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Abstract

We consider empirical autocorrelations of residuals from in�nite

variance autoregressive processes. Unlike the �nite-variance case, it

emerges that the limiting distribution, after suitable normalization,

is not always more concentrated around zero when residuals rather

than true innovations are employed.

1 Introduction and summary

In the context of standard ARMA-models

yt � �1yt�1 � � � � � �pyt�p = �t + �1�t�1 + � � �+ �q�t�q (t = 1; . . . ; n) (1)

it is common practice to check the residuals �̂t from the �tted process for

possible remaining autocorrelation. If the �t's are iid(0; �
2) (which in particular

implies a �nite variance) it is well known from Box and Pierce (1970) that the

standardized empirical autocorrelations have a limiting normal distribution

with mean zero, i.e.

p
n �̂i :=

p
n

n

t=i+1 �̂t�̂t�i
n

t=1
�̂
2
t

d! N (0; ci) ; (2)
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where `
d!' denotes convergence in distribution, the only complication being

that the variance ci of this limiting distribution depends on the �'s and �'s

from (1).

Given an increasing number of applications where ARMA-models are �tted to

data the variance of which is very much in doubt, there appears to be some

interest in generalizing such results to processes of the type (1) with in�nite-

variance innovations �t. While the correlation theory of the yt's themselves is

in this context rather well developed (Davis and Resnick 1986; Kr�amer and

Runde 1991; Brockwell and Davis 1991, chapter 13; Runde 1997), an extension

of standard limit results to the empirical autocorrelations of the �tted residuals

is still missing.

Similar to the standard case, it is easily seen that the limiting distributions of

empirical autocorrelations for true innovations and �tted innovations are not

identical; rather, one has to adjust the former by some scaling factor which

again depends on the parameters in (1), and the present paper shows for some

special cases how this adjustment can be done. It emerges that, at least for

the cases we consider here, the residual-based limiting distribution can be both

more concentrated around zero, as well as more spread out, so the application

of the critical values appropriate for true disturbances does no longer induce

a conservative test as is the case with �nite variance innovations.

2



2 Residual autocorrelations in the standard

case

To better appreciate the intricacies of in�nite variance innovations, it is helpful

to consider �rst the standard case. Let the �̂t's be given by

yt � �̂1yt�1 � � � � � �̂pyt�p = �̂t + �̂1�̂t�1 + � � �+ �̂q�̂t�q ; (3)

where the �̂i and �̂j are the ML-estimates or some other consistent estimates

for the �'s and �'s. Although, by assumption, the �t's are iid(0; �2), the �̂t's

are not. Following Brockwell and Davis (1991, p. 481), let

~�(z) = �(z)�(z) = 1 � ~�1z � � � � � ~�p+qz
p+q

; (4)

where �(z) = 1 � �1z � � � � � �pz
p and �(z) = 1 + �1z + � � �+ �qz

q, and let

a(z) =
1

~�(z)
=

1

j=0

ajz
j
: (5)

Set aj = 0 for j < 0, and set

Th = [ai�j]1�i�h;1�j�p+q
; (6)

� =

1

k=0

akak+ji�jj

p+q

i;j=1

and (7)

Q = Th�
�1
p+qTh = [qij]

h

i;j=1
: (8)

Then the h� 1-vector
p
n �̂ :=

p
n (�̂1; . . . ; �̂h)' is asymptotically multivariate

normal if model (1) is correct (Box and Pierce 1970):

p
n �̂

d! N (0; Ih �Q) : (9)
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This compares with
p
n�̂

d! N (0; Ih) for the case where true innovations are

used in (2). Since Q is positive semide�nite, one therefore obtains a conserva-

tive test when ignoring the fact that �tted rather than true innovations have

been used.

For the important special case of a stationary AR(1) process where p = 1 and

q = 0, i.e. yt = �yt�1+ �t, where we are in addition only interested in the �rst-

order serial correlation of the �t's, we have under H0 that a(z) =
1
j=0 �

j
z
j,

Th = 1, � = 1
1��2 , Q = 1 � �2, and

p
n �̂1

d! N (0; �2) ; (10)

so the variance of the limiting distribution of
p
n�̂1 becomes rather small as

j�j ! 0. (Note that the statement to the opposite in Brockwell and Davis

(1991, p. 219, �gure 9.17) is wrong.)

