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Abstract

In this paper we describe a computer intensive method to find the
ridge parameter in a prediction oriented linear model. With the help
of a factorial experimental design the method is tested and compared
to a classical one.
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1 Introduction

The linear regression model is one of the most widely used statistical mod-
els. It is used to model relations of one or more dependent variables to one
or more explanatory variables. Although the ordinary least squares estima-
tor (OLS) is the uniformly best unbiased estimator for the regression vector
when the errors are iid normally distributed, there are situations when there
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are better estimators for the given problem – even if the errors are iid nor-
mal. This may happen because of numerical reasons in calculating the OLS
estimator or in cases in which one is more interested in prediction so that
a biased estimator may lead to less prediction error. One possibility to im-
prove the OLS is to perform a ridge regression (RR). In a ridge regression an
additional parameter, the ridge parameter, is used to control the bias of the
regression towards the mean of the response variable. However, there exist
a number of different methods for choosing the ridge parameter. The one
we tried is a new computer intensive method which directly minimizes the
prediction error.
In this paper we also tried to find factors or characteristics of the data which
have an influence on the performance of a ridge regression. Using an exper-
imental design to set up a simulation study is a possible tool to check the
importance of potentially influencing factors.
This paper is organized as follows: In the next section the regression model
and the ridge regression are introduced. Moreover in section 2 the new
computer-intensive method we used is explained. Section 3 describes the
simulation study and the experimental design. The results of the simulation
study are given in section 4. In section 5 the new method is tested in a real
life example. The paper is concluded with comments on the results found.

2 Regression Model and Ridge Regression

2.1 Linear Model

The standard basic multivariate linear model looks as follows:

y = 1nµ + Xβ + e, (1)

where

• y ∈ IRn the data vector of the response variable.

• µ ∈ IR the mean of the response.

• X ∈ IRn×p the data of the explanatory variables. For simplicity reasons
it is assumed that X is of full column rank and mean centered.

• β ∈ IRp the unknown regression coefficient vector.
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• e ∈ IRn the vector of the errors.

The ordinary least squares estimators are (if X is of full column rank and
mean centered) :

• µ̂ = ȳ.

• β̂ = (X ′X)−1X ′(y − 1nµ̂).

Since the matrix X ′X is inverted there may be numerical problems even if
X is of full column rank, for example if the predictor variables are highly
correlated.
It is interesting how the estimator will perform on n0 future values X0, y0.
The point prediction of the future response values is:

ŷ0 = 1n0
µ̂y + X0β̂X,y.

β and µ are estimated using the training set X, y. With a known test set
X0, y0 the loss in n0 (new) observations can be measured by

L =
1

n0

‖(y0 − ŷ0)Γ
− 1

2 ‖2, (2)

where Γ is a fixed weight. One possible choice is the variance of the response
variable (Schmidli, 1995, p. 22). This was used here as the loss in y and y0

is measured relative to the variance of the response.
The loss (2) is closely linked to the R2 of the response variables (Schmidli,
1995, p. 23) where the R2 is measured on the future values y0:

R2

0 = 1 − L. (3)

Usually one is not only interested in the performance of the estimator for
some observations but also in the ’general’ or average performance. The
corresponding mean loss (Mean Squared Error of Prediction) is defined as
(Schmidli, 1995, p. 24):

MSEP =
1

n0

Ey|XEy0|X0
‖(y0 − ŷ0)Γ

− 1

2‖2

=
1

n0

Ey|XEy0|X0
‖(y0 − (1n0

µ̂ + X0β̂X,y))Γ
− 1

2 ‖2. (4)

The MSEP is a conditional expectation where the distribution is at least
partially unknown, therefore it is necessary to estimate it. This can be done
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for example by bootstrap or crossvalidation methods. In our problem, how-
ever, when β̂ is not a linear function of X, y, one needs to generate different
y, y0 for the same X, X0. To see this, note that the conditional expectation
in the MSEP depends on the conditional expectation of β̂X,y. As y itself is

a function of X it follows that Ey|X(β̂X,1nµ+Xβ+e) only equals β̂X,1nµ+Xβ if β̂

is linear. To generate different y, y0 two cases can be considered:

1. Simulated data
In a simulation study different e can be generated according to the
error distribution.

2. Real life data
The error distribution must be estimated by a bootstrap method (Sta-
pleton, 1995, p. 225). Let

ê = y − ŷ.

This estimate of the error matrix builds the empirical error distribu-
tion. So let e∗ be a random bootstrap sample of the empirical error
distribution. A new bootstrap sample is:

y∗ = ŷ + e∗.

By doing this it is possible to generate –for a given split into train-
ing and test data– different realizations of the response variables and
estimate the conditional expectations in the MSEP .

