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Abstract

For the common binary response model we propose a direct method for the nonparametric
estimation of the effective dose level EDα (0 < α < 1). The estimator is obtained by the
composition of a nonparametric estimate of the quantile response curve and a classical density
estimate. The new method yields a simple and reliable monotone estimate of the effective
dose level curve α → EDα and is appealing to users of conventional smoothing methods as
kernel estimators, local polynomials, series estimators or smoothing splines. Moreover it is
computationally very efficient, because it does not require a numerical inversion of a mono-
tonized estimate of the quantile dose response curve. We prove asymptotic normality of the
new estimate and compare it with an available alternative estimate (based on a monotonized
nonparametric estimate of the dose response curve and the calculation of the inverse function)
by means of a simulation study.

AMS Subject Classification: 62G05, 62G20, 62P10
Keywords and Phrases: Binary response model, effective dose level, nonparametric regression,
isotonic regression, order restricted inference, local linear regression

1 Introduction

Dose-response experiments are routinely conducted in preclinical and Phase I and II clinical trials
to study the relationship between the dose level of a drug and the probability of a response, be
it “cured” or “poisoned”. The underlying assumption for quantal bioassay is that a subject is
administered a stimulus at a dose level, say x, and that the response Y is a binary random variable
with success probability p(x), i.e. Y ∼ Bin(1, p(x)). The function p : R → [0, 1] is called the dose
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response curve and is usually assumed to be strictly monotone. For a given α ∈ (p(0), p(1)) the
parameter of interest is the effective dose level

EDα = p−1(α),(1.1)

which is the dose, where 100α% of the subjects react. If n subjects are investigated at dose levels,
say x1, . . . , xn, the statistical model is given by

P (Yi = 1|xi) = p(xi) = 1 − P (Yi = 0|xi) , i = 1, . . . , n,(1.2)

where different observations are assumed to be independent and the aim of the experiment is to
estimate the effective dose level EDα for a particular α ∈ (p(0), p(1)).
There are two basic approaches for this purpose, a parametric and nonparametric method. The
first approach assumes a parametric form for the dose response curve, say p(x) = p(x, θ) for some
θ ∈ R

k, and the unknown parameters are usually estimated by the maximum likelihood method. An
estimate of the effective dose level is finally obtained by evaluating the inverse function p−1(α, θ̂).
The most widely used models are the probit and the logit model for p [see Berkson (1944) and
Bliss (1934)], other models are the double exponential, the double reciprocal and the skewed logit
model [see e.g. McCullagh and Nelder (1983)]. However, in many cases a parametric form of
the dose response curve is not known by the experimenter, because the biological mechanisms are
too complicated. In such cases the misspecification of a parametric model may lead to serious
errors in the subsequent data analysis. For this reason numerous authors propose to estimate the
effective dose level nonparametrically. Early proposals mainly for the purpose of estimating the
ED0.5 nonparametrically can be found in Spearman (1908) and Thompson (1947). More recently
Schmoyer (1984) constructed a constrained maximum likelihood estimator under the assumption
that the dose response curve p is sigmoid, while Müller and Schmitt (1988) proposed a kernel
estimator for the dose response curve p. Because this estimate is not necessarily strictly monotone,
it was first monotonized [see Barlow, Bartholomew, Bremner and Brunk (1972)] and the estimate
of the effective dose level was then obtained by inversion according to (1.1).
In this note we discuss a more direct approach for the estimation of the effective dose levels. Our
work is motivated by the search of a monotone estimate of the EDα, which is not based on a
constrained optimization and the inversion of the estimated dose response curve. For this purpose
we construct a density estimate from the estimated dose response curve and use this additional
smoothing step to obtain a monotone estimate of the effective dose level function directly.
The estimate is carefully described in Section 2, where we also discuss its main properties. In
particular we prove asymptotic normality of the estimate for p−1 and show that the new estimator
is asymptotically first order equivalent to the estimate proposed by Müller and Schmitt (1988).
Moreover, the calculation of the new estimate is substantially simpler than the currently available
methods. In Section 3 we study some of the finite sample properties of our estimator by means of
a simulation study and demonstrate that our new estimate is at least comparable to the currently
available nonparametric estimates of the effective dose level. All technical details are deferred to
an appendix.
We finally note that our approach has several advantages compared to the indirect methods proposed
in the literature. The new procedure is based on a simple combination of a density and regression
estimate. It is computational efficient and attractive to users of conventional kernel methods,
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because it does not require any constrained optimization techniques or inversion. Moreover, the
indirect methods do not necessarily allow the estimation of the effective dose level EDα for any
α ∈ (p(0), p(1)), because it is not guaranteed that the inverse of the estimated dose response curve
is defined for all α ∈ (p(0), p(1)). Finally, the new estimator has an asymptotic normal distribution,
which allows a very simple construction of asymptotic confidence intervals for the EDα, whenever
α ∈ (p(0), p(1)).

