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Abstract. An important problem of the statistical analysis of time series is to detect

change-points in the mean structure. Since this problem is a one-dimensional version of

the higher dimensional problem of detecting edges in images, we study detection rules which

benefit from results obtained in image processing. For the sigma-filter studied there to detect

edges, asymptotic bounds for the normed delay have been established for independent data.

These results are considerably extended in two directions. First, we allow for dependent pro-

cesses satisfying a certain conditional mixing property. Second, we allow for more general

pilot estimators, e.g., the median, resulting in better detection properties. A simulation study

indicates that our new procedure indeed performs much more better.
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1. Introduction

When analyzing time series, e.g., financial prices or returns of stocks or bonds, or univariate

statistics calculated from multivariate time series, we are often concerned with non-stationary

time series. Indeed, often the non-stationary components (trends or heteroskedasticity) are

the most informative characteristics of a series. For example, financial return series are often

stationary but affected by conditional heteroscedasticity, and detecting deterministic increases

of the dispersion is important, since the dispersion, called volatility, is a direct measure of the

risk associated with an investment in that asset. Thus, the application of sequential monitoring

procedures is of considerable interest. Even nowadays volatility is often simply measured by
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the empirical standard deviation. This approach causes artifacts if the distribution has fat

tails and outliers, and monitoring rules based on it may yield a substantial delay. This also

applies to classic smoothing procedures. In this article we study a class of jump-preserving

estimators and related monitoring procedures which try to detect abrupt changes faster than

related classic procedures.

Methods for analyzing and detecting departures from stationarity have received considerable

interest in the statistics and econometrics literature. Let us first briefly discuss some a poste-

riori approaches before motivating our proposal in greater detail. The problem of a posteriori

change-point (structural break) detection with a focus on linear models has been extensively

discussed in the econometric literature, e.g. Andrews (1988), Andrews and Ploberger (1994),

Bai and Perron (1998), or Vogelsang (1998). Statistical methods based on U statistics can be

found in Ferger (1994a). Kim and Hart (1998) studied an approach based on Fourier methods.

A posteriori methods based on kernel-weighted averages have been investigated by Brodsky

and Darkhovsky (1993, 2000), Ferger (1994b, 1994c, 1995, 1996), and Huskova and Slaby

(2001). To estimate change-points and the regression function we also refer to Müller (1992)

and Wu and Chu (1993). An iterative method for a posteriori estimation of a function with

discontinuities via local polynomials with adaptive bandwidth choice has been studied by

Spokoiny (1998), and Polzehl and Spokoiny (2003). The basic idea is to use a classic kernel

smoother with small bandwidth at the first iteration, and to increase the bandwidth locally,

if the local models are not statistically significant different. This is achieved by defining new

weights which penalize large values of an appropriate test statistic.

From a sequential perspective the aim is to detect changes from an assumed so-called in-control

model (the null hypothesis) as soon as possible instead of estimating the change-point with

high precision, which requires sufficient observations after the change. The data is analyzed

sequentially and a signal is given, if the data provides sufficient evidence that the process is

out-of-control (alternative hypothesis). The main tools of sequential monitoring are control

charts which are given by a control statistic depending only on past and current data and a

stopping time based on that control statistic. Usually, the stopping time is simply the index

of the first observation where the control statistic exceeds a control limit (critical value),

when calculated from current and past data. A control chart is the graphical representation

of that procedure. Control charts based on nonparametric kernel estimators related to the

approach presented here have been studied by Brodksy and Darkhovsky (1993, 2000), Wu

(1996), Schmid and Steland (2000), and Steland (2003a, 2003b, 2003c). In these articles the

(normed) delay of stopping rules of the form inf{n ∈ N : m̂nh > c} are studied, where m̂nh

is a Nadarya-Watson type smoother based on data Y1, . . . , Yn evaluated at the current time
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point tn of the observation Yn, and the delay of a stopping time is max{0, T − q} where T

denotes the stopping time and q the change-point.

When abrupt changes as jumps or strong (nonlinear) trends appear, the smoothing property

of kernel estimators can be a drawback. Therefore, in this article we consider detection rules

wich are based on a class of so-called jump-preserving estimators. These estimators rely on an

idea which has been developped for image processing purposes. The (deterministic) weights

are substituted by stochastic jump-preserving weights. In its simplest form these weights put

a clipping rectangle over the time series and average observations located in the rectangle.

In this way one obtains estimators which smooth the data nonparametrically if there are

no jumps, but reproduce jumps more accurately than smoothers. This idea dates back to

Lee’s (1983) sigma filter. The sigma filter uses the current observation to locate the clipping

rectangle. For a recent discussion in the fixed-sample situation and extensions to certain

M estimators we refer to Chiu et al. (1998), Winkler and Liebscher (2002), and Rue et al.

(2002). The sigma filter can be regarded as a special case of the vertically weighted regression

approach of Pawlak and Rafaj�lowicz (2000). For recent applications see Skubalska-Rafaj�lowicz

(1994) and Kryzak, Rafaj�lowicz and Skubalska-Rafaj�lowicz (2001). Jump-preserving medians

are discussed in Pawlak, Rafaj�lowicz and Steland (2003).

Steland (2002a) studies detection rules based on the classic sigma filter approach for inde-

pendent data. Simulations indicated that under certain circumstances detection rules based

on the sigma filter are better than classic methods as the EWMA procedure, if there are

large jumps. Whereas the sigma filter uses the current observation to locate the window and

is therefore quite wigly, in this paper we allow for more general pilot estimators as locators

which may depend on an arbitrary but fixed number of past observations. By using more sta-

ble pilot estimators to locate the local window of relevant observations, we aim at decreasing

the false alarms rate due to extreme observations as outliers. Our simulations indicate that

the new procedure is considerably better than the classic sigma filter.

The theoretical contribution of the paper is to establish an upper bound for the normed delay.

The result allows for dependent time series satisfying a conditional strong mixing properties

and deals with general pilot estimators. We also allow for a certain type of local nonparametric

alternatives. Further, we compare the performance of the proposed method with the sigma

filter by a simulation study.

The organization of the paper is as follows. In Section 2 both the model and the method

studied here are discussed in detail. Section 3 discusses the mixing conditions and general

assumptions required for the main results of the paper. Our theoretical results, which deal

with the tail behavior of the statistic and an upper bound for the normed delay, are presented
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in Section 4. We also report about a simulation study conducted to study the performance

of the proposed refinement for some special cases. Finally, we illustrate the application of the

proposed jump-preserving estimators by analyzing the volatility of the DEM-CZK exchange

rate.

