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ABSTRACT

Noisy observations form the basis for almost every scienti�c research and

especially in environmental monitoring. The Noise is often an e�ect of

imprecise instruments which cause measurement errors. If the noise va-

riance is known it is possible to �lter out the contaminating noise from

the observations and then to predict the latent signal process. Soluti-

ons for this problem exist for time series application and will be brie
y

reviewed. In the geostatistical literature, i.e. for the analysis of spatial

data, similar methods have been foreshadowed in the literature and will

be outlined in this work.
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1. INTRODUCTION

It is widely accepted that observations from scienti�c experiments are contaminated

by measurement errors. Furthermore, in engineering applications the interesting

process may be corrupted by an interference with other processes. This motivated

the notions of signal and noise. In this setting the observational process Z(�) is the

sum of the interesting process or signal S(�) and the contaminating process or noise

"(�)

Z(�) = S(�) + "(�):

Given the measurements it is generally of interest to predict the signal and not

the observational process. Because the signal process is assumed to be disturbed by

a zero mean white noise process it follows, that the expectations of the observational

process and the signal process are equivalent. Thus predicting the signal and not

the observables will often result in smaller mean squared prediction errors due to

the extra variability of the noise.

The prediction of the signal presumes knowledge of the distribution of the

noise process. With restriction to linear prediction only the �rst and second order

moments are needed to calculate a linear prediction. When the noise is modelled by

a zero-mean white-noise process, knowledge of the noise variance parameter �2

" is

required only. Generally the instrumental variance, i.e. the noise variance, is known

from previous calibration experiments.

To handle the noise-�ltering problem in spatial and temporal situations the

following stochastic processes for the observational process are considered. First let

Zts = fZtgt2T �IN

denote a discrete parameter time series and second

Zsp = fZ(s) : s 2 D � IR2g

be a continuous parameter spatial process.

2



The noise-�ltering problem has been solved for time series applications by

the development of the Kalman �lter (cf. Kalman, 1960). In geostatistics a modi�ed

version of the kriging predictor to �lter the noise was foreshadowed by Cressie (1988)

and later on by Christensen, Johnson and Pearson (1992).

The outline of the paper is as follows. Sections 2 reviews the noise-�ltering

solution for time series data, i.e. temporal processes. Section 3 is concerned with out-

line of the solution to the �lter problem for geostatistical data, i.e. spatial processes.

Section 4 concludes with a discussion of further aspects.

2. TEMPORAL FILTERING

The Kalman �lter given by Kalman (1960) is a recursive least squares method (cf.

Duncan and Horn, 1972) which can be given a Bayesian interpretation (cf. Meinhold

and Singpurwalla, 1983). In the later, the predictor and the corresponding mean

squared prediction errors approximate the �rst and second order moments of the

predictive distribution. Generally the Kalman �lter is used in time series applicati-

ons to �lter the noise form the observational process to enable the prediction of the

signal or state of nature. To do so a state space formulation for the observational

process is needed. Some authors use the term state space model others prefer the

term dynamic linear model (cf. Harvey, 1989; West and Harrison, 1989).

2.1 Dynamic Linear Models

The dynamic linear model consists of two equations. The �rst equation is the ob-

servation equation (or measurement equation)

Zt = Xt�t + "t; "t � (0;�t):

Then the evolution equation (also called the state-, system- or transition equation)

models the state parameter linearly and autoregressive

�t = Gt�t�1
+ �t; �t � (0;Qt):
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In this model, �t is an (unobservable) random parameter vector that describes the

state of the dynamic linear model at time t, hence, it is called the state parameter,

Zt is the vector of observations related to the state parameter by the observation (or

regression) matrixXt,Gt is the evolution matrix, and "t and �t are the observational

and evolutional noise vectors assumed to be independently distributed with zero

means and covariance matrices Cov("t) = �t and Cov(�t) = Qt, respectively.

To complete the model initial values must be speci�ed de�ning the distribution

of the state parameter at time t = 0. If these initial values are not given by prior

knowledge, the approximate moments of a non-informative prior �
0
� (0; � I) with

�!1 may be used. This is equivalent to view the initial state parameter as �xed

but unknown, �
0
� (b0j0; 0). However, the initial state parameter �

0
is assumed to

be uncorrelated with the noise vectors "t and �t.

The covariance matrices are assumed to be known but have to be estimated.

This is the problem of model speci�cation. Further the observation and evolution

matrices are assumed to be known. This states the problem of model selection in

practical applications. The dynamic linear model is said to be time invariant if the

covariance matrices as well as the observation and evolution matrices are constant

in time, i.e. �t � �, Qt � Q, Xt � X and Gt � G.

