The Equality Between Linear Transforms of Ordinary Least Squares and Best Linear Unbiased Estimator

Jürgen Groß & Götz Trenkler Department of Statistics University of Dortmund Vogelpothsweg 87 D-44221 Dortmund, Germany*

Abstract. The best linear unbiased estimator $\operatorname{BLUE}(\mathbf{C}\mathbf{X}\boldsymbol{\beta})$ of a linear transform $\mathbf{C}\mathbf{X}\boldsymbol{\beta}$ in the general Gauss-Markov model $\{\mathbf{y}, \mathsf{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}, \mathsf{Cov}(\mathbf{y}) = \sigma^2\mathbf{V}\}$ is the linear transform $\mathbf{C}\operatorname{BLUE}(\mathbf{X}\boldsymbol{\beta})$ of the best linear unbiased estimator $\operatorname{BLUE}(\mathbf{X}\boldsymbol{\beta})$ of $\mathbf{X}\boldsymbol{\beta}$. Similarly, for the ordinary least squares estimator, $\operatorname{OLSE}(\mathbf{C}\mathbf{X}\boldsymbol{\beta}) = \mathbf{C}\operatorname{OLSE}(\mathbf{X}\boldsymbol{\beta})$. The problem of equality of $\operatorname{OLSE}(\mathbf{X}\boldsymbol{\beta})$ and $\operatorname{BLUE}(\mathbf{X}\boldsymbol{\beta})$ has been widely discussed in the literature. In this note, characterizations of the equality $\mathbf{C}\operatorname{OLSE}(\mathbf{X}\boldsymbol{\beta}) = \mathbf{C}\operatorname{BLUE}(\mathbf{X}\boldsymbol{\beta})$ are given in terms of projectors and subspaces.

Keywords: Ordinary least squares estimator, best linear unbiased estimator, prediction, linear transform, orthogonal projector

AMS 1991 Mathematics Subject Classification: 62J05

1. Introduction. Consider the general Gauss-Markov model denoted by

$$M = \{ \mathbf{y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{V} \}, \tag{1.1}$$

where \mathbf{y} is an observable $n \times 1$ random vector with $\mathbf{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and $\mathbf{Cov}(\mathbf{y}) = \sigma^2 \mathbf{V}$, \mathbf{X} is a known $n \times p$ matrix of rank r, 0 < r < n, \mathbf{V} is a known $n \times n$ symmetric nonnegative definite matrix (possibly singular), $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown parameters, and $\sigma^2 > 0$ is either known or unknown.

Our interest focuses on estimation of a linear transform $\mathbf{C}\mathbf{X}\boldsymbol{\beta}$ of $\mathbf{X}\boldsymbol{\beta}$, where \mathbf{C} is a given $k \times n$ matrix. Recall that estimation of $\mathbf{X}_0\boldsymbol{\beta}$ with known $\mathbf{X}_0 = \mathbf{C}\mathbf{X}$ can also be seen as (classical) prediction of an unobservable random vector \mathbf{y}_0 satisfying $\mathsf{E}(\mathbf{y}_0) = \mathbf{X}_0\boldsymbol{\beta}$.

 $^{{\}rm *e\text{-}mail:}\ \ {\tt gross@amadeus.statistik.uni\text{-}dortmund.de,\ trenkler@amadeus.statistik.uni\text{-}dortmund.de}$

It is well known [10, 11] that a representation of the best linear unbiased estimator (BLUE) of $\mathbf{CX}\boldsymbol{\beta}$ is given by

$$BLUE(CX\beta) = CX(X'T^{+}X)^{+}X'T^{+}y,$$
(1.2)

where $\mathbf{T} = \mathbf{V} + \mathbf{X}\mathbf{X}'$. Here, \mathbf{A}' and \mathbf{A}^+ denote the transpose and the Moore-Penrose inverse of an arbitrary matrix \mathbf{A} , respectively. Since we have

$$BLUE(X\beta) = X(X'T^{+}X)^{+}X'T^{+}y,$$
(1.3)