2. Data model and the jump-preserving procedure

This section explains the model framework and the proposed method for change-point de-

tection in detail. The change-point model introduced in Section 2.1 assume a certain type of

local alternatives which will provide meaningful asymptotic results. Our proposed detection

rules relies on a jump-preserving estimator, whose statistical motivation is carefully explained

in Section 2.2. The detection rule and related notions are introduced in Section 2.3. Strategies

for the choice of the method’s parameters are discussed in Section 2.4.

2.1. Data model. Assume we observe a local non-stationarity R-valued process {Yth : t ∈
T , h > 0} in continuous time T = [t0,∞) given by

(1) Ỹth = m(t; h) + ε̃t, (t ∈ T ),

where

m(t; h) = m0([t − tq]/h), t ∈ R, h > 0,

for some function m0 : R → R wich is continuous at 0, and {ε̃t} is a zero-mean stationary

innovation process. We assume that m0(t) = 0 for t ≤ 0, and m0(t) ≥ 0 for t ≥ 0. m0 is

called generic alternative. If m0(t) > 0 for t > 0, tq = inf{s > 0 : m(s; h) > 0} is called

change-point. By continuity of m0 at the origin, we have for each fixed t

m([t − tq]/h) → m0(0) = 0, h → ∞.

In this sense m(t; h) defines a sequence of local alternatives which converge to the null model

given by H0 : m0 = 0.

We assume that {Ỹt} is sampled at a sequence of fixed and ordered time points t1 < · · · <

tn, n ∈ N. Thus, we observe

Ynh = mnh + εn, (n ∈ N).

where Yn = Ỹtn , mnh = m0([tn− tq]/h), and εn = ε̃tn . Clearly, q = �tq�+1 is the change-point

in discrete time. Throughout the paper we shall assume that {εn : n ∈ N} is a stationary

process in discrete time N with distribution Fε, which satisfies a conditionally strong mixing

property discussed below in detail. The mixing assumption will ensure that auto-correlations

die out sufficiently fast.
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Using the terminology of statistical process control, the null hypothesis H0 : m0 = 0 corre-

sponds to the in-control model for the process. If H1 : m0(t) > 0 for all t ∈ (t, t∗) for some

t∗ > 0, the out-of-control model holds and the process gets out of control starting at time q.

2.2. Jump-preserving estimation. Let us briefly discuss the statistical motivation of the

proposed stopping rule. For that purpose we will first derive a fixed-sample jump-preserving

estimator of the mean m(t) = EYt. Evaluating that estimator at the current time tn gives

the control statistic.

For fixed t let ft(y) = fε(y − m(t)) denote the density function of Yt and denote by Et

expectations w.r.t. ft(y), t ∈ T . Let w(y, t) be a non-negative weighting function satisfying∫ ∫
w(y, t)y2f(y, t) dydt < ∞. For each t ∈ T consider the weighted squared loss

Qt(m) = Et[w(t, Y )(Y − m)2]

when estimating Y by a constant m. Minimizing Qt(m) w.r.t. m provides the solution

m∗(t) = Et[Y w(Y, t)]/Et[w(Y, t)]

which is a function of time. The relationship between the optimizer m∗ and the mean function

m is given by the fact that m satisfies the algebraic fix-point equation,

(2) m∗(t) = Et[Y k(Y − m∗(t))]/Et[k(Y − m∗(t))],

provided we put

(3) w(t, y) = k(y − m∗(t))

with k ≥ 0 being an integrable function satisfying the moment conditions

(4)
∫

zk(z)fε(z) dz = 0 and
∫

k(z)fε(z) dz = 0,

(Pawlak and Rafaj�lowicz, 2000). Note that (4) holds if k(−z) = z and fε(−z) = fε(z) for all

z ∈ R. Thus, m = m∗ if the weight function w is chosen according to (3). As a consequence,

an estimator for m(t) can be obtained by estimating the r.h.s. of (2). Here and in the sequel

we shall estimate expectations Etf(Y ) by kernel smooths with respect to time,

Êtf(Y ) =
n∑

i=1

Kh(ti − t)f(Yi)/
n∑

j=1

Kh(tj − t),

where K denotes a further non-negative weighting functions (usually a density), Kh(z) =

K(z/h)/h, and h > 0 is a bandwidth determining the amount of smoothing w.r.t time. This

provides the estimator ∑n
i=1 Kh(ti − t)kM (Yi − m(t))Yi∑n
j=1 Kh(tj − t)kM (Yj − m(t))

.
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Note that this estimator still depends on the unknown quantity m(t). Since we are interested

in estimating mn = m(tn), it is quite natural to evaluate the estimator at t = tn and to use

some pilot estimate m̃n for mn. This suggests to employ the estimator m̂n = m̂M,h,n,

m̂M,h,n =
∑n

i=1 Kh(ti − tn)kM (Yi − m̃n)Yi∑n
i=1 Kh(ti − tn)kM (Yi − m̃n)

.

To simplify notation we shall stress the dependence on (M,h) only when necessary. Observe

that this estimator can be written as a weighted average
∑

i ŵ(ti, tn)Yi with adaptive weights

ŵ(ti, tn) =
Kh(ti − tn)kM (Yi − m̃n)∑
j Kh(tj − tn)kM (Yj − m̃n)

depending on the data. The choice m̃n = Yn provides Lee’s (1983) proposal for image process-

ing purposes, the so-called sigma filter, m̂SF,n. This estimator has been studied by Godtliebsen

(1991), Godtliebsen & Spjøtvoll (1991), and recently by Chiu et al. (1998). An attractive fea-

ture of the sigma filter is the fact that jumps are detected with probability 1 with no delay,

provided the distribution of the error terms has bounded support (Pawlak and Rafaj�lowicz,

2000). Whereas M controls for the estimator’s sensitivity w.r.t. jumps, the bandwidth h deter-

mines the memory of the estimator. In the sequel we shall assume that the parameter M > 0

is either fixed or chosen to optimize the detection procedure as described below. Asymptotic

properties will be established for h → ∞. In Steland (2002a) a control chart based on the

sigma filter has been studied in some detail. In some situations the procedure performed badly

which may be due to the large variance of m̂n when M is small. To reduce the variance in this

paper we propose to employ more stable pilot estimators than the rough guess Yn of the sigma

filter. However, the initial estimator should be chosen carefully to ensure that the resulting

estimator is well-defined. Indeed, for small M and kernels k with bounded support it may

happen that there is no observation to which kM assigns a positive weight. Therefore, it is

reasonable to focus on preliminary estimators m̃n for mn ensuring the consistency condition

m̃n ∈ {Y1, . . . , Yn}.

