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Abstract. We discuss an extension of the nonlinear random effects model from Lindstrom and Bates (1990) by
adding a flexible transformation to both sides of the model (see Carroll and Ruppert (1988)) and describe a
procedure for parameter estimation. This method combines pseudo maximum likelihood estimators for the trans-
form-both-sides and weighting model and maximum likelihood (or restricted maximum likelihood) estimators
for the linear mixed effects models. A validation of this new method is performed by analyzing a simulated set

of enzyme kinetic data published by Jones (1993).
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1. Introduction

In many nonlinear regression problems the classical assumptions about the underlying error
structure are violated because the data contain nonconstant variances, outliers or a skewed
error distribution. For detecting such deviations Carroll and Ruppert (1988) introduced a very
flexible class of models which are called weighted transform-both-sides models. The flexibili-
ty of these models allows to integrate possible error structures in the model, each determined
by additional parameters, which can be estimated from the data. For calculating estimators for
the parameters it is assumed that weighting and transformation yields approximately indepen-
dent and normal distributed errors. Then it is possible to derive likelihood functions and to

calculate maximum likelihood estimators for the parameters.

In this report we will focus our discussion on nonlinear models with random effects which are
very useful for analysing repeated measures data. Lindstrom and Bates (1990) showed the
application of such models and introduced algorithms for parameter estimation but they did
not involve heteroscedasticity of the error structure. This problem is described for generalized

linear mixed models by Breslow and Clayton (1992) who presented very interesting examples



for estimating general variance/covariance structures. Estimation of the regression and cova-

riance parameters based on maximum likelihood methods by applying EM-algorithms.

In this report we combine the two strategies to a nonlinear weighted transform-both-sides
model with random effects for repeated measures data. This is an extension of the published
versions of mixed effects models from Lindstrom and Bates (1990) or Jones (1993) because a

possible transformation is involved in the EM-algorithm and is updated every iteration step.

In section 2.1 we describe some features of the weighted transform-both-sides model. A pro-
cedure for estimating the parameters is the pseudo maximum likelihood method which is dis-
cussed in section 2.2. After an overview of random effects models in section 3.1 and maxi-
mum likelihood methods for parameter estimation in section 3.2 we present the new model
and an EM-algorithm for parameter estimation in section 4. The application of the new model
to a simulated set of enzyme kinetic data published by Jones (1993) is described in section 5

where we compare several possible models and discuss the advantages of our new method.
2. Fixed effects models

2.1 The transform-both-sides and weighting model
The nonlinear regression model

y; =f0c,.B)re, (1)
(G=1,...,n), based on the assumptions that the expected value of the response y; is equal to
the specified nonlinear model function f (x i B) with the predictor x; and the unknown para-
meter 3. The errors € i j=1,...,n, are independent random variables, which have constant

variances 6> and therefore come from the same distribution.

Usually B is estimated by least square methods, which yields optimal results if the errors are
normally distributed. If there are deviations from the classical error distribution it is necessary
to prove the validity of the assumptions so that the least squares procedure does not lead to

biased parameter estimates.

For detecting such unknown violations Carroll and Ruppert (1988) introduced a very flexible
class of regression models. They are called weighted transform-both-sides model and could

be expressed as
y ¥ =10, B)” +2,0)k, @)
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Gg=1,...,n), where gj(e) is a general variance function which depends on the predictor and/

or the response in a way that it is fixed with additional parameters. In this model the same
transformation is applied to both sides of the model equation, so that it yields approximative
constant variances and/or normally distributed errors. For this intention Carroll and Ruppert
(1988) used the Box-Cox power transformation (see Box and Cox (1964)) which is defined
by
(" —1)n ifA=0

log(z) ifA=0

h(z,A)=2z" :{

The estimation of the parameter vector (3, A, 0) takes place with the maximum likelihood
method under the assumption that transformation and weighting yields approximative normal

distributed errors (see Section 2.2).

