almost surely, so that without loss of
generality we may confine ourselves to (1.3). Consider now the competing estimator
C OLSE(Xf), where

OLSE(XB) = XXty (1.4)

is known as the ordinary least squares estimator (OLSE) of X3. The problem of
equality of BLUE(X/3) and OLSE(X() has been widely discussed in the literature.
See e.g. [2] where two different versions of this problem are investigated, and [9] for

an excellent overview. As one (among many other) necessary and sufficient condition

for BLUE(X3) = OLSE(X(), Puntanen and Styan [9, cond. AS2] state
PxV = PxVPx, (1.5)

where the symbol P, = AA™ is used to represent the orthogonal projector onto
the range (column space) R(A) of an arbitrary n x p matrix A. The symbol Q, =
I, — P, will denote the orthogonal projector onto the orthogonal complement of
R(A), compare also [6, Chap. 12].

In the following we derive a condition similar to (1.5) for the less restrictive
equality C BLUE(X3) = C OLSE(X3).

2. Equality of estimators. By confining ourselves to the representation (1.3)
of BLUE(X3) we observe that C BLUE(X3) = C OLSE(X(3) almost surely if and
only if

CXX'y = CX(X'T™X)*X'Tty forally € R (X) +R(V), (2.1)



the latter being equivalent to the identities

CXX X = CX(X'THX)"X'T*X (2.2)
and

CXX'V = CX(X'TTX)*X'T*V. (2.3)
But since we have X = XXX and

X =XXT'X)"X'T"X, (2.4)

the latter being true in view of R(X') = R(X'T*X), see e.g. [3, Theorem 2],
condition (2.2) is always met. Thus, the equality under study holds if and only if
(2.3) is satisfied.

PROPOSITION 1. Under model M = {y,XB,0°V}, equality of CBLUE(XS3) and
C OLSE(Xf) holds almost surely if and only if

CPxV = CPxVPx. (2.5)

Proof. It remains to show that (2.5) is equivalent to (2.3). Since by (2.4) and
X'TTT = X’ we have
X(X'T*X)PX'TV = X(X'T X)*X'THT — XX
- X(X'T*X)*X'T+T — XX’
= X(X'T*X)*X' - XX/, (2.6)
it is clear that (2.5) follows from (2.3) by right-multiplication of (2.3) with XX¥.
Conversely assume that (2.5) is satisfied. Then,
CPxV = CPxV(X')X
= CPxV(X')X'THX(X'T+X)*X'
= CPxVPxT*X(X'T*X)*X'
= CPxVT*X(X'T*X)*X.
But since in view of (2.6) we have

VTTX(X'TTX) X = X(X'TTX) " X'THV,
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it follows that
CPxV = CPxX(X'T*X)"X'T*V = CX(X'T*X)"X'T*V,
showing (2.3). ]
As an immediate corollary we obtain the following.

COROLLARY. Under model M = {y,X3,5%*V}, the following statements are equiv-

alent :
(i) BLUE(X8) = OLSE(Xg),
(ii) X’BLUE(XB) = X'OLSE(X),
(iii) X*BLUE(XB) = X*OLSE(Xg),

Proof. Observe that for C = X' and C = X*, equations (2.5) and (1.5) are

equivalent. |

Obviously each of the numerous equivalent conditions for BLUE(X3) =
OLSE(X3) is sufficient for C BLUE(X3) = C OLSE(Xg), including

PxV = VPx, (2.7)

which is called Zyskind’s condition in [9].

It is clear that (2.5) may be reformulated as
CPxVQy = 0, (2.8)

where Qx = I, —Px. If we are interested in characterizing all matrices C satisfying
CBLUE(X3) = COLSE(Xg) almost surely, then we simply have to inspect the
general solution to (2.8) with respect to C, being

C =Z(I, - PxVQx(PxVQx)"), (2.9)
where Z is an arbitrary k£ x n matrix. In view of

rank(PxVQx) < rank(Qx) = n —rank(X) < n
it is obvious that there always exists more than one (trivial) solution to (2.8).

4



If we are interested in characterizing all nonnegative definite matrices V sat-
isfying C BLUE(X3) = C OLSE(X() almost surely, then we have to inspect the
general nonnegative definite solution to (2.8) with respect to V. It is clear that (2.8)
is equivalent to MV Qx = 0, where M = PxC'CPx, see [6, Lemma 11.6.2], which

in turn is equivalent to
PuVQx =0. (2.10)

The general nonnegative definite solution to (2.10) can be derived from Theorem

2.5 in [7]. By letting R, denote the set of m x n real matrices and RZ,. denote

nxXn

the set of n x n real (symmetric) nonnegative definite matrices, we may state the

following.

PROPOSITION 2. Under model M = {y,X3,0*V}, the following two statements
hold:

(i) For given X € R« and V € RZ,,, the set of all matrices C € R¥*™ satisfying

nXn

CBLUE(X3) = COLSE(Xf) almost surely is given by
{C =ZQL|Z € Ryxn},
where L = PxVQx.

(i) For given X € R,xp and C € Ry, the set of all matrices V € Rz, ,, satisfying
CBLUE(X3) = COLSE(Xf) almost surely is given by

{V=PMmZ Pu+QxZ:Qx + (Px—Pn)Zs(Px—Pwn)|Z1,Z2,Z3s € RZ,,},
where M = PxC'CPx.