it is clear that $BLUE(\mathbf{C}\mathbf{X}\boldsymbol{\beta}) = \mathbf{C} BLUE(\mathbf{X}\boldsymbol{\beta})$. Although there exist further representations of $BLUE(\mathbf{X}\boldsymbol{\beta})$, all of them coincide almost surely, so that without loss of generality we may confine ourselves to (1.3). Consider now the competing estimator $\mathbf{C} OLSE(\mathbf{X}\boldsymbol{\beta})$, where

$$OLSE(\mathbf{X}\boldsymbol{\beta}) = \mathbf{X}\mathbf{X}^{+}\mathbf{y} \tag{1.4}$$

is known as the ordinary least squares estimator (OLSE) of $\mathbf{X}\boldsymbol{\beta}$. The problem of equality of BLUE($\mathbf{X}\boldsymbol{\beta}$) and OLSE($\mathbf{X}\boldsymbol{\beta}$) has been widely discussed in the literature. See e.g. [2] where two different versions of this problem are investigated, and [9] for an excellent overview. As one (among many other) necessary and sufficient condition for BLUE($\mathbf{X}\boldsymbol{\beta}$) = OLSE($\mathbf{X}\boldsymbol{\beta}$), Puntanen and Styan [9, cond. AS2] state

$$\mathbf{P}_{\mathbf{X}}\mathbf{V} = \mathbf{P}_{\mathbf{X}}\mathbf{V}\mathbf{P}_{\mathbf{X}},\tag{1.5}$$

where the symbol $\mathbf{P_A} = \mathbf{AA}^+$ is used to represent the orthogonal projector onto the range (column space) $\mathcal{R}(\mathbf{A})$ of an arbitrary $n \times p$ matrix \mathbf{A} . The symbol $\mathbf{Q_A} = \mathbf{I_n} - \mathbf{P_A}$ will denote the orthogonal projector onto the orthogonal complement of $\mathcal{R}(\mathbf{A})$, compare also [6, Chap. 12].

In the following we derive a condition similar to (1.5) for the less restrictive equality \mathbf{C} BLUE $(\mathbf{X}\boldsymbol{\beta}) = \mathbf{C}$ OLSE $(\mathbf{X}\boldsymbol{\beta})$.

2. Equality of estimators. By confining ourselves to the representation (1.3) of BLUE($X\beta$) we observe that $CBLUE(X\beta) = COLSE(X\beta)$ almost surely if and only if

$$\mathbf{CXX}^{+}\mathbf{y} = \mathbf{CX}(\mathbf{X}'\mathbf{T}^{+}\mathbf{X})^{+}\mathbf{X}'\mathbf{T}^{+}\mathbf{y}$$
 for all $\mathbf{y} \in \mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})$, (2.1)

the latter being equivalent to the identities

$$\mathbf{CXX}^{+}\mathbf{X} = \mathbf{CX}(\mathbf{X}'\mathbf{T}^{+}\mathbf{X})^{+}\mathbf{X}'\mathbf{T}^{+}\mathbf{X}$$
(2.2)

and

$$\mathbf{CXX}^{+}\mathbf{V} = \mathbf{CX}(\mathbf{X}'\mathbf{T}^{+}\mathbf{X})^{+}\mathbf{X}'\mathbf{T}^{+}\mathbf{V}. \tag{2.3}$$

But since we have $X = XX^{+}X$ and

$$\mathbf{X} = \mathbf{X}(\mathbf{X}'\mathbf{T}^{+}\mathbf{X})^{+}\mathbf{X}'\mathbf{T}^{+}\mathbf{X},\tag{2.4}$$

the latter being true in view of $\mathcal{R}(\mathbf{X}') = \mathcal{R}(\mathbf{X}'\mathbf{T}^+\mathbf{X})$, see e.g. [3, Theorem 2], condition (2.2) is always met. Thus, the equality under study holds if and only if (2.3) is satisfied.

