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ABSTRACT. Various aspects of the wavelet approach to nonparametric regression are con-
sidered, with the overall aim of extending the scope of wavelet techniques, to irregularly-
spaced data, to regularly-spaced data sets of arbitrary size, to heteroscedastic and correlated
data, and to data some of which may be downweighted or omitted as outliers.

At the core of the methodology discussed is the following problem: if a sequence has
a given covariance structure, what is the variance and covariance structure of its discrete
wavelet transform? For sequences whose length is a power of 2, an algorithm for finding
all the variances and within-level covariances in the wavelet table is developed and inves-
tigated in detail. In particular, it is shown that if the original sequence has band-limited
covariance matrix, then the time required by the algorithm is linear in the length of the
sequence.

Up to now, most statistical work on wavelet methods presumes that the number of
observations is a power of 2 and that the independent variable takes values on a regular
grid. The variance-calculation algorithm allows data on any set of independent variable
values to be treated, by first interpolating to a fine regular grid of suitable length, and then
constructing a wavelet expansion of the gridded data. The gridded data will, in general,
have a band-limited covariance matrix, and the algorithm therefore allows the elements of
the wavelet transform to be thresholded individually using thresholds proportional to their
standard deviation.

Various thresholding methods are discussed and investigated. Exact risk formulae for
the mean square error of the methodology for given design are derived and used, to avoid,
as far as possible, the need for simulation in assessing performance. Both for regular and ir-
regular data, good performance is obtained by noise-proportional thresholding, with thresh-
olds somewhat smaller than the classical universal threshold.

The general approach allows outliers in the data to be removed or downweighted, and
aspects of such robust techniques are developed and demonstrated in an example. Another
natural application is to data that are themselves correlated, where the covariance of the
wavelet coefficients is not due to an initial grid transform but is an intrinsic feature of the
data. The use of the method in these circumstances is demonstrated by an application to
data synthesized in the study of ion channel gating. The basic approach of the paper has
many other potential applications, and some of these are discussed briefly.
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1. INTRODUCTION

Wavelet methods are the topic of much current interest in statistics. They have been most
widely studied in the context of non-parametric regression, where it is of interest to estimate
a function f on the basis of observations y1; : : : ; yn at time points t1; : : : ; tn, modelled as

yi = f(ti) + "i

where "1; : : : ; "n are noise.
With some notable exceptions, the current literature mainly deals with the case where

the "i are independent and identically distributed, the points ti are equally spaced, and n
is a power of 2. The methodology we shall develop will allow all these assumptions to be
relaxed, though we shall only develop particular departures in detail. We shall especially
be concerned with non-equally spaced points ti and with general sample size, with robust
methods that allow outliers to be downweighted in the fitting process, and with correlated
and heteroscedastic errors "i.

Most wavelet-based methods make use of the discrete wavelet transform (DWT) de-
scribed, for example, by Mallat (1989a). In its standard form, this provides a multiresolu-
tion analysis of a vector cJ of 2J values. In the ‘classical’ wavelet regression setting, these
values are just the data points yi, but more generally they may be obtained from the original
data in a number of different ways depending on the precise context.

In classical wavelet regression, the variance matrix of cJ is a multiple of the identity
matrix. Because the DWT is an orthogonal transform, this implies that the wavelet coef-
ficients are also uncorrelated with equal variances. Among other authors, Johnstone and
Silverman (1997) have considered the case of wavelet thresholding where the noise is cor-
related but stationary. In this situation the variances of the wavelet coefficients at each level
are identical, and therefore Johnstone and Silverman consider thresholding the coefficients
level by level. But what if cJ has more general variance matrix? The individual coefficients
in the DWT will then be heteroscedastic and correlated, in general. In this paper we set
up an algorithm which will yield all the variances and all the within-level covariances of
the DWT for a wide range of covariance matrices �. Provided the covariance matrix �

is band-limited, the running time of the algorithm will be linear in the number of wavelet
coefficients 2J . There is no requirement that � be a stationary variance matrix.

This algorithm has broader potential uses than the ones we develop in this paper, and
since it is in a sense the core of our methodology, we present it and discuss its complexity
properties in Section 2, before applying it in specific regression contexts.

Our regression algorithm for generally positioned ti falls into three main parts. The first
phase, if necessary, is to map the original data to a grid of 2J equally-spaced points to
produce a vector ~y. Even if the original data are independent and identically distributed,
the gridded values will have covariance matrix � that will have, in general, a nonstation-
ary band-limited structure. A general covariance matrix may also arise from correlated or
heteroscedastic data. The second phase is to carry out a discrete wavelet transform of the
vector ~y, and to use the algorithm set out in Section 2 to find its within-level covariance
structure, possibly up to a multiplicative constant. The third phase is to threshold the DWT
using a thresholding method that may take into account the heteroscedasticity of the coef-
ficients, and to invert to find the estimate itself. Our investigation of simulated examples
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indicates that a good approach is to use coefficient-wise thresholding with thresholds pro-
portional to their standard deviations, and to use the SURE (Stein unbiased risk estimate)
approach to determine the constant of proportionality. Theoretical support for coordinate-
wise thresholding of this kind is provided by Johnstone and Silverman (1997).

The method adapts easily to handle robust estimation, where outlying observations are
downweighted in the fitting process. Various aspects of this approach are set out and dis-
cussed in Section 6. In Section 7, we go on to consider and demonstrate the application of
our approach to heteroscedastic and correlated data.

Finally, some suggestions of possible avenues for future research are given in Section
8. Software for the implementation of the methodology discussed in the paper is available
from the authors.

2. CALCULATION OF THE VARIANCES OF WAVELET COEFFICIENTS

2.1. Linear filters and the DWT algorithm. As a preliminary to setting out our algorithm
for finding all the within-level covariances, we first review some elementary aspects of
wavelets, partly in order to fix notation that will be useful later.

Assume that  is a mother wavelet of order m, and that � is the corresponding scaling
function or father wavelet. The wavelet functions  jk which are derived from the mother
wavelet by the relationship

 jk(t) = 2j=2 (2jt� k) (1)

form an orthonormal basis of L2(R ), and  (t) is orthogonal to polynomials of degree up
to m. See Meyer (1992) for an exact definition.

In order to discuss the discrete wavelet transform (DWT), it will be useful to set up
some linear filter notation. A linear filter F is a mapping whose action on a doubly infinite
sequence (xi) is defined by

(Fx)k =
X
i

fi�kxi (2)

where fj is a doubly-infinite sequence of coefficients. In this paper, we only consider filters
for which only finitely many fj are nonzero, so that (2) is a finite sum and there are no
issues of convergence to consider. If x is a vector of finite length, then the definition of
Fx depends on a choice of treatment at the boundaries. Common are periodic boundary
conditions, where x is extended periodically to give an infinite sequence, and symmetric
boundary conditions, where x is reflected at the boundaries.

