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Summary: We consider Pitman-closeness to evaluate the performance of forecasting
methods. Optimal weights for the combination of forecasts are calculated with respect to this
criterion. We show that these weights depend on the assumption on the distribution of the
forcast errors. In the normal case they are identical with the optimal weights with respect to

the MSE-criterion.
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1. Introduction

In forecasting theory there are many measures to evaluate the performance of different
forecasting methods, e. g. mean square error (MSE), mean absolute deviation (MAD),
turning points or Theil’s U. Especially the MSE is one of the most popular measures in
practical and theoretical investigations. Regarding the combination of forecasts, optimal
weights are proposed relative to the MSE-criterion, e. g. Bates and Granger (1969). These
weights depend on the variance and the structure of the covariances between the forecast
errors.

In this article, another quality measure which is known as Pitman-closeness will be analysed.
Pitman’s measure of closeness (Pitman 1937) was introduced in 1937 and has often been
discussed since the beginning of the 80s (in particular Keating et al. 1993). Pitman-closeness
is defined to compare two estimators. We calculate the probability that the absolute value of

the difference between the first estimator and the fixed, unknown parameter of interest, is



smaller than that of the second estimator. Thus, the critical point of a subjective choice of the
loss function like in the MSE-criterion is not that much important.

We also considered the application of Pitman-closeness in the context of combination of
forecasts. A problem is that an assumption on the distribution of the forecast errors is needed,
but this is not very popular. Compared to the MSE-criterion this criterion is more restrictive
and the ranking of different forecasting methods depends on this assumption. When the errors
are normally distributed, the Pitman-closeness is equivalent to the MSE-criterion. Thus, the
combination with the smallest error variance is also the Pitman-closest-combination. For
another model with rectangular distributed errors it will be shown that the optimal weights

with respect to the MSE-criterion are no more optimal if we consider Pitman-closeness.

2. Pitman-closeness to evaluate forecasting methods

We will start with the definition of Pitman-closeness for the comparison of two estimators.

Definition 2.1. Let él and éz be two estimators for an unknown parameter 6€ ® of an
underlying distribution, where ® denotes the parameter space. Then él is Pitman-closer (with
respect to 0 ) than éz if and only if

P, ~6|<[6, ~¢)205 vece

with strict inequality for at least one 0 ©.

To generalize Definition 2.1. we can use a loss function L(:,0) without any restriction.
Definition 2.1. is a special case of symmetric loss functions L(x,0) which are strictly

decreasing for x<0 and strictly increasing for x>0.

The above definition characterizes a best estimator in a class S of estimators for a parameter

0e O as follows.

Definition 2.2. An estimator 6" €S is called Pitman-closest-estimator in S with respect to the

parameter 6€ © if and only if V6 e S, 0 %6’
p(p° -6/ <p-6)205 voco

with strict inequality for at least one 6€ ©.



In the following text the idea of Pitman-closeness will be applied to the combination of
forecasts. Note that the parameter to be estimated in estimation theory is an unknown but
fixed value, whereas in forecasting theory the value to be forecasted (estimated) is random. In

the latter case we are interested in the problem if a certain forecast is Pitman-closer than

another.

Let

E, ,i=1,2 be two forecasts for Y, (t: time) with Y, =F, +e,,
e, ,1=1,2 be the corresponding forecast errors.

Definition 2.3. Let Y, be the variable to be forecasted and F, und E,; two forecasts. Then the

forecast K, is called Pitman-closer (with respect to Y,) than F, if and only if

P(]Y, -F,|<|Y, -F,|)> 0.5,
which is equivalent to

P(le | <les])>0.5 .

Thus we say F,, is Pitman-closer than F, if it is more probable that the forecast F;, has a
smaller absolute forecast error than F,. This seems to be a plausible criterion for the

comparison of forecasts. But how can this be optimized?

Definition 2.4. Let F~ be a forecast in a class 3 of forecasts for a variable Y,. Then F is
called Pitman-closest-forecast in 3 if and only if

i

Y -F|<[y, _H)>0.5 VFe S, F£F",

which is the same as

Plleg|<[er])>05 VFe S F=F,

where e .:=Y, —F and e.:=Y —F.