PROPOSITION 1. Under model $M = \{y, X\beta, \sigma^2 V\}$, equality of $CBLUE(X\beta)$ and $COLSE(X\beta)$ holds almost surely if and only if

$$\mathbf{C}\,\mathbf{P}_{\mathbf{X}}\mathbf{V} = \mathbf{C}\,\mathbf{P}_{\mathbf{X}}\mathbf{V}\mathbf{P}_{\mathbf{X}}.\tag{2.5}$$

Proof. It remains to show that (2.5) is equivalent to (2.3). Since by (2.4) and $\mathbf{X}'\mathbf{T}^{+}\mathbf{T} = \mathbf{X}'$ we have

$$X(X'T^{+}X)^{+}X'T^{+}V = X(X'T^{+}X)^{+}X'T^{+}(T - XX')$$

$$= X(X'T^{+}X)^{+}X'T^{+}T - XX'$$

$$= X(X'T^{+}X)^{+}X' - XX', \qquad (2.6)$$

it is clear that (2.5) follows from (2.3) by right-multiplication of (2.3) with \mathbf{XX}^+ . Conversely assume that (2.5) is satisfied. Then,

$$\begin{split} \mathbf{CP_XV} &= \mathbf{CP_XV(X^+)'X'} \\ &= \mathbf{CP_XV(X^+)'X'T^+X(X'T^+X)^+X'} \\ &= \mathbf{CP_XVP_XT^+X(X'T^+X)^+X'} \\ &= \mathbf{CP_XVT^+X(X'T^+X)^+X'}. \end{split}$$

But since in view of (2.6) we have

$$\mathbf{V}\mathbf{T}^{+}\mathbf{X}(\mathbf{X}'\mathbf{T}^{+}\mathbf{X})^{+}\mathbf{X}' = \mathbf{X}(\mathbf{X}'\mathbf{T}^{+}\mathbf{X})^{+}\mathbf{X}'\mathbf{T}^{+}\mathbf{V},$$

it follows that

$$\mathbf{CP_XV} = \mathbf{CP_XX}(\mathbf{X}'\mathbf{T}^+\mathbf{X})^+\mathbf{X}'\mathbf{T}^+\mathbf{V} = \mathbf{CX}(\mathbf{X}'\mathbf{T}^+\mathbf{X})^+\mathbf{X}'\mathbf{T}^+\mathbf{V},$$

showing
$$(2.3)$$
.

As an immediate corollary we obtain the following.

COROLLARY. Under model $M = \{y, X\beta, \sigma^2 V\}$, the following statements are equivalent:

- (i) BLUE($X\beta$) = OLSE($X\beta$),
- (ii) $\mathbf{X}' \mathrm{BLUE}(\mathbf{X}\boldsymbol{\beta}) = \mathbf{X}' \mathrm{OLSE}(\mathbf{X}\boldsymbol{\beta}),$
- (iii) \mathbf{X}^{+} BLUE $(\mathbf{X}\boldsymbol{\beta}) = \mathbf{X}^{+}$ OLSE $(\mathbf{X}\boldsymbol{\beta})$,

Proof. Observe that for C = X' and $C = X^+$, equations (2.5) and (1.5) are equivalent.

Obviously each of the numerous equivalent conditions for $BLUE(\mathbf{X}\boldsymbol{\beta}) = OLSE(\mathbf{X}\boldsymbol{\beta})$ is sufficient for $CBLUE(\mathbf{X}\boldsymbol{\beta}) = COLSE(\mathbf{X}\boldsymbol{\beta})$, including

$$\mathbf{P}_{\mathbf{X}}\mathbf{V} = \mathbf{V}\mathbf{P}_{\mathbf{X}},\tag{2.7}$$

which is called Zyskind's condition in [9].