For enzyme kinetic data Ruppert, Cressie and Carroll (1989) illustrated the application of the
weighted transform-both-sides model to the Michaelis-Menten equation. This function is used
in many biological and biochemical situations to characterize the relationship between the ve-

locitiy v;j of an enzyme catalyzed reaction and the corresponding concentration s; of substrate

for the j-th experiment (j = 1, . . ., n). The authors discussed in detail the model
v )
ng) — maxSi W +S?8j
K, +s; ,
(G=1,...,n) with the variance function g j(9)= s? . This power function takes into considera-

tion a possible influence of the substrate concentration to the variability of the observed velo-
city. The model works very well when analyzing real data but it is necessary to make sure that

too many variance parameters for finding the underlying error structure may bias the results.
2.2 The pseudo maximum likelihood method for parameter estimation

Now we describe the pseudo maximum likelihood method which yields estimators for all
parameters simultanously. The procedure can be implemented easily with standard software
routines for nonlinear optimization (see Giltinan and Ruppert (1989)). The method based on
the definition of a special residual sum of squares which can be minimized with respect to all

parameters and yields maximum likelihood estimators.



The derivation of the pseudo regression model is expressed under the assumption that in
model (2) transformation and weighting yields approximative normal distributed errors with
independent and homogeanous variances (Carroll and Ruppert (1988)). Then the log-likeli-

hood function can be written without constant terms as

1(A,6,B,0) = Fi]{(?\, - l)log(yj) - log[ng (6)]}— Jz:’ rj2 (B, 9)/(262)

where rj(B, A,0)= [y?‘) - f(xj,B)(k)}/gj(G).

If we maximize the log-likelihood with respect to all parameters directly the estimate of the
variance 6° may be negative. For this reason we replace the variance for given 3, A and 6 by

its maximum likelihood estimator

and changed to the concentrated log-likelihood
1(A,6,8) = Z {(7» ~1) log(yj) - log[(AS(?», 0, B)gj(e)]}— n/2.
!

After some additional algebraic calculation we get the relationship

1(A,B.6) = —(n/2)log(n_1g [g(@)rj (A, B. 6)/}%_1 ]2] —-n/2

n

where g(e) = ( g j(G))l/“ and V= ﬁ(y j)l/" are geometric means.
. -

=

This form of the log-likelihood and the calculation of the maximum likelihood estimators

could be further simplified if we minimize the sum of squares
n 2
Y [&0)r(2.B.6)/5*]
=l

instead of maximizing the concentrated log-likelihood function.



This problem can be solved with standard nonlinear optimization routines (e.g. PROC NLIN
from SAS) by using the ‘pseudo-model’ method where a dummy-variable D; equal to zero

replaces the response and a model
D;= [g(e)/yxfl ]rj (A.B.0)

can fit to the data. The main purpose of this method is that the residuals are the same as in

model (2), but now the response does not depend on parameters.
3. Mixed effects models

3.1 Nonlinear models with random effects

A general nonlinear model for characterizing common covariance structures for repeatedly
observed individuals was introduced by Lindstrom and Bates (1990). If y; is a vector of obser-
vations, x; the vector of the predictor and €; the vector of the stochastic error which have the
same length n; for each individual, 1 =1, ..., M, a model with random effects can be deter-

mined by the equation
yi = (s, X;) +€; .

In this model ¢; is a parameter who vary from individual to individual and can be expressed as
0i=AiB+Bib;

where A; and B; are known design matrices with dimensions n; X p and n; X q and B is ap X 1-
vector of fixed effects. The q X 1-vector b; of random effects of the i-th individual and the
error vector g; are independent normal distributed random variables with covariance matrices
D; and A;. The distribution of the random effects is equal for all individuals so that the ma-

trices D; are identical fori=1, ..., M.

Now the response vector has for each individual the same distribution

b, ~ N(f(q)i )X )vGZAi)

Yi

where 6” describes the variance component of the total variance with respect to the error €;.
The covariance matrix A; depends on the individuals only through its dimension (n; X n;) and

is normaly set to an identity matrix.



If we write the M models for each individual together into one general model we get

yl q)l f(q)l’xl)
y={ |, 0= ¢ |, flo.x)= '
yM ¢M f(q)M’XM)
D=diag(D,D,...,D)and A=diag (A, ..., Aw).
Now the common model is
y =1(d, x) + €
where the parameter is ¢ = A B + B b with B = diag(By, . . . , Bm), b= [b1 ...bM]T and

A= [A1 LAy ]T and the response vector is then conditionally distributed like
yjb ~ N( (0, x)°A)
with b~ N(0,6?D) and & ~ N(0,6?A).