The other operator that will be useful to define is a “binary decimation” operatorD0 that
chooses every even member of a sequence:

(D0x)j = x2j:

The scaling function � satisfies a self-similarity equation

�(x) =
X
k2Z

hk�(2x� k);

for some sequence (hk). We shall assume throughout that the family of wavelets being used
is such that � has bounded support, so that hk is zero outside the range 0 � k < N for
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FIGURE 1. Scheme of the Discrete Wavelet Transformation. The
data vector y is decomposed to vectors of wavelet coefficients
dJ�1; dJ�2; : : : ; d0; c0. Two linear filters G andH which arise from a mul-
tiresolution analysis and a binary decimation operator D0 are recursively
applied to the data. The vectors cj and dj are called the smooth and the
detail at level j.

some integer N . If we now define

gk = (�1)kh1�k

then the mother wavelet satisfies

 (x) =
X
k2Z

gk�(2x� k):

See, for example, Daubechies (1992); Chui (1992); Meyer (1992). Denote by G and H the
linear filters defined by the coefficients (gk) and (hk) respectively.

To carry out the DWT, these operators are applied to the data y in the following manner
(see figure 2.1): Let cJ = y. We now define, recursively for j = J � 1; J � 2; : : : ; 0, the
smooth cj at level j and the detail dj at level j by

cj = D0Hcj+1 and dj = D0Gcj+1: (3)

Let nj denote the length of the vectors cj and dj . If we use periodic boundary conditions,
then nj = 2j . If symmetric boundary conditions are used, then the vectors need to be
slightly longer; for each j we have 2j � nj < 2j + N . See Nason and Silverman (1994)
for further details.

The DWT of the data y is defined to be the coefficients dJ�1; : : : ; d0; c0. Regarding these
coefficients as a single vector w, we can write w = Wy where W is an orthogonal matrix
in the periodic case; the algorithm we have set out then allows w to be found in O(N2J)

operations.
In the symmetric case, the number of operations is O(Nf2J + JNg) which is O(N2J)

provided the very mild condition NJ < 2J is satisfied. We denote for future reference by
Hj and Gj the nj�1 � nj matrices such that cj�1 = Hjc

j and dj�1 = Gjc
j .

2.2. Calculation of the variances of wavelet coefficients. Consider the discrete wavelet
transform of a vector ~y of length 2J whose elements have general covariance matrix �. We
will set out an algorithm for finding the variances of all the wavelet coefficients w. In the
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case where � is a band matrix, the number of operations will be linear in the length of ~y,
while even in the case of general � only a quadratic number of operations is required.

The algorithm is straightforward. Let �j denote the variance matrix of cj and ~�j that of
dj . Then

�J = �

by definition. From the recursion (3) it follows that, for each j = J � 1; J � 2; : : : ; 0,

�j = Hj+1�j+1(Hj+1)T (4)

and

~�j = Gj+1�j+1(Gj+1)T : (5)

Note that this gives us not only the variances �jk = ~�
j

k;k
of the individual wavelet

coefficients dj
k
, but also the covariance structure of the wavelet coefficients at each level. In

most of our work we shall only be interested in the variances themselves, and so only the
main diagonal elements of ~�j will be required; however there may be further developments
where the within-level covariances are also important.

The key to the economy of the algorithm is to make use of the sparsity structure of the
matrices in the recursions (4) and (5). By the assumption that the filtersH and G are of finite
lengthN , each row of the matricesHj+1 and Gj+1 is zero except in at most N consecutive
positions. Consequently, the calculation of each element of �j and ~�j requires at most
a constant multiple of N2 operations, and a more economical method will be discussed in
Section 2.3 below. Summing over j, the total number of elements of all the matrices �j and
~�j is of order 22J , and so the total complexity of the algorithm even for a general matrix
� is at most O(N222J). If � is a band matrix, then considerable additional economies are
possible, and these will also be discussed in Section 2.3 below.

2.3. Computational complexity for bandlimited variance matrices. The key to our fast
algorithm for finding all the covariance matrices �j recursively in the case where � is a
band matrix is that the band structure of each �j+1 is inherited by �j . In this section we
examine this aspect in detail, and conclude that the proposed method is essentially of order
2JbJ . The precise order is given in the theorem proved below. The main conclusion is that,
as long as we assume the bandwidth of �J to be bounded by a constant, the computation
time of the algorithm increases only linearly with the number of points 2J . Furthermore,
the dependence on bJ is also linear, and (although we will normally only be concerned with
a fixed N ) the dependence on N is linear rather than quadratic.

In the periodic case, define the bandwidth bj to be the smallest integer such that�j

i;m
= 0

for all i;m 2 f0; : : : ; nj � 1g with

bj < ji�mj < nj � bj :

In the symmetric case, we require the conventional condition that �j

i;m
= 0 whenever

ji�mj < bj : Note that the bandwidth of the identity matrix is 0. In either case, �j has
no more than (2bj + 1) � nj entries, and by symmetry only (bj + 1) � nj entries have to be
calculated and stored.
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Consider the periodic case first. Treating sums in the indices modulo nj , the sum in (4)
can be reduced to

�
j

i;m
=

N�1X
k;l=0

hkhl�
j+1

2i+k;2m+l
: (6)

It now follows easily that every term in the sum is zero if ji�mj modulo 2j is greater than
(bj+1 +N � 1)=2, and hence

bj � (bj+1 +N � 1)=2: (7)

For the variance matrix of the dj we obtain the expression

~�
j

i;m
=

N�1X
k;l=0

gkgl�
j+1

2i+k�N+2;2m+l�N+2
(8)

from which it can again be shown that the bandwidth of ~�j is subject to the same bound.

A direct consequence of (7) is that we have the uniform bound

bj � maxfbJ ; N � 1g (9)

for all j.
For the symmetric case the calculations are a little more complicated. The reflection at

the boundaries means that the first and last few rows of the matrices Hj and Gj will have
nonzero elements in reflected versions of the positions obtained merely by shifting the filter
coefficients to the appropriate starting points. This means that, near the boundary, �j

i;m
can

be nonzero for i and m that are somewhat more separated than in the periodic case, but by
consideration of the various cases that can occur it can be seen that the number of additional
nonzero bands in �j is at most (N � 1)=2. It follows that we have the bound

bj � (bj+1 + 2N � 2)=2: (10)

Again, the bandwidth of ~�j satisfies the same bound, and we have a uniform bound

bj � maxfbJ ; 2(N � 1)g (11)

for all j.
These results can be used to control the number of multiplications in our algorithm:

Before calculating the covariance structures of the j-th level �j and ~�j , we determine the
actual bandwidth bj+1 of �j+1, and hence a bound on bj . We then compute only the main
diagonal, the bj diagonals next to it and (in the periodic case) the corners of �j .