2 Monotone quantile estimation

Consider the binary response model (1.2), where different observations are assumed to be indepen-
dent and the dose response curve p is assumed to be strictly increasing and two times continuously
differentiable. For the experimental design x1 < . . . < xn we assume without loss of generality

�

n
=

∫ x�

0

f(t)dt, � = 1, . . . , n(2.1)

for a positive two times continuously differentiable design density f [see Sacks and Ylvisaker (1970)].
The nonparametric estimate of the effective dose level curve is defined by

p̂−1
I (α) :=

1

Nhd

N∑
i=1

∫ α

−∞
Kd

( p̂( i
N

) − u

hd

)
du , α ∈ (0, 1)(2.2)

where p̂( i
N

) is the local linear estimator at the point i
N

(i = 1, . . . , N), i.e. the component β̂i0 of

the vector (β̂i0, β̂i1) which minimizes

n∑
k=1

{
Yk − βi0 − βi1(xk − i

N
)
}2

Kr(
xk − i

N

hr
)(2.3)

[see Wand and Jones (1995) or Fan and Gijbels (1996)]. In (2.2) and (2.3) Kd and Kr denote
symmetric kernels with compact support, say [−1, 1], existing second moment and hd, hr are the
corresponding bandwidths converging to 0 with increasing sample size n. We also assume that
Kd is two times continuously differentiable and positive. The indices “r” and “d” correspond to
the phrase “regression” and “density” because we combine a regression with a density estimate to
define the estimator in (2.2). For the sake of transparency we restrict ourselves to the local linear
estimate, but it is notable that all results of the paper remain valid (subject to an appropriate
modification of constants) for other types of kernel estimators as the Gasser-Müller estimator [see
Gasser and Müller (1979)] or higher order local polynomial estimators [see Fan and Gijbels (1996)
or Wand and Jones (1995)]. It is also important to note that it is not necessary (and in many cases
not desirable) that the number N used in the density step coincides with the sample size n. The
summation over the index i can be considered as simple quadrature formula for the integral

1

hd

∫ 1

0

∫ α

−∞
Kd

( p̂(x) − u

hd

)
dudx,

and in cases, where this integral can be evaluated directly, a summation is in fact not necessary.

3



Because the kernel Kd is positive by assumption the estimate p̂−1
I is obviously isotonic. Moreover,

it is easy to see that the estimator p̂−1
I is equal to 1 and 0 if α > maxN

i=1 p̂( i
N

) + hd and α <
minN

i=1 p̂( i
N

)−hd, respectively. Because p̂ converges uniformly to the unknown dose response function
p, it is heuristically clear that for hd → 0 the estimate p̂−1

I is in some sense close to the function

1

hd

∫ 1

0

∫ α

−∞
Kd

(p(x) − u

hd

)
dudx =

∫ 1

0

I{p(x) ≤ α}dx + o(1)(2.4)

(note that the kernel Kd has compact support). In other words, the statistic p̂−1
I (α) is a consistent

and smooth estimate of the effective dose level EDα

EDα = p−1(α) =

∫ 1

0

I{p(x) ≤ α}dx ,

where the second equality follows from the strict monotonicity of the dose response curve p. If
smoothing is not the main concern of the experimenter, the estimate∫ 1