In the general model with random effects we are interested in estimating the vector B of fixed
effects and the vector b of random effects and we have to make inference about the variance
components of the covariance matrices of the distributions of b and y. The estimation takes

place with maximum likelihood methods.

3.2 Maximum likelihood estimation

For the derivation of likelihood functions it is necessary to linearize the model
y=f(AB+Bb,x)+¢

with respect to the fixed and random effects, which yields an approximate model

y= f(AB-FBB,X)—l— Z(b—6)+ )A((B—B)+8

~ of(¢,x)

with design matrices Z =———

4% of (0,x)
ob’

an
8 op”

B.b
By rearranging the linearized model we get the equation

w=XB+Zb+e
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where w = y—f(AB+BB,X)+ AB+)A([A3.

Now it is possible to derive log-likelihood functions for maximum likelihood or restricted
maximum likelihood estimation of the parameters under the assumption that the unconditional

distribution of the response could be expressed as
y~ N(f(AB +Bb,x)- 26,62V )
/
where V=A+ZDZ" .

This procedure will be the basis of the development and evaluation of a new method to detect
heterogenous error structures in nonlinear random effects models. The new approach will be

discussed in the next section.

4. The transform-both-sides and weighting model with random effects

The nonlinear weighted transform-both-sides model and the nonlinear mixed effects model
are for themselves very flexible and applicable tools for examining data with heterogenous
variance-covariance structures. In this report we combine the two strategies to a nonlinear
weighted transform-both-sides model with random effects for repeated measures data. This

extension leads to a model
yi(}L):f(Xi’q)i)(}L)-i_gi(eki i=1,...,n)

The new aspect of this attempt is established by the fact that the transformation of the data is
not fixed before performing the statistical analyses as proposed by Lindstrom and Bates
(1990). In our procedure parameter estimation takes place with a modified EM-algorithm by

updating the rule for the transformation at each iteration.

The new algorithm based on the iteration scheme of Lindstrom and Bates (1990) from section

3.2 and consists of the following steps:

1. In order to calculate initial estimates for the vector [3 of the fixed effects and the para-
meter A for transformation and 0 for weighting we used the weighted transform-both-sides

model (2) from section 2.1.

2. For the estimation of the fixed and random effects and the variance components of the
covariance matrice A of the random effects we approximate the nonlinear model by
linearization with respect to fixed and random effects. The parameters for transformation

and weighting are fixed in this step.



3. The estimated random effects from step 2 will be used as fixed parameters during the
next iteration in the weighted transform-both-sides model. Step 2 and 3 will be reiterated

until the residual sum of squares shows no identifiable difference.
The linearization of the model is similar to the method described in section 3.2.

Now we get the approximation

y® = t(aB+Bb,x, f 2, (b, - b, )+ X, B-B)+ 2, @),

@)

with Z, = — of

and Xi =—=
B.b I

T
i

B.b
The conversion of this equation leads to the linear random effects model

W, = XiB+Zibi +gi(e)5i

N A A A A A A
with the calculated response w, = yim—f(AB+Bb,xi)( )+Zibi + X, which will be used in
the second step of the iteration for maximum likelihood or restricted maximum likelihood

estimation.

5. Example

For a validation of the new model and the modified algorithm for parameter estimation we
used a simulated data set from Jones (1993). He analyzed the Michaelis-Menten enzyme kine-
tic function

V s
V=—"% 3
K, +s )

where v is the reaction velocity, V.« the maximum velocity of the reaction, s the concentra-
tion of substrate and K,, the half-saturation constant. The vital role of this kinetic function in

the model-based inference of toxicokinetics is showed by Urfer and Becka (1996).