The direct evaluation of each element in (6) and (8) requires a computation of order N2

operations. However economy is possible, for example, by writing (4) in the two stages

A = Hj+1�j+1 (12)

and

�j = Hj+1AT : (13)

Consider the periodic case first. Since each column of �j+1 has nonzero elements in at
most 1 + 2bj+1 positions, the nonzero elements of A can be found in O(Nf1 + 2bj+1g2j)
operations. Each row of A then has nonzero elements in at most N + 2bj + 1 positions, so
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the complexity of the calculation of �j is O(fN2 +Nbjg2j). Because of symmetry, only
the elements on and above the diagonal have to be calculated, but this does not affect the
order of magnitude of the calculation.

In the symmetric case, the quantity 2j has to be replaced by nj , since there will be nj
rows of A and of �j to be calculated. We can now state the main theorem which gives the
complexity of the overall algorithm for finding all the �j and ~�j .

Theorem 2.1. Define the bound b by b = max(bJ ; N). In the symmetric case, assume that
NJ < 2J . The computational complexity of the algorithm described is then of orderNb2J .

Proof. In the periodic case, we have from (9) that bj � b, and hence bj +N � 2b for each
j. In the symmetric case, from (11) we have bj � 2b but again bj + N is bounded by a
constant multiple of b. Therefore in both cases the argument set out above shows that the
complexity of the calculation of the variance matrices at level j is O(Nbnj).

To obtain the overall complexity of the algorithm, we sum over j. In the periodic caseP
j
nj < 2J , while in the symmetric case there are at most N additional coefficients on

each of J levels, so, under the extremely mild assumption that NJ < 2J we again haveP
j
nj = 2J + O(NJ) = O(2J). In either case, the overall complexity is O(Nb2J),

completing the proof of the theorem.

In the case where � does not have a band structure, the complexity of the jth step in
the recursions (4) and (5) will be O(N22j) in the periodic case, since each of (12) and
(13) requires 2j applications of a filter of length N to a vector of length 2j+1. So the total
complexity will be O(N22J). In the symmetric case the additional calculations will again
not affect the order of the calculation providedNJ < 2J . IfN is large then some economy
may be possible by the use of the fast Fourier transform to perform the convolutions, but
we shall not pursue this possibility.

2.4. Computational complexity for stationary variance matrices. The main emphasis
of this paper is on cases where � is nonstationary and bandlimited. However, we note in
passing that if � is periodically stationary (i.e. a circulant matrix) then the principle of our
algorithm can immediately be applied. Since all the variance matrices are circulant, it is
only necessary to store one row of each variance matrix. We define sequences sj and ~sj of
length 2j , such that �j

lm
= s

j

l�m
, and similarly for ~�j , with l�m being interpreted modulo

2j . Then straightforward matrix algebra shows that

sj = D0HHsj+1 and ~sj = D0GGsj+1: (14)

The calculations in (14) can be carried out in O(2j min(j;N)) operations, because a fast
Fourier transform can in principle be used to carry out the convolutions if N is large. So
the overall burden of the algorithm, summing over J , is O(2J min(J;N)), comparable to
the nonstationary bandlimited case for fixed b.

3. PREPROCESSING UNEQUALLY TIME-SPACED DATA

3.1. Relaxing the basic assumptions. Wavelet thresholding is a very promising approach
in non-parametric regression. However, it requires that the number of data points is a power
of two, and the time points must be spaced equally ti = i=n. The first requirement is often
met by extending the given data set to length 2J using for example periodic extension or
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symmetric reflection (Smith and Eddins 1990). At first sight, this looks a little bit artificial,
but we have seen that the DWT itself makes use of boundary conditions. In fact, the results
that are obtained with this simple techniques are usually very good.

There are other ways for dealing with data sets that are equally spaced in time but do not
contain a power of two elements. Kwong and Tang (1994) as well as Taswell and McGill
(1994) propose alternatives to the fast DWT that deal with sets of arbitrary length. These
techniques are of particular interest in image compression.

The condition of equal spacing in time raises more problems. One possible approach
is only to use the ranks of the ti and to apply the usual threshold routines direct to the
yi, ignoring the details of the time structure. This would give us an estimate of f at the
time points ti. Unfortunately, wavelet representations of irregularly spaced data are not
as economical as they are if the time structure is regular, since the unevenness of the ti
means that regularity properties of a function f are not necessarily inherited by the vector
of values f(ti). As a consequence, the mean square error can be relatively high, as we will
see in Section 5.5.

Lenarduzzi (1997) discusses this issue in more detail and suggests a modification in-
volving spline interpolation on a small subset of time points. The coefficients which are cut
off by the thresholding function are replaced by the wavelet coefficients of the spline. Her
approach does not yield an economical wavelet expansion of the function estimate, and it
would be difficult to assess its performance other than by simulation.

Another approach is taken by Antoniadis and Pham (1997). They assume that either
the time points are random with a density function g1 or that they are fixed, but that their
empirical distribution converges to a distribution with density g1 as n ! 1. Instead of
estimating f directly they compute estimates of fg1 and g1, constructing wavelet estimators
on a regular grid of both functions. Although Antoniadis and Pham’s algorithms make
use of wavelets, they do not seem to have the properties which are expected of wavelet
shrinkage estimators in the equally spaced case. They seem to give results very similar to
linear estimators like ordinary kernel estimators and spline smoothers.

3.2. Mapping unequally spaced data to a regular grid. The method we develop is very
simple and can easily be combined with other developments in wavelet methodology such
as translation-invariant wavelet transforms and wavelet packets. In addition our method
is easily generalized to the case where the original data yi are themselves correlated or
heteroscedastic.

The basic approach is to interpolate the given data onto a regular grid, keeping track of
the effect on the correlation structure. We begin by choosing a finest resolution level J . In
our experience it is usually reasonable to choose 2J as the smallest power of two such that
n � 2J .

Define the grid points

~tk = (k +
1

2
)2�J

where k 2 f0; : : : ; 2J � 1g. We calculate a new “observation” ~yk by evaluating the straight
line that interpolates the nearest data point on the left and on the right at ~tk. More precisely,
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~yk =

8>><
>>:

y0 if ~tk < t0;

yn�1 if ~tk � tn�1

yi + (~tk � ti) �
yi+1�yi

ti+1�ti
otherwise.

In the third case, the value of i is chosen as the smallest integer such that

ti � ~tk � ti+1:

The linear function that maps for given t0; : : : ; tn�1 and resolution level J the original
data to the grid data will be denoted by R, so that

~y = Ry:

The vector ~y has length a power of two, and so can be dealt with by standard DWT meth-
ods. If the original observations y are uncorrelated with variance �2, then the covariance
matrix � of ~y is given by

� = �2 �RRT :

The matrix RRT is a band matrix, because, for any k and l, the linear interpolation scheme
we have set out ensures that ~yk and ~yl are uncorrelated if at least two of the original time
points ti lie in the interval [~tk; ~tl]. The bandwidth of the matrixRRT will essentially depend
on the largest gap in the ti.