A natural choice is

m̃n = Med{Yn, Yn−1, Yn−2},

providing our final proposal

m̂n = m̂M,h,n =
∑n

i=1 Kh(ti − tn)kM (Yi − Med{Yn, Yn−1, Yn−2})Yi∑n
i=1 Kh(ti − tn)kM (Yi − Med{Yn, Yn−1, Yn−2})

,

again denoted by m̂n. In our simulation study and the data analysis we focus on that choice

of the pilot estimator. However, the theoretical results apply to more general pilot estimators
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being functions of a finite number, say, l, of past observations, i.e.,

m̃n = m̃(Yn, Yn−1, . . . , Yn−l).

The essential point is that the pilot estimator should be very sensitive w.r.t. level changes.

Let us briefly discuss how this estimator works, in particular to understand how the estimator

automatically chooses the sample size for estimation. For that purpose assume that K has

support [−1, 1] such that m̂M,h,n takes into account Yn−h+1, . . . , Yn, and that k is the uniform

kernel. If there is no jump or trend in the data, the majority of these h observations will

satisfy the constraint kM (Yi − m̃n) = 1, i.e., |Yi − m̃n| ≤ M . If a jump or abrupt change

occurs, the distance between the pilot estimator and the observations in the time window will

tend to be large. Consequently, many of the past data points are neglected and the effective

sample size reduces drastically.

2.3. Detection procedure. To detect arbitrary deviations from the zero-mean null hypoth-

esis (in-control model), it is natural to apply the following monitoring scheme. We provide

an out-of-control signal if |m̂M,h,n| exceeds a prespecified control limit (critical value) c, i.e.,

consider a two-sided control chart. The corresponding run length is defined as

Nh(c,M) = inf{n ∈ N : |m̂M,h,n| > c},

where inf ∅ = ∞. The related upper one-sided control chart to detect positive mean functions

gives a signal if m̂M,h,n > c. The normed delay is now defined as

ρh(c,M) =
max(0, Nh(c,M) − q)

h
.

Another prominent performance measure is the average run length (ARL) defined as

ARLF [c,M, h] = EF [Nh(c,M)],

where EF means that the expectation is calculated under a fixed distribution F for the data.

Recall that for dependent processes F is determined by all finite-dimensional distribution

functions.

2.4. Choice of parameters. To design the detection procdure one has to specify the param-

eters c, h, and M . Recall that the bandwidth h determines the degree of smoothing, whereas

the parameter M is related to the height of a jump we want to detect immediately. Since it

is reasonable to measure jumps in terms of the scale, one can choose M proportional to a

(robust) scale estimate. This approach was used in the data analysis of Section 5.2. In other

situations it may be advisable to choose M to optimize the detection properties at a certain

target out-of-control model of interest. Indeed, our simulations support the conjecture that
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in many cases the performance is a concave function of M . That approach was chosen in our

simulation study. Another approach is to set the critical value equal to a target level shift as

in Wu (1996). For example, for a time series of prices c may be a psychological price. However,

as in practical applications the average run length is often used to evaluate the performance,

one can also choose c such that the procedure ensures a certain ARL as long as the in-control

model (null hypothesis) holds.

3. Dependencies and general assumptions

To deal with the dependence structure of the innovation process {εn}, and hence of {Yn},

we shall exploit mixing conditions which are frequently used in nonparametric statistics for

dependent data (cf. Fan and Gijbels, 1996, ch. 6]. Mixing conditions impose conditions on

the approximation error which results when joint probabilities, say, P [A ∩ B], A,B events

with a sufficiently large time lag, are approximated by P [A]P [B]. For our purposes we need a

mixing property for certain conditional probabilities. To state the mixing condition we need

some further notation. Assume that the R-valued innovation sequence {εn} is defined on a

common probability space (Ω,A, P ) and denote for 1 ≤ i < j ≤ ∞ by

Ij
i = σ(εi, . . . , εj)

the information set (σ-algebra) of all information contained in the process {εn} during the

time period [ti, tj ]. We shall write

P j
i [ · ] = P [ · |Ij

i ] and Ej
i [ · ] = E[ · |Ij

i ]

for the conditional probability and expectation, respectively, obtained by conditioning on the

information Ij
i . We write A ∈ Ij

i , if A is an event only depending on the information set Ij
i ,

i.e., A is determined by Yi, . . . , Yj . For fixed n ∈ N and l ∈ N denote by

Ij
i (n, l) = σ(εk − En

n−l[εk] : k = 1, . . . , j), (1 ≤ i < j ≤ n − l),

the information set of the innovations εi, . . . , εj when centered at their conditional expectations

with respect to In
n−l.

We shall call a stationary process {εn : n ∈ N} conditionally strong mixing, if limk→∞ α(k) =

0, where

α(k) = sup
n≥1

max
1≤t≤n−l−2

sup
A,B

|P [A ∩ B|In
n−l] − P [A|In

n−l]P [B|In
n−l]|

where supA,B means that the supremum is taken over all A ∈ It
1(n, l) and B ∈ In−l−1

t+k (n, l).

Hence, for any actual time t events B of the near future In−l−1
t+k (n, l), i.e., not depending on

the whole future, are asymptotically independent from the past events A ∈ It
1(n, l), when
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conditioning on In
n−l. The property of conditionally strong mixing will ensure that we may

apply results known for strong mixing processes to some sequence which is centered at their

conditional expectations w.r.t. Pn
n−l, when conditioning on events A measurable w.r.t. the

information set σ(εn−l, . . . , εn).

The following assumptions concern the process {εn} of error terms.

(A1) There is a constant C+ not depending on (n, l) with

sup
ν∈N

max
i=1,...,ν−l−1

Eν
ν−lε

+
i ≤ C+

where z+ = max(0, z).

(A2) εn is symmetrically distributed around 0 w.r.t. Pn
n−l for all n ∈ N.

(A3) {εn} is a stationary sequence of random variables satisfying a conditionally strong

mixing property with

lim
k→∞

k2α(k) = 0.

(A4) Cramér’s condition holds for {εn} w.r.t. to the conditional probability Pl, i.e., there

is a constant c > 0 such that

sup
ν∈N

Eν
ν−l sup

i=1,...,n−l−1
exp(c|Yi|) < ∞.

Concerning the kernels K and k we require the following regularity conditions.

(A5) The kernel K is a differentiable density with bounded derivative, symmetric around

0, and satisfies

max
z∈R

K(z) = K(0) < ∞ and
∫

K(z)2 ds < ∞.

