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Abstract

This paper concerns locally optimal experimental designs for non-

linear regression models. It is based on the functional approach intro-

duced in (Melas, 1978). In this approach locally optimal design points

and weights are studied as implicitly given functions of the nonlinear

parameters included in the model. Representing these functions in a

Taylor series enables analytical solution of the optimal design prob-

lem for many nonlinear models. A wide class of such models is here

introduced. It includes, in particular,three parameters logistic distri-

bution, hyperexponential and rational models. For these models we

construct the analytical solution and use it for studying the e�ciency

of locally optimal designs. As a criterion of optimality the well known

D-criterion is considered.
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1 Introduction

The modern optimal design theory [see monographs (Fedorov, 1972), (Silvey,

1980), (Pukelsheim, 1993) and collected papers (Kiefer, 1985)] relates mainly

to linear (in parameters)regression models. This paper is devoted to the

analytical study of locally optimal designs,introduced in (Cherno�, 1953),

for nonlinear (in parameters) regression models. Up to now such designs

have been investigated mainly for cases where these designs can be found

in an explicit form or as a result of numerical procedures [see (Box, Lucas,
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1959) for an early reference and (Han, Chaloner, 2003) and literature cited

there for recent examples)].

A functional approach has been introduced by (Melas, 1978) for hyper-

exponential models. It is based on the study of optimal design points as

implicitly given functions of values of parameters. Recently this approach

was applied to rational models (Melas, 2001). Very convenient recurrent

formulas for expanding implicit functions into Taylor series were introduced

in (Dette, Melas and Pepelyshev, 2004). The present paper develops the

functional approach for a wider class of nonlinear models. Note that the

approach was developed for linear in parameters polynomial and trigono-

metrical models in a number of papers [(Melas, 2000), (Dette, Melas, 2002,

2003), (Dette, Melas and Pepelyshev (2002, 2004)].

The main results of the present paper consist of the following. First, for

a wide class of models we prove that support points of locally D-optimal

designs are real analytic functions of the nonlinear parameters.Second, we

generalize the recurrent formulas, mentioned above, and demonstrate that

the Taylor expansions allow to calculate the support points with a high

precision. Third, we use the Taylor expansions to estimate the minimal

e�ciency of locally optimal designs if the nonlinear parameters vary in a

given set. Also we show that the minimal e�ciency can be substantially

improved by an optimal choice of the initial values inside the set. In this

way the locally optimal designs become very close to maximin e�cient de-

signs[(M�uller, 1995),(Dette, Melas, Wong, 2004)]. A formal outline of the

problem and a basic equation for the support points are given in Section 2.

The main results are described in Sections 3{5. The proofs are somewhat

lengthy and are di�ered to the Appendix.

2 Outline of the problem

2.1 Basic regression model

Let the experimental results y1; : : : ; yN 2 IR1be described by the equation

yj = �(xj ;�)+ "j ; j = 1; : : : ; N; (1)

where �(x;�) is a function of a known form, � = (�1; : : : ; �m)
T is the vector

of unknown parameters, xj 2 X, X is a given set, f"jg are random errors

such that

E"j = 0; E"i"j = �ij�
2h2(xi); i; j;= 1; : : : ; N; (2)
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�ij is the Kroneker symbol, �2 is unknown constant, and h(x) is a known

function, h(x) > 0, x 2 X.
A discrete probability measure given by the table

� =

 
x1; : : : ; xn
!1; : : : ; !n

!
;

where xi 2 X, xi 6= xj (i 6= j), !i > 0,
Pn

i=1, !i = 1 will be called, as

usual,an approximate experimental design.

Let approximately !i N experiments be performed at the point xi ,

i = 1; : : : ; n according to a design �, and now consider the least squares

estimate �(N) of the parameter vector �.

Let us denote by �tr the true value of the parameter vector � appearing

in our model (1){(2). As it is known (Jennrich, 1969) under some regularity

conditions �(N) ! �tr almost surely and the vector
p
N(�(N)��tr) has an

asymptotically normal distribution with zero expectation and the variance

matrix

D = �2M�1(�;�);

where M(�;�) is the information matrix,

M(�;�) =

 
nX
l=1

fi(xl;�)fj(xl;�)!lh
�2(xl)

!m

ij=1

;

fi(xl;�) =
@�(xl;�)

@�i
, � = �tr.

A design �� maximizing the magnitude of detM(�;�) under a �xed

value � = �(0) in the class of all approximate designs will be called a locally

optimal design.

Usually a locally optimal design depends only on a part of parameters

(see Section 4). Without loss of generality assume that these parameters are

�m�r+1; : : : ; �m and denote �1 = (�1; : : : ; �m�r)
T , �2 = (�m�r+1; : : : ; �m)

T .

Our purpose is to study the dependence of �� on �2. Assuming that �1 is

�xed we will consider the matrix M(�;�2) =M(�;�).

2.2 The basic equation

In many practical problems X=[a; b] and we will restrict our attention to

this case.

Without loss of generality assume that

a � x1 < x2 < : : : < xn � b:
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A triple (n1; n2; n3), where n1(n2) is the number of support points at the

left (right) bound, n1; n3 = 0 or 1, n2 = n� n1 � n3, will be called the type

of design.

Let �2 2 
, where 
 is a given open one-connected set of possible values

of the parameters.

Consider the designs which are locally D-optimal in the class of designs

with minimal support (that is with n = m). In this paper these designs

will be called saturated locally D-optimal. Such designs often prove to be

locally D-optimal in the class of all approximate designs.

It can be easily checked (Fedorov, 1972) that the weights in a saturated

locally D-optimal design equal to !i = 1=m, m = 1; : : : ; m.

Suppose that for any z 2 Z a saturated locally D-optimal design has a

�xed type (n1; n2; n3), n1 +n2 +n3 = m. Consider the case n1 = 0, n3 = 1.