Once the matrix � has been found, we can carry out a DWT of the sequence ~y to obtain
coefficients dj

k
. The algorithm set out in Section 2.2 will allow us to find the variances and

within-level covariances of all these coefficients. If the variance �2 is not known, then the
same algorithm starting with the matrix RRT will yield constants 
jk depending only on
the time points, the wavelet filter and the length of the grid such that

�2jk = var d
j

k
= �2 � 
jk:

In this paper, we shall consider in detail the case where the original observations y are
homoscedastic and uncorrelated. However, the extension of the material of this section to
more general distributions is straightforward. If the y have variance matrix �Y , then we
have

� = R�YR
T :

If �Y is a diagonal matrix with unequal entries, then the bandwidth of � will be the same
as in the homoscedastic case. If �Y is a more general band matrix, then � will obviously
still be a band matrix with a somewhat larger bandwidth. The detailed development of these
cases is a topic for future research; one issue is of course the specification or estimation of
a suitable matrix �Y in the general case. However, we will see in Section 7 two examples
with heteroscedastic and correlated data where these ideas perform very well.

4. THRESHOLDING HETEROSCEDASTIC WAVELET COEFFICIENTS

4.1. The general approach. Let us now assume that ~f is the 2J -vector of values f(~t`)
and that ~wjk is the array of discrete wavelet coefficients of the vector ~f . Suppose that we
have an array of wavelet coefficients dj

k
that may be considered as observations of the ~wjk

corrupted by heteroscedastic noise, and furthermore that we know the variances (�j
k
)2 of
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the dj
k

at least up to a constant. Typically these coefficients and variances will have been
obtained from homoscedastic but irregularly spaced data in the manner described in Section
3.2. In order to reconstruct the function f , the general approach within the wavelet literature
is to threshold the coefficients in some way, and then to invert the DWT to complete the
estimation of f .

In general, we shall apply a thresholding function � to each wavelet coefficient yielding
modified wavelet coefficients ŵjk

ŵjk = �(d
j

k
; �jk)

where � is either the soft thresholding function

�S(d
j

k
; �) = sgn(d

j

k
)(jdj

k
j � �)+

or the hard thresholding function

�H(d
j

k
; �) = d

j

k
� Ifj(jdj

k
) � �g:

Performing the inverse transform on ŵ gives us the estimate f̂ for ~f :

f̂ =WT ŵ

4.2. Universal thresholding. A natural approach is to choose each threshold �jk propor-
tional to its standard deviation �jk. One possible approach is to adapt the universal thresh-
old or VisuShrink approach and use

�jk =
q
2 log(n) � �jk:

The VisuShrink approach does not aim to minimize the mean square error, but it tries to
produce noise-free reconstructions. Some theoretical basis for the idea of thresholding pro-
portional to noise standard deviation is given by Johnstone and Silverman (1997).

The noise level � is usually unknown. In the case where the time points are equally
spaced, Donoho, Johnstone, Kerkyacharian and Picard (1995) have suggested the estima-
tion of the the noise level by taking the median absolute deviation of the coefficients at the
finest scale of resolution, and dividing by 0:6745. However, in our setting it is necessary to
divide each coefficient dJ�1

k
by
p

J�1;k beforehand. Moreover, it can happen that some of

the 
J�1;k are zero, for example when all grid points that have influence on the coefficient
dJ�1
k

lie between two original observations, because of the property of vanishing moments
and the linear interpolation that is used in the grid transform. If the variance factor is zero,
simple linear algebra arguments show that the corresponding wavelet coefficient will also
be zero whatever the original input vector ~y. To avoid numerical difficulties we separate out
this case by testing for very small variance factors. Taking this into account we suggest the
following estimator:

�̂ = MADfdJ�1
k

=
p

J�1;k : 
J�1;k > 0:0001g=0:6745: (15)

We then set
�̂2jk = �̂2
jk

for all j and k.
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4.3. An unbiased risk approach. Another possible method for threshold selection is
based on a method of Stein (1981). It was introduced as SureShrink by Donoho and John-
stone (1995) for the i.i.d. Gaussian error setting, and adapted for correlated noise by John-
stone and Silverman (1997).

Let w� denote the vector of wavelet coefficients obtained by interpolating the values
f(ti) to the regular grid ~tj . By a simple extension of the argument given in Section 2.3.2 of
Johnstone and Silverman (1997), for any array T = f�jkg of thresholds, the quantity

S(T ) =
X
j;k

[�̂2jk +minf(dj
k
)2; �2jkg � 2�̂2jkIfjd

j

k
� �jkjg]

may be used as an estimate of the risk E jjŵ � w�jj2; for soft thresholding. If the estimates
�̂2
jk

were replaced by the true values �2
jk

, then S(T ) would be an unbiased estimate of
this risk. In addition, this is not exactly the risk we are interested in, because of the error
involved in replacing the wavelet transform of the true grid values of the signal by the
values w�. Because of these approximations, we regard the unbiased risk property of the
criterion S(�) as heuristic rather than rigorous justification for its use.

In using the unbiased risk criterion, we restrict attention to thresholds proportional to
estimated standard deviation, and define S(�) to be S(T ) for �jk = �̂jk� . We then set

�̂jk = �̂jk�̂ (16)

where �̂ is chosen to minimize S(�) over the range [0;
p
2 log n]:

5. PERFORMANCE OF THE THRESHOLDING METHODS

In this section we discuss in detail the performance of the methods we have introduced.
The expected mean squared error is used as a measure of the performance throughout this
section. First, we derive an exact risk formula for given time points and threshold choice.
This is used in Section 5.2 to analyze the risk of the VisuShrink method for time points that
are equally spaced on a grid of arbitrary length. In Section 5.3 comparisons are made with
the minimum of the risk over all threshold values. It turns out that dividing the VisuShrink
thresholds by 3 gives mean square error performance nearly as good as this unattainable
minimum.

Irregularly spaced time points are considered in Section 5.4. Finally we present in Sec-
tion 5.5 simulation results which compare an adaptation of the SureShrink estimator with
usual and reduced VisuShrink thresholds and with methods where usual thresholding is
applied to the data and the grid transform is used to obtain an estimate at the time points.

5.1. Exact risk formulae. We assume throughout this section that periodic boundary con-
ditions are applied, so that the discrete wavelet transform is orthogonal, and function f(t)
is estimated at 2J equally-spaced points. Let ~f and f̂ be vectors of length 2J giving the
values and estimates of the function on this grid, and let ŵ = Wf̂ and ~w = W ~f be
the wavelet transforms of these vectors. Using Parseval’s equation, the mean square error
MSE(f̂ ; ~f) = 2�Jk ~f � f̂k22 can be written as

MSE(f̂ ; ~f) = 2�Jkŵ � ~wk22 = 2�J
J�1X
j=j0

2jX
k=0

�
�S [fWR(f� + ")gjk; �jk]� ~wjk

�2
(17)
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where �jk are the individual thresholds, j0 the “cut-off-level”, below which no thresholding
is carried out, and f� the true values f(ti) on a given sequence ti of length n.