It is clear that (2.5) may be reformulated as

$$\mathbf{CP_XVQ_X} = \mathbf{0},\tag{2.8}$$

where $\mathbf{Q}_{\mathbf{X}} = \mathbf{I}_n - \mathbf{P}_{\mathbf{X}}$. If we are interested in characterizing all matrices \mathbf{C} satisfying \mathbf{C} BLUE $(\mathbf{X}\boldsymbol{\beta}) = \mathbf{C}$ OLSE $(\mathbf{X}\boldsymbol{\beta})$ almost surely, then we simply have to inspect the general solution to (2.8) with respect to \mathbf{C} , being

$$\mathbf{C} = \mathbf{Z}(\mathbf{I}_n - \mathbf{P}_{\mathbf{X}} \mathbf{V} \mathbf{Q}_{\mathbf{X}} (\mathbf{P}_{\mathbf{X}} \mathbf{V} \mathbf{Q}_{\mathbf{X}})^+), \tag{2.9}$$

where **Z** is an arbitrary $k \times n$ matrix. In view of

$$\operatorname{rank}(\mathbf{P_XVQ_X}) \leq \operatorname{rank}(\mathbf{Q_X}) = n - \operatorname{rank}(\mathbf{X}) < n$$

it is obvious that there always exists more than one (trivial) solution to (2.8).

If we are interested in characterizing all nonnegative definite matrices \mathbf{V} satisfying \mathbf{C} BLUE($\mathbf{X}\boldsymbol{\beta}$) = \mathbf{C} OLSE($\mathbf{X}\boldsymbol{\beta}$) almost surely, then we have to inspect the general nonnegative definite solution to (2.8) with respect to \mathbf{V} . It is clear that (2.8) is equivalent to $\mathbf{M}\mathbf{V}\mathbf{Q}_{\mathbf{X}} = \mathbf{0}$, where $\mathbf{M} = \mathbf{P}_{\mathbf{X}}\mathbf{C}'\mathbf{C}\mathbf{P}_{\mathbf{X}}$, see [6, Lemma 11.6.2], which in turn is equivalent to

$$\mathbf{P_M V Q_X} = \mathbf{0}.\tag{2.10}$$

The general nonnegative definite solution to (2.10) can be derived from Theorem 2.5 in [7]. By letting $\mathbb{R}_{m\times n}$ denote the set of $m\times n$ real matrices and $\mathbb{R}_{n\times n}^{\geq}$ denote the set of $n\times n$ real (symmetric) nonnegative definite matrices, we may state the following.

PROPOSITION 2. Under model $M = \{\mathbf{y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{V}\}$, the following two statements hold:

(i) For given $\mathbf{X} \in \mathbb{R}_{n \times p}$ and $\mathbf{V} \in \mathbb{R}_{n \times n}^{\geq}$ the set of all matrices $\mathbf{C} \in \mathbb{R}^{k \times n}$ satisfying $\mathbf{C} \text{ BLUE}(\mathbf{X}\boldsymbol{\beta}) = \mathbf{C} \text{ OLSE}(\mathbf{X}\boldsymbol{\beta})$ almost surely is given by

$$\{\mathbf{C} = \mathbf{Z}\mathbf{Q}_{\mathbf{L}}|\mathbf{Z} \in \mathbb{R}_{k \times n}\},$$

where $\mathbf{L} = \mathbf{P}_{\mathbf{X}} \mathbf{V} \mathbf{Q}_{\mathbf{X}}$.

(ii) For given $\mathbf{X} \in \mathbb{R}_{n \times p}$ and $\mathbf{C} \in \mathbb{R}_{k \times n}$ the set of all matrices $\mathbf{V} \in \mathbb{R}_{n \times n}^{\geq}$ satisfying $\mathbf{C} \text{ BLUE}(\mathbf{X}\boldsymbol{\beta}) = \mathbf{C} \text{ OLSE}(\mathbf{X}\boldsymbol{\beta})$ almost surely is given by

$$\{\mathbf{V}\!=\!\mathbf{P_{M}}\mathbf{Z}_{1}\mathbf{P_{M}}\!+\!\mathbf{Q_{X}}\mathbf{Z}_{2}\mathbf{Q_{X}}\!+\!(\mathbf{P_{X}}\!-\!\mathbf{P_{M}})\mathbf{Z}_{3}(\mathbf{P_{X}}\!-\!\mathbf{P_{M}})|\mathbf{Z}_{1},\!\mathbf{Z}_{2},\!\mathbf{Z}_{3}\in\mathbb{R}_{n\times n}^{\geq}\},$$

where $\mathbf{M} = \mathbf{P}_{\mathbf{X}} \mathbf{C}' \mathbf{C} \mathbf{P}_{\mathbf{X}}$.