In this case we will de�ne a vector � and the design �� in the following way

� = (x1; : : : ; xm�1)
T ; a < x1 < : : : < xm�1 < b;

�� =

 
x1 : : : xm�1 b

1=m : : : 1=m 1=m

!
:

All other cases can be considered in a similar way.

Let q be a given real analytic vector function on 
 such that

�2 ! z = q(�2) 2 Rr

is a one-to-one correspondence and therefore the invert function q�1(z) is

well de�ned at the set

Z = fz; 9�2 2 
; z = q(�2)g :

De�ne the following concept.

De�nition 2.1 The vector function

��(z) : Z ! V;

where

V =
n
tau = (x1; : : : ; xm�1)

T ; a < x1 < : : : < xm�1 < b
o

will be called an optimal design function if for any �xed z 2 Z the de-

sign ���(z) is a saturated locally D-optimal design for (�0)T = (�T
1 ;�

T
2 (z)),

�1(z) = q�1(z).
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Let us introduce an equation which implicitly determine an optimal de-

sign function.

De�ne the function

'(�; z) = [detM(�� ;�(z)]
1=m ; (3)

where �T (z) =
�
�T
1 ;�

T
2 (z)

�
, �2(z) = q�1(z).

By the assumptions given above, for any �xed z 2 Z function '(�; z),

� 2 V attains its maximum inside the set V . Therefore, vanishing of the

derivatives
@

@�i
'(�; z) = 0; i = 1; : : : ; m� 1:

is the necessary condition for equality � = ��(z) for any �xed z 2 Z.
Set

gi = gi(�; z) =
@
@�i
'(�; z); i = 1; : : : ; m� 1; g = (g1; : : : ; gm�1)

T :

Then

g(�; z) = 0 (4)

at � = ��(z). This equation is called the basic equation. It enables reducing

the problem to the analysis of implicit functions. Such analysis will be

given in Section 5. And in the next section we will introduce assumptions

providing that these functions are real analytic.

3 Analytic properties of the design functions

Let 
, Z and q : 
! Z be such as described in the previous section.

Let 	(z) be a polynomial, N be the set of roots of this polynomial,

N = fz 2 Rk ;  (z) = 0g

and N be such that for any �z 2 N there exists a sequence z(k), k = 1; 2; : : :,

z(k) 2 Z, z(k) ! �z with k !1.

Remember that

fi(x;�) =
@

@�i
�(x;�); i = 1; : : : ; m;

�T = (�T
1 ;�

T
2 ), �1 is a �xed vector and �2 2 
.
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Consider a class of regression functions �(x;�), x 2 [a; b], � 2 Rm

satisfying the following assumptions.

A1. Functions

fi(x;�)=h(x); i = 1; : : : ; m

are real analytic with x 2 [a; b], �2 2 
.

A2. With �2 2 
 all saturated locally D-optimal designs have one and

the same type (n1; n2; n3).

Let V be the set of all vectors � = (�1; : : : ; �m)
T such that a � �1 �

: : : � �m � b and no more than two coordinated are coincide.

A3.

inf
z2Z\N

inf
�2V

~'(�; z) > 0;

where

~'(�; z) =

h
det (fi(�j ;�(z))

m
i;j=1

i2
	(z)

Q
j>i(�j � �i)2

:

Note that with 	(z) � 1, N = ; this assumption means that with a �xed
z the functions fi(x;�(z)), i = 1; : : : ; m generate an extended Chebyshev

system of the �rst order on [a; b] [see (Karlin, Studden, 1966, Ch. 1)] for all

z 2 Z.
Let us co-de�ne the function ~'(�; z) for z 2 N by continuity (this is

possible due to A3).

A4. There exists z(0) 2 Z [ N such that the equation system

@

@�i
~'(�; z(0)); i = n1 + 1; : : : ; m� n3

has a unique solution � = �(0).

Examples of functions � satisfying assumptions A1{A4 will be given in

the next section.

Now we can formulate our main analitical results.

Theorem 3.1 Let assumptions A1{A4 be satis�ed. Then there exist a

unique optimal design function ��(z) : z [ N ! Rk. It is a real analytic

vector function in Z [ N and its Taylor coe�cients can be calculated by

recurrent formulas (16) given in Section 5.
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Note that Assumption A4 is needed to secure the uniqueness of the

optimal design function. It can be replaced by

A4'. For any z 2 Z there exists a unique saturated locally D-optimal

design for �0 = �(z).

Remark 3.1 The assertion of Theorem 3.1 remains true if the assumption

A4 is replaced by A4'.

4 Examples

4.1 Three parameters logistic distribution

Consider the function

�(t; �; �; ) =
�et+�

1 + et+�
:

It is called three parameters logistic distribution. By the substitution x = et,

�1 = �, �2 = , �3 = e�� this function is reduced to

�(x;�) =
�1x

�2

�3 + x�2
; (5)

which is called the Hill equation in microbiological studies [see (Bezeau,

Endrenyi, 1986)].

We will construct locally D-optimal designs for model (5) using the func-

tional approach described above.

Assume that x 2 [a; b], a � 0, �1 6= 0, �3 > 0.

By a direct calculation we receive

detM(�;�) = �41�
2
3 det

�M(�; �3);

where

� =

 
x1 x2 x3
1=3 1=3 1=3

!
; �� =

 
t1 t2 t3
1=3 1=3 1=3

!
;

ti = x�2i ; i = 1; 2; 3;

�M(��; �3) =
3X

i=1

f(ti; �3)f
T (ti; �3);

f(t; �) =

�
t

� + t
;

t

(� + t)2
;
t ln t

(� + t)2

�T
:
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Table 4.1: Coe�cients of the Taylor expansions for x1 and x2 in a vicinity

of point z = 0

0 1 2 3 4 5 6

x1 0.15370 -0.09435 0.06747 -0.05117 0.04089 -0.03371 0.02845

x2 0.61680 -0.20012 0.08251 -0.03885 0.02085 -0.01212 0.00754

Set

z = 1=�3; r = 1; 
 = [0;1);  (z) = z6; N = f0g: (6)

AssumptionA1 follows here from the properties of elementary functions,

A2 and A3 follows from the results of (Dette, Melas, Wong, 2003). It was

also proved there that a locally D-optimal design has the type (0; 2; 1) and

is unique. This means that A4' holds for the considering model.