Proof. The proof of (i) is clear from the above considerations. For the proof of
(ii) observe beforehand that

PxPy = Py = PyPx, (2.11)
(Pm +Qx)" =Pwm + Qx, (2.12)

see also [4, Theorem 3.1.1] for (2.12). From Theorem 2.5 in [7], the general nonneg-
ative definite solution to (2.10) with respect to V is given by

V = ( B+Qx)"(A+B)(Pu+Qx)"
+[I, — (Pm+Qx)" (Pm+Qx)|Zs[1, — (Pm+Qx) " (Pm+Qx)],
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where Z3; € R=

~n 18 arbitrary, and A and B are arbitrary nonnegative definite

solutions of

A(Pm+Qx)"Qx =0, (2.13)
Py (Pum + Qx)™B =0, (2.14)

such that A + B is nonnegative definite. By using (2.11) and (2.12) it follows that
(2.13) is equivalent to AQx = 0 with general nonnegative definite solution, see [7,
Theorem 2.2],

A= ( L - QX)Zl(In - Qx) =PxZ,Px, (2-15)

where Z, € RZ,_, is arbitrary. Moreover, it is seen that (2.14) is equivalent to

PMmB = 0 with general nonnegative definite solution, see [7, Theorem 2.2],

B = (L = Pm)Zo(1, — Pm) = QuZ2Qur, (2.16)

where Z, € RZ,,, is arbitrary. Clearly A + B is nonnegative definite for all choices
of Zy,Z, € RZ,,,. By using again (2.11) and (2.12), we observe that

I, — (Pm+ Qx) ' (Pu+ Qx) =Px — Py
Therefore, the general nonnegative definite solution to (2.10) is given by
V = (Bu+ Qx)(A +B)(Pu + Qx) + (Px — Pm)Zs(Px — Pu),
where A and B are as in (2.15) and (2.16), respectively. By writing

(Pm + Qx)(A + B)(Pm + Qx)
= ( B+ Qx)(PxZ:Px + QuZ2Qy) (Pm + Qx)
= PuPxZ,PxPum + QxQmZ2QnQx
= PmZ Py + QxZ:Qx,

we arrive at
V =PmZ, Py + QxZ:Qx + (Px — Pum)Z3(Px — Pw),

where Z1,Z,, Zs € RZ,, are arbitrary. [

nxXn



A related but somewhat different problem is to determine the subspace of
possible observation vectors y for fixed C, X and V satisfying C BLUE(Xf3) =
COLSE(XB). Under the assumptions r = rank(X) = p, rank(V) = n and
C = BX", where B is an arbitrary (but fixed) k¥ x p matrix, this subspace has
been identified in [5] to be

¢ =R(X) o [R(X") N [R(VX") & [R(X)NN(C)]]], (2.17)

where X denotes any matrix of maximal rank such that X'X* = 0, and N(C)

denotes the null space of C. In case B =1, k = p, the subspace & reduces to
¢=R(X)® [RX")NR (VX")], (2.18)

which has been observed earlier in [8].

We will now demonstrate that the subspace (2.17) remains the appropriate choice
under the more general assumptions of model (1.1), when in addition y is restricted
to be in R(X)+R(V). The latter guarantees that different choices of representations
of BLUE(X3) cannot lead to different estimates of X/3.

PROPOSITION 3. Under model M = {y, XB,0*V}, for given X € Ryx,, V € RZ

nXxXn

and C € Ryxy, the set € of all vectorsy € R(X)+R(V) satisfying C BLUE(X3) =
COLSE(Xf) is given by

¢ =R(X)® [R(X')NF,

where § = R(VX™) @ [R(X) N N(C)].
Proof. The set of all vectors y € € is

¢ = N[C(Px — R)|N[R(X) + R(V)], (2.19)
where R = X(X'T*X)*X'T*. Let § = [ R(X) +R(V)] N N (CR). Then

F=R(VXH) @ [R(X) NN(C)] (2.20)
follows similarly as in the proof of Lemma 1 in [5], and it remains to show

NC(Px - R)]NRX)+R(V) =R(X) & [R(X")NF]. (2.21)

Let y be a vector belonging to the left-hand subspace of (2.21). Such a vector y can
be written as y = a + b for some a € R(X) and some b € R(X"). Obviously, b =
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y—a € R (X)+R(V). Moreover we have CPxy = Ca and CRy = CRa+ CRb =
Ca + CRbD, yielding 0 = C(Px — R)y = —CRb. Therefore, b € § = N(CR) N
[R(X) + R(V)], showing that the left-hand subspace of (2.21) is contained in the
right-hand subspace of (2.21). To demonstrate the reverse inclusion let y = Xa+b,
where a € R? and b € R(X*) N F, where clearly R(XF)NF C R (X) +R(V),
and therefore y € R (X) +R(V). Moreover, X'b = 0 and CRb = 0, and in view
of (Px — R)X = 0 we obtain C(Px — R)y = C(Px — R)Xa + C(Px — R)b =
C(Px —R)b = C(X")X'b — CRb = 0 — 0 = 0, showing y € N[C(Px — R)].
Hence, the right-hand subspace of (2.21) is contained in the left-hand subspace of
(2.21). "

Note that for the special choice C =1,,, k = n, we have § = R(VX™"), showing
that the set € of all vectors y € R (X) +R(V) satisfying BLUE(X3) = OLSE(X/3)
is given by (2.18).

3. Example. Consider the one-way classification model
Yij=pn+a;+ey 1=1,...,a, j=1,...n,

where the ¢;;’s are uncorrelated random variables with means 0 and variances dijUZ.

Assume for a numerical example a = 3, ny =3, ne = 2, ny =1, and d;; =1
if (¢,7) # (1 3). Assume in addition dy3 # 1 but otherwise unknown. Then the
error variances are not homogenous within groups, and from Corollary 4 in [1] it
follows that we do not have equality of OLSE and BLUE of any parametric function.
However, if we consider the contrast oy — a3 = /X3, where ¢/ = (0 0,0, —%, —%, 1),
it follows easily from our Proposition that OLSE(ay — a3) = BLUE(ay — a3) =

Y31 — %y2 - %Z/22-
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