Because the parameters V. and Ky, in the model must be positive he used the variable trans-
formation

Bl = ln(Vmax) and BZ = ln(Km)



for making sure that the optimization does not lead to negative estimators if the starting

values are not good enough. This parameterization leads to a random effects version of model

3)

) +.
Vij — Sl_] eXp(Bl ’Y1l) + eij (4)
S + eXp(Bl + Yiz)

where the subscipti=1, ..., M represents the individual experiment and j =1, ..., n; are the

observations for individual i.
For the simulation Jones used the following assumptions:

The values for the fixed effects were 3; =0 and 3, = 0 (or Viax = 1 and Ky, =1) and the distri-

bution of the random effects was the bivariate normal
Y| _f[0] [0-04 0.02 W
Yoo 0[°10.02 0.04 )

For the error term of the simulated observations he used the constant coefficient of variation

with a correlation 0.5.

variance model with the variance function g(6)=0.1f(x, ) which implied a value of 0.01 for
the overall variance 6°. The whole procedure of the simulation is fully described by Jones

(1993). The resulting observations and random effects were shown in the two tables on pages

148 and 149.

As Jones pointed out the distribution of the response y in model (6) is no longer Gaussian
because of the reparameterization with respect to the fixed effects and the definition of the
random effects. Nevertheless he assumed an approximate normal distribution for the response

because in a real situation the distribution is unknown.

For the verification of this statement we will have a look at the empirical distributions of the

simulated random effects. For the values of the actual simulated random effects we yield the

by _ f[0:0037] [0.0504 0.0173W
b,, 0.0133]’[0.0173 0.0346

with a correlation coefficient r = 0.4145.

empirical distribution



A comparison with the real distribution which was used by Jones to generate the random
effects shows an overestimation of the expectation of the random effects. The covariance
matrix showed also a bias in such a way that the variances of V;; and Y, were 25% higher
respectivly 13% lower as in the underlying distribution. The covariance and the correlation

were biased downwards by 13% and nearly 20%.

For the values of the simulated random effects after linearization of model (4) we yield the

bu|_ [0-0118] [0.0516 0.02511
b,, 0.0302 |’ 0.0251 0.0349

/

empirical distribution

with a correlation coefficient r = 0.5962.

The comparison with the real distribution of the random effects shows the same trend as the
previous empirical distribution with reparameterization of the fixed and random effects. But
now the bias for the expectation is three times higher as before. The bias for the variances of

Yi1 and ¥;; are nearly the same as before but the covariance and the correlation are now biased

upwards by nearly 25% and 20%.

This comparison shows that the assumption of Jones about the approximative equality of the
two distributions is not fullfilled completely. But the question is now whether a statistical pro-
cedure is able to yield a comprehensive estimate of the covariance matrix D of the random
effects with the variance components d;;, dj» and dj,. For getting an answer to this problem

we examined several models with flexible variance/covariance structures.

As a first attempt we carried out an ordinary least squares fit of the parameters with the

unweighted model

Yii :f( i’Xij)+£ij'

Model 1: Ordinary least squares (A=1, 6=0)
6°=0.00296  d,=0.05483  d,=0.05053 d,,=0.05180
Lower 95% CL Estimate = SE ~ Upper 95% CL
B, -0.116 -0.031 £0.0436 0.054
B> -0.152 -0.050 £ 0.0520 0.052

In this case the estimates for V. and Var(y;;) were relative near to the expected values from

the simulation. This fact was not surprising because there was a high number of experiments
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and many observations for high substrate concentrations made it possible to fit the curves in
this area very well. On the other side the estimated values for K,, and Var(y;;) were more
biased because of the absence of an appropriate modeling of the variance structure in this

model. The overall variance component 6* was clearly underestimated .

Then we applied the true model of the simulation
Yi = f( i»Xj )+f(¢i’xij

by using the correct variance function for weighting.

Model 2: weighting with correct variance function (Jones (1993))

A

6°=0.00911  d,,=0.05696 d,,=0.03024  d,,=0.04023
Lower 95% CL  Estimate + SE ~ Upper 95% CL

Bi -0.111 -0.023 +£ 0.0450 0.062
B2 -0.093 -0.012 +0.0412 0.069

It was very surprising that the estimation for all the interesting parameters was not very well
because all the variance components of A were all slightly overestimated. The reason for this
fact may be the bias in the simulation procedure so that this weighted model is no more the

correct one.