Thus due to Theorem 3.1 and Remark 3.2 it follows that support points

of locally D-optimal designs are real analytic functions of z with z 2 [0; 1).

Let us consider the case [a; b] = [0; 1], �2 = 1. For arbitrary 0 � a < b; �2
optimal designs can be calculated by a scale transformation. With �3 !1,

z = 1
�3
! 0 we receive

det(fi(xj; �3))

z6
! det

0
B@ x21 x22 1

x1 x2 1

x1 ln x1 x2 ln x2 0

1
CA := Q(x1; x2)

and

(x�1(z); x
�

2(z))! arg max
0<x1<x2<1

Q(x1; x2):

Thus it is easy to calculate numerically that x�1(0) = 0:1535, x�2(0) =

0:667.

By the recurrent formulas (16) given in Section 5 we calculated the Taylor

coe�cients with z(0) = 0. The �rst coe�cients are represented in Table 4.1.

Let �<n>(z) be the design constructed by using n �rst coe�cients and

�zn is the maximal z such that

max
x2[0;1]

jd(x; �<n>(z))� 3j � 10�5; (7)

d(x; �) = fT (x)M�1(�; z)f(x);
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Table 4.2: Coe�cients of the Taylor expansions for x1 and x2 in a vicinity

of point z = 1 by degrees of (z � 1).

0 1 2 3 4 5 6

x1 0.09723 -0.03401 0.01308 -0.00530 0.00222 -0.00095 0.00041

x2 0.47233 -0.10533 0.02743 -0.00791 0.00245 -0.00080 0.00027

Table 4.3: Coe�cients of the Taylor expansions for x1 and x2 in a vicinity

of point z = 1 by degrees of (1=z � 1)

0 1 2 3 4 5 6

x1 0.09723 0.03401 -0.02093 0.01314 -0.00844 0.00555 -0.00375

x2 0.47233 0.10533 -0.07790 0.05838 -0.04431 0.03404 -0.02647

where

f(x) =
@�(x;�)

@�i
; M(�; z) :=M(�;�(z));

�(z) = (1; 1; 1=z)T .

Numerical calculations show that �z10 � 0:705, �z20 � 0:865.

In a similar way we constructed expansions of the vector function ��(z) =

(x�1(z); x
�

2(z))
T in a vicinity of point z(0) = 1 by degrees of (z � 1) and

(1=z�1). The corresponding coe�cients are presented in Tables 4.2 and 4.3,
respectively. It proves that for the �rst expansion with twenty coe�cients

the inequality (7) holds with 0 < z � 2:7. And for the second expansion

with the same number of the coe�cients ot holds for 0:6 � z � 13:8.

The behavior of the design points for 0 � z � 10 is presented at Fig.1.We

used the �rst expansion for z � 1 and the second | for 1 � z � 10 to

construct the Fig. 1.
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Table 4.4: E�ciency of designs �0,�1 and the points of locally D-optimal

designs

z 0.2 0.4 0.6 0.8 1.0

x1 0.13690 0.12387 0.11333 0.10460 0.09723

x2 0.57956 0.54751 0.51943 0.49456 0.47233�
detM(�0;z)
detM(�z;z)

�1=3
0.99343 0.97771 0.95681 0.93310 0.90801�

detM(�1;z)
detM(�z;z)

�1=3
0.94919 0.97468 0.98995 0.99774 1

Fig. 1. The dependence of the support points x1 and x2 on z

Note also that the e�ciency of the limiting design (at the point z(0) = 0)

measured by the quantity

I(�; z) =

 
detM(�; z)

detM(��(z); z)

!1=3

; � = ��(0) := �(0)

proves to be very high with z � 1 (�3 � 1). This e�ciency is presented at

Table 4.4.

At the same time the minimal e�ciency of the design �(1) = ���(1) with

0 < z � 1 is even more than that of �(0) = ���(0) = ��(0) , see Table 4.4.

Moreover, numerical calculations show that the design �(z�) = ���(z�) with

z� = 0:5 have maximum of the minimal e�ciency at the interval (0; 1] among

locally D-optimal designs at points z = 0:1; : : : ; 0:9; 1. Its minimal e�ciency

is equal to 0.981.
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Note that a maximin e�cient D-optimal design that a the design maxi-

mizing the minimum by z 2 [0:1; 1] of the e�ciency among all (approximate)

designs,was constructed numerically in (Dette, Melas, Wong, 2004). This

design is very close to �(0:5) and has the minimal e�ciency 0.982.

A similar calculation was performed for the interval[1,10] for z. It showed

that the design �(4), the best design among �(1), �(2),: : :,�(10),has minimal

e�ciency 0.8407. The maximin e�cient design calculated in(Dette, Melas,

Wong, 2004) has four support points with unequal weights and its minimal

e�ciency equals 0.885.But, for example, design �(1), locally optimal design

for z=1, has the minimal e�ciency 0.5430 on [1,10]. This design is rather

bad! It requires almost twice more observations than �(4) to achieve the

same accuracy of the parameters if true value of z equal to 10.

Thus we see that the approach allows very e�cient calculation of locally

D-optimal design and secure a study of their e�ciency.