As we will focus mainly on this AR(1)-model below, it is instructive to derive

the limiting relationship in (10) more directly, to highlight the pivotal steps in

the proof where the conventional reasoning breaks down with in�nite variance

innovations. Estimating � by �̂ = (
n

t=2 ytyt�1)=(
n

t=2 y
2
t�1) we have

�̂t = yt � �̂yt�1 = yt � �yt�1 � (�̂� �)yt�1 = �t � (�̂� �)yt�1 ; (11)

so

�̂t�̂t�1 = �t�t�1 � (�̂� �)yt�1�t�1 � (�̂� �)�tyt�2 + (�̂� �)2yt�1yt�2 (12)

and

p
n �̂1 =

p
n

n

t=2 �̂t�̂t�1
n

t=1 �̂
2
t
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=

1p
n

n

t=2 �t�t�1 �
p
n(�̂� �) 1

n

n

t=2 �
2
t�1 + op(1)

1
n

n

t=1 �̂
2
t

: (13)

Since 1
n

n

t=1 �̂
2
t

p! �
2, we focus on the numerator from now on. Ignoring terms

that are op(1) and using

�̂� � =

n

t=2 yt�1�t
n

t=2 y
2
t�1

;

this numerator can be rewritten as

1
p
n

n

t=2

�t�t�1 �
1
p
n

n

t=2

�tyt�1

1
n

n

j=2
�
2
j�1

1
n

n

j=2 y
2
j�1

; (14)

where the ratio of the sums of squares tends to 1� �
2 in probability. We can

thus further simplify the numerator to

1
p
n

n

t=2

�t(�t�1 � (1� �
2)yt�1) + op(1) ; (15)

which is a normalized sum of a martingale di�erence sequence with variance

�
4
�
2, so by standard limit results from e.g. Hall and Heyde (1982, chap. 3.2)

p
n �̂1 =

1

�2

1
p
n

n

t=2

�t(�t�1 � (1� �
2)yt�1) + op(1)

d! N (0; �2) : (16)

When the �t's have in�nite variance this line of reasoning breaks down. It is

easily seen that, apart from a di�erent scaling factor, eq. (15) still obtains,

but there the analogies end: The terms in the sum, though still a martingale

di�erence sequence, have no �nite variances due to the in�nite variances of the

�t's, and conventional limit theory does not apply.
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3 First order residual autocorrelation with

in�nite variance innovations

Consider now the case where the �'s are iid with

x
�P(�t > x) ! pc as x!1 (17)

x
�P(�t � �x) ! qc as x!1 ;

where 1 < � < 2 and 0 � p = 1�q � 1. This class of random variables includes

the stable distributions as a special case, which in the wake of Mandelbrot

(1963) and Fama (1965) are often proposed as models for returns of speculative

assets (see Mittnik and Rachev 1994 for a survey). It is easily checked that

� < 2 excludes a �nite variance; in addition, we con�ne ourselves to the

empirically most important case � > 1 where the expectation does exist.

Given iid innovations of the type (17), the unique stationary solution of the

ARMA-equation (1) is given by

yt :=

1

i=0

 i�t�i ; (18)

where the  's are from

�(z)

�(z)
=

1

j=0

 jz
j
: (19)

Under the usual stationarity conditions, we have j jj < 1, so (18) exists

and gives a well de�ned strictly stationary process which solves equation (1).

While autocorrelations of this process do not exist, it is still possible to de�ne

an analogue to the standard autocorrelation function, i.e.


i :=

1
j=0

 j j+i

1
j=0  

2
j

(i = 1; 2; . . .) ; (20)
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and to estimate these pseudo-autocorrelations by their empirical counterparts


̂i :=

n

j=i+1 yjyj�i
n

j=1
y
2
j

: (21)

With �nite variance innovations,
p
n (
̂i�
i)

d! N (0; 1), but with innovations

as in (17), both the scaling factor and the limiting distribution di�er (Davis

and Resnick 1986; Kr�amer and Runde 1991). For symmetric innovations, we

have

n

ln(n)

1=�

(
̂i � 
i)
d!