0

I{p̂(x) ≤ α}dx , α ∈ (0, 1)

or an approximation by a quadrature formula could be used alternatively. Note that this estimate
is continous (if p̂ is smooth), but not necessarily differentiable.
In the following discussion we make these heuristical arguments more precise. For this purpose we
require the following assumptions regarding the bandwidths hr and hd in the regression and density
estimate if the sample size n tends to infinity:

hr → 0 , hd → 0,(2.5)

nhd → ∞ , nhr → ∞(2.6)

lim
hd→0,hr→0

hr/hd = ∞(2.7)

nh5
r = O(1) , n = O(N),(2.8)
1

nhrh
2
d

= o(1)(2.9)

Note that in the case where the optimal bandwidth hr = γn−1/5 is used for the estimation of the
regression function condition (2.9) gives hdn

2/5 → ∞ . The following Lemma gives the asymptotic
bias and variance of the estimate p̂−1

I .

Lemma 2.1. If the dose response curve is strictly increasing, conditions (2.5) - (2.9) and the
assumptions stated at the beginning of this section are satisfied, then we have for any α ∈ (p(0), p(1))
with p′(p−1(α)) > 0

E[p̂−1
I (α)] = bhd,hr + o(h2

d) + o(h2
r) + O

( 1

Nhr

)
,(2.10)

Var[p̂−1
I (α)] =

g2(α)

nhr
+ o
( 1

nhr

)
,(2.11)
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where

bhd,hr = p−1(α) + κ2(Kd)h
2
d(p

−1)′′(α) − κ2(Kr)h
2
r

(p′′

p′

)
(p−1(α))(2.12)

g2(α) =
α(1 − α)

{p′(p−1(α))}2f(p−1(α))

∫ 1

−1

K2
r (u)du,(2.13)

and the constant κ2(K) is given by

κ2(K) =
1

2

∫ 1

−1

v2K(v)dv.(2.14)

Note that it follows from assumption (2.7) that the bias of the estimate p̂−1
I is asymptotically given

by

E[p̂−1
I (α) − p−1(α)] = −κ2(Kr)h

2
r

(p′′

p′

)
(p−1(α)) + o(h2

r) + O
( 1

Nhr

)
,

and that the asymptotic variance of p̂−1
I has a similar structure as the variance of the common local

linear estimator of a regression function [see e.g. Wand and Jones (1995)]. Our next theorem shows
that the new estimator is asymptotically normal distributed.

Theorem 2.2. If the dose response curve is strictly increasing, conditions (2.5) - (2.9) and the
assumptions stated at the beginning of this section are satisfied, then we have for any α ∈ (p(0), p(1))
with p′(p−1(α)) > 0

√
nhr

(
p̂−1

I (α) − bhd,hr

) D⇒ N (0, g2(α)),(2.15)

where the asymptotic bias bhd,hr and variance g2(α) are defined by (2.12) and (2.13), respectively.

Remark 2.3. Higher order asymptotic expansions for the bias can be obtained exactly in the
same way. To be precise assume that Kd is a kernel of even order s ≥ 2 [see Gasser, Müller and
Mammitzsch (1985)], that a local polynomial estimator of order s − 1 is used for the regression
estimate p̂ [see Wand and Jones (1995) or Fan and Gijbels (1996)], and assume that the dose
response curve is s-times continuously differentiable, then a similar calculation as given in the proof
of Lemma 2.1 shows

E[p̂−1
I (α) − p−1(α)] = hs

dκs(Kd)(p
−1)(s)(α) − hs

rκs(K
∗
r )
(p(s)

p′

)
(p−1(α)) + o(hs

d + hs
r),

where κs(K) =
∫ 1

−1
usK(u)du/s! and K∗

r is the asymptotically equivalent kernel corresponding to
the local polynomial estimator p̂ [see Wand and Jones (1995) or Fan and Gijbels (1996)]. Moreover,
the statement of asymptotic normality remains valid for this type of estimator, where the kernel
Kr in the asymptotic variance (2.13) has to be replaced by K∗

r .