A third attempt of fitting the data based on transformation. We choose the log-transformation

and applied it to both sides of the model which yields the relationship
log()'ij ): log(f( io X ))+ € -

A comparison with the empirical distribution and the results of model 2 showed a much better
fit. All the estimated variance components were nearly the same as in the simulation. First of

all the estimation of Var(yi;) and Cov(Yi1, ¥i2) was more accurate as in model 2.

Model 3: log-Transformation (A=0, 6=0)
6°=0.00989  d,=0.05525 d,=0.02664 d,,=0.03654
Lower 95% CL  Estimate = SE  Upper 95% CL
B, -0.117 -0.030 £ 0.0444 0.057
B> -0.089 -0.011 £0.0397 0.067
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In the fourth model we tried another weighting function. The power function g(8) = x ® based
on the intention to model a possible influence of the substrate concentration on the response
which yields the model equation

Yii =f( i,xij)+ xgeij.
Obviously the application of this weighted model to the data was not very sucessful. All the
variance components of A and also the overall variance 6° were highly underestimated. So

this model seems to be unadequate to fit the simulated data very well.

Model 4: weighting with variance function g(G)zxe (A=1, 6=0.45)

A A

6°=0.00146  d,=0.03839 d,,=0.02348 d,,=0.02872

Lower 95% CL  Estimate + SE  Upper 95% CL

Bi -0.097 -0.023 £ 0.0379 0.051
B> -0.090 -0.014 £ 0.0388 0.062

Because of the bad results from the fit with model 4 we extended the model by combining it

with model 3. Then we get the weighted model with fixed log-transformation

log()’ij ): log(f( ir Xy ))+ Xgeq .

Model 5: weighting with variance function g(0)=x % and log-
transformation (A=0, 0=-0.04)
6°=0.00983  d,=0.05620 d,=0.02768 d,,=0.03661
Lower 95% CL Estimate = SE  Upper 95% CL
B -0.117 -0.030 + 0.0445 0.057
B> -0.108 -0.011 £ 0.0397 0.067

At first the estimation of the variance parameter 6 =—0.04 indicated that the weighting func-
tion was not appropriate as we have seen for model 4. Therefore the use of model 5 showed a
great advantage of models with more flexible variance/covariance structures. The log-trans-
formation was obviously able to correct the inhomogenity in the simulated data set alone (see

model 3). So the weighting is not necessary and by estimating the variance parameter

throughé =—0.04 showed that model 5 was overparameterized (see also model 7). Neverthe-

less the estimates of all variance components of the random effects model were as good as in

model 3.
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The application of the log-transformation worked very well but in a next step we tried the

more flexible model

yi(jh) = f((])i » X5 )(7») +&;

where the parameter A of the transformation will be estimated from the data.

Model 6: Transform-both-sides (A=0.1, 6=0)

~

6°=0.00799  d,=0.05662 d,=0.02841 d,,=0.03681

Lower 95% CL Estimate = SE  Upper 95% CL
Bi -0.121 -0.033 £ 0.0447 0.055
B> -0.089 -0.011 £ 0.0399 0.067

One more time model 6 showed the same advantages as model 3 and model 5. The parameter
for the transformation was estimated near zero. So we could demonstrate the flexibility of this
approach because similar to model 5 the underlying error structure of the simulated observa-
tions could be estimated with this model. The estimation of the variance components had also

the same quality as in model 3 or model 5.

Finally we used the most flexible weighted transform-both sides model

Yi(jx) = f(q)i > X5 g + Xgeij-
The weighted transform-both sides model showed similar results as model 6. Only the overall
variance component 6~ was clearly underestimated. The estimated value for the transforma-
tion parameter A showed a slight deviation to model 6 which could be affected in this case by
the inappropriate weighting function. Nevertheless the weighted transform-both-sides model
is the most flexible one of all models we have examined. So in a situation of practical data

analysis the error structure is unknown and therefore this model is the model of choice.

Model 7: Transform-both-sides and weighting with variance function
2(0)=x ? (A=0.23, 6=0.07)
6°=0.00589  d,=0.05673  d,=0.02891 d,,=0.03704
Lower 95% CL Estimate = SE  Upper 95% CL
B -0.117 -0.029 £ 0.0448 0.057
B> -0.089 -0.012 £ 0.0402 0.067
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