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Abstract. The best linear unbiased estimator BLUE(CX�) of a linear transform CX� in

the general Gauss-Markov model fy;E(y) = X�;Cov(y) = �
2Vg is the linear transform

CBLUE(X�) of the best linear unbiased estimator BLUE(X�) of X�. Similarly, for the

ordinary least squares estimator, OLSE(CX�) = COLSE(X�). The problem of equality

of OLSE(X�) and BLUE(X�) has been widely discussed in the literature. In this note,

characterizations of the equality COLSE(X�) = CBLUE(X�) are given in terms of

projectors and subspaces.
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1. Introduction. Consider the general Gauss-Markov model denoted by

M = fy;X�; �2Vg; (1.1)

where y is an observable n� 1 random vector with E(y) = X� and Cov(y) = �2V,

X is a known n � p matrix of rank r, 0 < r < n ,V is a known n � n symmetric

nonnegative de�nite matrix (possibly singular), � is a p � 1 vector of unknown

parameters, and �2 > 0 is either known or unknown.

Our interest focuses on estimation of a linear transform CX� of X�, where C

is a given k � n matrix. Recall that estimation of X0� with known X0 = CX can

also be seen as (classical) prediction of an unobservable random vector y0 satisfying

E(y0) = X0�.

�e-mail: gross@amadeus.statistik.uni-dortmund.de, trenkler@amadeus.statistik.uni-dortmund.de

1



It is well known [10, 11] that a representation of the best linear unbiased estimator

(BLUE) of CX� is given by

BLUE(CX�) = CX(X0T+X)+X0T+y; (1.2)

where T = V+XX0. Here, A0 and A+ denote the transpose and the Moore-Penrose

inverse of an arbitrary matrix A, respectively. Since we have

BLUE(X�) = X(X0T+X)+X0T+y; (1.3)

it is clear that BLUE(CX�) = CBLUE(X�). Although there exist further repre-

sentations of BLUE(X�), all of them coincide almost surely, so that without loss of

generality we may con�ne ourselves to (1.3). Consider now the competing estimator

COLSE(X�), where

OLSE(X�) = XX+y (1.4)

is known as the ordinary least squares estimator (OLSE) of X�. The problem of

equality of BLUE(X�) and OLSE(X�) has been widely discussed in the literature.

See e.g. [2] where two di�erent versions of this problem are investigated, and [9] for

an excellent overview. As one (among many other) necessary and su�cient condition

for BLUE(X�) = OLSE(X�), Puntanen and Styan [9, cond. AS2] state

PXV = PXVPX; (1.5)

where the symbol PA = AA+ is used to represent the orthogonal projector onto

the range (column space) R(A) of an arbitrary n� p matrix A. The symbol QA =

In � PA will denote the orthogonal projector onto the orthogonal complement of

R(A), compare also [6, Chap. 12].

In the following we derive a condition similar to (1.5) for the less restrictive

equality CBLUE(X�) = COLSE(X�).

2. Equality of estimators. By con�ning ourselves to the representation (1.3)

of BLUE(X�) we observe that CBLUE(X�) = COLSE(X�) almost surely if and

only if

CXX+y = CX(X0T+X)+X0T+y for all y 2 R (X) +R(V), (2.1)
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the latter being equivalent to the identities

CXX+X = CX(X0T+X)+X0T+X (2.2)

and

CXX+V = CX(X0T+X)+X0T+V: (2.3)

But since we have X = XX+X and

X = X(X0T+X)+X0T+X; (2.4)

the latter being true in view of R(X0) = R(X0T+X), see e.g. [3, Theorem 2],

condition (2.2) is always met. Thus, the equality under study holds if and only if

(2.3) is satis�ed.

Proposition 1. Under model M = fy;X�; �2Vg, equality of CBLUE(X�) and

COLSE(X�) holds almost surely if and only if

CPXV = CPXVPX: (2.5)

Proof. It remains to show that (2.5) is equivalent to (2.3). Since by (2.4) and

X0T+T = X0 we have

X(X0T+X)+X0T+V = X(X0T+X)+X0T+(T�XX0)

= X(X0T+X)+X0T+T�XX0

= X(X0T+X)+X0 �XX0; (2.6)

it is clear that (2.5) follows from (2.3) by right-multiplication of (2.3) with XX+.

Conversely assume that (2.5) is satis�ed. Then,

CPXV = CPXV(X+)0X0

= CPXV(X+)0X0T+X(X0T+X)+X0

= CPXVPXT
+X(X0T+X)+X0

= CPXVT
+X(X0T+X)+X0:

But since in view of (2.6) we have

VT+X(X0T+X)+X0 = X(X0T+X)+X0T+V;
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it follows that

CPXV = CPXX(X
0T+X)+X0T+V = CX(X0T+X)+X0T+V;

showing (2.3).