We conclude also that locally D-optimal designs could be very e�cient

if the initial values are chosen in the optimal way inside given intervals of

possible values

4.2 Hyperexponential models

Let

�(x;�) =
kX

i=1

�ie
��i+kx;

x 2 X = [0; d], where d is su�ciently large and �i 6= 0, �i+k > 0, i = 1; : : : ; k,

�i+k 6= �j+k (i 6= j), and h(x) � 1.

Functions of such a form generate an important class of solutions of

linear di�erential equations, which often occur in practice.

Consider the problem of �nding designs to be locally optimal in the class

of approximate designs with the number of points equal to the number of

parameters. It can be veri�ed that with k = 1; 2 such designs are locally

optimal among all approximate designs [see (Dette, Melas, Wong, 2003)].

For k = 1 an immediate calculation shows that x�1 = 0, x�2 = 1=�2.

Let k � 2, zi = 1� �i+k , i = 1; : : : ; k � 1,

zk =
kX

i=1

�i+k=k = 1; z = (z1; : : : ; zk�1); z(0) = (0; : : : ; 0);

 (z) =
Y

1�i<j�k

(�i+k � �j+k)
4; Z = (�1; 1)k�1:
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Assumption A1 is obviously true here and A2{A4 follow from results

of (Melas, 1978). Moreover the following proposition was proved there.

Proposition 4.1 Under the above conditions there exists the unique solu-

tion of equation 4) with z = z(0).

�(0) = (1=2; : : : ; 2k�1=2);

where 1; : : : ; 2k�1 are zeros of L
1
2k�1(x), the Laguerre polynomial of degree

2k � 1 with the parameter equal 1.

Due to Theorem 3.1 it follows that optimal design-function is uniquely

determined and is analytical real vector function for z 2 Z.
This assertion was proved in the paper cited in another sequence of

arguments. However, in that paper the expansion of optimal design-function

into Taylor series was not performed. This can be done with the help of

formulas from Section 5.

Let k = 2,

�(x;�) = �1e
��3x + �2e

��4x; �1; �2 6= 0; �3; �4 > 0; �3 6= �4;

X = [0;1); (�3 + �4)=2 = 1:

Let us build the expansion of the vector function

�(z) = (x�2(z); x
�

3(z)); x
�

4(z)) ; z = (�3 � �4)=2

into series by degrees of z in a vicinity of the point z = 0.

Since '(�; z) = '(�;�z) all odd coe�cients are zeros.

Denote

�<2i>(z) = �(0) +
iX

t=1

�(2t)z
2t; i = 1; 2; : : :

The coe�cients for t = 0; 1; : : : ; 6 are presented in Table 4.5.

Let us consider the following problem: how many coe�cients should be

used in order to calculate locally optimal designs enough accurately? Numer-

ical calculations allow to estimate the e�ciency of designs ��<2t>(z).These

e�ciences are shown at Table 4.6 for t = 0; 1; : : : ; 9.

Table 4.5: Coe�cients �2t, t = 0; 1; : : : ; 6

0 1 2 3 4 5 6

0.46791 0.02919 0.00305 0.00056 0.00022 0.00008 -0.00005

1.65270 0.36419 0.21113 0.15971 0.13371 0.11650 0.10252

3.87938 2.00661 1.86581 1.92887 2.04481 2.16523 2.26335
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Table 4.6: The e�ciency of designs ��<t>(z)

znt 0 1 2 3 4 5 6 7 8 9

0.50 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.70 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.80 0.80 0.93 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00

0.85 0.72 0.88 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00

0.90 0.61 0.79 0.87 0.92 0.95 0.97 0.98 0.99 0.99 1.00

0.95 0.45 0.61 0.71 0.78 0.83 0.87 0.90 0.93 0.94 0.96

0.97 0.35 0.49 0.58 0.65 0.71 0.76 0.80 0.84 0.86 0.89

We can conclude from this table that if 0 < z � 0:7 we need only one or

two nonzero coe�cients! But for z = 0:9 we need twenty coe�cients (half of

which are zeros). The table shows also that with 0 < z � 0:9 the expansion

allows to calculate locally optimal designs with a high precision.

Consider now the problem of the optimal choice of the initial values inside

a given set. As in the previous section we will �nd a design maximizing the

minimum of the e�ciency I(�; z) among locally optimal designs. Let us

consider the case 0:1 � z � 0:9. In this case the design �(0:7) proves to be

the best among the designs �(0:1); : : : ; �(0:9).This design has the minimal

e�ciency 0.80768. Table 4.7 shows e�ciencies of this design for di�erent

values of z. It presents also supprt points of locally D-optimal designs.

4.3 Rational regression

Consider the regression function of the form

�(x;�) =
kX

i=1

�i=(x+ �i+k); (8)

x 2 X = [0; d], where d is su�ciently large, �i 6= 0, �i+k > 0, i = 1; : : : ; k,

�i+k 6= �j+k , (i 6= j), and h(x) � 1.

Typically, models are chosen as approximations to unknown functions by

a linear combination of functions of a certain type. Rational approximations

can result in the models with fewer unknown parameters than the more

habitual polynomial models [see (Petrushev, Popov, 1987)]. Some results

on locally D-optimal designs for rational models were obtained in (He et al.,

1996). Let z, z(0),  (z) and Z be the same as in Section 3.1. The following

results were announced in (Melas, 2001) without a proof.
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Table 4.7: E�ciency of design �(0:7) and the points of locally D-optimal

designs

z 0.1 0.2 0.3 0.4 0.5

x1 0.46820 0.46908 0.46056 0.47266 0.47541

x2 1.65635 1.66762 1.68732 1.71714 1.76011

x3 3.89941 3.96276 4.07665 4.25772 4.53863�
detM(�0:7;z)
detM(�z;z)

�1=4
0.81739 0.83572 0.86493 0.90259 0.94428

z 0.6 0.7 0.8 0.9

x1 0.47885 0.48303 0.48801 0.49379

x2 1.82190 1.91409 2.06459 2.36561

x3 4.98876 5.77821 7.43519 12.57015�
detM(�0:7;z)
detM(�z;z)

�1=4
0.98188 1 0.96706 0.80768

Proposition 4.2 For regression function (8) and for any �xed z in Z there

exists a unique locally D-optimal design. It consists of m points, one of

which is zero. Assumptions A1{A4 are satis�ed.

