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Fachbereich Statistik, Universität Dortmund,
D-44221 Dortmund, Germany

E-mail: {kleiber, walterk }@statistik.uni-dortmund.de

Version January 2004

Abstract

We consider the finite sample power of various tests against serial correlation in the

disturbances of a linear regression when these disturbances follow a stationary long memory

process. It emerges that the power depends on the form of the regressor matrix and that, for

the Durbin-Watson test and many other tests that can be written as ratios of quadratic forms

in the disturbances, the power can drop to zero for certain regressors. We also provide a

means to detect this zero-power trap. Our results depend solely on the correlation structure

and allow for fairly arbitrary nonlinearities.

JEL classification: C22.
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1 Introduction and Summary

We consider the standard linear regression model

y = Xβ + u,

wherey is T × 1, X is T × k (nonstochastic, of rankk < T ), β is ak × 1 vector of regression

coefficients to be estimated, andu is a T × 1 disturbance vector whose components follow a
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stationary fractionally integrated ARMA process (ARFIMA(p, d, q))

φ(B)(1−B)dut = θ(B)εt , (1)

whereφ(B) andθ(B) are polynomials in the backshift operatorB of ordersp andq, respectively,

and{εt} is a weak white noise sequence. This process is stationary and causal if and only if

d < 0.5 and the AR polynomialφ(z) satisfies the usual stationarity and causality conditions for

autoregressive models. Long memory corresponds tod > 0.

The present paper is concerned with the exact finite sample power of various autocorrelation

tests against fractional alternatives, extending Krämer (1985), Zeisel (1989), Krämer and Zeisel

(1990), Bartels (1992) and Löbus and Ritter (2000), all of whom confine themselves to the classi-

cal case of AR(1) alternatives. For concreteness, we focus on the Durbin-Watson test, one of the

most intensely studied statistics in all of econometrics. Although it was originally designed as a

test against AR(1) disturbances, it is well-known to be (approximately) locally optimal against

a wide range of short-memory and spatial alternatives (Kariya, 1988, King and Evans, 1988).

More recently, the properties of a modification of the Durbin-Watson test, due to Nabeya and

Tanaka (1990), as a unit root test against short-range dependent alternatives have been studied by

Hisamatsu and Maekawa (1994), and against long-range dependent alternatives by Tsay (1998).

Nakamura and Tanaguchi (1999) investigate the asymptotics of a standardized Durbin-Watson

statistic as a test for independence against fractionally integrated alternatives.

The test statistic is

DW = u>Q1u/u>Q2u,

whereQ1 = MXAMX , Q2 = MX = I −X(X>X)−1X>, andA is the Toeplitz-like matrix

A =



1 −1 · · · 0 0

−1 2
.. .

...
...

0
... .. . ... 0

...
...

.. . 2 −1

0 0 · · · −1 1


.
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More generally, our results carry over to all autocorrelation tests which are ratios of quadratic

forms in the disturbances. Examples of such tests are briefly discussed in section 4. All of them

were designed for particular short-memory alternatives, but short memory is not distinguishable

from long memory in finite samples, and therefore it is of interest to know about the power of

such tests when the disturbances are generated by (1). In particular, one might expect that, in the

case of a strongly dependent process of the fractionally integrated type, an autocorrelation test

will easily detect dependence, perhaps more easily than in the classical AR(1) case. However,

this is not true; in fact, the power of the test can be arbitrarily low in the vicinity of 0.5, the

boundary of the stationarity region. Specifically, we shall present regressor matricesX for which,

asd → 1
2
, (i) the power approaches one, (ii) the power approaches zero, and (iii) the power

approaches a constantC ∈ (0, 1).

For our main results in section 2, we only require the innovations{εt} in (1) to be weak white

noise, hence we can allow for fairly arbitrary nonlinearities of e.g. the GARCH type. This is in

contrast to the more common large-sample asymptotics in the long-memory area, where{ut} is

usually assumed to be a linear process. Our exact finite sample power computations in section 3

also require the innovationsεt to be normal i.i.d.

2 High correlation asymptotics

Long memory is a concept of strong positive dependence, hence we shall focus on the one-sided

Durbin-Watson test against positive autocorrelation which rejects for small values ofDW . The

rejection probability can then be written as

P
(
u>(Q1 − cαQ2)u < 0

)
= P

(
η>R

1
2 (Q1 − cαQ2)R

1
2 η < 0

)
= P

(
T∑

t=1

λtη
2
t < 0

)
, (2)

whereR ≡ R(d) = 1
σ2

u
E(uu>), with entriesrt,t+h, 0 ≤ |h| < T − t, is the correlation matrix

of the disturbances,η = (η1, . . . , ηT )> is a vector of independentN(0, 1)-variables,cα is the

critical value corresponding to the significance level of the test, and theλt are the eigenvalues of

Λ = R
1
2 (Q1 − cαQ2)R

1
2 .
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Given the correlation matrixR, the probability (2) can be evaluated numerically. We give some

examples in Section 3 below. Our main concern is to identify situations where the power of the

Durbin-Watson test is exceptionally high or low. Both extremes are attained, depending on the

regression matrixX, when the long memory parameterd from (1) approaches the boundary of

the stationarity region, i.e. asd → 1
2
. To see this, note that theλt are also the eigenvalues of

R
1
2 ΛR− 1

2 = R(Q1 − cαQ2),

and that, independently ofφ(B) andθ(B),

R̄ := lim
d→ 1

2

R(d) =



1 1 · · · 1

1 1 · · · 1
...