(A6) The kernel k is non-negative, bounded, integrable, and symmetric around 0 with

(i) k(z) ≥ kmin > 0 ∀z ∈ R.

(ii) maxz∈R k(z) = k(0).

For simplicity of presentation we also assume

(A7) tν = ν for all ν ∈ N (equidistant time design.)

The pilot estimator is required to be a member of the following class of estimators.

(A8) The pilot estimator, m̃n, is In
n−l-measurable for each n, i.e., we may assume m̃n =

m̃n(Yn, . . . , Yn−l). Further, m̃n
d= −m̃n if applied to a sationary process.

Remark 3.1. Note that the pilot estimator m̃n = Med{Yn−2, Yn−1, Yn} satisfies (A8).

Finally, we need the following condition about both K and m0.
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(A9) The generic alternative m0 : [0,∞) → [0,∞) satisfies∫ x

0
K(s − x)m0(s) ds < ∞ (∀x > 0).

It is worth to consider an example for a time series which satisfies the conditionally strong

mixing condition. Indeed, (A1)-(A4) hold true for m-dependent Gaussian processes.

Example 3.1. Let {εn : n ≥ 1} be an i.i.d. sequence of Gaussian innovations with common

variance σ2 > 0. Let {Yn : n ≥ 1} be an m-dependent Fn
1 -adapted linear process generated by

{εn}, i.e., there are deterministic coefficient vectors ϑn = (ϑn1, . . . , ϑnn)′ ∈ R
n such that

Yn =
n∑

i=1

ϑniεi = ϑ′
nεn (n ≥ 1),

where εn = (ε1, . . . , εn)′. Obviously, {Yn} is m-dependent iff. ϑni = 0 for all 1 ≤ i < n − m

which implies ϑ′
iϑj = 0 whenever |i − j| > m. Fix n ≥ 1. Consider Yn = (Y1, . . . , Yn)′ and

partition Yn = (Y′
n,1,Y

′
n,2)′ with Yn,1 = (Y1, . . . , Yn−l−1)′ and Yn,2 = (Yn−l, . . . , Yn)′. The

joint distribution of Yn = (Y1, . . . , Yn)′ is given by

Yn =
[

Sεn

Tεn

]
∼ N

(
0, σ2

[
SS′ ST′

TS′ TT′

])
where S = (ϑ′

1, . . . ,ϑ
′
n−l−1)′ and T = (ϑ′

n−l, . . . ,ϑ
′
n)′. By m-dependence only the lower right

sub-matrix of the covariance matrix does not vanish. Further, the conditional distribution,

Pn
n−l, of Yn,1 given Yn,2 is

(5) Yn,1|Yn,2 ∼ N (ST′(TT)−1Yn,2, σ
2[SS′ − ST′(TT′)−1TS′])

Since ST′ is the (n− l−1)×(l+1)-matrix with entries ϑ′
iϑj, 1 ≤ i ≤ n− l−1, n− l ≤ j ≤ n,

by m-dependence only the lower right sub-matrix does not vanish, and therefore conditioning

on Yn,2 only alters the corresponding lower right sub-matrix of SS′, the covariance matrix

of Yn,1. Thus, the sequence Yn−1 − En
n−l[Yn−1|Yn−2], which is centered at its conditional

expectation, is m-dependent, and the conditionally strong mixing property follows. (5) also

shows symmetry around 0, and existence of all moments.

4. Main results

In this section we provide the main results of this article. We first study the tail behavior of the

control statistic m̂n under the in-control model (null hypothesis) of a stationary conditional

strong mixing process. The result is interesting in its own right and is needed to establish an

upper bound for the normed delay of the stopping time Nh(c,M). That upper bound makes

an assertion about the normed delay under the out-of-control model of a local nonparametric
10



alternative. Considering the normed delay means that the delay is expressed as a percentage

of the bandwidth parameter h. This provides the nice interpretation that for large h the

delay is not greater than the upper bound - usually a number between 0 and 1 - times h with

probability tending to 1. In particular if the support of K is [−1, 1], we get an impression

after how many observations the deviation in the mean will be detected with high probability.

Similar results, namely a.s. convergence, have been obtained for classic kernel smoothers by

Brodsky and Darkhovsky (1993) assuming a simple level shift and have been extended to

local nonparametric alternatives as considered here by Steland (2003b).

It turns out that the upper bound depends on the kernel ratio of k which is defined as

Rk = sup
z∈R

k(z)/ inf
z∈R

k(z).

4.1. Tail behavior. The following result deals with the tails of the distribution of m̂n It

makes a statement about the time-point-wise false-alarm rate of the corresponding detection

rules, since the events {m̂n > c} and {|m̂n| > c} correspond to false-alarms if the process

is in control, i.e., m0 = 0. Furthermore, the result is needed to establish the upper bound

for the normed delay. In addition to the statistic m̂n let us also also consider the version,

m̆n = m̆M,h,n, without norming the weights, i.e.,

m̆n =
n∑

i=1

Kh(ti − tn)kM (Yi − m̃n)Yi.

Theorem 4.1. Assume (A1)-(A8) and m0 = 0. If in addition

n/h → ζ > 0 as n, h → ∞,

then the following assertions hold true.

(i) There exist constants b1, b2 > 0 with

P [m̂n > c], P [|m̂n| > c] = O(h1/2 exp(−b1 · h1/2)) + O(hα(h1/2)) + O(e−bsh)

for every candidate control limit c > (l + 1)(Rk − 1)C+/M2.

(ii) There exist constants b1, b2 > 0 with

P [m̆R,n > c], P [|m̆R,n| > c] = O(h1/2 exp(−B · h1/2)) + O(hα(h1/2)) + O(e−b2h)

for each candidate control limit c satisfying

c > κ(Rk,M) = [k(0) − kmin]C+/(2M2),

where I(ζ) =
∫ ζ
0 K(s) ds.

A Borel-Cantelli argument yields the following corollary.
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Corollary 4.1. If
∑

k k2α(k) < ∞, then under the conditions of Theorem 4.1 for each

c > (l + 1)(Rk − 1)C+/M2 we have∑
n

P [m̂n > c],
∑

n

P [|m̂n| > x] < ∞

which implies

P [m̂n > x, i.o.] = 0, P [|m̂n| > x, i.o.] = 0.