Let w� be the wavelet coefficients of the sequence Rf�. The individual coefficient
(WR(f� + "))jk is normally distributed with mean w�

jk
and variance �jk that can be cal-

culated with the algorithms that were introduced above. To explore the mean square error,
we define

�(� ;�1; �2; �) = E (�1 � �S(X; �))
2

where X is a normally distributed random variable with mean �2 and variance �2.
We then have

E fMSE(f̂ ; ~f)g = 2�J
J�1X
j=j0

2jX
k=0

�(�jk; ~wjk; w
�

jk; �jk): (18)

To carry out an exact risk calculation for any particular function and time sequence, the
vectors ~f and Rf� are calculated, and their wavelet transforms substituted into (18). The
function � can be evaluated from its definition by making use of properties of the normal
distribution, to obtain

�(� ;�1;�2; 1)

= �21 + f1 + (� + �2 � �1)
2 � �21g�(��2 � �)

+ f1 + (� + �1 � �2)
2 � �21g�(�2 � �)

+ (2�1 � �2 � �)'(��2 � �)

� (2�1 � �2 + �)'(�2 � �):

(19)

This formula generalizes results that were obtained by other authors in the conventional
setting where �1 = �2 (Donoho and Johnstone 1994; Abramovich and Silverman 1998).

5.2. Regular grids of arbitrary length. In this section we consider the performance of the
methods on data where the ti are regularly placed but the number of points is not necessarily
a power of two. The basic idea is to use our algorithm to map the data to a grid of length
2J so that standard DWT implementations can be used. We use our exact risk formula to
examine the mean square error for rescaled versions of four test signals Doppler, Heavisine,
Blocks and Bumps (see Figure 2) that were analyzed by Donoho (1993a) and Donoho and
Johnstone (1994). Calculations were carried out for each n in f17; : : : ; 2048g. For each n,
the time points were given by

ti = (i+ 0:5)=n

for i = 1; : : : ; n; and the size 2J of the grid (~tj) was chosen to be the smallest power of
two not less than n. The noise level � was chosen as 0:35 (corresponding to a root signal-
to-noise ratio SD(f)=� � 6:3) and the threshold chosen with VisuShrink, so that

�jk =
q
2 log(n) � �jk;

assuming the variances to be known.
Daubechies’ wavelet with two vanishing moments, periodic boundary conditions and a

cut-off-point j0 of 3 were used. The results are plotted as solid lines in Figure 3.
It can be seen from the figure that the expected mean square error decays very fast; note

the use of logarithmic scales on both axes. The risk does not decrease monotonically and
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FIGURE 2. Donoho’s and Johnstone’s test signals: Doppler, Heavisine,
Blocks, Bumps

the amount of variation with n is different among the four test signals. The variation in the
risk of the Heavisine and Doppler data is relatively small while the Blocks and Bumps data
exhibit a lot more oscillation, in particular for small n with the Bumps data and for large
n with the Blocks data. Finally, the risk seems often to be exceptionally small when n is a
power of two.

To investigate the source of these variation properties we calculated the modified risk

E2�Jkf̂ �Rf�k22;

the expected mean square error obtained by supposing the interpolation of f(t) from the
original observations to the grid to be exact. An exact formula for this quantity was chang-
ing the replacing ~wjk by w�

jk
in equation (18) above. It is plotted as the dashed lines in the

figure. The modified risk looks much smoother than the total risk, so indeed the variation
can be considered as being due to the bias in the wavelet coefficients caused by the grid
transform. Of course, for powers of two both curves take the same value, because the grid
transform is then the identity function and causes no bias at all.

Considering the various signals individually, the Blocks signal is very sensitive to small
changes in the time structure because it has a large number of discontinuities. This explains
why the variation in the error of its estimation is considerable even for large n. On the
other hand, the risk for the Bumps signal depends strongly on how well its peaks can be
approximated. For small numbers n1 and n2 the quality of this approximation can be very



COEFFICIENT-DEPENDENT THRESHOLDING IN WAVELET REGRESSION 13

n on a logarithmic scale

R
is

k 
on

 a
 lo

ga
rit

hm
ic

 s
ca

le

16 32 64 128 256 512 1024 2048

0.
1

0.
2

0.
5

1.
0

2.
0

Risk
Unbiased Risk

Risk for the Doppler Data

n on a logarithmic scale

R
is

k 
on

 a
 lo

ga
rit

hm
ic

 s
ca

le

16 32 64 128 256 512 1024 2048

0.
05

0.
10

0.
15

Risk
Unbiased Risk

Risk for the Heavisine Data

n on a logarithmic scale

R
is

k 
on

 a
 lo

ga
rit

hm
ic

 s
ca

le

16 32 64 128 256 512 1024 2048

0.
1

0.
2

0.
5

1.
0

2.
0 Risk

Unbiased Risk

Risk for the Blocks Data

n on a logarithmic scale

R
is

k 
on

 a
 lo

ga
rit

hm
ic

 s
ca

le

16 32 64 128 256 512 1024 2048

1
2

5
10

Risk
Unbiased Risk

Risk for the Bumps Data

FIGURE 3. The risk for the test functions and VisuShrink on regular grids.
Also shown as dashed lines is the “unbiased” risk which represents the
amount of error which is caused by the actual thresholding step and does
not contain the bias which is caused by the grid transform. The risk and
the number of data points are always plotted on logarithmic scales.

different, even if n1 and n2 are close together. However, for larger n1 and n2 the continuity
of the Bumps function ensures that the approximations are similar, so that the amount of
variation is relatively small for larger sampling rates.

Similar arguments can be put forward for the Heavisine and Doppler signals which are
much smoother than the other two signals. Finally, the low values for powers of two that
can be seen very clearly for the Blocks signal are also caused by the absence of bias.

Both risk functions exhibit small steps near powers of two. These can be explained by
the values of the thresholds which depend explicitly on the number of grid points and
increase each time n crosses a power of two. This increment in threshold tends to cause
an increase in expected mean square error, not surprisingly since the visual thresholds are
already usually larger than the thresholds that minimize expected mean square error, as we
shall see below. To confirm this effect, see Figure 4. The solid line shows the risk for the
Doppler data using VisuShrink as already seen in Figure 3. The dashed line represents the
risk for fixed thresholds

�jk =
q
2 log(256) � �jk:

Note that the steps have disappeared.
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FIGURE 4. The risk for the Doppler data with VisuShrink compared with
a fixed threshold choice on regular grids. The number of data points n and
the risk are both plotted on logarithmic scales.

5.3. Optimal thresholds. When comparing different choices for the thresholds it is inter-
esting to ask for the minimal risk that can be obtained with any thresholds for a specific
function f . In practice, of course, such optimal thresholds are not available because the
signal is unknown, but they do give a reference point against which a practical threshold
choice can be judged.

We consider optimal noise-proportional thresholds where the thresholds are restricted
to the special form �jk = � � �jk. The thresholds can then be found to desired accuracy by
a numerical minimization of the exact risk formula we have derived.