Stationary time series are known to have an autoregressive moving average

(ARMA) representation that can be given a state space formulation as well. Further

autoregressive integrated moving average (ARIMA) models, i.e. non-stationary time

series models, can be represented by dynamic linear models. It is also possible to

include exogenous variables into the dynamic linear model to represent the class

of ARMAX models. Furthermore, dynamic linear models may represent single or

multiple time series. In what follows, almost all widely used linear time series models

may be represented by time invariant dynamic linear models.

In dynamic linear models the observational errors "t form the noise and the

linear combination of the state parameters St = Xt�t represents the signal while

evolutional errors �t form model inadequacies at time t.
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2.2 The Kalman Filter Recursions

The Kalman �lter is useful since it o�ers a unique method to �lter the noise from the

signal for many classes of time series models. Further it is a powerful method for on-

line prediction since the �lter algorithm works recursively using the last prediction of

the state parameter and the current observation only. The mean squared prediction

errors (MSPE) are by-products when the Kalman �lter is run. The predictions

from Kalman �ltering are optimal in the sense that the MSPE is minimised within

the class of linear predictors. To be more precise, the optimality depends on the

initialisation (cf. Tsimikas and Ledolter, 1994). Using a point prior with unknown

state parameter or equivalently a non-informative prior results in a mixed model

and hence the predictors are best linear unbiased predictors (BLUP). Otherwise,

the dynamic linear model is just a random e�ect model and the predictors from

Kalman �ltering are best linear predictors (BLP).

The Kalman �lter recursions proceed in two steps. These are the prediction

and updating steps to be performed before and after the new observation becomes

available.

Before the Kalman �lter recursions can be presented the following notation is

introduced. The time indices tjt � 1 and tjt denote the predictors for time t based

on observations up to and including time t � 1 and t, respectively. Let btjt�1 and

btjt denote the predictors of the state parameter. Further Rtjt�1 and Rtjt are the

corresponding covariance matrices of the predictors.

With this set-up the prediction step for the state parameter is given by

btjt�1 = Gtbt�1jt�1

Rtjt�1 = GtRt�1jt�1G
0
t +Qt

and the updating step is

btjt = btjt�1 +Kt(Zt �Xtbtjt�1)

Rtjt = ( I�KtXt)Rtjt�1;
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where

Kt = Rtjt�1X
0
t(XtRtjt�1X

0
t +�t)

�1

is the so called Kalman gain matrix, which is actually a vector in single time series

applications.

The predictor of the signal St = Xt�t follows straightforward from the predic-

tor of the state parameter �t. Accordingly to the prediction and updating step one

may distinguish between the prior and posterior predictor of the signal. Sometimes

these predictors are called the forecast and �ltering predictors, respectively. So let

bStjt�1 = p(StjZ
t�1) = Xtbtjt�1

and

bStjt = p(StjZ
t) = Xtbtjt

denote the linear Bayesian prior and posterior predictors of the signal. Here Zt =

(Zt;Z
t�1) with Z0 = ( b0j0;R0j0) is used to denote the sample and prior information

up to time t. Theirs MSPE's are as follows

MSPE(bStjt�1) = E(Xt�t �Xtbtjt�1)
2 = Cov(Xtbtjt�1) = XtRtjt�1X

0
t

and

MSPE(bStjt) = XtRtjtX
0
t:

It is worth to face the predictors of the signal with the corresponding predictors

of the observational process now. The forecast predictor for the observational process

Zt = Xt�t + "t, i.e. the signal plus the noise, is the same like the corresponding

signal forecast predictor

bZtjt�1 = p(ZtjZ
t�1) = Xtbtjt�1:

However the MSPE is surely larger due to the variability of the noise

MSPE(bZtjt�1) = E(Xt�t + "t �Xtbtjt�1)
2

= XtCov(�t � btjt�1)X
0
t + Cov("t)

= XtRtjt�1X
0
t +�t:
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Therefore the gain in predicting the signal instead of the observational process in

forecast situations measured in terms of the MSPE is quanti�ed by the noise cova-

riance matrix �t that is assumed to be known and being positive de�nite.

This result does not hold for the �ltering predictor of the observational process

since in this case the optimal predictor is based on and given by the sample variables

itself, viz.

bZtjt = p(ZtjZ
t) = Zt:

With this the MSPE becomes zero

MSPE(bZtjt) = E(Zt � Zt)
2 = 0:

Thus the MSPE of the unobservable signal process is larger than the MSPE of the

predictor for the observational process in the situation of temporal �ltering

MSPE(bZtjt) = 0 < XtRtjtX
0
t = MSPE(bStjt):

These are the one step ahead predictions from the Kalman �lter. The h-step

ahead predictions will be calculated in a similar way (cf. Harvey, 1989). Note that

here forecasting means the prediction of the process at time t from time t � 1 or

later. This is in contrast with the general time series literature where forecasting

means prediction from time t to time t+ 1.

3. SPATIAL FILTERING

The universal kriging predictor proposed by Matheron (1969; see Cressie, 1993, p.