4.2. Upper bound for the normed delay. We shall now establish an asymptotic bound

for the normed delay, ρh = ρh(c,M) = h−1 max{0, Nh − q}, as h → ∞. Whereas for classic

Nadaraya-Watson type kernel weights a.s. convergence to a deterministic function depending

on the smoothing kernel and the generic alternative m0 can be shown, for jump-preserving

weights the situation is more delicate. However, an upper bound can be established.

Theorem 4.2. Assume (A1)-(A8) and tq = 1. Let c be some fixed control limit. Suppose ρ0

satisfies the nonlinear equation

ρ0 = inf
{

ρ > 0 :
∫ ρ

0
K(s − ρ)m0(s) ds = cRk/2 + (Rk − 1)C+/(2M)

}
Then ρ0 is an asymptotic upper bound for ρh in the sense that

P [ρh > ρ0] = o(1),

as h → ∞.

Again, the following corollary is straightforward.

Corollary 4.2. In addition to the assumptions of Theorem 4.2 suppose that
∑

k k2α(k) < ∞.

Then

P [ρh > ρ0, i.o.] = 0.

Remark 4.1. The bound may be not as sharp as possible, but for the case considered here

better bounds are not known for error distributions with infinite support.

Remark 4.2. The upper bound depends on the smoothing kernel K (w.r.t time) and the

generic alternative m0 only the through the function

I(ρ; K,m0) =
∫ ρ

0
K(s − ρ)m0(s) ds.

For optimization of the functional τ(K) = inf{ρ > 0 : I(ρ; K,m0) ≥ c} w.r.t. K, we refer to

Steland (2003b).
12



4.3. Proofs. We will now provide the proofs of both theorems.

Proof (of Theorem 4.1). First note that by symmetry of kM and since m̃l
d= −m̃l, we have

for each x ∈ R

P (m̂n ≤ −x) = P [
∑

i Kh(ti − tn)kM (Yi − m̃l)Yi∑
i Kh(ti − tn)kM (Yi − m̃l)

≤ −x]

= P [
∑

i Kh(ti − tn)kM (m̃l − Yi)(−Yi)∑
i Kh(ti − tn)kM (m̃l − Yi)

≤ −x]

= P [m̂n > x].

Consequently, P (|m̂n| > c) = 2P (m̂n > c). Assumption (A7) ensures that
n∑

i=1

Kh(ti − tn) = I(ζ) + O(1/h)

where I(ζ) =
∫ ζ
0 K(s) ds. Thus,

n∑
i=1

Kh(ti − tn)kM (Yi − m̃n) ≥ (kmin/M){I(ζ) + O(1/h)}.

Using this lower bound and recalling that l denotes the number of lagged observations on

which m̃n depends, we obtain

P [m̂n > c]

≤ P

[n−l−1∑
i=1

K([ti − tn]/h)k([Yi − m̃n]/M)Yi >
ckmin

l + 1
{I(ζ) + O(1/h)} · h

]
(6)

+(l + 1) max
j=0,...,l

P

[
Yn−j > c

1
l + 1

kmin

K(0)k(0)
{I(ζ) + O(1/h)} · h

]
.

By Cramér’s condition the last term can be bounded by b1 exp(−b2h) for some constants

b1, b2 > 0. Thus, it remains to provide a similar bound for the first term. Denote by Fnl(y)

the distribution function of m̃n. By conditioning on In
n−l = σ(Yn−l, . . . , Yn) the first term can

be written as

(7)
∫

Pn
n−l

[n−l−1∑
i=1

K([ti − tn]/h)k([Yi − z]/M)Yi >
ckmin

l + 1
{I(ζ) + O(1/h)}h

]
dFnl(z).

The same argument provides

Pn
n−l[m̆n > c] ≤(8) ∫

Pn
n−l

[n−l−1∑
i=1

K([ti − tn]/h)k([Yi − z]/M)Yi > chM

]
dFnl(z)

+b′1 exp(−b′2h)
13



for some constants b′1, b′2 > 0. Define

Sn(z) =
n−l−1∑

i=1

K([ti − tn]/h)ξi(z)

where ξi(z) = k([Yi − z]/M)Yi, i = 1, . . . , n− l− 1. Note that all conditional moments (under

Pn
n−l) of ξν(z) are uniformly bounded in z ∈ R and ν ∈ N. Having in mind (7) and (8), it is

sufficient to show

(9)
∫

Pn
n−l[Sn(z) > xh] dFnl(z) = O(h1/2 exp(−b1h

1/2)) + O(hα(h1/2))

for some constant b1 > 0.

To verify (10) we will use a blocking argument. Fix 0 < γ < 1. Recall that n/h ∼ ζ and

partition the set {1, . . . , n} in blocks of length ph = �(ζh)1/2γ�. Then there are mh =

�(n − l − 1)/ph� ∼ (ζh)1/2/γ blocks. The first step is to show

(10) P [Sn(z) − En
n−lSn(z) > xh] = O(h1/2 exp(−b1h

1/2)) + O(hα(h1/2)).

where the O does not depend on z ∈ R. The proof will then be completed by estimating the

conditional mean ESn
n−l(z).

Split the sum Sn(z) in ph partial sums, each consisting of mh summands taken from the mh

blocks, and a remainder term. This means,

Sn(z) =
ph∑

r=1

S(r)
n (z) + Rn(z),

S(r)
n (z) =

mh∑
k=1

ξkmh+r(z), (r = 1, . . . , ph),

and Rn(z) =
∑n−l−1

i=phmh+1 ξi(z). First note that a similar argument as used in (7) ensures that

P [Rn(z) > x] = O(ph exp(−b3h)) for some constant b3 > 0, since the number of summands

of Rn(z) is not larger than ph. Thus, w.l.o.g. assume phmh = n− l− 1. Next observe that for

each x > 0

Pn
n−l[Sn(z) − En

n−lSn(z) > xh] ≤
ph∑

r=1

Pn
n−l[S

(r)
n (z) − En

n−lS
(r)
n (z) > xh/ph].

We shall show

max
1≤r≤ph

sup
z∈R

Pn
n−l[S

(r)
n (z) − En

n−lS
(r)
n (z) > xh/ph] = O(exp(−b1h

1/2))

for some constant b1 > 0 yielding (10), since mh = O(h1/2).

Using Markov’s inequality it follows that the absolute value of the difference between

Pn
n−l[S

(r)
n − En

n−lS
(r)
n (z) > xh/ph]

14



and

exp(−txh/ph)
m∏

k=1

En
n−l exp(tK([tkmh+r − tn]/h)[ξkmh+r(z) − En

n−lξkmh+r(z)])

is not larger than 16(mh − 1)α(ph) = O(α1/2α(h1/2) = o(1), since {ξν(z)} is conditionally

strong mixing and satisfies (A3). By strict stationarity of {ξν(z)}

g0 := sup
z∈R

sup
ν∈N

max
i=1,...,ν

Eν
ν−lξ

2
i (z) < ∞

Thus, for all |t| ≤ T and g > g0 we have

En
n−l exp(tK([ti − tn]/h)ξi(z) ≤ exp(K([ti − tn]/h)gt2/2), (i = 1, . . . , n; n ∈ N).