Remark 2.4. Müller and Schmitt (1988) proposed an alternative approach for estimating the
effective dose level at some point α. These authors used a monotonized kernel estimate of the
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dose response curve [see Brunk (1955), or Barlow, Bartholomew, Bremner and Brunk (1972)].
The final estimation of the effective dose level EDα was obtained by a numerical inversion of the
isotonized estimate. The approach used in this paper performs the steps of isotonization and
inversion simultanuously and has therefore some computational advantages. On the other hand a
comparison of our Theorem 2.2 with Theorem 4 in Müller and Schmitt (1988) shows that the first
order asymptotic properties of both estimates are exactly the same.
Note also that (p−1)′′(α) = −(p ′′/(p ′)3)(p−1(α)) and consequently both terms in (2.12) are of
the same sign. Therefore the bias of the estimator p̂−1

I is slightly larger (depending on the
order of hd) than the bias of the estimator of Müller and Schmitt (1988), which is given by
−κ2(Kr)h

2
r(p

′′/p ′)(p−1(α)). In concrete applications we recommend to use a bandwidth hd = O(hβ
r )

where β ∈ [1, 5] and this effect is usually neglibile [see also our simulations in Section 3].

Remark 2.5. Although the new estimate and the estimate of Müller and Schmitt (1988) are
asymptotically equivalent, there are some differences with respect to the practical performance
of both procedures. First, the isotonized estimate of the dose response curve introduced by the
lastnamed authors is not necessarily strictly isotone, which provides some difficulties in its numerical
inversion [for a possible solution see Müller and Schmitt (1988) or Section 3 of the present paper,
where a different approach is presented]. Secondly, the estimate of Müller and Schmitt (1988)
cannot be calculated for any α ∈ (p(0), p(1)), because it is not guaranteed that the range of
isotonized kernel estimate of the dose response curve covers the whole interval (p(0), p(1)). For
large sample sizes this phenomenon is negligible [provided that α ∈ (p(0), p(1))], however for small
and moderate sample sizes some problems could appear if estimation of the extreme effective dose
levels is of interest. The new estimate p̂−1

I avoids this problem by its different construction and
yields estimates for any α ∈ (p(0), p(1)).

Remark 2.6. Note that the new approach also provides simple estimates for the derivative of the
effective dose level curve. For example,

(p̂−1
I )′(α) =

1

Nhd

N∑
i=1

Kd

(
p̂
(

i
N

)− α

hd

)

is a consistent estimator of (p−1)′(α) = (p ′(p−1(α)))−1. Consequently, an asymptotic (1 − α)
confidence interval for the effective dose level EDα is given by [ED−

α , ED+
α ] where

ED±
α = p̂−1

I (α) − b̂hd,hr ± (p̂−1
I )′(α)

u1−α/2√
nhr

√
α(1 − α)

f(p̂−1
I (α))

∫
K2

r (u) du ,

u1−α/2 denotes the (1 − α/2)-quantile of the standard normal distribution and

b̂hd,hr = κ2(Kr)h
2
r

(p̂−1
I )′′(α)

{(p̂−1
I )′(α)}2

+ κ2(Kd)h
2
d(p̂

−1
I )′′(α)

is an estimate of the asymptotic bias, which can be omitted, if hr = o(n−1/5) (note that hd = o(hr)
by assumption).
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3 Finite sample properties

In this section we investigate the finite sample properties of the new estimator p̂−1
I for the effective

dose levels. For the regression estimate p̂ we use a local linear estimator with Epanechnikov kernel
based on a uniform design (f ≡ 1), where the bandwidth hr is chosen as

ĥr =
( σ̂2

n

)1/5

,(3.1)

and σ̂2 denotes the estimator of Rice (1984) that is

σ̂2 =
1

2(n − 1)

n−1∑
i=1

(
Yi+1 − Yi

)2

.