Proof. The proof of (i) is clear from the above considerations. For the proof of (ii) observe beforehand that

$$\mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{M}} = \mathbf{P}_{\mathbf{M}} = \mathbf{P}_{\mathbf{M}}\mathbf{P}_{\mathbf{X}},\tag{2.11}$$

$$(\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})^{+} = \mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}}, \tag{2.12}$$

see also [4, Theorem 3.1.1] for (2.12). From Theorem 2.5 in [7], the general nonnegative definite solution to (2.10) with respect to \mathbf{V} is given by

$$\mathbf{V} = (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})^{+} (\mathbf{A} + \mathbf{B}) (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})^{+}$$
$$+ [\mathbf{I}_{n} - (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})^{+} (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})] \mathbf{Z}_{3} [\mathbf{I}_{n} - (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})^{+} (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})],$$

where $\mathbf{Z}_3 \in \mathbb{R}_{n \times n}^{\geq}$ is arbitrary, and \mathbf{A} and \mathbf{B} are arbitrary nonnegative definite solutions of

$$\mathbf{A}(\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})^{+}\mathbf{Q}_{\mathbf{X}} = \mathbf{0},\tag{2.13}$$

$$\mathbf{P_M}(\mathbf{P_M} + \mathbf{Q_X})^+ \mathbf{B} = \mathbf{0},\tag{2.14}$$

such that $\mathbf{A} + \mathbf{B}$ is nonnegative definite. By using (2.11) and (2.12) it follows that (2.13) is equivalent to $\mathbf{AQ_X} = \mathbf{0}$ with general nonnegative definite solution, see [7, Theorem 2.2],

$$\mathbf{A} = (\mathbf{I}_n - \mathbf{Q}_{\mathbf{X}}) \mathbf{Z}_1 (\mathbf{I}_n - \mathbf{Q}_{\mathbf{X}}) = \mathbf{P}_{\mathbf{X}} \mathbf{Z}_1 \mathbf{P}_{\mathbf{X}}, \tag{2.15}$$

where $\mathbf{Z}_1 \in \mathbb{R}_{n \times n}^{\geq}$ is arbitrary. Moreover, it is seen that (2.14) is equivalent to $\mathbf{P}_{\mathbf{M}}\mathbf{B} = \mathbf{0}$ with general nonnegative definite solution, see [7, Theorem 2.2],

$$\mathbf{B} = (\mathbf{I}_n - \mathbf{P}_{\mathbf{M}})\mathbf{Z}_2(\mathbf{I}_n - \mathbf{P}_{\mathbf{M}}) = \mathbf{Q}_{\mathbf{M}}\mathbf{Z}_2\mathbf{Q}_{\mathbf{M}}, \tag{2.16}$$

where $\mathbf{Z}_2 \in \mathbb{R}_{n \times n}^{\geq}$ is arbitrary. Clearly $\mathbf{A} + \mathbf{B}$ is nonnegative definite for all choices of $\mathbf{Z}_1, \mathbf{Z}_2 \in \mathbb{R}_{n \times n}^{\geq}$. By using again (2.11) and (2.12), we observe that

$$\mathbf{I}_n - (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})^+ (\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}}) = \mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{M}}.$$

Therefore, the general nonnegative definite solution to (2.10) is given by

$$\mathbf{V} = (\ \mathbf{P}_{\!\mathbf{M}} + \mathbf{Q}_{\mathbf{X}})(\mathbf{A} + \mathbf{B})(\mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}}) + (\ \mathbf{P}_{\!\mathbf{X}} - \mathbf{P}_{\mathbf{M}})\mathbf{Z}_{3}(\mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{M}}),$$

where \mathbf{A} and \mathbf{B} are as in (2.15) and (2.16), respectively. By writing