Hence
p∏

k=1

En
n−l exp(tK([tkmh+r − tn]/h)[ξkmh+r − En

n−lξkmh+r(z)]) exp(txh/ph)

≤ exp(Kr(ph)gt2/(2ph) − txh/ph),

where

Kr(ph) =
ph∑

k=1

K([tkmh+r − tn]/h)2.

By minimizing the function t �→ Kr(ph)gt2/2 − txh/ph, we obtain

Pn
n−l[S

(r)
n (z) − En

n−lS
(r)
n (z) > xh/ph]

=

{
O(exp(−(xh/ph)2/[2gKr(ph)]), (xh/ph) ≤ gTKr(ph)

O(exp(−(xh/ph)T/2), (xh/ph) > gTKr(ph)

We have to study Kr(ph) in detail. Obviously, {(tkmh+r − tn)/h = (n − kmh − r)/h : k =

1, . . . , ph} is an equidistant partition of [(l + 1 − r)/h, (n − mh − r)/h] with associated size

mh/h = O(h−1/2). Hence,∣∣∣∣(mh/h)
ph∑

k=1

K2([tkmh+r − tn]/h) −
∫ ζ

0
K2(s) ds

∣∣∣∣ = O(mh/h).

Consequently, h/(Kr(ph)mh) is bounded away from 0. Note that

(xh/ph)2

2gKr(ph)p2
h

=
x2

2g

h

Kr(ph)mh

mhh

p2
h

≥ d1h
1/2

and
xhT

2ph
≥ η′T

2
h

ph
≥ d2h

1/2

for constants d1, d2 > 0. Putting things together we see that with b1 = max(d1, d2)

(11) max
r

sup
z∈R

Pn
n−l[S

(r)
n (z) − En

n−lS
(r)
n (z) > xh/ph] = O(exp(−b1h

1/2)) + O(h1/2α(h1/2)).
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A similar bound can be obtained for Pn
n−l[−[S(r)

n (z) − En
n−lS

(r)
n (z)] > xh/ph].

It remains to estimate En
n−lSn(z) uniformly in z ∈ R. Using symmetry of Yν , n ∈ N, one can

show that

En
n−lSn(z) ≥ h[kmin − k(0)] sup

ν∈N

max
i

Eν
ν−lY

+
i {I(ζ) + O(1/h)},(12)

En
n−lSn(z) ≤ h[k(0) − kmin] sup

ν∈N

max
i

Eν
ν−lY

+
i {I(ζ) + O(1/h)},(13)

uniformly in z ∈ R, where the maximum is taken over i = 1, . . . , n − l − 1. Using (13) we

obtain

∫
Pn

n−l[Sn(z) > xh] dFnl(z)]

=
∫

Pn
n−l[Sn(z) − En

n−l[Sn(z)] > xhM − En
n−l[Sn(z)]] dFnl(z)

≤
∫

Pn
n−l[Sn(z) − En

n−l[Sn(z)] > (x − µ′
Σ + O(1/h)) · Mh] Fnl(z)

= O(h1/2e−b1h1/2
) + O(hα(h1/2)),

where µ′
Σ = I(ζ)[k(0) − kmin]C+/M . Applying this estimate with x = c(l + 1)−1kminM

−1I(ζ)

to (7) we see that

P (m̂n > c) = O(h1/2e−b1h) + O(h1/2α(h)) + O(e−b2h),

if c > (l + 1)(Rk − 1)C+/M2. Similarly, applying the estimate with x = cM to (8) yields the

result for m̆n if c > κ(Rk,M) ≥ I(ζ)[k(0) − kmin]C+/M2, since I(ζ) ∈ [0, 1/2] for all ζ > 0.

We are now in a position to verify Theorem 4.2.

Proof (of Theorem 4.2). Note that by definition of ρh and Nh we have for each ε > 0

{ρh − ρ0 > ε} ⊂ {|m̂�(ρ0+ε)h	| ≤ c}.
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Put n(h) = �(ρ0 + ε)h� and recall that Yhi = εi if i = 1, . . . , q − 1 and Yhi = m(ti; h) + εi if

i = q, . . . , n(h). We have

P (ρh − ρ0 > ε)

≤ P (|m̂n(h)| ≤ c)

≤ P

(
|
∑

i

Kh(ti − tn(h))kM (Yi − m̃n(h))| ≤ c
k(0)
M

∑
i

Kh(ti − tn(h))
)

≤ P

(∣∣∣∣n(h)∑
i=1

Kh(ti − tn(h))kM (Yi − m̃n(h))εi

∣∣∣∣ >

n(h)∑
i=q

Kh(ti − tn(h))kM (Yi − m̃n(h))m(ti; h) − ck(0)
M

(1/2 + O(h−1))
)

.

Here we used the fact that for y ≥ 0

|x + y| ≤ z ⇔ |y| = y ≥ |x| − z, y ≤ z − x, x, y, z ∈ R,

and the estimate
n(h)∑
i=1

Kh(ti − tn(h))kM (Yi − Yn(h)) ≤ (k(0)/M) {1/2 + O(1/h)}.

Note that, since q/h = o(1),

n(h)∑
i=q

Kh(ti − tn)kM (Yi − m̃n(h))m(ti; h)

≥ (kmin/M)
n(h)∑
i=1

Kh(ti − tn(h))m(ti; h)

=
kmin

M

∫ ρ0+ε

0
K(s − ρ0 − ε)m0(s) ds + O(1/h)

=
kmin

M

∫ ρ0

0
K(s − ρ0)m0(s) ds + O(ε) + O(1/h).

Thus, if

−ck(0)
2M

+
kmin

M

∫ ρ0

0
K(s − ρ0)m0(s) ds = κ(Rk,M),

which is guaranteed by the choice of ρ0, we obtain that

P (ρh − ρ0 > ε)

is not greater than

(14) P

(∣∣∣∣n(h)∑
i=1

Kh(ti − tn)kM (Yi − m̃n(h))εi

∣∣∣∣ ≥ κ(Rk,M) + {O(ε) + O(1/h)}
)

.
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Therefore, an application of Theorem 4.1 (ii) with ζ = ρ0 + ε yields

P (ρh − ρ0 > ε) = o(1),

because the sum in (14) equals the estimator m̃n(h) applied to the sample ε1, . . . , εn(h).