Note that this statistic converges almost surely to the quantity

σ2 =

∫ 1

0

p(x)(1 − p(x))dx

[see Müller and Schmitt (1988)], which appears in the asymptotically optimal global bandwidth

hr =

(∫ 1

−1
K2

r (u) du
∫ 1

0
p(x)(1 − p(x)) dx

4nκ2
2(Kr)

∫ 1

0
(p ′′(x))2 dx

)1/5

(3.2)

for the estimation of the dose response curve under the uniform design. For the bandwidth hd we
consider two cases, namely hd = hβ

r , where β = 1.2 and β = 2.0. For the sake of comparison we also
investigate a version of the estimator introduced by Müller and Schmitt (1988). More precisely we
used the PAVA [Pool-Adjacent-Violators Algorithm, see Barlow, Bartholomew, Bremner and Brunk
(1972)] to obtain an isotone estimate for the dose response curve. This estimate was then smoothed
by a local linear estimator with bandwidth ĥr in order to obtain a strictly isotonic and smooth
estimate [see Mammen (1991)]. The final estimate which will be denoted by p̃−1

I throughout this
section is obtained by a numerical inversion of this function. We investigate the binary response
model (1.2) with a uniform design (f ≡ 1) and the link functions

p(x) = Φ

(
x − µ

σ

)
, µ = .5, σ = .5(3.3)

p(x) = Φ

(
x − µ

σ

)
, µ = .5, σ = .1(3.4)

p(x) = 1 − e−xγ

, γ = .52876(3.5)

p(x) = η Φ

(
x − µ1

τ

)
+ (1 − η) Φ

(
x − µ2

τ

)
,(3.6)

µ1 = 0.4, µ2 = 1.0, η = .64946, τ = .13546

which have also been considered by Müller and Schmitt (1988). The sample size is n = 48, while
the local linear estimate was evaluated N = 101 points. 1000 simulation runs were performed for

7



each scenario. In Figure 1–4 we present plots of the simulated bias, variance and mean squared
error (mse) if α varies in the interval

E = [p(0), p(1)].

This guarantees the existence of p−1(α) theoretically and the PAVA estimator can be calculated
in most cases. We observe that there is no clear ordering between the different competitors. A
comparison of the estimators p̂−1

I with hd = h1.2
r and hd = h2.0

r yields that a larger exponent usually
increases the variance and decreases the bias [see also Remark 2.4]. The effect on the mse depends
on the particular model under consideration, but the differences are not substantial. A comparison
of the new estimators with the estimator obtained from an inversion of the PAVA estimate shows
a similar picture. The differences are not substantial and the superiority of a particular estimator
depends on the model under consideration. For example in the Probit model (3.3) the PAVA method
yields the estimator with the smallest mse, but the situation is reversed for the Probit model (3.4),
where the estimator p̂−1

I with hd = h1.2
r should be preferred. Similarly, in the Weibull model (3.5)

the new estimator p̂−1
I yields a smaller mse for a broad range of α, while the situation is less clear

in model (3.6), where different estimators have to be preferred in different regions for the effective
dose level. We finally note that in most cases the estimator p̂−1

I yields a smaller mean squared error
at the boundary of the interval E.
In most cases considered in our study the estimators behave very similar, which confirms the
asymptotic results presented in Section 2. In many cases the new estimates have a slightly smaller
variance at the cost of a slightly larger bias. Usually the new estimates yield a smaller mse at
the boundary of E and in the other regions of E the statistic p̂−1

I is at least competitive to the
estimate obtained by the PAVA method, smoothing and numerical inversion (in many cases the
mse of p̂−1

I is even smaller). Taking into account the simplicity of the new estimator p̂−1
I proposed

in this paper we recommend its application if the effective dose level curve has to be estimated
nonparametrically.

Example 3.1. Lee (1974) used the logistic regression model to determine characteristics associated
with remission of cancer patients. The explanatory variable was the labeling index (LI), which
measures proliferative activity of cells after a patient received an injection of tritiated thymidine
[see also Agresti (1990) for a table of the data]. This index varies between 8 and 38 and the
binary response variable measures if a patient received remission. There were 27 patients in the
study, and under the assumption of a logistic regression model the estimate of the ED50 is given
by 26.05 [Agresti (1990)]. The LI was linearly transformed to the interval [0, 1], where the different
estimators of the ED50 were applied. Finally the inverse linear transformation was applied to these
estimates in order to obatin the estimates of the ED50 in the original scale. The bandwidth hr for
the initial local linear estimate was chosen according to the rule of thumb (3.1), that is hr ≈ 0.3557
and this bandwidth was also used for the smoothing of the PAVA estimate. Finally the bandwidth
hd in the density step was chosen as hd = h2

r ≈ 0.1265. In Figure 5 we present plots of the estimates
for the effective dose level curve obtained from the logistic regression, the PAVA estimator and the
new estimator p̂−1