...
. ..

...

1 1 · · · 1


= ee> , (3)

wheree = (1, 1, . . . , 1)>. For the special case of fractionally integrated white noise, i.e.φ(B) ≡

θ(B) ≡ 1, this is a direct consequence of the representation

rt,t+h =
Γ(1− d)Γ(h + d)

Γ(d)Γ(h + 1− d)
=

(d)h

(1− d)h

, (4)

whereΓ(·) is the gamma function and(d)h = d(d+1) . . . (d+h−1) is Pochhammer’s symbol for

the forward factorial function. For a general ARFIMA(p, d, q) process the same limiting result is

valid, although the derivation is somewhat more cumbersome (Kleiber, 2001).

From (3) it follows that at most one of the eigenvalues ofR̄(Q1 − cαQ2) is different from zero.

Consider first the case where there is exactly one non-zero eigenvalueλ̄. This is equivalent to

R̄(Q1 − cαQ2) 6= 0,

which in turn requires thate is not an element of the column space of the regressor matrixX.

Hence,̄λ 6= 0 will not occur when the regression has an intercept. Givenλ̄ 6= 0, the analysis of

the limiting power (asd → 1
2
) of the Durbin-Watson test is straightforward. Ifλ̄ > 0, the power

drops to zero; if̄λ < 0, the power tends to one. Note that this effect does not depend on the

sample size, i.e. for any sample sizeT there are design matricesX such that the power of the
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Durbin-Watson test is arbitrarily low ford in the vicinity of0.5. We demonstrate this analytically

at the end of this section, section 3 provides numerical examples.

The analysis is slightly more involved when̄R(Q1 − cαQ2) = 0. We can then without loss of

generality replace theλt in (2) by

λ̃t =
λt

1
2
− d

,

since this does not affect the rejection probability. Theλ̃t are the eigenvalues of(1
2
−d)−1R(Q1−

cαQ2). Now, by l’Hopital’s rule,

lim
d→ 1

2

R(Q1 − cαQ2) = lim
d→ 1

2

1
1
2
− d

R(Q1 − cαQ2)

= lim
d→ 1

2

1
1
2
− d

(R− R̄)(Q1 − cαQ2)

=: lim
d→ 1

2

W (Q1 − cαQ2),

where

W :=
1

1
2
− d

(R− R̄).

For the remainder of this section we confine ourselves to the caseφ(B) ≡ θ(B) ≡ 1, i.e.

fractionally integrated white noise. We therefore need theW matrix for an ARFIMA (0, d, 0)

process, with correlations given by (4). In view of

(d)′h = (d)h

 h∑
j=1

1

d + j − 1

 ,

the typical entry ofW = (ws,t(d)) equalswh(d), h := |t− s|, where

wh(d) = −
(

(d)h

(1− d)h

)′

= −
(d)h

(∑h
j=1

1
d+j−1

)
+ (d)h

(∑h
j=1

1
−d+j

)
(1− d)h

d→ 1
2−→ −

2
(

1
2

)
h

∑h
j=1

1
j− 1

2(
1
2

)
h

= −2
h∑

j=1

1

j − 1
2

.
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For instance,w1(
1
2
) = −4, w2(

1
2
) = −16/3, w3(

1
2
) = −92/15, etc. Givenlimd→ 1

2
wh(d), it

is now possible to numerically compute the limiting rejection probability of the Durbin-Watson

test for any regressor matrixX, section 3 provides some examples.

We stress that our results hold true for arbitrary weak white noise sequences{εt}, allowing, in

particular, for nonlinearities of e.g. the GARCH type. We consider this to be an advantage over

the more common large-sample approach in the long-memory area, for which asymptotics with

nonlinear innovation sequences{εt} are still in the development stage.

To conclude this section, we show that there exist regressors for which the power drops to zero

irrespective of the sample size. As noted above, this will only occur in regressions without an

intercept, for which the limiting eigenvalues ofR(Q1 − cαQ2) are zero except for one. The only

non-zero eigenvalue may be computed via

tr(ee>(Q1 − cαQ2)) = e>(Q1 − cαQ2)e.

Let k = 1 and consider the regressorx = (x1, . . . , xT )>, where

xt =

 0, for somes ∈ {2, . . . , T − 1},

1, t 6= s.

ThenMXe = (0, . . . , 0, 1, 0, . . . , 0)>, where “1” occurs in thesth position, ande>MXe = 1.