5. Simulations and data example

To shed some light onto the properties of the jump-preserving monitoring procedure with

median-based pilot estimation, we performed simulations for i.i.d. data. Since financial time

series as the exchange rate series analyzed below, are often affected by conditional het-

eroscedasticity, we also considered GARCH models for both the simulation and the data

analysis. Although GARCH processes are known to be strongly mixing with exponential rate

(Basrak, Davis and Mikosch (2002); Carrasco and Chen (2002)), it is not clear whether they

satisfy the conditional mixing condition required here. However, neither the simulation nor

the data analysis requires the theoretical bound on the normed delay. The simulation study

is designed to yield an implicit comparison with the classic EWMA control chart.

5.1. Simulations. We conducted a simulation study which was devoted to compare the clas-

sical sigma filter with the median-based improvement proposed here. Concerning the mean

structure the focus is on deterministic peak-like deviations from mean-stationarity. The inno-

vation process was modeled as (i) Gaussian white noise and, to take account of the fact that

financial time series are often affected by conditional heteroscedasticity, as (ii) a GARCH(1,1)

process. For better comparisons the same simulation model as in Steland (2002a) was used

where time series are generated according to the model

Yn = a · 1(q ≤ tn < q + s) + εn, (n ≥ −39),

with tν = ν for all ν ∈ N and stationary zero-mean innovations {εn}. q stands for the first

change-point in discrete time and q + s for the second one. Small values for s correspond to

peaks whereas for s → ∞ the classical change-point model is obtained.

To study time series with conditional heteroscedasticity a GARCH(1,1) model (Bollerslev,

1986; Engle & Bollerslev, 1986) given by

εn = hnηn, with h2
n = α0 + α1h

2
n−1 + β1ε

2
n−1

for n ≥ 2 and h1 = α0/(1 − α1 − β1) was used. Here α0, α1, and β1 are parameters specified

by α0 = α1 = .1 and β1 = .85.
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We considered the improvement for various values of the parameters h,M , and a for a level

shift of s = 3 periods. Further, for various values of s and h we simulated the minimal out-of-

control ARLs where minimization was done over a finite set of M -values. M was chosen from

the set M = {.5, 1, 1.5, 2, 2.5, 3} for the first setting and from M = {.5, 1, 1.5, 2.5, 3, 3.5, 4}
for the second one.

The median-based modification of the sigma filter, m̂n, was specified as follows. The kernel k

was chosen as an uniform kernel whereas the kernel K which is used to smooth the data w.r.t.

time was chosen as a Laplace density. In this case the weights ŵ(ti, tn) converge to the weights

λ(1 − λ)n−i of the EWMA control chart given by the recursion Zn+1 = (1 − λ)Zn + λYn+1,

Z0 = 0, if the bandwidht h and the smoothing parameter of the EWMA chart are related by

hλ = −
√

2/ log(1 − λ), λ ∈ (0, 1],

and n tends to ∞. hλ is called equivalent bandwidth. In this sense, the control chart based

on m̂n provides for large M an approximation to the EWMA chart. Thus, if for a data

constellation small to moderate values of M are better than large ones, the jump-preserving

procedure outperforms the (approximation to the) EWMA. For this reason, we used equivalent

bandwidths h = h(λ), λ ∈ {.02, .04, .06, .08, .1, .2}, which translates to bandwidths ranging

from 6.34 to 70. The critical values to ensure an in-control ARL of ξ = 20 and each out-

of-control was estimated by a simulation using approximately 50,000 repetitions. We used

an automatic algorithm to estimate the necessary number of repetitions providing estimates

ranging from 5,000 to 100,000 (cut-off). We used a small in-control ARL, but our experiments

indicate that the results do not depend qualitatively on ξ. To ensure that the control charts

have sufficient past data for all values of h, we used a pre-run of 40 time units. Otherwise, for

moderate to large values of h the variance of the control statistic would be rather large when

monitoring starts. Each generated time series was truncated at nmax = 10, 000.

The results for Gaussian white noise and GARCH(1,1) innovations corresponding to the case

s = 3, are given in Table 1. For each (a, h,M, λ)-combination the ratio of the ARL of the

sigma filter divided by the ARL of the median-based improvement is given. Further, in the last

column the performances of both control charts obtained by (first) optimizing over M ∈ M
are shown. For brevity, we provide the results for λ = 0.02, 0.04, and 0.1 which give a sufficient

impression. The results indicate that there is a considerable improvement for small, moderate,

and large values of M and h, respectively.

Table 2 provides out-of-control ARLs of the sigma filter with median-based pilot estimation.

The corresponding maximizing value of M is given in brackets. We provide the results for

λ = 0.02, 0.04, and 0.1. It can be seen that even small jumps lasting only for short periods
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λ a M

0.5 1.0 1.5 2.0 2.5 3.0 Mopt

Gaussian white noise

0.02 0.5 1.03 1.06 1.08 1.09 1.08 1.01 1.051

0.02 1 1.14 1.15 1.16 1.19 1.16 1.05 1.126

0.02 2.5 9.12 8.42 7.57 8.16 7.29 4.94 7.932

0.04 0.5 1.03 1.09 1.07 1.07 1.05 1.03 1.026

0.04 1 1.13 1.18 1.18 1.16 1.08 1.01 1.072

0.04 2.5 8.65 8.94 7.86 7.51 6.81 4.96 7.687

0.10 0.5 1.14 1.05 1.10 1.07 1.06 1.15 1.061

0.10 1 1.28 1.19 1.21 1.17 1.07 1.16 1.101

0.10 2.5 9.82 9.01 7.99 8.39 6.08 5.36 7.909

Garch innovations

0.02 0.5 0.99 1.03 1.03 1.05 1.07 1.04 1.052

0.02 1 1.02 1.08 1.09 1.10 1.12 1.07 1.096

0.02 2.5 2.56 2.64 2.86 2.84 2.92 2.68 2.883

0.04 0.5 1.05 1.03 1.04 1.03 1.05 1.05 1.046

0.04 1 1.09 1.09 1.09 1.10 1.11 1.09 1.091

0.04 2.5 2.78 2.79 2.91 2.93 2.84 2.63 2.753

0.10 0.5 1.03 1.04 1.03 1.06 1.06 1.06 1.058

0.10 1 1.09 1.11 1.08 1.14 1.12 1.11 1.107

0.10 2.5 2.76 2.93 2.83 2.96 3.07 2.59 2.911

Table 1. Improvement of the control chart based on a sigma filter with

median-based pilot estimation in terms of the out-of-control average run length

when compared with the corresponding control chart based on a classical sigma

filter, expressed as a ratio of ARLs. First change-point tq = 40, second change-

point tq + s = 43.

can be detected soon. Comparing the table entries with Table 3 of Steland (2002a), we see

that the ARLs are considerable smaller. For example, the sigma filter detects a unit shift

for two periods (s = 2) in Gaussian random noise after 8.93 periods on average, whereas

the median-based modification detects it after 4.36 periods on average. There is also a slight

tendency to favor smaller values of M .