$$\begin{split} &(\mathbf{P_M} + \mathbf{Q_X})(\mathbf{A} + \mathbf{B})(\mathbf{P_M} + \mathbf{Q_X}) \\ &= (\mathbf{P_M} + \mathbf{Q_X})(\mathbf{P_X}\mathbf{Z_1}\mathbf{P_X} + \mathbf{Q_M}\mathbf{Z_2}\mathbf{Q_M})(\mathbf{P_M} + \mathbf{Q_X}) \\ &= \mathbf{P_M}\mathbf{P_X}\mathbf{Z_1}\mathbf{P_X}\mathbf{P_M} + \mathbf{Q_X}\mathbf{Q_M}\mathbf{Z_2}\mathbf{Q_M}\mathbf{Q_X} \\ &= \mathbf{P_M}\mathbf{Z_1}\mathbf{P_M} + \mathbf{Q_X}\mathbf{Z_2}\mathbf{Q_X}, \end{split}$$

we arrive at

$$\mathbf{V} = \mathbf{P}_{\mathbf{M}} \mathbf{Z}_1 \mathbf{P}_{\mathbf{M}} + \mathbf{Q}_{\mathbf{X}} \mathbf{Z}_2 \mathbf{Q}_{\mathbf{X}} + (\mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{M}}) \mathbf{Z}_3 (\mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{M}}),$$

where $\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3 \in \mathbb{R}_{n \times n}^{\geq}$ are arbitrary.

A related but somewhat different problem is to determine the subspace of possible observation vectors \mathbf{y} for fixed \mathbf{C} , \mathbf{X} and \mathbf{V} satisfying \mathbf{C} BLUE($\mathbf{X}\boldsymbol{\beta}$) = \mathbf{C} OLSE($\mathbf{X}\boldsymbol{\beta}$). Under the assumptions $r = \text{rank}(\mathbf{X}) = p$, $\text{rank}(\mathbf{V}) = n$ and $\mathbf{C} = \mathbf{B}\mathbf{X}^+$, where \mathbf{B} is an arbitrary (but fixed) $k \times p$ matrix, this subspace has been identified in [5] to be

$$\mathfrak{E} = \mathcal{R}(\mathbf{X}) \oplus \left[\mathcal{R}(\mathbf{X}^{\perp}) \cap \left[\mathcal{R}(\mathbf{V}\mathbf{X}^{\perp}) \oplus \left[\mathcal{R}(\mathbf{X}) \cap \mathcal{N}(\mathbf{C}) \right] \right] \right], \tag{2.17}$$

where \mathbf{X}^{\perp} denotes any matrix of maximal rank such that $\mathbf{X}'\mathbf{X}^{\perp} = \mathbf{0}$, and $\mathcal{N}(\mathbf{C})$ denotes the null space of \mathbf{C} . In case $\mathbf{B} = \mathbf{I}_p$, k = p, the subspace \mathfrak{E} reduces to

$$\mathfrak{E} = \mathcal{R}(\mathbf{X}) \oplus \left[\mathcal{R}(\mathbf{X}^{\perp}) \cap \mathcal{R}(\mathbf{V}\mathbf{X}^{\perp}) \right], \tag{2.18}$$

which has been observed earlier in [8].

We will now demonstrate that the subspace (2.17) remains the appropriate choice under the more general assumptions of model (1.1), when in addition \mathbf{y} is restricted to be in $\mathcal{R}(\mathbf{X})+\mathcal{R}(\mathbf{V})$. The latter guarantees that different choices of representations of BLUE($\mathbf{X}\boldsymbol{\beta}$) cannot lead to different estimates of $\mathbf{X}\boldsymbol{\beta}$.

PROPOSITION 3. Under model $M = \{\mathbf{y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{V}\}$, for given $\mathbf{X} \in \mathbb{R}_{n \times p}$, $\mathbf{V} \in \mathbb{R}_{n \times n}^{\geq}$ and $\mathbf{C} \in \mathbb{R}_{k \times n}$, the set \mathfrak{E} of all vectors $\mathbf{y} \in \mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})$ satisfying \mathbf{C} BLUE $(\mathbf{X}\boldsymbol{\beta}) = \mathbf{C}$ OLSE $(\mathbf{X}\boldsymbol{\beta})$ is given by

$$\mathfrak{E} = \mathcal{R}(\mathbf{X}) \oplus [\mathcal{R}(\mathbf{X}^{\perp}) \cap \mathfrak{F}],$$

where $\mathfrak{F} = \mathcal{R}(\mathbf{V}\mathbf{X}^{\perp}) \oplus [\mathcal{R}(\mathbf{X}) \cap \mathcal{N}(\mathbf{C})].$