Proposition 4.3 The vector �(0) consists of zeros of the polynomial q(x) of

2k � 1 degree, where q(x) is the unique solution of the di�erential equation

(22) given in Section 6.

Due to Theorem 3.1 it follows that the optimal design-function is a real

analytical vector function.

For k = 1 it can be veri�ed by an immediate calculation that the locally

optimal design is f0; 1=�2; 1=2; 1=2g.
For k = 2 the optimal design-function can be found in an explicit form

as well. By the equation (22) given in Section 6 we can verify that

x�3 =
p
�3�4; x

�

2;4 =

p
�3�4

2

�
��=2� 1�

q
(�=2 + 1)2 � 4

�
;

� = �(�3 + �4)� 3�
q
(�3 + �4 + 3)2 + 24:

For k = 3 let us construct the expansion of the optimal design-function

into a Taylor series.
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Let k = 3,

�(x;�) =
�1

x+ �4
+

�2

x + �5
+

�3

x+ �6
; �1; �2; �3 6= 0;

�4 > �5 > �6 > 0, X = [0;1), (�4 + �5 + �6)=3 = 1.

Using proposition 4.3 we �nd �(0) � (0:09; 0:36; 1; 2:76; 10:78).

Set u = (1 � �4)(1 � �5), v = (2 � �4 � �5). Note that the points

x�i+1(�4; �5; �6), i = 1; : : : ; 5 can be represented as

�i(u; v) =
1X

s1=0

1X
s2=0

�i(s1;s2)u
s1vs2 : (9)

The coe�cients of this expansion are represented in Table 4.8.

Table 4.8: Coe�cients for the rational model,k = 3

0; 0 0; 1 1; 0 0; 2 1; 1 2; 0

0.0928 0.0449 0 -0.0155 0.0540 -0.0449

0.3616 0.1514 0 -0.0481 0.1577 -0.1514

1.0000 0.3333 0 -0.0955 0.2864 -0.3333

2.7654 0.6861 0 -0.1803 0.4991 -0.6861

10.7802 1.9661 0 -0.5087 1.3892 -1.9661

Let �<i> = �<i>(u; v) be the segment of the series (9) containing coe�-

cients with s1 + s2 � i, i = 1; 2; : : :. The e�ciency of designs received from

�(0), �<i>, i = 1; : : : ; 6 by adding the point x�1 = 0 is shown in Table 4.9.

Table 4.9: The e�ciency of designs ��<i>
, i = 0; : : : ; 6

z1 + z2 z1 z2 0 1 2 3 4 5 6

0.5 0.2 0.3 1.00 0.99 1.00 1.00 1.00 1.00 1.00

0.5 -0.2 0.7 0.96 0.98 1.00 1.00 1.00 1.00 1.00

0.7 0.3 0.4 0.99 0.98 1.00 1.00 1.00 1.00 1.00

0.7 0.0 0.7 0.96 0.96 1.00 1.00 1.00 1.00 1.00

0.9 0.4 0.5 0.97 0.94 1.00 1.00 1.00 1.00 1.00

0.9 0.1 0.8 0.90 0.88 0.99 0.99 1.00 1.00 1.00

1.1 0.5 0.6 0.93 0.88 1.00 0.98 1.00 1.00 1.00

1.1 0.3 0.8 0.87 0.82 0.99 0.97 1.00 0.99 1.00
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5 The study of the basic equation

Let us study the equation (4) for the vector function g(�; z) of a general

form.

5.1 Smoothness and analycity of implicit functions

Assume that m and r are arbitrary natural numbers, m � 2 and that V and

Z are bounded subsets of IRm�1 and IRr, respectively. We also assume that

V and Z are simply connected sets.

Let '(�; z), � 2 V , z 2 Z be a function of a general form pos-

sessing continuously di�erentiable (by �) derivatives gi(�; r) =
@
@�i
'(�; z),

i = 1; : : : ; m� 1, g(�; z) = (g1(�; z); : : : ; gm�1(�; z))
T ,

J(�; z) =

 
@2

@�i@�j
'(�; z)

!m�1
i;j=1

:

Consider the case when '(�; z) � 0 at some �xed points z 2 Z. Let N be

the set of all such points. Assume that there exists an algebraic polynomial

 (z) such that  (z) = 0 with z 2 N ,  (z) 6= 0, z�2N and the function

~'(�; z) = '(�; z)= (z)

can be extended for points z 2 N in such a way that ~'(�; z) is twice contin-

uously di�erentiable by � with (�; z) 2 V 
 Z. Denote

~g(�; z) = g(�; z)= (z); ~J(�; z) = J(�; z)= (z):

Let us study the equation

~g(�; z) = 0; (10)

where z 2 Z, � 2 V .
Consider a point z(0) 2 Z and the following condition.

(a) Equation (10) with z = z(0), � 2 V possesses a unique solution � =

�(0), while

det ~J(�(0); z(0)) 6= 0:

Let U be a vicinity of the point (�(0); z(0)), U � V 
 Z.
Let us introduce the following conditions. Assume K � 2 to be a natural

number.
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(b) The vector function ~g(�; z) is K times continuously di�erentiable in

(�; z) 2 U .

(c) The vector function ~g(�; z) is a real analytical vector function

for(�; z) 2 U .

Theorem 5.1 Assuming that conditions (a) and (b) are ful�lled. Then in

some vicinity Z(0) of the point z(0) there exists a unique vector function �(z):

Z ! V such that the following relations hold: �(z) 2 V and ~g(�(z); z) = 0.