We may summarize that the sigma filter can be improved considerably by median-based pilot

estimation.

5.2. A financial application. To illustrate the application of the jump-preserving estima-

tors studied in this paper we provide an empirical analysis of the DEM-CZK exchange rate

for the period from 03/10/96 to 20/04/98. The time period from 02/11/95 to 02/10/96 was

used to fit an in-control model and to design the control chart. We analyzed the volatility

of the return series {Rt}. Fitting a GARCH(1,1) gives α̂0 = .000003341, α̂1 = .409777, and
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λ a s

1 2 4 8 64

Gaussian white noise

0.02 0.5 9.27 [ 3.00 ] 8.05 [ 3.00 ] 6.27 [ 3.00 ] 4.21 [ 3.00 ] 2.17 [ 3.50 ]

1.0 6.19 [ 3.00 ] 4.36 [ 3.00 ] 2.36 [ 3.00 ] 1.06 [ 3.00 ] 0.82 [ 3.50 ]

2.5 0.93 [ 3.00 ] 0.15 [ 3.00 ] 0.06 [ 3.00 ] 0.05 [ 3.00 ] 0.05 [ 3.00 ]

0.04 0.5 5.01 [ 3.50 ] 4.18 [ 3.50 ] 3.15 [ 3.50 ] 2.09 [ 3.50 ] 1.48 [ 3.50 ]

1.0 3.19 [ 3.50 ] 2.15 [ 3.50 ] 1.09 [ 3.50 ] 0.59 [ 3.50 ] 0.54 [ 3.50 ]

2.5 0.40 [ 3.50 ] 0.08 [ 3.00 ] 0.04 [ 3.50 ] 0.04 [ 3.50 ] 0.04 [ 3.50 ]

0.10 0.5 2.27 [ 3.50 ] 1.83 [ 3.50 ] 1.35 [ 3.50 ] 0.99 [ 3.50 ] 0.89 [ 3.50 ]

1.0 1.19 [ 3.50 ] 0.71 [ 3.50 ] 0.39 [ 3.50 ] 0.30 [ 3.50 ] 0.29 [ 3.50 ]

2.5 0.08 [ 4.00 ] 0.02 [ 3.50 ] 0.01 [ 3.50 ] 0.01 [ 3.50 ] 0.01 [ 4.00 ]

Garch innovations

0.02 0.5 9.80 [ 4.00 ] 8.84 [ 4.00 ] 7.38 [ 4.00 ] 5.53 [ 4.00 ] 2.99 [ 4.00 ]

1.0 7.54 [ 4.00 ] 5.84 [ 4.00 ] 3.78 [ 4.00 ] 2.02 [ 4.00 ] 1.28 [ 4.00 ]

2.5 2.23 [ 4.00 ] 0.88 [ 4.00 ] 0.30 [ 4.00 ] 0.19 [ 4.00 ] 0.20 [ 4.00 ]

0.04 0.5 6.45 [ 4.00 ] 5.63 [ 4.00 ] 4.75 [ 4.00 ] 3.47 [ 4.00 ] 2.32 [ 4.00 ]

1.0 4.65 [ 4.00 ] 3.55 [ 4.00 ] 2.23 [ 4.00 ] 1.27 [ 4.00 ] 1.00 [ 4.00 ]

2.5 1.20 [ 4.00 ] 0.43 [ 4.00 ] 0.18 [ 4.00 ] 0.15 [ 4.00 ] 0.15 [ 4.00 ]

0.10 0.5 3.52 [ 4.00 ] 3.06 [ 4.00 ] 2.46 [ 4.00 ] 1.86 [ 4.00 ] 1.58 [ 4.00 ]

1.0 2.29 [ 4.00 ] 1.63 [ 4.00 ] 1.00 [ 4.00 ] 0.72 [ 4.00 ] 0.67 [ 4.00 ]

2.5 0.46 [ 4.00 ] 0.18 [ 4.00 ] 0.10 [ 4.00 ] 0.09 [ 4.00 ] 0.09 [ 4.00 ]

Table 2. Average run lengths of the sigma filter with median-based pilot es-

timation for detecting peaks of varying length.

β̂1 = .131462 with SBC = −2155.99. A common approach is to measure volatility in terms of

the empirical standard deviation st = [(1/19)
∑19

i=0(Rt−i − Rt)2]1/2, Rt = (1/20)
∑19

i=0 Rt−i,

computed for the last 20 trading days. It is known that st tends to produce artifacts when

isolated (short periods of) trading days with extreme changes are present, since each trading

day located in the estimation window has the same weight. Consequently, ’outlying’ returns

may dominate and the volatility is over-estimated for the next 20 trading days. Alternatively,

one may apply a sigma filter with crude or median-based pilot estimation computed from the

sequence of squared returns. To allow comparisons we used uniform kernels and h = 20. The

parameter M was chosen according to the following rule of thumb. Relying on the quartile

distance QD of |Rt| to measure dispersion of the in-control period, we put M = QD/8. This

gives M = 0.000269. Upper control limits for one-sided upper control charts corresponding to

an in-control ARL of 60 were calculated by simulating from the estimated in-control GARCH

model. Figure 1 provides the results. The picture suggests that the jump-preserving volatility
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Figure 1. DEM-CZK FX Rates. Jump-preserving volatility estimator with

median-based pilot estimation (top panel), sigma filter, and absolute values of

daily FX returns (bottom panel). Superimposed (dotted lines) is the classical

empirical standard deviation of the returns (moving window estimator with 20

observations.) Outlying returns are marked (X.) Control limits and a control

limit corresponding to a 1% change are added.

estimates behave similar as st when volatility is stable and smooth, but nicely reproduce jump-

like changes without producing artifacts as st. The jump-preserving monitoring procedures

react quickly to increases. Note that the median-based modification indicates the increase of

volatility much more earlier than the sigma filter whose control limit is considerably higher.
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