Proof. The set of all vectors $\mathbf{y} \in \mathfrak{E}$ is

$$\mathfrak{E} = \mathcal{N}[\mathbf{C}(\mathbf{P}_{\mathbf{X}} - \mathbf{R})] \cap [\mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})], \tag{2.19}$$

where $\mathbf{R} = \mathbf{X}(\mathbf{X}'\mathbf{T}^+\mathbf{X})^+\mathbf{X}'\mathbf{T}^+$. Let $\mathfrak{F} = [\mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})] \cap \mathcal{N}(\mathbf{C}\mathbf{R})$. Then

$$\mathfrak{F} = \mathcal{R}(\mathbf{V}\mathbf{X}^{\perp}) \oplus [\mathcal{R}(\mathbf{X}) \cap \mathcal{N}(\mathbf{C})] \tag{2.20}$$

follows similarly as in the proof of Lemma 1 in [5], and it remains to show

$$\mathcal{N}[\mathbf{C}(\mathbf{P}_{\mathbf{X}} - \mathbf{R})] \cap [\mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})] = \mathcal{R}(\mathbf{X}) \oplus [\mathcal{R}(\mathbf{X}^{\perp}) \cap \mathfrak{F}]. \tag{2.21}$$

Let \mathbf{y} be a vector belonging to the left-hand subspace of (2.21). Such a vector \mathbf{y} can be written as $\mathbf{y} = \mathbf{a} + \mathbf{b}$ for some $\mathbf{a} \in \mathcal{R}(\mathbf{X})$ and some $\mathbf{b} \in \mathcal{R}(\mathbf{X}^{\perp})$. Obviously, $\mathbf{b} = \mathbf{c}$

 $\mathbf{y} - \mathbf{a} \in \mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})$. Moreover we have $\mathbf{CP_Xy} = \mathbf{Ca}$ and $\mathbf{CRy} = \mathbf{CRa} + \mathbf{CRb} = \mathbf{Ca} + \mathbf{CRb}$, yielding $\mathbf{0} = \mathbf{C}(\mathbf{P_X} - \mathbf{R})\mathbf{y} = -\mathbf{CRb}$. Therefore, $\mathbf{b} \in \mathfrak{F} = \mathcal{N}(\mathbf{CR}) \cap [\mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})]$, showing that the left-hand subspace of (2.21) is contained in the right-hand subspace of (2.21). To demonstrate the reverse inclusion let $\mathbf{y} = \mathbf{Xa} + \mathbf{b}$, where $\mathbf{a} \in \mathbb{R}^p$ and $\mathbf{b} \in \mathcal{R}(\mathbf{X}^\perp) \cap \mathfrak{F}$, where clearly $\mathcal{R}(\mathbf{X}^\perp) \cap \mathfrak{F} \subseteq \mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})$, and therefore $\mathbf{y} \in \mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})$. Moreover, $\mathbf{X}'\mathbf{b} = \mathbf{0}$ and $\mathbf{CRb} = \mathbf{0}$, and in view of $(\mathbf{P_X} - \mathbf{R})\mathbf{X} = \mathbf{0}$ we obtain $\mathbf{C}(\mathbf{P_X} - \mathbf{R})\mathbf{y} = \mathbf{C}(\mathbf{P_X} - \mathbf{R})\mathbf{Xa} + \mathbf{C}(\mathbf{P_X} - \mathbf{R})\mathbf{b} = \mathbf{C}(\mathbf{P_X} - \mathbf{R})\mathbf{b} = \mathbf{C}(\mathbf{X}^+)'\mathbf{X}'\mathbf{b} - \mathbf{CRb} = \mathbf{0} - \mathbf{0} = \mathbf{0}$, showing $\mathbf{y} \in \mathcal{N}[\mathbf{C}(\mathbf{P_X} - \mathbf{R})]$. Hence, the right-hand subspace of (2.21) is contained in the left-hand subspace of (2.21).