According to Definition 2.4., we have to make assumptions concerning the distributions of the
errors in order to calculate the Pitman-closeness probability but this is very restrictive. This is
a disadvantage to the MSE-criterion, which requires only the assumption of errors with zero

mean and positive definite covariance matrix.



The next section considers the combination of forecasts where a new forecast is calculated as
a weighted sum of given forecasts. The comparison of two individual forecasts can be
achieved by assigning one for the weight of the special forecast and zero for the weights of all

other forecasts.

3. Pitman-closeness and combined forecasts

Let 3*={F,,....E, } be aclass of unbiased forecasts for Y,, that is,

E(F)=E(Y), i=1,...,n,

e, =Y, —E,e=(e,,..e,) , E(e)=0.

Further let W ={w: w=(w,,..,w,_), Zwi =1} be the set of possible vectors of weights, so
i=1

that a combined forecast is also unbiased and 3 ={w’V, we W and V =(F,....,.F,,)’} denotes

the set of all these combinations.

3.1. Normally distributed errors

Assumption: e ~ N _(0,X)

Theorem 3.1. Let F, =a’V and F, =b’V , F ,F, €3, a#b. Then F, is Pitman-closer (with

respect to Y, ) than F if and only if

2 2
G, <0, ,

where 62:=Var(a’e)=a’Xa and 6;:= Var(b’e) = b’Xb.

Proof: Fountain (1991), Fountain and Keating (1994) and Fountain et al. (1993) considered
Pitman-closeness and linear estimators. Hence, most of the reasonings in the proof can be

used in the sense of linear combinations of forecasts.

F, is Pitman-closer (with respect to Y,) than F, means

P(Y, - F,

<|Y, - F,|)>05
& P, +...+a,)Y, —a,F, —...—a,F,|<|(b, +..+b,)Y, ~b,F, —...=b,E,[)> 0.5

= P(|aleh+...+anem|<|blelt+...+b e |)>0.5

n>nt

= P( b’e

<

a’e )>05 < P((a’e)2 <(be)’ ) > 05




= P(e’aa’e < e’bb’e) >05 & P(e’(aa’—bb ’)e < O) >05

& PlET " (aa=bb)E* T % )> 0.5 (1)

Let

C:=X"’(aa-bb’)L"°. Then using spectral decomposition we get

C=A,v,V,*A,v,v, ", where A, ,A,,v,,v, are eigenvalues and eigenvectors of C and

ol =l e+ dfle - d]
1,2 2

, (A,>0,A,<0), where c=Y"aandd:=x%b. This

result is described in a short form in Fountain and Keating (1994). For a detailed calculation
of the eigenvalues and eigenvectors see Fountain (1991), where the matrix C=aa’-bb’ (here

C=cc’-dd’) is used, but this leads to the same conclusions. Then,

equation (1) holds & P(?\.IC’Z_O'SVIV] T %+ A, "y, v, T e < O)> 0.5 .

With X,;:=e’L v, =v,’2 e and X,:=e’X *v, =v, X e this is equivalent to
X; A A, X, [ A
POLX; +4,X;<0)>05 & P+<-—2)>05 & P(— -2 <—1L< [--2)>05. (2
(A X +4,X5 <0) (X§ 7¥1) ( X, %1) (2)

From the definitions of X, and X, the following holds.
E(X,)=v,’2E(e)=0, Var(X,)=v,’ 22X v, =v v, =1 and
Cov(X,,X,)=v, T X "y, =v,v,=0.

The random variables X, and X, are N(0,1) distributed with zero covariance.

This implies that % ~ Cauchy(0,1) .
2

Equation (2) can be written as

l+larctan _7u_2 - l+arctan — _7»_2 >0.5
2 n A 2 A

=S 2arctan —£>05 & arctan —&>E
T A, A, 4

A
& —yE>1e|ef +d +e+dlfe~dl> e ~[df" +[e +dlle~d]

& [d > e bE¥E¥b>a’t¥r%a & o) >o!



Hence the combination with vector “a” is better than that with vector “b” if and only if the

variance of its forecast error is smaller. Therefore, an optimal forecast in the class 3 is given
by a vector “a” of weights which minimizes ..

Now we will present a general method for constructing an optimal combination.