As an immediate corollary we obtain the following.

Corollary. Under model M = fy;X�; �2Vg, the following statements are equiv-

alent :

(i) BLUE(X�) = OLSE(X�),

(ii) X0BLUE(X�) = X0OLSE(X�),

(iii) X+BLUE(X�) = X+OLSE(X�),

Proof. Observe that for C = X0 and C = X+, equations (2.5) and (1.5) are

equivalent.

Obviously each of the numerous equivalent conditions for BLUE(X�) =

OLSE(X�) is su�cient for CBLUE(X�) = COLSE(X�), including

PXV = VPX; (2.7)

which is called Zyskind's condition in [9].

It is clear that (2.5) may be reformulated as

CPXVQX = 0; (2.8)

where QX = In�PX. If we are interested in characterizing all matrices C satisfying

CBLUE(X�) = COLSE(X�) almost surely, then we simply have to inspect the

general solution to (2.8) with respect to C, being

C = Z(In �PXVQX(PXVQX)
+); (2.9)

where Z is an arbitrary k � n matrix. In view of

rank(PXVQX) � rank(QX) = n� rank(X) < n

it is obvious that there always exists more than one (trivial) solution to (2.8).
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If we are interested in characterizing all nonnegative de�nite matrices V sat-

isfying CBLUE(X�) = COLSE(X�) almost surely, then we have to inspect the

general nonnegative de�nite solution to (2.8) with respect to V. It is clear that (2.8)

is equivalent to MVQ
X
= 0, where M = PXC

0CPX, see [6, Lemma 11.6.2], which

in turn is equivalent to

PMVQX = 0: (2.10)

The general nonnegative de�nite solution to (2.10) can be derived from Theorem

2.5 in [7]. By letting Rm�n denote the set of m� n real matrices and R�
n�n denote

the set of n � n real (symmetric) nonnegative de�nite matrices, we may state the

following.

Proposition 2. Under model M = fy;X�; �2Vg, the following two statements

hold:

(i) For given X 2 Rn�p and V 2 R
�
n�n the set of all matrices C 2 R

k�n satisfying

CBLUE(X�) = COLSE(X�) almost surely is given by

fC = ZQLjZ 2 Rk�ng ;

where L = PXVQX.

(ii) For given X 2 Rn�p and C 2 Rk�n the set of all matrices V 2 R
�
n�n satisfying

CBLUE(X�) = COLSE(X�) almost surely is given by

fV=PMZ1PM+QXZ2QX+(PX�PM)Z3(PX�PM)jZ1;Z2;Z3 2 R
�
n�ng;

where M = PXC
0CPX.

Proof. The proof of (i) is clear from the above considerations. For the proof of

(ii) observe beforehand that

PXPM = PM = PMPX; (2.11)

(PM +QX)
+ = PM +QX; (2.12)

see also [4, Theorem 3.1.1] for (2.12). From Theorem 2.5 in [7], the general nonneg-

ative de�nite solution to (2.10) with respect to V is given by

V = ( PM +Q
X
)+(A+B)(PM +Q

X
)+

+[In � (PM+Q
X
)+(PM+Q

X
)]Z3[In � (PM+Q

X
)+(PM+Q

X
)];
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where Z3 2 R
�
n�n is arbitrary, and A and B are arbitrary nonnegative de�nite

solutions of

A(PM +Q
X
)+Q

X
= 0; (2.13)

PM(PM +QX)
+B = 0; (2.14)

such that A+B is nonnegative de�nite. By using (2.11) and (2.12) it follows that

(2.13) is equivalent to AQ
X
= 0 with general nonnegative de�nite solution, see [7,

Theorem 2.2],

A = ( In �QX)Z1(In �QX) = PXZ1PX; (2.15)

where Z1 2 R
�
n�n is arbitrary. Moreover, it is seen that (2.14) is equivalent to

PMB = 0 with general nonnegative de�nite solution, see [7, Theorem 2.2],

B = ( In �PM)Z2(In �PM) = QMZ2QM; (2.16)

where Z2 2 R
�
n�n is arbitrary. Clearly A+B is nonnegative de�nite for all choices

of Z1;Z2 2 R
�
n�n. By using again (2.11) and (2.12), we observe that

In � (PM +Q
X
)+(PM +Q

X
) = PX �PM:

Therefore, the general nonnegative de�nite solution to (2.10) is given by

V = ( PM +QX)(A+B)(PM +QX) + (PX �PM)Z3(PX �PM);

where A and B are as in (2.15) and (2.16), respectively. By writing

(PM +QX)(A+B)(PM +QX)