Note that for the special choice $\mathbf{C} = \mathbf{I}_n$, k = n, we have $\mathfrak{F} = \mathcal{R}(\mathbf{V}\mathbf{X}^{\perp})$, showing that the set \mathfrak{E} of all vectors $\mathbf{y} \in \mathcal{R}(\mathbf{X}) + \mathcal{R}(\mathbf{V})$ satisfying $\mathrm{BLUE}(\mathbf{X}\boldsymbol{\beta}) = \mathrm{OLSE}(\mathbf{X}\boldsymbol{\beta})$ is given by (2.18).

3. Example. Consider the one-way classification model

$$y_{ij} = \mu + \alpha_i + e_{ij}, \quad i = 1, \dots, a, \quad j = 1, \dots n_i,$$

where the e_{ij} 's are uncorrelated random variables with means 0 and variances $d_{ij}\sigma^2$.

Assume for a numerical example $a=3,\ n_1=3,\ n_2=2,\ n_1=1,$ and $d_{ij}=1$ if $(i,j)\neq (1\ 3)$. Assume in addition $d_{13}\neq 1$ but otherwise unknown. Then the error variances are not homogenous within groups, and from Corollary 4 in [1] it follows that we do not have equality of OLSE and BLUE of any parametric function. However, if we consider the contrast $\alpha_2-\alpha_3=\mathbf{c}'\mathbf{X}\boldsymbol{\beta}$, where $\mathbf{c}'=(0\ 0,0,-\frac{1}{2},-\frac{1}{2},1)$, it follows easily from our Proposition that $\mathrm{OLSE}(\alpha_2-\alpha_3)=\mathrm{BLUE}(\alpha_2-\alpha_3)=y_{31}-\frac{1}{2}y_{21}-\frac{1}{2}y_{22}$.

Acknowledgements. Support by Deutsche Forschungsgemeinschaft under grants Tr 253/2-3 and SFB 475 is gratefully acknowledged.

REFERENCES

1. J.K. Baksalary, Criteria for the equality between ordinary least squares and best linear unbiased estimators under certain linear models, *The Canadian Journal of Statistics*, 16, pp. 97–102 (1988).

- 2. J.K. Baksalary and A.C. van Eijnsbergen, A comparison of two criteria for ordinary-least-squares estimators to be best linear unbiased estimators, *The American Statistician*, 42, pp. 205–208 (1988).
- 3. J.K. Baksalary, S. Puntanen and G.P.H. Styan, A property of the dispersion matrix of the best linear unbiased estimator in the general Gauss-Markov model, *Sankhyā Ser. A*, 52, pp. 279–296 (1990).
- 4. S.L. Campbell and C.D. Meyer, Jr., Generalized Inverses of Linear Transformations, Pitman, London (1979).
- 5. J. Groß and G. Trenkler, When do linear transforms of ordinary least squares and Gauss-Markov estimator coincide?, Sankhyā, Ser. A, 59, pp. 175–178 (1997).
- 6. D.A. Harville, Matrix Algebra From a Statistician's Perspective, Springer, New York (1997).
- 7. C.G. Khatri and S.K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM Journal of Applied Mathematics, 31, pp. 579–585.
- 8. W. Krämer, A note on the equality of ordinary least squares and Gauss-Markov estimates in the general linear model, Sankhyā, Ser. A, 42, pp. 130–131 (1971).
- 9. S. Puntanen and G.P.H. Styan, The equality of the ordinary least squares estimator and the best linear unbiased estimator (with discussion), *The American Statistician*, 43, pp. 153–164 (1989).
- 10. C.R. Rao, Unified theory of linear estimation, Sankhyā, Ser. A, 33, pp. 370–396 (1971).
- 11. C.R. Rao, Representations of best linear unbiased estimators in the Gauss–Markoff model with a singular dispersion matrix, *Journal of Multivariate Analysis*, 3, pp. 276–292 (1973).