For four different noise levels (� = 0:05; 0:15; 0:25; 0:35) and for the same test signals
as in Section 5.1 we calculated the minimum risk for n regularly spaced time points with
n taking all values between 17 and 2048. The solid lines in figure 5 show the results for
the Heavisine data and � = 0:35. The results for the other data sets and noise levels do not
look substantially different.

It is well known that the optimal thresholds are usually much smaller than those specified
by the VisuShrink method. We calculated the ratio of the VisuShrink threshold to the optimal
thresholds for all 32512 test cases (four noise levels, four signals, 2032 values for n) and got
a median of 3.4 and the mean 3.9. The 15%-quantile was 2.6 while the 85%-quantile was
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FIGURE 5. The risk for the Heavisine data and noise level 0.35 for three
threshold choices on a regular grid of size n. The dashed and solid lines
show the risk for the VisuShrink threshold choice and optimal chosen
thresholds respectively. The dotted curve represents a threshold choice
where the VisuShrink threshold is divided by 3.
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FIGURE 6. The expected MSE for DJ’s test signals and noise level 0:35
for three threshold choices on irregular time structures of size n. Time
points were independently drawn from a Beta(2; 2) distribution and the
exact risk calculated. Shown is the average over 20 replications. The
dashed and solid lines represent the risk for VisuShrink and L2-optimal
thresholds of the form ��j;k while the dotted curve shows the risk for
reduced Visushrink thresholds. The risk and n are both plotted on logarith-
mic scales.

4.7. This suggests a simple rule of thumb for small MSE, to use the VisuShrink thresholds
divided by 3. The dotted line in figure 5 shows the resulting MSE which is very close to
the MSE for optimal noise-proportional thresholds. The good behavior of this approach
is confirmed in a different context by a simulation study which we present in Section 5.5
below.

5.4. Irregular time structures of arbitrary length. We now turn to the case where the
time structure is no longer regular. For a range of values of n we simulated 20 different
time structures as samples of size n from a Beta(2,2) distribution. For each time structure
the exact MSE of a signal f and a fixed noise level � was calculated, and the average
over realizations was found. As in the previous section, this procedure was carried out for
optimal and VisuShrink thresholds as well as for the reduced VisuShrink thresholds. The
results are plotted for � = 0:35 in Figure 6.
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The most obvious difference from Figure 3 and Figure 5 is that the curves are much
smoother now. This a consequence of the change in the time structure which is no longer
fixed for given n. On the other hand, the performance of the reduced VisuShrink thresholds
is, again, virtually indistinguishable from that of the optimal thresholds.

Somewhat more explanation is needed for the effects near some powers of two which
occur for the Bumps signal in particular. The argument which was given earlier in Section
5.2 in connection with Figure 4 has to be ruled out since the jumps are not only visible for
VisuShrink thresholds which do change near powers of two, but also for the other threshold
types. In fact, the reason seems to be that the discrete version of the mean square error
which we consider in this chapter depends on the grid length. The quality of the estimates
does not appear to be much different for n = 32 and n = 33: most of the peaks of the
Bumps signal are either not resolved or massively flattened. However, the quantification
via the mean square error is achieved by a comparison with two very different samples of
the original signal: While the sample on a regular grid of size 32 exhibits the same features
as the reconstructions, the peaks are much better resolved on a grid of size 64, leading to
large residuals near peaks. The preceding statements were confirmed by simulation.

5.5. Simulation comparison for randomly placed time points. The aim of this final
subsection is to compare five techniques for estimating a function in terms of their MSE.
Among them are two new approaches that were not analyzed above, but were mentioned in
Section 3.1.

This is the idea: We suppose that the number of data points is a power of two. Then,
instead of applying the grid transform, we ignore the time structure and perform the DWT
directly on the given data (yi), followed by a thresholding method. This gives us an esti-
mate for the function on the irregularly spaced time points. Finally we carry out the grid
transform to get an estimate on a grid.

This algorithm clearly has the advantage that it does not require the calculation of the
variances and can easily be generalized to arbitrary numbers of data points by imposing
boundary conditions. On the other hand, we will see that these methods often do not work
very well as far as their MSE is concerned. This is due to the fact that wavelet transforms of
a sample which is taken from irregularly spaced time points are usually not as economical
as in the regular setting, because the property of vanishing moments does not apply any
more. There are other disadvantages as well: Lenarduzzi (1997) shows that the resulting
curves do not look “graphically pleasant”, but we do not consider this in more detail.

Table 5.5 shows the result of a simulation study that was carried out in S-Plus to compare
five methods:

IRREGSURE: Transform the data to a grid, apply the DWT to the grid data, calculate
the SureShrink thresholds, apply soft thresholding, and apply the inverse DWT.

IRREGVIS: Same as IRREGSURE, but use noise-proportional thresholds � ��jk with
factor � equal to

p
2 log(n).

IRREGVIS3: Like IRREGVIS, but divide the factor � by 3, ie use thresholds �jk =p
2 log(n) � �jk=3.

RANKSURE: Apply the usual SureShrink wavelet procedure of Donoho and Johnstone
to the data, taking only the time order of the observations into account, and then
perform the grid transform to get an estimate on a grid.
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Signal Time Data IRREGSURE IRREGVIS3 RANKSURE IRREGVIS RANKVIS
Doppler B(1,1) 0.032 0.036 0.036 0.119 0.103

B(2,2) 0.070 0.069 0.073 0.156 0.154
B(3,3) 0.176 0.159 0.185 0.230 0.292
B(4,4) 0.343 0.302 0.362 0.335 0.546

Heavisine B(1,1) 0.014 0.016 0.014 0.039 0.033
B(2,2) 0.018 0.019 0.028 0.049 0.077
B(3,3) 0.060 0.054 0.099 0.089 0.250
B(4,4) 0.152 0.126 0.192 0.133 0.429

Bumps B(1,1) 0.076 0.084 0.085 0.231 0.231
B(2,2) 0.094 0.101 0.098 0.254 0.239
B(3,3) 0.173 0.187 0.183 0.375 0.347
B(4,4) 0.371 0.385 0.382 0.575 0.555

Blocks B(1,1) 0.061 0.064 0.061 0.159 0.137
B(2,2) 0.065 0.067 0.060 0.176 0.138
B(3,3) 0.091 0.099 0.086 0.246 0.177
B(4,4) 0.141 0.155 0.137 0.356 0.253

TABLE 1. Comparison of the average Mean Square Error for five differ-
ent thresholding techniques. The methods IRREGSURE, IRREGVIS and
IRREGVIS3 are based on the grid transform and coefficient-dependent
thresholds as introduced in Section 3.2 and Section 4.1. RANKSURE and
RANKVIS do not take the irregular time structure into account at first
and perform ordinary thresholding followed by a grid transform. The time
points were chosen randomly from four different Beta distributions. For
each thresholding technique, signal, and model for the time structure, the
average of the MSE over 50 replications was calculated.

RANKVIS: Perform VisuShrink on the data, again taking only the time order into ac-
count, and follow by the grid transform.