Theorem 3.2. The optimal combination of forecasts in the class 3, called Pitman-closest-
forecast in 3, is given by

F=a"V

where

and 1=(1,...,1)’ is a n dimensional vector.

This theorem holds without a proof because the minimization of the combined error variance
is similar to the minimization problem of the MSE-criterion, which is comprehensively
discussed in the literature.

The following example presents some results for the comparison of forecasts with normally

distributed errors. The calculations are made for a set 3* of two individual forecasts.

Example: In addition to the covariance structure of the next chapter we are using covariance

matrices of the following form:

z? 1

— —oz
y=| 3 9

1 1 ’

_az —

9 3

where o [—1,1] and z>0.

The Pitman-closest-combination (which is equal to the optimal MSE-combination) is
compared for different a‘s and z‘s with both of the individual forecasts and their arithmetic
mean. The Pitman-closeness probabilities, showing that the Pitman-closest-combination

performs better than a given forecast are summarized in the table below:



Table 1:

P(Y, -E.|<|Y,~F)|)
arithmetic mean first individual forecast second individual forecast
(b=(0.5, 0.5)) (b=(1,0)*) (b=(0, 1))
o 7=2 7=3 7=4 z=1 7=2 7=3 7= z=1 7=2 z=3 z=4

—1 ]0.6205 | 0.6959 | 0.7491 | 0.6959 | 0.7837 | 0.8361 | 0.8694 | 0.6959 | 0.6325 | 0.6082 | 0.5955

—0.5(0.6157|0.6892 | 0.7419 | 0.6700 | 0.765 | 0.8227|0.8593 | 0.6700 | 0.6038 | 0.5790 | 0.5883

0 10.6142|0.6871 |0.7397|0.6476 | 0.75 |0.8128|0.8524 [ 0.6476 | 0.578 |0.5526 | 0.5396

0.5 [0.6157]0.6892 | 0.7419 | 0.6273 | 0.7384 | 0.8065 | 0.8483 | 0.6273 | 0.5533 | 0.5268 | 0.5134

1 ]0.6205|0.6959 | 0.7491 | 0.6082 | 0.7304 | 0.8041 | 0.8488 | 0.6082 | 0.5281 | **** 10.5141

For the arithmetic mean, when z=1 and for the second individual forecast, when o=1 and z=3,
the probabilities are missing. In these cases the optimal combinations result in the special
individual and the arithmetic mean forecast and thus, since they are identical with the
competing forecasts, no comparison is made. The table documents the performance of
Pitman-closest-combinations. An interesting contrast is that larger probabilities are attained

under the comparison of the optimal combination with forecasts that have larger variance.

3.2. Rectangular distributed errors

If the errors are not normally distributed, the calculation of the Pitman-closeness probability is
very difficult. Thus a simulation study for rectangular distributed errors is performed. At first,
the case of the combination of two forecasts will be considered.

Then e = (e,e,,)’, where e;~Rpgk gk1, €2~Rpkk, 2,k>0 .

Remark: For the above case we only need to consider the distributions in a special proportion.

If XiN’R[fzi,z,-]’ then Yidei~R[7dZi’dZi], i=1,2 , d>0. Using this the Pitman-closeness

probability is given by PQalY1 + a2Y2| < |b1Y1 + b2Y2|) where ay, a,, by, b, are constants. This is
equivalent to
P(a,dX; +a,dX,| <[b,dX, +b,dX,|)=P(a, X, +2,X,| <[b,X, +b,X,]).

The Pitman-closeness probabilty for the comparison of two different combinations of Y, and
Y, is the same as the probability for the comparison of the same combination of X, and X.,.

This result obviously also holds for variables that do not have the rectangular distribution.



For the joint distribution of the errors a Farlie-Gumbel-Morgenstern-distribution

hyo(x1,%2):=h;(x;) hy(x,)[1+0o(1-H;(x,))(1-Hx(x,))]

is proposed, where h, and h, are the density functions and H, and H, are the distribution
functions of the rectangular distributed errors, and ae€[—1,1] measures the dependence
between the errors.