This vector function is K � 1 times continuously di�erentiable and satis�es

the equations

~J(�(z); z)�
0

zi
(z) = (~g(�; z))

0

zi
j�=�(z); i = 1; 2; : : : ; r:

If the condition (c) is also ful�lled then �(z) is a real analytical vector func-

tion with z 2 Z0. If U = V 
 Z and the condition (a) is ful�lled for any

z(0) 2 Z then the above assertion holds with Z(0) = Z.

Note that the theorem is an obvious corollary of the Implicit Function

Theorem (Gunning, Rossi, 1965, Ch. 1).

Since determinant of a matrix is an algebraic sum of some multiplications

of its elements conditions (b) and (c) will be satis�ed if the functions fi(x; z)

(i = 1; : : : ; m) are K times di�erentiable and are real analytical functions,

respectively, by the collection of variables x; z1; : : : ; zr.

To secure the veri�cation of the condition (a) we will elaborate a repre-

sentation of the Jacobi matrix.

5.2 Jacobian of the basic equation

First we analyze the Jacobian of the basic equation for functions '(�; z) of

the general kind that can be represented as the minimum of some convex

function.

Let m; k; t be arbitrary real numbers, T � IRm�1; Z � IRk ;A � IRt |

arbitrary open sets, where A is convex.

Consider the function q(�; a; z); � 2 T; a 2 A; z 2 Z that satis�es the

following conditions: function q(�; a; z) is twice continuously di�erentiable

along � and a; function q(�; a; z) is strictly convex along a:

Moreover, let function '(�; z) have the form

'(�; z) = min
a2A

q(�; a; z); (11)
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where the minimum is attained for any � 2 T; z 2 Z. Since the function

q(�; a; z) is convex along a, this minimum is attained on the unique vector

a = ~a = ~a(�; z): Therefore, function '(�; z) is twice continuously di�eren-

tiable along � .

Let for any �xed z there exists a point ~� = ~�(z) satis�ed the equation
@
@�'(�; z) = 0.

Consider the following matrices

E =
�

@2

@�j@�i
q(�; a; z)

�m�1
i;j=1

;

B =
�

@2

@�j@ai
q(�; a; z)

�t;m�1
i;j=1

;

D =
�

@2

@aj@ai
q(�; a; z)

�t
i;j=1

(12)

at � = ~� , a = ~a(~� ; z). It follows from above conditions that matrix D is

positive de�nite and hence the inverse matrix D�1 exists.

Theorem 5.2 Under the above conditions the following formula is valid:

J(~� (z); z) = E � BTD�1B:

Apply this theorem to function '(�; z); de�ned by formula (3).

Denote the set of all positive de�ned m � m matrices A = (aij), such

that amm = 1 by A.
Assign a number � = �(i; j) to each pair of indices (i; j); i � j; i; j =

1; : : : ; m; (i; j) 6= (m;m). For any vector a 2 IRt de�ne a matrix A(a) that

satis�es the following relations

aji = aij = a�(i;j); amm = 1; i; j = 1; : : : ; m; i � j:

De�ne set A as

A = fa 2 IRt : A(a) 2 Ag:
Evidently, A is open and convex in IRt: Introduce the function

q(�; a; z) = (detA(a))�1=mtr (A(a)M(�; z))=m: (13)

Consider the function '(�; z) = (detM(�; z))1=m: It is known (Karlin, Stud-

den, 1966, Ch. 10.2) that formula (12) is valid for this function. It can
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also be checked that the function (13) possesses the required properties.

Therefore, by Theorem 5.2

J(��(z); z) = E �BTD�1B: (14)

Set �(a) = (detA(a))�1=m: It is easy to verify by direct di�erentiation that

the following formulas are valid for matrices B and E.

E = diagfE11; : : : ; Em�1m�1g;
Eii = �(a�) @2

@x2
(fT (x)A(a�)f(x))

���
x=x�

i+1

; i = 1; : : : ; m� 1;

A(a�) = const (M(��; z))�1 ;

B = (b�k)
t;m�1
�;k=1 ;

b�k = 2�(a�) @
@x
(fi(x)fj(x))

���
x=x�

k

; � = �(i; j):

(15)

Note that the matrix J = J(��(z); z) is negative de�nite and hence nonsin-

gular provided at least one of the following conditions is satis�ed:

1) all diagonal elements of matrix E are negative;

2) matrix B is of full rank.

Indeed, matrix BTD�1B has the form SST , hence, it is nonnegative

de�nite in the general case and positive de�nite if matrix B has full rank.

Since J = E�BTD�1B; then J is negative de�nite if either of conditions 1)-

2)is valid.

5.3 On the representation of implicit functions as Taylor se-

ries

It is well known that derivatives of implicit functions can be calculated with

the help of inde�nite coe�cients techniques, as introduced by Euler. In

this section we o�er recurrent formulas convenient for the implementation

in software packages such as Maple and Mathcad. These formulas are a gen-

eralization for the multidimensional case of formulas introduced in (Dette,

Melas, Pepelyshev, 2004).

Let us assume that s = (s1; : : : ; sr), where si � 0, i = 1; : : : ; r are

integers. For an arbitrary (scalar, vector or matrix) function F denote

(F(z))(s) =
1

s1! : : :sr!

@s1

@zs11
: : :

@sr

@zsrr
F(z)jz=z(0) :

Introduce also the notation

St = fs = (s1; : : : ; sr); si � 0;
rX

i=1

si = tg;
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t = 0; 1; : : :,

(z � z(0))s = (z1 � z1(0))s1 : : : (zr � zr(0))
sr :

Let the function  (z) be of the form

 (z) = (z � z(0))l � (z);

where l = (l1; : : : ; lr),li � 0, i = 1; : : : ; r are integers, � (z) is a homogeneous

polynomial of degree p � 0,

� (z) =
X
s2Sp

a(s)(z � z(0))
s;

such that a(p;0;:::;0) 6= 0.