For each of the four test functions, and for each of the time data sets, as well as for
each method, we calculated the average mean square error over 50 replications. The noise
was white noise with � = 0:35 and the time points samples of size 2048 from four Beta
distributions B(1,1) (identical with a uniform distribution), B(2,2), B(3,3) and B(4,4).

Obviously, the methods based on VisuShrink do not perform well. But that is not very
surprising, because the conservative threshold choice does not attempt to obtain a low MSE.
As described above, the main idea of VisuShrink is to produce “noise-free” reconstructions.

For all the signals except the Blocks signal, IRREGSURE always performs better than
RANKSURE. The simple IRREGVIS3 method also exhibits a small MSE which is in 5
cases even smaller than the MSE for IRREGSURE.

It is interesting that RANKSURE always attains the smallest MSE for the Blocks data.
As we pointed out above, wavelet decompositions of smooth functions that are sampled
on an irregular grid are usually not as economical as in the equally spaced setting, and
the poor performance of RANKSURE on the Heavisine data confirms this. However, for
the piecewise constant Blocks signal, samples on irregular grids have the same general
properties as those on a regular grid, and so it is not surprising that RANKSURE performs
well.
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6. ROBUST WAVELET REGRESSION

In this section we discuss the application of our method to the problem of nonparamet-
ric regression when some of the observations may be considered to be outliers or when
the noise follows a distribution with heavy tails. Donoho (1993) pointed out that standard
thresholding techniques do not work very well in this situation.

In the case of equally-spaced time points, we note two suggestions that have been made
for dealing with this problem. The approach of Bruce, Donoho, Gao and Martin (1994) is
based on an alternative discrete wavelet transform of the data. At each level, the sequence
Hcj+1 is preprocessed before the decimation step D0 is carried out to obtain cj . The algo-
rithm performs in O(n) and is included with the S+Wavelets toolkit that is available from
MathSoft. A related approach is due to Donoho and Yu (1997). They construct a nonlinear
multiresolution analysis based on a triadic grid, so that the present version of their method
is restricted to n = 3J data points for some integer J . The computational time required for
their method is O(n log3 n).

We propose a more direct approach that is more closely related to classical robustness
methods, and is equally applicable to regularly or irregularly spaced data. We identify out-
liers, remove them from the data, and apply wavelet thresholding to the remaining data
points. Of course, classical thresholding cannot be used in such an approach, because the
resulting data will no longer be equally spaced even if the original data were. However, our
procedure for irregularly-spaced data can be used, and this is illustrated within a particular
example.

Figure 7 shows data from a weather balloon. They were analysed previously by Davies
and Gather (1994) and are taken from a balloon which took measurements of radiation from
the sun. Unfortunately, it happened occasionally that the measurement device was cut off
from the sun causing large outlier patches. There are also individual outliers in the data.

The data are highly correlated and therefore for this analysis we decided to subsample
the data by working with every 20th data point only, reducing the sample size from 4984 to
250. When applied directly to these data, the method of Section 4.1, using the VisuShrink
threshold, produces ugly curves like the one shown in Figure 7. The curve exhibits sev-
eral high frequency phenomena due to outliers. These have survived even the use of the
VisuShrink threshold.

In order to try to remove the outliers and extreme observations, the following procedure
was carried out:

1. The variance of the data was estimated from the median absolute deviation of the
differences di = (yi+1 � yi)=2, giving the estimate �̂20 , say. This corresponds to the
usual variance estimation via a wavelet decomposition when the Haar basis is used.

In principle, wavelet bases of higher order could be used, but for these bases more
wavelet coefficients are contaminated by the outliers, because of the wider support of
the filters G and H.

2. For each data point the median over a small window was computed. The window
contained the point itself and its five left and right neighbors. If the difference between
data point and median was greater than 1:96 �̂0, the point was removed.



20 ARNE KOVAC, BERNARD W. SILVERMAN

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

Thresholding without outlier removing

Time

R
ad

ia
tio

n

FIGURE 7. Balloon data and a wavelet estimator with VisuShrink thresh-
olds applied to it. The data are taken from a weather balloon and describe
the radiation of the sun. The high frequency phenomena in the estimated
signal are due to outlier patches in the data which may be caused by a rope
which cut the measuring device from the direct sunlight. The wavelet basis
with four vanishing moments and extremal phase was used.

3. The thresholding algorithm of Section 4.1 was applied to the modified data set, now
taking into account the values of ti. At this stage, we used VisuShrink threshold

�j;k =
q
2 log(256)�̂j;k;

and a wavelet basis with four vanishing moments and extremal phase. The variances
of the wavelet coefficients �̂j;k were determined under the assumption that the non-
deleted data points were independent with variance �̂20 . Experiments showed that a
re-estimation of the variance from the cleaned data set will typically underestimate
the noise level, and so is not to be recommended.

The results can be seen in Figure 8. It is interesting to note that the abrupt changes in
slope in the curve are well modeled, but the spurious high frequency effects have been
removed. Note that all the calculations can be performed in O(n) operations.
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FIGURE 8. Balloon data with a robust wavelet estimator. The thresholding
techniques for unequally spaced data were applied to a data set from which
outliers had been removed by the procedure explained in the text.

7. HETEROSCEDASTIC AND CORRELATED DATA

7.1. Heteroscedastic data. A common problem in nonparametric regression arises when
the variance of the data is not constant. Intuitively one might want to adapt the smoothing
to remove the noise in regions where the variance is large, but retain as much structure of
the signal as possible where the amount of random variation is rather small. Provided we
can get some reasonable estimate of the local variance of the data, the methodology we
have developed will allow a wavelet thresholding method to be used; the variance calcula-
tion algorithm will determine appropriate factors to be used for adjusting the thresholds in
different parts of the wavelet table.

Rather than being completely prescriptive, we present a possible approach in the context
of an example. Figure 9 shows a data set that has been analyzed extensively in the field of
nonparametric regression. It consists of 133 observations of the acceleration of a motorcy-
clist’s head during a crash test. Because of the nature of the experiment, the observations
are not available at equally-spaced time points. When applied directly to these data, the
method of Section 4.1, using the VisuShrink threshold, a wavelet basis with six vanishing
moments and globally estimated variance, produces ugly curves like the one shown in Fig-
ure 9. The worst feature is of course the high frequency phenomena around time 0.5, which
has survived even the use of the VisuShrink threshold.
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FIGURE 9. Crash data with a wavelet estimator. The data were gathered
during a crash test and show the acceleration of a motorcyclist’s head. The
wavelet estimator was calculated with VisuShrink and a wavelet basis with
six vanishing moments. The variance was estimated globally.