Now consider the variances and covariances of the errors. Since the errors are rectangular

distributed we have

2
Var(e,,) =g?k2 , Var(e,,) =§k2 .

The covariance of two random variables which are common FGM-distributed can easily be
calculated as it is described in Schucany et al. (1978), using

Cov(e,e,,) = 09,9, ,
where §, = jx[ij(x) ~1lh;(x)dx ,j=12.

Here it holds that
1 1
0, =—gk and &, =—k,
1 3g 2773

which implies Cov(eh,eh)=éocgk2 , Corr(emezt)=%0‘ .

To get a well defined density function we require ae[—1,1]. We can see that the absolute
value of the correlation coefficient is smaller than 1/3. Consequently, the FGM-model is valid
only for “small” correlations between the forecast errors; nevertheless we get some interesting

conclusions.

3.2.1. Description of the simulation study

e The simulation was performed for different proportions between rectangular distributions
(e.g. g=1,2).

e For given proportions the covariance matrices of the forecast errors and through this the
optimal weights with respect to the MSE-criterion were calculated (for o=—1, —0.7. —0.5,
-0.3,0,0.3,0.5,0.7, 1).

¢ Then for weights a, and a,=1-a, the  Pitman-closeness  probability

PQalelt + a262t| < |b1elt + b2e2t|) is calculated, where b, and b, are defined as fixed optimal

MSE-weights and a, was varied.



e Because the optimal combination of forecasts with respect to the MSE can be
outperformed under Pitman-closeness we searched the optimal weights with respect to

Pitman-closeness for different o.‘s.

3.2.2. Interpretation of the simulation

First, the simulation results for the case g=2 will be adressed. The results for other choices of
g are similar. The following three figures show the Pitman-closeness probabilities plotted
against the weights a,e [-0.1, 0.3] for the forecast with larger variance.

Figure A shows the probabilities for o=0.7 and the optimal MSE-weight b,=0.13115. In
Figures B and C the values for a=—0.7 and o=0 with the optimal MSE-weights b,=0.24719

and b,=0.2 are given, respectively.
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Figure B: o=—0.7

0.55
1

0.50

prob
0.45
1

0.40
1
+

0.35
1
+

-0.1 0.0 0.1 02 0.3



Figure C: 0=0
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For 0=0.7 the optimal MSE-weight b, can be outperformed in the interval [X,, b;). The same
conclusions can be made for other positive values of o. Therefore, we have to look for the
optimal Pitman-closeness weight in this interval.

For o=—0.7 the optimal MSE-weight is outperformed in an interval (b,,y,], which happens
whenever  is negative.

For 0=0 the optimal MSE-weight is also the optimal Pitman-closeness weight.

The following figure shows the optimal weights for the forecast with larger variance of the

two evaluation criteria and verifies the results given above.

Figure D: Optimal weights (g=2)
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For negative values of o the optimal weights of Pitman-closeness exceed the optimal weights
of the MSE-criterion, whereas for positive o‘s the optimal weights of the MSE-criterion
exceed the optimal weights of Pitman-closeness. If the absolute value of o gets larger, then
the discrepancy between the optimal weights of the criteria increases.

For other g>1 we can draw the same conclusions as before. The comparison of the optimal

weights of the two criteria for other g values is shown in the following figures. The exact

values are presented in Table 2 (Appendix).

Figure E: Optimal weights (g=3)
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Figure F: Optimal weights (g=4)
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It is obvious that the structure in the graphs remains the same for different values of g. For
g=1, which implies that the errors are identically distributed, the two forecasts will be
weighted with 0.5 independent of o. Finally, we can say that in the case of positively
correlated errors the Pitman-closeness weight for the forecast with larger variance is smaller

and in the case of negatively correlated errors larger than the MSE-weight for an optimal

combination.

3.2.3. Combination of three forecasts with rectangular distributed errors
Similar to the study of the combination of two forecasts, some results for the combination of

three forecasts are calculated. Using the same notation as above the Farlie-Gumbel-

Morgenstern-density is given by

hy23(X1,X2,X3):=hy (X)) ha(X5) ha(X3)[1+06,(1-H(x1)) (1-Ha(X,))+ous(1-H, (X)) (1-Hs(X3))
+003(1-H,(x,)) (1=Ha(x3))+0t23(1-H; (X)) (1-Ha(x2))(1-H;(x3)) | .