Let

It = U t
j=0Sj ;

�<It>(z) =
X
s2It

�(s)(z � z(0))
s; �(s) = (�(z))(s);

J(l) =
�
J(�(0); z)

�
(l)
:

At �rst let p = 0. Note that under condition (a) the matrices J(s), si � li,

i = 1; : : : ; r, s 6= l are zero matrices and detJ(l) 6= 0.

Theorem 5.3 Under the conditions (a) and (b) for the function �(z), de-

�ned in Theorem 5.1 the following formulas take place

(�(z))(s) = �J�1
(l)
g(�<I>(z); z)(s+l) (16)

where I = It�1, s 2 St, t = 1; 2; : : : ; K � 1.

If the condition (c) is also ful�lled then these formulas hold for t =

1; 2; : : :.

Thus, if �(0) is known, coe�cients f�(s)g can be calculated in the following
way. At the step t (t = 1; 2; : : :) calculate all coe�cients with indices from

St by formula (16). This calculation can be easily performed by a computer

with the help of packages such as Maple or Mathcad.

Consider now the case p > 0.

De�ne the set

Ŝt = fs = (s1; : : : ; sr); si � 0; i = 1; : : : ; r; s1+ 2
rX

i=2

si = tg:
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Let

Ît = U t
j=0Ŝj ; q = (p; 0; : : : ; 0);

J(l+q) =
�
J(�(0); z)

�
(l+q)

:

It can be veri�ed that, under condition (a), detJ(l+q) 6= 0.

Theorem 5.4 With p > 0 Proposition 5.3 remains true with formula (16)

replaced by the formula

(�(z))(s) = �J�1(l+q)g(�<I>(z); z)(s+l+q);

where s 2 Ŝt, I = Ît�1, t = 1; 2; : : :.

Note that q can be replaced by any vector of the form (0; : : : ; p; 0; : : : ; 0).

6 Appendix: Proofs

We begin with the proofs for propositions of the last section.

Proof of Theorem 5.2. Due to the necessary condition for an extremum

point we have
@

@a
q(�; a; z) = 0

with an arbitrary �xed z 2 Z and with � = ~� = ~�(z), a = ~a = ~a(z; ~�(z)).

Consider this vector equality at �xed z and arbitrary a and � as an

equations system which implicitly de�nes a function a(�). The Jacobian of

this system at the points (~� ; ~a) equals detD 6= 0. Therefore, by the Implicit

Function Theorem, in a vicinity of ~� there exists a unique continuous vector

function a(�) such that a(~�) = ~a. This function is continuously di�erentiable

and
@a(�)

@�

����
�=��

= �D�1B:

An immediate calculation now gives 
@2

@�j@�i
q(�; a(�); z)

�����
�=��

!m�1

i;j=1

= E �BTD�1B:

For any �xed z 2 Z we have

'(�; z) = min
a2A

q(�; a; z) = q(�; a(�); z)
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with � from a vicinity of ~� = ~�(z):

Di�erentiating this equality twice by � we receive

J(~� (z); z) = J(~� ; z) = E � BTD�1B:

Proof of Theorem 5.3. Let �(z) be an arbitrary K�1 times continuously
di�erentiable vector function in a vicinity of a point z(0), z(0) 2 IRr, �(z) =

(�1(z); : : : ; �m�1(z)). Consider the following auxiliary result.

Lemma 6.1 Under the condition (b) and with p = 0, l = 0 the following

equalities are valid:

@t

@zs11 : : : @zskk
[g (�<I>(z); z)� g (�(z); z)] jz=z(0) = 0;

for k � 1, s 2 St, where I = It, t = 1; 2; : : : ; K � 1.

Proof of Lemma 6.1. At �rst, consider k = 1.

Since

@

@z
g (�(z); z) =

@

@�
g(�; z)j�=�(z)� �

0

(z) +
@

@z
g(�; z)j�=�(z)

we receive for t = 1; : : : ; K � 1

@t

@zt
g(�(z); z)jz=z(0) =

= t!J(0)�(t) +
@t

@zt
g(�(0); z(0)) + : : :+

+
Pm

i1;:::;it=1
@t

@�i1 :::@�it
g(�(0); z(0))�i1(1) : : : �it(1)i1! : : : it!;

(17)

where the right-hand side depends only on �(0); : : : ; �(t) and does not depend

on �(t+1); : : :. Therefore,

@t

@zt
g (�(z); z) jz=z(0) =

@t

@zt
g
�
�(t)(z); z

�
jz=z(0) :

In case k > 1, the lemma proof is similar.

Return to the proof of Theorem 5.3. Let k = 1, l = 0. Note that in

the right-hand side of equality (17) only the �rst term depends on �(t) as the

other ones depend only on �(s), s � t� 1. Since g(��(z); z) � 0 in a vicinity

of z(0), then

� @t

@zt
g
�
��<t�1>(z); z

�
jz=z0 = t!J(0)�

�

(t):
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For k > 1, l 6= 0, the proof is similar.

Proof of Theorem 5.4. At �rst, consider l = 0. Note that

(g(�<I>(z); z))(s+q) =
X

w+v=s+q

a(w)~g(�<I>(z); z)(v) (18)

for any collection of indexes I ,

�<I>(z) =
X
s2I

�(s)(z � z(0))
s:

For w = q, vector s is the only vector v, such that w + v = s + q. Let

s 2 Ŝn, I = În. Note that for w 6= q any vector v, such that w + v = s+ q,

belongs to set Ŝt, t � n � 1. Whence it follows that the right-hand side of

equality (18) has the form

a(q)~g
�
��
<~In>

(z); z
�
(s)
:

It can be veri�ed by direct calculation that J(q) = a(q) ~J(0). Therefore,

Proposition 5.4 is valid at l = 0. For arbitrary l, its validity can be veri�ed

by direct calculation.