1

j=1

j
i+j + 
i�j � 2
i
j j�
1=�

S(�)

S(�=2)
; (22)

where S(�) and S(�=2) are independent stable random variables with charac-

teristic functions

E(eiuS(�)) = e��(1��) cos(��=2)juj
�

(23)

and

E(eiuS(�=2)) = e��(1��=2) cos(��=4)juj
�=2(1�isign(u) tan(��=4))

; (24)

respectively (see also Davis and Resnick 1992, p. 539). This limiting distri-

bution is not normal, and depends on � (but not on other parameters of the

disturbance distribution, as we have assumed symmetry, and the dispersion c

from (17) cancels out. We therefore set without loss of generality c = 1 below).

Also, from the form of the scaling factor, we see that 
̂i converges to the true


 faster than in the standard case.

The present paper is concerned with the �'s rather than the y's. Using true

innovations, and de�ning �̂i = (
n

j=i+1 �j�j�i)=(
n

j=1 �
2
j) similar to (21), the

limiting relationship (22) simpli�es to

n

ln(n)

1=�

�̂i
d!

S(�)

S(�=2)
; (25)
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where S(�) and S(�=2) have characteristic functions as in (23) and (24). Ho-

wever, using �tted residuals �̂t in place of true innovations �t, this need not

and in general will not hold. We consider here the special case where the y's

are stationary AR(1) and where only the �rst order empirical autocorrelation

is considered. As above, we estimate � by �̂ = (
n

t=2 ytyt�1)=(
n

t=2 y
2
t�1).

Replicating (11) and (12), it is easily checked that

n

ln(n)

1=�

�̂1 =
n

ln(n)

1=� n

t=2
�̂t�̂t�1

n

t=1 �̂
2
t

=

1
n ln(n)

1=�
n

t=2
�t�t�1 � (�̂� �) n

t=2
�
2
t�1

1
n

2=� n

t=1 �
2
t

+ op(1) : (26)

Using �̂� � = (
n

t=2 �tyt�1)=(
n

t=2 y
2
t�1) and

n

t=1 �
2
t

n

t=2 y
2
t

p! 1� �
2 (27)

(this latter relationship carries over to stationary in�nite variance AR(1)-

processes; see Davis and Resnick 1986), we obtain

n

ln(n)

1=�

�̂1 =

1
n ln(n)

1

�

[
n

t=2 �t�t�1 � (1� �
2)

n

t=2 �tyt�1]

1
n

2=� n

t=1 �
2
t

+op(1)(28)

where the denominator tends in distribution to S(�=2). As to the numerator,

we have from

yt = �t + ��t�1 + �
2
�t�2 + � � �

that

1

n ln(n)

1=� n

t=2

�t�t�1 � (1� �
2)

n

t=2

�tyt�1
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=
1

n ln(n)

1=�

�
2

n

t=2

�t�t�1 � (1 � �
2)�

n

t=3

�t�t�2

� (1 � �
2)�2

n

t=4

�t�t�3 � � � �

=
1

n ln(n)

1=�

�
2

n

t=2

�t�t�1 � (1 � �
2)

1

j=1

�
j

n

t=j+2

�t�t�j�1 ; (29)

where �2
n

t=2 �t�t�1 and the individual terms in the in�nite sum tend in distri-

bution to independent symmetric stable random variables (independent among

each other and from S(�=2)), with distributions �2S0(�), (1 � �
2)�S1(�),

(1� �
2)�2S2(�), . . .. Therefore, the numerator tends in distribution to

�
2
S0(�) + (1 � �

2)

1

j=1

�
j
Sj(�)

d
= �

2� + (1 � �
2)�

1

j=1

(��)j
1=�

S(�)

d
= �

2� + (1� �
2)�

�
�

1 � ��

1=�

S(�) ; (30)

where '
d
=' denotes equality in distribution. Since the denominator tends in

distribution to S(�=2), we therefore have

n

ln(n)

1=�

�̂1
d! �

2� + (1 � �2)�
�
�

1� ��

1=�
S(�)

S(�=2)
: (31)

The scaling factor

�(�; �) := �
2� + (1� �

2)�
�
�

1 � ��

1=�

(32)
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in front of S(�)=S(�=2) reduces to � when � = 2 and is thus always smaller

than 1 when the disturbance variance is �nite. For � < 2, however, and �! 1,

this factor can be larger than 1 as shown in �gure 1. Therefore, the limiting

distribution of the empirical �rst order autocorrelation of the residuals need

no longer be more concentrated around zero when estimated rather than true

residuals are used.