I . The PAVA estimate and the new estimate p̂−1
I of the ED50 give very similar

results, that is 21.78 and by 21.57, respectively. The nonparametric estimators of the EDα behave
very similar, if α < 50% or α > 70%, while there are more differences if α varies in the interval
[60%, 70%]. Moreover, the parametric and nonparametric methods yield rather different results for
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the estimation of the EDα in general, which indicates that the fit of the logistic regression model
might not be appopriate for this data.

4 Appendix: proofs

For the sake of a transparent notation we assume that the number of design points N in the estimate
p̂−1

I equals the sample size n. The general case can be obtained exactly in the same way with an
additional amount of notation using assumption (2.8).

4.1 Proof of Lemma 2.1.

We use the decomposition

p̂−1
I (α) =

1

nhd

∫ α

−∞

n∑
i=1

Kd

( p̂( i
n
) − u

hd

)
du = p−1

n (α) + ∆n(α),(A.1)

where the (non-random) function p−1
n is defined by

p−1
n (α) =

1

nhd

∫ α

−∞

n∑
i=1

Kd

(p( i
n
) − u

hd

)
du,(A.2)

and the remainder ∆n is given by

∆n(α) =
1

nhd

n∑
i=1

∫ α

−∞

{
Kd

( p̂( i
n
) − u

hd

)
− Kd

(p( i
n
) − u

hd

)}
du.(A.3)

Recall the definition of the local linear estimate

p̂(x) =
1

nhr

n∑
j=1

w(xj, x, hr)Kr

(
xj − x

hr

)
Yj,(A.4)

where

w(xj, x, hr) =
s2(x, hr) − s1(x, hr)(xj − x)

s2(x, hr)s0(x, hr) − s2
1(x, hr)

(A.5)

and

sl(x, hr) =
1

nhr

n∑
j=1

Kr

(
xj − x

hr

)
(xj − x)l =




f(x) + o(1) if l = 0

2κ2(Kr)f
′(x)h2

r + o(1) if l = 1

2κ2(Kr)f(x)h2
r + o(1) if l = 2

.(A.6)

For the term (A.3) it follows that

∆n(α) = ∆(1)
n (α) +

1

2
∆(2)

n (α),(A.7)
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where

∆(1)
n (α) =

1

nh2
d

n∑
i=1

∫ α

−∞
K ′

d

(p( i
n
) − u

hd

){
p̂(

i

n
) − p(

i

n
)
}

du,(A.8)

=
−1

nhd

n∑
i=1

Kd

(p( i
n
) − α

hd

){ 1

nhr

n∑
j=1

w(xj,
i

n
, hr) Kr

(xj − i
n

hr

)
Yj − p(

i

n
)
}

,

and

∆(2)
n (α) =

1

nh3
d

n∑
i=1

∫ α

−∞
K ′′

d

(ξi − u

hd

){
p̂(

i

n
) − p(

i

n
)
}2

du,(A.9)

with |ξi − p( i
n
)| < |p̂( i

n
) − p( i

n
)| (i = 1, . . . , n). A straightforward calculation shows that

E|∆(2)
n (α)| =

1

h2
d

∣∣∣ ∫ 1

0

K ′
d

(p(x) − α

hd

)
E[p̂(x) − p(x)]2dx

∣∣∣ · (1 + o(1)) = op

( 1√
nhr

)
,(A.10)

where we used the fact that the expectation in the integral is of order O
(

1
nhr

+h4
r

)
. A combination

of (A.1), (A.7) and (A.10) shows that the first assertion of Lemma 2.1 can be proved establishing

p−1
n (α) = p−1(α) + κ2(Kd)h

2
d(p

−1)′′(α) + o(h2
d) + O

( 1

nhd

)
,(A.11)

E[∆(1)
n (α)] = −h2

rκ2(Kr)
(p′′

p′

)
(p−1(α)) + o(h2

r).(A.12)

For a proof of (A.11) we note that

p−1
n (α) = A(hd)

(
1 + O(

1

nhd

)

)
,

where

A(hd) =

∫ 1

0

∫ α

−∞
Kd

(p(x) − u

hd

)du

hd

dx(A.13)

= p−1(α − hd) + hd

∫ p(1)−α
hd

p(0)−α
hd

I{−1 ≤ z ≤ 1}(p−1)′(α + zhd)

∫ 1

z

Kd(v)dvdz.