2.2 Ridge Regression

Hoerl and Kennard (1970) propose the use of ridge regression to estimate
β when the explanatory variables are highly correlated. Ridge regression
is based on the James-Stein estimator and the basic idea is to reduce the
variance by shrinking the estimator so that the MSE can be reduced. To
achieve that in a ridge regression an additional parameter k is added to the
OLS estimation problem:

β̂(k) = (X ′X + kIp)
−1X ′(y − 1nµ̂), k ≥ 0. (5)

If k = 0 the resulting estimator is the OLS estimator for β.
The procedure can be generalized to choose individual ridge parameters for
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each predictor variable (Hoerl and Kennard, 1970).
There are a number of different methods for selecting the value of k. A widely
used method is the generalized cross validation (gcv) criterion (Golub et al.,
1979). The gcv criterion is a constant multiple of

V (k) =
||(I − H)y||2

(trace(I − H))2
, (6)

with H = X(X ′X + kI)−1X ′. The Minimization is often done by line search
of k (Hawkins and Xin, 2002). The gcv estimate is based on the minimization
of the PRESS criterion but transformed to be rotation-invariant (Golub et al.,
1979). They also show, that it is equivalent to a weighted version of PRESS.
Remember that PRESS is based on a leave-one-out cross validation. On
the other hand Bunke and Droge (1984) show that a bootstrap estimator is
preferable to a cross validation estimator for the prediction error, so that gcv
might not choose the best k concerning prediction error.

2.3 Prediction Optimal Ridge Parameter

The loss (2) for a given training and test data in a ridge regression model
can be calculated as:

L(k) =
1

n0

‖(y0 − (1n0
µ̂ + X0(X

′X + kIp)
−1X ′(y − 1nµ̂)))Γ− 1

2 ‖2. (7)

Including a ridge-parameter in the equation for the MSEP (4) the formula
can be re-written as a function of k:

MSEP (k) =
1

n0

Ey|XEy0|X0
‖(y0−(1n0

µ̂+X0(X
′X+kIp)

−1X ′(y−1nµ̂)))Γ− 1

2 ‖2.

(8)
As the MSEP is estimated by a bootstrap method (see above) a computer in-
tensive method for choosing k is developed quite easily. Because of the results
of Bunke and Droge (1984) this method may result in a better prediction. It
is summarized in Algorithm 1.

As the objective is to find a value k which minimizes (8) directly we call
the new method PrK (Prediction K).
Direct minimization of MSEP as a function of a projection matrix turned out
to be successful in a latent factor linear model (Luebke and Weihs, 2003).
There the minimization is done by means of Simulated Annealing which is
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Algorithm 1 Algorithm for selecting ridge parameter k
for i = 1 to nboot do

Generate Training (X, y) and Test data (X0, y0)
ki = argminL(k), L(k) from equation (7)

end for

k̂ = T (k), with T being a statistic for the location parameter of ki, i = 1, · · · , nboot,
e.g. mean or median

not necessary here. One parameter (k) needs to be optimized and in our
examples (7) has only got one minimum so there is no need to overcome
local minima – a problem that is tackled by Simulated Annealing.

For the parameters of Algorithm 1 we used 20 splits in training and test
data and 10 replications of the bootstrapped error, so nboot = 20 · 10 = 200.
As the estimator for k we used the mean. The minimization is done by line
search and all calculations are done by the statistical program R (Ihaka and
Gentleman, 1996).

3 Design of Experiment of Simulation Study

In order to obtain most general results, important characteristics of the model
are varied by using a 25 factorial experimental design. The design is a full
factorial design so there were 32 different runs.

• For the data matrix X we vary the number of training observations
(rowx) and the number of variables (colx).

• Numerical stability, as one of the main reasons to use a ridge regression
model is tested by means of the degree of multicollinearity of the matrix
X (Belsley et al., 1980, p. 86). Multicollinearity may happen when the
explanatory variables are correlated. As a measure of the degree of
multicollinearity the condition number (kond) is used (Belsley et al.,
1980, p. 104). To achieve different degrees of multicollinearity we use
the Cholesky decomposition U ′U = Ψ of a correlation matrix Ψ where
the off-diagonal elements of Ψ are identical. Then X is transformed
X = XU (Frank, 1989).

• The influence of error variances (sn) is assessed by different variances
of e varying the signal-to-noise ratio (Frank and Friedman, 1993).
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• The elements of the regression vector β are either equal to one or un-
equal ([βj = j2]pj=1

, compare Frank and Friedman (1993)).

The chosen values of the characteristics of model (1) are shown in Table 1.
The low level (-1) is used for the situation in which calculating β̂ should be
easier whereas the high level (+1) is used for the more complicated situation.