Proof of Theorem 3.1.

Consider a vector function ~�(z) = (~�1(z); : : : ; ~�m�1(z))
T , ~�(z) : Z !

Rm�1 such that �~� with ~� = ~�(z) is a saturated locally D-optimal design at

the point �0T =
�
�0T

1 ; (	�1(z))T
�
. This function should satisfy equation

(3) and due to the Implicit Function Theorem (Gunning, Rossi, 1965) we

need only to prove that the Jacobi matrix is invertible.

Suppose, oppositely that it is not the case. Then there exists a vector

d 2 Rm�1, d 6= 0 such that dTB = 0 and therefore

m�1X
s=1

h
fi(x

�

j )f
0

j(x
�

s) + f
0

i (x
�

s)fj(x
�

s)
i
ds = 0; (19)

i; j = 1; : : : ; m, (i; j) 6= (m;m), x�s = ��s(z), fi(x) := fi(x; z), i = 1; : : : :m,

s = 1; : : : ; m� 1.

Note the equation (19) holds also for (i; j) = (m;m): Really, since

��� =

 
x�1 : : : x�m�1 b

1=m : : : 1=m 1=m

!
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is a saturated locally D-optimal design, we have

@

@xs
detM(��� ; z) =

mX
i;j=1

(fi(xs)fj(xs))
0

dij = 0 (20)

where dij = (M�1(��� ; z))i;j, s = 1; : : : ; m� 1.

Multiplying (20) by ds and summing the results we receive

mX
i;j=1

 
m�1X
s=1

(fi(xs)fj(xs))
0

ds

!
dij = 0:

Substituting (19) tp these equations we receive 
m�1X
s=1

�
f2m(xs)

�0

ds

!
dmm = 0:

Since (M(��� ; z))
�1 is a negative de�nite matrix

dmm = eTm (M(��� ; z))
�1 em 6= 0; e; = (0; : : : ; 0; 1)T

and thus (19) holds for (i; j) = (m;m).

De�ne a vector q by the following equality

qT f(x) = det

0
BBB@

f1(x
�

1) : : : fm(x
�

m)

: : : : : :

f1(x
�

m�1) : : : fm(x
�

m�1)

f1(x) : : : fm(x)

1
CCCA :

Certainly qT (x�i ) = 0, i = 1; : : : ; m� 1 and we receive from (19) that

m�1X
s=1

qTf
0

(x�s)fj(x
�

s)ds = 0; j = 1; : : : ; m:

Due to Assumption A1 we have qTf
0

(x�s) 6= 0, s = 1; : : : ; m. And

therefore

L(t)� = 0; t = 1; : : : ; m; (21)

where � =
�
dsq

T f
0

(x�s)
�m�1
s=1

, L(t) is received from the matrix
�
fi(x

�

j )
�m;m�1

i;j=1

by rejecting t-th line. It follows from (21) that detL(t) = 0, t = 1; : : : ; m

and it implies det
�
fi(x

�

j )
�m
i;j=1

= 0. But the last equality is impossible.
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Proof of Propositions 4.2 and 4.3. The existence of a locally optimal

design is evident.

Let z be �xed, �� = fx�1; : : : ; x�n;��1; : : : ; ��ng be a locally optimal design,

0 � x�1 < : : : < x�n � d.

Denote

g(x) = fT (x)M�1(��;�)f(x);

where f(x) = (f1(x;�); : : : ; fm(x;�))
T and � = �(0) is �xed.

Due to the Kiefer{Wolfowitz equivalence theorem

g(x) � m; g(x�i ) = m; i = 1; : : : ; n:

It follows that

g
0

(x�i ) = 0; i = 2; : : : ; n� 1;

while if x�1 6= 0 then g
0

(x�1) = 0 and if x�n 6= 0 then g
0

(x�n) = 0. The function

~g(x) = g(x)�m is of the form

~g(x) = P (x)=Q4(x);

where Q(x) =
Qk

i=1(x + �i+k), P (x) is a polynomial of degree 2m. By

analyzing this expression we can verify that x�1 = 0, n = m, x�m < d for

su�ciently large d and all elements of the matrix E are negative. Thus

due to the remark after Theorem 5.2 the condition (a) is ful�lled for any

z(0) 2 Z.
Using the formula for the Vandermonde determinant and elementary

operations under columns of the matrix (fi(xj))
m
i;j=1 it can be checked that

'(�; z) = [ (z)]2=m

0
@ Y

1�j<j�m

(xi � xj)=
mY
i=1

Q2(x)

1
A

2=m

:

Now it is evident that assumptions A1{A4 take place. This completes the

proof of Proposition 4.3.

In order to prove Proposition 4.4 let

q(x) =
mY
i=2

(x� x�i ) =
2k�1X
j=0

qjx
2k�1�j ; q0 = 1:

Since
1

2

q
00

(x�i )

q
0

(x�i )
=
X
j 6=i

1

x�i � x�j

25



(Fedorov, 1972, Ch. 2.3) the equation ~g(�; z) = 0 attains the form

q
00

(x)x
kY
l=1

(x+ �l) + 2q
0

(x)

0
@ kY
l=1

(x+ �l)� 2x
kX

i=1

Y
l6=i

(x+ �l)

1
A = 0:

Passing to the limit with z ! z(0) we receive

q
00

(x)x(x+ 1) + 2q
0

(x)(x(1� 2k) + 1) = �q(x);

� = (m� 1)(m� 2) + 2(m� 1)(1� 2k):
(22)

Equating coe�cients at equal degrees in the right and the left hand sides

of this equality we see that coe�cients of q(x) can be calculated by recurrent

formulas in a unique way.
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