If α ∈ (p(0), p(1)) is fixed, we obtain from the identity
∫ 1

−1

∫ 1

z
Kd(v)dvdz = 1 (note that Kd is

symmetric and has compact support [−1, 1]) and a Taylor expansion

A(hd) = p−1(α) + h2
d(p

−1)′′(α)
{1

2
+

∫ 1

−1

z

∫ 1

z

Kd(v)dvdz
}

+ o(h2
d)

= p−1(α) + κ2(Kd)h
2
d(p

−1)′′(α) + o(h2
d)
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as hd → 0, where we used the representation
∫ 1

−1
z
∫ 1

z
Kd(v)dvdz = 1

2

∫ 1

−1
v2Kd(v)dv− 1

2
. This proves

(A.11). For a proof of representation (A.12) we introduce the decomposition

∆(1)
n (α) =

(
∆(1.1)

n (α) + ∆(1.2)
n (α)

)
(A.14)

where

∆(1.1)
n (α) =

−1

nhd

n∑
i=1

Kd

(p( i
n
) − α

hd

){ 1

nhr

n∑
j=1

w(xj,
i

n
, hr) Kr

(xj − i
n

hr

)
p(xj) − p(

i

n
)
}

(A.15)

∆(1.2)
n (α) =

−1

n2hdhr

n∑
i,j=1

Kd

(p( i
n
) − α

hd

)
Kr

(xj − i
n

hr

)
(Yj − p(xj)) w(xj,

i

n
, hr).(A.16)

The second term has obviously expectation 0 and therefore the expectation of ∆
(1)
n (α) is given by

E[∆(1)
n (α)] = E[∆(1.1)

n (α)]

= − 1

nhd

n∑
i=1

Kd

(p
(

i
n

)− α

hd

)
E

[
p̂

(
i

n

)
− p

(
i

n

)]

= −h2
rκ2(Kr)

∫ 1

0

1

hd

Kd

(p(x) − α

hd

)
p′′(x)dx · (1 + o(1))(A.17)

= −h2
rκ2(Kr)

(p′′

p ′

)
(p−1(α)) · (1 + o(1)),

which proves (A.12) and the assertion of Lemma 2.1 regarding the expectation of the estimator
p̂−1

I . For a proof of the corresponding statement for the variance we note that it follows from (A.1),
(A.7) and similar arguments as used in the derivation of (A.10) that

Var(p̂−1
I (α)) = Var(∆(1)

n (α)) + o(
1

nhr
)(A.18)

where ∆
(1)
n is defined in (A.8). The same arguments as given in the previous paragraph show for

the random variable ∆
(1.1)
n (α) defined in (A.15)

Var[(∆(1.1)
n (α))2] = o(

1

nhr
),(A.19)

and we obtain from (A.16), (A.5) and (A.6)

Var[∆(1.2)
n (α)] =

1

n4h2
dh

2
r

n∑
j=1

Var
( n∑

i=1

(Yj − p(xj))Kd

(p( i
n
) − α

hd

)
Kr

(xj − i
n

hr

)
w(xj,

i

n
, hr)

)

=

∫ 1

0

p(x)(1 − p(x))

nh2
dh

2
r

[∫ 1

0

Kd

(p(y) − α

hd

)
Kr

(x − y

hr

)
w(x, y, hr) dy

]2
f(x)dx

×(1 + o(1))
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=
1

nh2
dh

2
r

∫ 1

0

Kd

(p(z) − α

hd

)∫ 1

0

Kd

(p(y) − α

hd

){ 1

f(y)
− f ′(y)

f 2(y)
(x − y)