H; and h; denote distribution and density function of the third error respectively. The o‘s must
be chosen in such a way that h,»; is a well defined density function. Integrating out one of the
variables, results in a two dimensional FGM-distribution. As above the o (1,j=1,2,3, i<j)
explain the covariances between the individual forecast errors.

Since we have more parameters now we will only do some calculations for two parameter
combinations. As before, the optimal MSE-weights are fixed and compared under Pitman-
closeness with varying weights. The following two figures show the results of the simulation
performed. The symbols a, and a, represent the weights such that a;=1-—a,;—a,, and prob stands

for the Pitman-closeness probability.

Figure G: 01;=0, 01;,=0(;3=06;=—0.3
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Figure H: 0612320, (X12=Ocl320623=0.3

In the first example the optimal combination under the MSE-criterion with weights (0.1053,
0.2947, 0.69) is outperformed by combinations with weights (0.08, 0.22, 0.7), (0.12, 0.22,
0.66), (0.12, 0.24, 0.64), (0.14, 0.24, 0.62) and (0.14, 0.26, 0.6), and in the second example
the optimal weights under the MSE-criterion (0.0557, 0.1606, 0.7737) are outperformed by
(0.02, 0.18, 0.8), (0.02, 0.2, 0.78), (0.04, 0.16, 0.8), (0.04, 0.18, 0.78), (0.06, 0.14, 0.8) and
(0.08, 0.2, 0.72).

The graphs include only the scatter points calculated using a step width of 0.02 for the
weights. The scatter lines help to get a better view. Some jump discontinuities like in the

figures in Section 3.2.2. may appear.

4. Conluding remarks

First we can say that the idea of the Pitman-closeness criterion seems to be more plausible
than that of the MSE-criterion but its use has some difficulties. The application of the Pitman-
closeness criterion for the evaluation of forecasts, especially for the combination of forecasts,
is associated with an assumption of the error distribution. This appears to be a restriction. If
the errors are normally distributed, a theoretical derivation of the optimal weights for a
combined forecast is relatively easy. In this case they are equivalent to the optimal MSE-
weights. For other distributions we have to work with computer simulations. This could be
difficult for distributions which are defined in an interval including infinity and for
combinations of more than three methods. It is shown that the optimal weights, in contrast to
the MSE-criterion, depend on the error distribution. For the combination of two or three
forecasts with rectangular distributed errors there is a difference between the two criteria and

therefore the MSE optimality does not hold. This could also happen using other distributions.

13



Furthermore, the rectangular distribution does not include as many restrictions as the normal
distribution whereas the model of the Farlie-Gumbel-Morgenstern-distribution restricts the

study to correlation coefficients in the interval [-1/3, 1/3].
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6. Appendix: Table 2: Optimal weights of the combination of two forecasts with

normally distributed errors

g 1 2 3 4

o “MSE*“ | “Pitman‘ | “MSE®* | “Pitman® | “MSE* | “Pitman® | “MSE*“ | “Pitman*
1 0.5 0.5 |0.26316 | 0.28158 | 0.16667 | 0.18642 | 0.11864 | 0.13680
—0.7 0.5 0.5 | 0.24719 | 0.26374 | 0.14912 | 0.16683 | 0.10247 | 0.11862
—0.5 0.5 0.5 |0.23529 | 0.24917 | 0.13636 | 0.15106 | 0.09091 | 0.10417
—0.3 0.5 0.5 | 0.22222]0.23192 | 0.12264 | 0.13274 | 0.07865 | 0.08764
0 0.5 0.5 0.2 0.2 0.1 0.1 | 0.05882 | 0.05882
0.3 0.5 0.5 |0.17391 | 0.15951 | 0.07447 | 0.06089 | 0.03704 | 0.02570
0.5 0.5 0.5 |0.15385 | 0.12736 | 0.05556 | 0.03178 | 0.02128 | 0.00195
0.7 0.5 0.5 |0.13115| 0.09124 | 0.03488 | 0.00083 | 0.00441 | -0.02242
1 0.5 0.5 |0.09091 | 0.03079 | 0 [-0.04689|-0.02326 | -0.05878
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