= ( PM +Q
X
)(PXZ1PX +Q

M
Z2QM)(PM +Q

X
)

= PMPXZ1PXPM +QXQMZ2QMQX

= PMZ1PM +Q
X
Z2QX;

we arrive at

V = PMZ1PM +Q
X
Z2QX + (PX �PM)Z3(PX �PM);

where Z1;Z2;Z3 2 R
�
n�n are arbitrary.
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A related but somewhat di�erent problem is to determine the subspace of

possible observation vectors y for �xed C, X and V satisfying CBLUE(X�) =

COLSE(X�). Under the assumptions r = rank(X) = p, rank(V) = n and

C = BX+, where B is an arbitrary (but �xed) k � p matrix, this subspace has

been identi�ed in [5] to be

E = R(X)�
�
R(X?) \

�
R(VX?)� [R(X) \ N (C)]

��
; (2.17)

where X? denotes any matrix of maximal rank such that X0X? = 0, and N (C)

denotes the null space of C. In case B = Ip, k = p, the subspace E reduces to

E = R(X)�
�
R(X?) \ R (VX?)

�
; (2.18)

which has been observed earlier in [8].

We will now demonstrate that the subspace (2.17) remains the appropriate choice

under the more general assumptions of model (1.1), when in addition y is restricted

to be inR(X)+R(V). The latter guarantees that di�erent choices of representations

of BLUE(X�) cannot lead to di�erent estimates of X�.

Proposition 3. Under model M = fy;X�; �2Vg, for given X 2 Rn�p, V 2 R
�
n�n

and C 2 Rk�n, the set E of all vectors y 2 R(X)+R(V) satisfying CBLUE(X�) =

COLSE(X�) is given by

E = R(X)� [R(X?) \ F];

where F = R(VX?)� [R(X) \ N (C)].

Proof. The set of all vectors y 2 E is

E = N [C(PX �R)] \ [R(X) +R(V)]; (2.19)

where R = X(X0T+X)+X0T+. Let F = [ R(X) +R(V)] \N (CR). Then

F = R(VX?)� [R(X) \N (C)] (2.20)

follows similarly as in the proof of Lemma 1 in [5], and it remains to show

N [C(PX �R)] \ [R(X) +R(V)] = R(X)�
�
R(X?) \ F

�
: (2.21)

Let y be a vector belonging to the left-hand subspace of (2.21). Such a vector y can

be written as y = a + b for some a 2 R(X) and some b 2 R(X?). Obviously, b =
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y�a 2 R (X)+R(V). Moreover we have CPXy = Ca and CRy = CRa+CRb =

Ca + CRb, yielding 0 = C(PX � R)y = �CRb. Therefore, b 2 F = N (CR) \

[R(X) + R(V)], showing that the left-hand subspace of (2.21) is contained in the

right-hand subspace of (2.21). To demonstrate the reverse inclusion let y = Xa+b,

where a 2 R
p and b 2 R(X?) \ F, where clearly R(X?) \ F � R (X) +R(V),

and therefore y 2 R (X) +R(V). Moreover, X0b = 0 and CRb = 0, and in view

of (PX � R)X = 0 we obtain C(PX � R)y = C(PX � R)Xa + C(PX � R)b =

C(PX � R)b = C(X+)0X0b � CRb = 0 � 0 = 0, showing y 2 N [C(PX � R)].

Hence, the right-hand subspace of (2.21) is contained in the left-hand subspace of

(2.21).

Note that for the special choice C = In, k = n, we have F = R(VX?), showing

that the set E of all vectors y 2 R (X)+R(V) satisfying BLUE(X�) = OLSE(X�)

is given by (2.18).

3. Example. Consider the one-way classi�cation model

yij = �+ �i + eij; i = 1 ; : : : ; a; j= 1 ; : : : ni;

where the eij's are uncorrelated random variables with means 0 and variances dij�
2.

Assume for a numerical example a = 3, n1 = 3, n2 = 2, n1 = 1, and dij = 1

if (i; j) 6= (1 ;3). Assume in addition d13 6= 1 but otherwise unknown. Then the

error variances are not homogenous within groups, and from Corollary 4 in [1] it

follows that we do not have equality of OLSE and BLUE of any parametric function.

However, if we consider the contrast �2��3 = c
0X�, where c0 = (0 ;0; 0;�1

2
;�1

2
; 1),

it follows easily from our Proposition that OLSE(�2 � �3) = BLUE(�2 � �3) =

y31 �
1

2
y21 �

1

2
y22.
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