}

×
{

1

f(z)
− f ′(z)

f 2(z)
(x − z)

}∫ 1

0

p(x)(1 − p(x))Kr

(x − y

hr

)
Kr

(x − z

hr

)
f(x)dxdydz

×(1 + o(1))

=
α(1 − α)

nhrp′(p−1(α))2f(p−1(α))

∫ ∫ ∫
Kd(w)Kd(v)Kr(u)

×Kr

(p−1(α + hdv) − p−1(α + hdw)

hr
+ u
)
dudvdw · (1 + o(1))

=
α(1 − α)

nhr{p′(p−1(α))}2f(p−1(α))

∫
K2

r (u)du · (1 + o(1)),(A.20)

where we used assumption (2.7) and the differentiability of p−1 for the last identity. This yields

Var(p̂−1
I (α)) = Var(∆(1.2)

n (α))(1 + o(1)) =
α(1 − α)

nhr

(
p ′(p−1(α))

)2

f(p−1(α))

1∫
−1

K2
r (u) du,

which proves the representation of the asymptotic variance in Lemma 2.1. �

4.2 Proof of Theorem 3.1.

Using the notation and the arguments from the proof of Lemma 2.1 if follows from (A.1), (A.7),
(A.10), (A.11), (A.12), and (A.19) that

√
nhr

(
p̂−1

I (α) − bhd,hr

)
=
√

nhr∆
(1.2)
n (α) + op(1)(A.21)

where ∆
(1.2)
n (α) is a sum of independent random variables, which is defined in (A.16). The asymp-

totic normality can now easily be obtained from Ljapunoff’s theorem. To this end we note that
Var[∆

(1.2)
n (α)] = O( 1

nhr
) by Lemma 2.1 and calculate by similar arguments as given in the proof of

Lemma 2.1

n∑
j=1

E
[{Yj − p(xj)

n2hdhr

n∑
i=1

Kd

(p( i
n
) − α

hd

)
Kr

(xj − i
n

hr

)
w(xj,

i

n
, hr)

}4]

=
1

n3h4
dh

4
r

∫
γ(x)

{ 4∏
j=1

∫
Kd

(p(xj) − α

hd

)
Kr

(x − xj

hr

)
w(x, xj , hr) dxj

}
dx · (1 + o(1))

=
1

n3h4
r

∫
γ(x)

{ 4∏
j=1

∫
Kd(yj)Kr

(x − p−1(α + hdyj)

hr

)(p−1)′(α + hdyj)dyj

f(α + hdyj)

}
dx

×(1 + o(1))

= O
( 1

(nhr)3

)
,

12



where γ(xj) = E[(Yj − p(xj))
4]. The asymptotic normality now follows from (A.21) and the central

limit theorem of Ljapunoff.
�
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Figure 1: Probit model (3.3). Simulated mean squared error, bias and variance of the estimator
p̂−1

I with hd = h1.2
r (solid line) and hd = h2.0

r (dashed line) and of the estimator obtained from an
inversion of a smooth PAVA estimate (dotted line).
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Figure 2: Probit model (3.4). Simulated mean squared error, bias and variance of the estimator
p̂−1

I with hd = h1.2
r (solid line) and hd = h2.0

r (dashed line) and of the estimator obtained from an
inversion of a smooth PAVA estimate (dotted line).
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Figure 3: Weibull model (3.5). Simulated mean squared error, bias and variance of the estimator
p̂−1

I with hd = h1.2
r (solid line) and hd = h2.0

r (dashed line) and of the estimator obtained from an
inversion of a smooth PAVA estimate (dotted line).
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Figure 4: Normal mixture model (3.6). Simulated mean squared error, bias and variance of the
estimator p̂−1

I with hd = h1.2
r (solid line) and hd = h2.0

r (dashed line) and of the estimator obtained
from an inversion of a smooth PAVA estimate (dotted line).
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Figure 5: Estimated effective dose level curves in cancer remission Example 3.1. Dotted line: logistic
regression; dashed line: inverse of the smoothed PAVA estimate p̃−1

I ; solid line: the new estimate
p̂−1

I . The three estimates of the ED50 are indicated by the horizontal lines.

17