Table 1: Design of experiment of simulation study

Characteristic Realization -1 Realization +1

rowx 250 50
colx 5 25
kond 50 5000000
sn 3 2
eq [βj = 1]pj=1 [βj = j2]pj=1

4 Results

Each run of the factorial experimental design is repeated 50 times, so there
were 160 runs altogether. The regression parameter and the ridge parameter
are estimated by the training data and were then tested on 500 observations of
validation data not used for estimation. As a result the logarithmed relative
(relative to the true model) prediction error is calculated:

logrel(method) = log(
(y − ŷmethod)

′(y − ŷmethod)

(y − ŷtrue)′(y − ŷtrue)
). (9)

In order to analyze the influence of the possible influencing factors, a regres-
sion of the logrel (9) on the coded factors is performed. As the regression is
based on the coded factors the variances are equal, so the values of the esti-
mators can be compared directly. The results of the regression coefficients of
the various methods (OLS, gcv, PrK) together with the associated p-values
are shown in Table 2. Table 2 reveals that only the three characteristics of
the data matrix X (colx, rowx, kond) are significant for the relative perfor-
mance of the different (ridge) regression methods.
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Table 2: Regression of the logrel on the coded factors

ols gcv PrK
est. p-value est. p-value est. p-value

(Intercept) 0.240 0.000 0.022 0.000 0.017 0.000
sn 0.000 1.000 −0.001 0.453 −0.001 0.050

colx 0.178 0.000 0.004 0.000 0.001 0.074
rowx 0.177 0.000 0.014 0.000 0.010 0.000
kond 0.000 1.000 −0.010 0.000 −0.003 0.000

eq −0.000 1.000 0.002 0.112 0.001 0.021

Table 3: Regression of k on the coded factors

gcv PrK
est. p-value est. p-value

(Intercept) 13.172 0.000 27.493 0.000
sn 2.124 0.000 5.894 0.000

colx 10.357 0.000 17.534 0.000
rowx −4.331 0.000 −10.489 0.000
kond −10.451 0.000 2.517 0.000

eq −0.394 0.390 −0.020 0.946

The computer intensive method PrK performs better than gcv in the overall
mean (Intercept). This does not indicate that PrK is outperforming gcv in
general – as we used simulated data. The magnitude of the influence on the
performance of the factors is quite similar for gcv and PrK.
The factors that influence the regression vector (eq) and the signal-to-noise
have no significant influence on the relative performance of the methods.
The overall MSEP of the three methods is illustrated in Figure 1. It can be
seen in Figure 1 that both ridge regression methods are more stable than
OLS in the complicated situations.

Another point of interest was whether there are factors in the simulation
study which influence the magnitude of k. The results of a regression of k on
the coded factors are given in Table 3. In general PrK chooses a greater k then
gcv. A rather surprising result is that gcv chooses a smaller k in situations
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Figure 1: Overall MSEP for different methods

with a high condition number. This is caused by outliers for choosing k. The
median of k in situations with low collinearity is smaller than the median in
situations with high collinearity.

5 Example: Pollution Data

We also applied the new PrK method to real data considered in the literature.
A description of the data can be found in McDonald and Schwing (1973).
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Table 4: Comparison of MSEP in real life data

ols gcv PrK
0.784 0.659 0.489

The data is available from Statlib1. In this data the age adjusted mortality
rate is linear related to some weather, socioeconomic and pollution variables.
There are 60 observations and 15 explanatory variables. As the explanatory
variables are correlated it is a common example for ridge-regression.
In order to compare the OLS, gcv and PrK we used an e0 bootstrap estimator.
For the e0 bootstrap estimator, the training data set consists of n cases
sampled with replacement from a size n sample. Cases not found in the
training set form the test set. The e0 estimator was calculated 80 times. As
there are some outliers in the MSEP we show the median MSEP in Table
4. For this data the new method clearly outperforms the gcv method for
finding the ridge parameter (the differences in the mean of the e0 bootstrap
estimators are even larger). This superiority may be caused by the fact that
there are few training observations compared to the number of variables.
Shao (1993) shows that in this situation the prediction ability of a model
chosen by leave-one-out cross validation is not optimal.

6 Conclusion

The superiority concerning prediction power of a ridge regression over the
ordinary least squares estimator was confirmed. We also found in our simu-
lation study, that the new method is outperforming the gcv method slightly.
This was confirmed by a real-life data example.
In the experimental design some factors could be identified that have a sig-
nificant influence on the performance of estimators as well on the magnitude
of k in the regression model.

1URL: http://lib.stat.cmu.edu/
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