Also, in view ofass = 2, for s ∈ {2, . . . , T − 1}, e>MXAMXe = 2 and therefore

e>(Q1 − cαQ2)e = 2− cα.

The latter expression is clearly positive, implying that the limiting power of the Durbin-Watson

test equals zero for this regressor.

This example also shows how to avoid the zero-power trap: just computee>(Q1 − cαQ2)e and

do not apply the test if this is positive.

3 Some numerical examples

In order to illustrate our results we consider two settings:
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Model 1: (linear time trend)

yt = β1 + β2 · t + ut, t = 1, . . . , T.

Model 2: (alternating regressor)

yt = β1 + β2 · {1 + (−1)t}+ ut, t = 1, . . . , T.

In all examples, the significance level is 5%, and the power of the Durbin-Watson test is com-

puted for an ARFIMA (0, d, 0) process (4) with innovationsεt ∼ nid (0, 1) for d ∈ [0, 0.5],

evaluated in steps of0.01 using Imhof’s (1961) method.

Figure 1 depicts the power in Model 1 for both a regression with and without a constant term for

samples of sizesT ∈ {20, 40, 60, 80, 100}. In the regression without a constant (left panel), the

power approaches one asd → 1
2
. For the regression with a constant (right panel) the limiting

power (asd → 1
2
) is given in Table 1. It lies strictly between zero and one, approaching one as

the sample size increases.

Although the Durbin-Watson test can have maximal power asd → 1
2
, it is not (approximately)

locally best invariant in the long-range dependent setting. From King and Evans (1988, p. 511),

a necessary condition for this is that the derivative of the correlation matrixR is zero at lag 1 for

d = 0, which is easily seen to be not the case for ARFIMA(0, d, 0) disturbances.

Quite a different picture emerges for Model 2. Figure 2 shows that, in the regression without an

intercept (left panel), the power approaches zero ford → 1
2
, showing that the Durbin-Watson test

is, in general, biased when the disturbances follow a strongly dependent process of the fraction-

ally integrated type. For the regression with a constant term the power is considerably improved,

approaching one asd → 1
2

with increasing sample size (see Table 1).

The left panel of figure 2 illustrates that a zero limiting power of the Durbin-Watson test is not

an artifact of small samples. Although power increases monotonically for anyd ∈ (0, 1
2
) asT

increases, it still drops to zero asd → 1
2

irrespective of sample size.
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Figure 1: Power of the Durbin-Watson test,α = 0.05, regressorxt = t. Left panel: regression

without intercept, right panel: regression with intercept. Sample sizes are 20, 40, 60, 80, and 100

(bottom to top).

Model T = 20 T = 40 T = 60 T = 80 T = 100

xt = t 0.4541 0.8338 0.9610 0.9920 0.9985

xt = 1 + (−1)t 0.5841 0.9020 0.9808 0.9966 0.9994

Table 1: Limiting power (asd → 1
2
) of the Durbin-Watson test, regression with an intercept
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Figure 2: Power of the Durbin-Watson test,α = 0.05, regressorxt = 1 + (−1)t. Left panel:

regression without intercept, right panel: regression with intercept. Sample sizes are 20, 40, 60,

80, and 100 (bottom to top).
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4 Extensions

The argument above generalizes in a straightforward fashion to all tests that are ratios of quadratic

forms inu. These include (i) King’s (1981) alternative Durbin-Watson test, whereQ1 = MXA0MX ,

and whereA0 equalsA with top left and bottom right elements being 2 instead of 1, (ii) the

Berenblut-Webb test (1973), whereQ1 = B − BX(X>BX)−1X>B, Q2 = MX , andB equals

A with top-left element being 2 instead of1, (iii) King’s (1985) point-optimal test, whereQ1

depends on a particular alternative, and (iv) various tests based on LUS residuals, as described

in Krämer and Zeisel (1990).

Our results also extend to models of stationary long-range dependence that are not members

of the ARFIMA class. These include fractional Gaussian noise, defined via first differences of

fractional Brownian motion, with autocorrelation function

rt,t+h =
1

2

[
(h + 1)2H − 2 h2H + (h− 1)2H

]
,

1

2
< H < 1, (5)

whereH is the Hurst coefficient which is related to the memory parameterd of the ARFIMA

model viad = H − 1
2
. As pointed out in Kleiber (2001), the correlation matrix for fractional

Gaussian noise also tends toR̄ = ee> asH → 1, i.e., asd → 1
2
.

Another example is the “Cauchy family” of long-memory models, proposed by Gneiting (2000).

It is defined directly in terms of the autocorrelation function

rt,t+h =

(
1 +

∣∣∣∣∣hc
∣∣∣∣∣
α)−(β/α)

, c > 0, 0 < α ≤ 2, β > 0. (6)

If β < 1, this model exhibits long-range dependence with a Hurst coefficientH = 1 − β/2. It

follows thatR̄ = ee> is the limiting correlation matrix asβ → 0.
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