Examination of the figure makes it clear that the variance is very small initially, but
increases very fast after the impact of the motorcycle and decreases again later. Silverman
(1985) used an iterative method based on smoothing the residuals from a weighted spline
smoothing to give estimates of the local variance and hence an improved estimate of the
whole curve. To give a noniterative wavelet-based method, a slightly different approach
was used. For each i = 1; : : : ; n � 1 the difference di = (yi+1 � yi)=

p
2 was calculated,

and ascribed to the point ri = (ti+1 + ti)=2. The estimated standard deviation �̂i of the
i-th data point was based on the median of the absolute values of di over a small window
of size 0:1:

�̂i = medfjdj j : jti � rj j � 0:1g=0:6745:

These values for the variances of the individual data were then plugged into the deriva-
tion of the initial covariance of the gridded data as described in Section 3. Using VisuShrink
noise-proportional thresholds now gives the result shown in Figure 10. Again a wavelet ba-
sis with six vanishing moments was used. It can be seen that the spurious high frequency
effects have been removed, that the initial part of the curve is no longer oversmoothed, and
that the damped oscillations towards the end of the time period are now visible. A compar-
ison with Figure 6 of Silverman (1985) is instructive; as one might hope, the ‘elbow’ near
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FIGURE 10. Crash data with wavelet estimator for heteroscedastic data,
constructed using local estimates of the variance of individual data points,
and VisuShrink noise-proportional thresholds. A wavelet basis with six
vanishing moments was used.

time 0.2 is better fitted by the wavelet method, and the wavelet method also avoids some of
the smoothing out of the overall minimum of the acceleration near time 0.35.

In the example we have presented, the individual variances had to be estimated from the
data themselves. Of course the basic methodology is equally applicable if the variances are
known, or can be estimated from external considerations.

7.2. Correlated data. Another obvious use of the algorithm we have set out is in the pro-
cessing of data with known covariance structure, whether stationary or nonstationary. To
provide a simple example of such data, we considered a segment of the synthetic ion chan-
nel gating data described in Johnstone and Silverman (1997). These data, due to Eisenberg
and Levis (see Eisenberg, 1994) are designed to represent the challenges posed by real ion
channel gating data. The true signal is a step function taking values 0 and 1, corresponding
to closings and openings of single membrane channels in cells. It should be stressed that
these are not simulated data in the usual statistical sense, but are synthetic data carefully
constructed by practitioners with direct experience of the collection and analysis of real
data.
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For data of this kind, it is reasonable to suppose that the variance structure is stationary
and known; in constructing their synthetic data, Eisenberg and Levis used known proper-
ties of laboratory data and of the instrumentation used for filtering these data in practice.
Working from a very long ‘noise’ sequence provided by the authors, we estimated the noise
variance to be 0:8 and the autocorrelations to be 0:31, �0:36, �0:26, �0:08 at lags 1 to 4

respectively, and zero for larger lags. A section of the original data is plotted in Figure 4 of
Johnstone and Silverman (1997); the standard deviation of the noise is nearly 1; and it is
difficult to detect the changes in overall level by eye.

The segment of the first 2048 data values was examined in more detail. The wavelet
transform of the data was thresholded using VisuShrink noise-proportional thresholds at
levels 7 and above. The Daubechies extremal phase wavelet of order 6 was used. As a final
step, the estimated function was rounded to the nearest integer, which was always 0 or 1: In
Figure 11 we show the ‘true’ signal and the signal estimated by this procedure. The number
of discrepancies between the true signal and the estimate is 54 out of 2048; a 2:6% error
rate which is far better than any performance obtained by Johnstone and Silverman (1997)
for a standard wavelet transform. It is also interesting to note that the pattern of transitions
between 0 and 1 is well estimated; the only effects that are missed are three sojourns in
state 0; each of length 2:

Johnstone and Silverman (1997) obtained considerable improvements by the use of a
translation-invariant method (see Coifman and Donoho, 1995, or Nason and Silverman,
1995). This essentially constructs estimates for every position of the wavelet grid, and then
averages. We have not, in this work, considered translation-invariant transforms in any de-
tail, but for this case we tried a translation-invariant prescription using periodic boundary
conditions, a primary resolution level of 7, and thresholds proportional to standard devi-
ation. If the VisuShrink constant of proportionality is used, the results are not as good as
in the simple wavelet transform case. However if these thresholds are divided by 2, the
misclassification rate improves to 47 out of 2048, which actually surpasses Johnstone and
Silverman’s error rate, but only by a small margin. It is interesting that a smaller threshold
is desirable; this is because of the smoothing effect of the averaging step in the recovery
part of the translation-invariant procedure.

8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this paper we have set out an algorithm for finding the variances and within-level
covariances of the wavelet transform starting from a rather general covariance structure.
Several possible applications of this method have been considered, but obviously there are
many avenues that we have not explored.

For example, generalized linear models (GLIMs) (Nelder and Wedderburn, 1972; Mc-
Cullagh and Nelder, 1989) have been one of the major advances in statistical methodology
of the last 25 years. Nonparametric smoothing ideas can be incorporated into the GLIM
framework by assuming one or more of the dependences on the covariates to be a curve
rather than simply linear. For a detailed synthesis of work in this area, and further exten-
sions, see Chapter 5 and 6 of Green and Silverman (1994). It is explained there how to fit
nonparametric GLIMs by solving a sequence of weighted regression problems, each having
the same structure as a standard nonparametric regression problem with unequal variances.
Because the GLIM fitting is posed as a maximum likelihood problem, it is very natural to
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FIGURE 11. Upper panel: The ‘true’ signal synthesized by Eisenberg and
Levis, plotted for time points 1 to 2048. Lower panel: Estimate obtained
by noise- proportional thresholding at levels 7 and above, as described in
the text.

use a penalized likelihood approach, typically using a quadratic penalty such as integrated
squared second derivative. The algorithm we have set out in this paper allows the possibility
of using a wavelet curve estimate at each stage instead; this would allow for the fitting of
dependences whose behavior had inhomogeneous smoothness properties. Because of the
nonlinear nature of the wavelet smoothing, there may be problems with the convergence of
this iteration, and the practical and theoretical investigation of this convergence is left as a
subject for future research.

In this paper, we have considered a range of ideas including irregular data, nonstationary
dependence, correlated data and robust methods. For the most part, these have been consid-
ered separately from one another, but another area of investigation is a synthesis between
them. Conceptually, it is fairly obvious how one would proceed, but the combination of the
different aspects may well need care in practice.

In our application of the algorithm we have almost entirely concentrated on the variances
of the individual wavelet coefficients, while the algorithm itself also yields a great deal of
information about covariance. Even though the wavelet transform often has a decorrelating



26 ARNE KOVAC, BERNARD W. SILVERMAN

effect (see, for example, Johnstone and Silverman, 1997, Section 2.2) it would be interest-
ing to devise ways of processing the coefficients in a way that makes use of our knowledge
of their correlation structure. This may well be more burdensome computationally, but
would possibly produce more accurate statistical estimates.

Finally, we have concentrated on the one-dimensional case, but wavelets are of growing
importance in the analysis of image data. The basic principles of our method can be easily
extended to deal with two-dimensional wavelet transforms of data showing short-range
correlation. Of course, the operational details are likely to depend on the specific field of
application, but the need for efficient algorithms is likely to be even more crucial than in
the one-dimensional case.
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