Figure 1: The scaling factor �(�; �)

Table 1, adapted from Kr�amer and Runde (1996) gives selected quantiles of the

limiting distribution (31). It is seen that these critical values are monotonely

increasing in both � and �, so the limiting distribution (31) is spreading out

as � and � are increasing.
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Table 1: Selected critical values of the limiting distribution (31)

� = 0:3 � = 0:6 � = 0:9

1� # 1� # 1� #

� 0.950 0.975 0.995 0.950 0.975 0.995 0.950 0.975 0.995

1.1 0.643 0.664 0.754 1.671 1.726 1.961 2.924 3.020 3.431
1.3 0.799 0.865 1.097 1.906 2.063 2.617 2.997 3.245 4.116
1.5 1.057 1.158 1.361 2.364 2.589 3.043 3.544 3.882 4.563
1.7 1.441 1.602 1.952 3.062 3.403 4.146 4.530 5.035 6.135
1.9 2.044 2.295 2.880 4.164 4.676 5.866 6.201 6.962 8.735

4 Finite sample behaviour

Figure 2 compares �nite sample densities of ( n

ln(n)
)1=��̂1 to the density of the

limiting distribution derived in (31) when the innovations of the AR(1)-process

are independent symmetric stable random variables with location parameter

0, scale parameter 1 and characteristic exponent �. The stable variates were

generated along the lines of Chambers et al. 1976, and �nite sample densities

were estimated by Monte Carlo, using 2000 replications, and by then applying

a non-parametric kernel estimate with a biweight-kernel and a bandwidth of

0.5 (for details see e.g. Silverman 1986).

The �gure shows that even for samples as large as n = 1000, the asymptotic

distribution is far away from the �nite sample distribution. This is con�rmed

by table 2, which gives empirical rejection rates for various �, �, n and sig-

ni�cance levels #, again computed from 2000 runs. It shows that upper tail

probabilities in �nite samples are not well approximated by the asymptotic

distribution: for � close to 1, the asymptotic distribution understates the true

�nite sample rejection probabilities, for � ! 2, the asymptotic distribution
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overstates the true �nite sample rejection probabilities, sometimes by wide

margins, and these discrepancies persist for samples as large as n = 1000.

Figure 2: Finite sample and limiting densities of �rst order residual

autocorrelations

a) � = 1:1, � = 0:3

b) � = 1:9, � = 0:3
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c) � = 1:1, � = 0:9

d) � = 1:9, � = 0:9
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Table 2: Empirical rejection probabilities for �nite samples

� = 0:3 � = 0:6 � = 0:9

# # #

� 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

n = 100

1.1 0.155 0.121 0.070 0.131 0.110 0.087 0.124 0.098 0.072
1.3 0.132 0.097 0.042 0.124 0.083 0.055 0.119 0.079 0.048
1.5 0.021 0.012 0.002 0.028 0.019 0.003 0.041 0.027 0.004
1.7 0.001 0.000 0.000 0.002 0.000 0.000 0.003 0.002 0.001
1.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n = 1000

1.1 0.123 0.091 0.060 0.121 0.082 0.053 0.118 0.073 0.048
1.3 0.121 0.082 0.044 0.117 0.065 0.035 0.114 0.060 0.026
1.5 0.038 0.027 0.005 0.046 0.033 0.006 0.052 0.041 0.007
1.7 0.007 0.005 0.002 0.008 0.007 0.004 0.009 0.007 0.006
1.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 Conclusion

Using estimated rather than true residuals in diagnostic checking is not an

innocuous procedure; the distribution of empirical residual autocorrelations is

markedly a�ected by this substitution. While the e�ect of this substitution is

always conservative with �nite variance innovations, it cuts both ways when the

disturbance variance does not exist. In addition, the asymptotic distribution

of the �rst order empirical autocorrelation coe�cient is a poor guide to in

behaviour in �nite samples.
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