151) is the best linear unbiased predictor (BLUP) in geostatistical applications.

The predictor is often de�ned in terms of the variogram, since the spatial process

needs then just to be intrinsic stationary rather then weak stationary. However, in

practise the process is assumed to be ergodic, which is a stronger assumption than

the di�erent types of stationarity. With this it is equivalent to consider the universal

kriging method using the variogram or the covariogram.
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3.1 Spatial Linear Models

Consider the random sample Z = ( Z(s1); :::; Z(sn))
0 to be taken at the locations

s1; ::; sn. The spatial linear model for these sample variables is of the following form

Z = X� + �; � � (0;�):

In this model, � is an unobservable but �xed parameter that determines the mean

function of the spatial process, X is the (deterministic) spatial regression matrix

generally depending on functions of the sample site co-ordinates, i.e. x(s), and � is an

unobservable random vector with zero-mean and covariance matrix �. The matrix

� = �(�) depends on the relative position of the sample sites and is structured

according to a small set of spatial structure parameters �. However, dependence on

� will be suppressed often.

The spatial linear model is of the same form like the Aitken or general linear

model. From knowledge about � and spatial regression functions x(�) the model for

any other spatial location s0 in the sampling domain D is given by

Z(s0) = x0� + �(s0); �(s0) � (0; �2

� );

with x = x(s0) and �2

� = �2

� (�).

To account for observational noise the spatial linear model may be extended

to the spatial linear noise model by splitting the � component of the spatial linear

model into noise " and the zero mean spatial random component �. From this

follows

Z = S + " = X� + � + ";

where Z = ( Z(s1); :::; Z(sn))
0 denotes the spatial sample vector to be observed at

locations s1; :::; sn 2 D with

" � (0; �2

"I)

� � (0;V)

Z � (X�;� = V + �2

"I):
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This means that the spatial sample vector Z is the sum of unobservable and uncor-

related signal and noise components. The signal component of the sample vector is

given by S = X� + � and the noise component is denoted by ". Since � = �(�)

depends on � it is clear that V also depends on � and particularly �2

" is part of the

spatial structure parameter �.

Further, the model is valid for any other location in the sampling domain, i.e.

for any s0 2 D. Therefore the following model will be used to describe the spatial

process at site s0

Z(s0) = S(s0) + "(s0) = x0� + �(s0) + "(s0);

with

�(s0) � (0; �2

�)

"(s0) � (0; �2

")

as well as x = x(s0) introduced above and �
2

� = �2

�(�). The noise variance parameter

is �2

" = �2

"(�). Note that the sum �2

�+�2

" gives �
2

� which is called the nugget e�ect in

geostatistics. Besides �2

� and �
2

" the spatial structure parameter � generally contains

the so called range and sill parameters.

3.2 Universal Kriging and the Spatial Filtering Equations

Within the context of spatial linear models using the notation �0 = Cov(Z(s0);Z),

the universal kriging predictor for Z(s0), i.e. the spatial BLUP is (cf. Goldberger,

1962)

bZUK(s0) = p(Z(s0)jZ) = x0 b�GLSE + �0��1(Z�Xb�GLSE);

where b�GLSE denotes the general least squares estimate (GLSE) of �

b�GLSE = ( X0��1X)�1X0��1Z:
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The MSPE of the universal kriging predictor also called universal kriging variance

is

MSPE( bZUK(s0)) = �2

� � �0��1� + ( x0 � �0��1X)(X0��1X)�1(x0 � �0��1X)0:

The universal kriging predictor is known and sometimes criticised to be a

direct interpolator. This means that the predictor for the sample variables is given

by themselves, i.e.

bZUK = p(ZjZ) = Xb�GLSE +���1(Z�Xb�GLSE) = Z:

So the MSPE becomes in this situation

MSPE(bZUK) = E(Z� Z)2 = 0:

However this predictor can be modi�ed to solve the noise-�ltering problem in geo-

statistical applications within the framework of the spatial linear noise model (cf.

Cressie, 1988; Christensen, Johnson and Pearson, 1992).

To �lter the noise in spatial or geostatistical situations using the method of

best linear unbiased prediction �rst note that the BLUP for a random quantity, say

Z(s0), given the sample Z is generally of the form

p(Z(s0)jZ) =
dE(Z(s0)) + Cov(Z(s0);Z)[Cov(Z)]

�1(Y � dE(Z)):

Here dE(Z(s0)) and
dE(Z) denote the optimal linear estimates for the corresponding

mean parameters that are given by theirs generalised least squares estimates.

From the spatial linear noise model introduced above with known spatial struc-

ture parameter �, i.e. second order moments, it follows explicitly

E(S) = E(Z) = X�

Cov(Z) = Cov(S) + Cov(") = V + �2

"I = �

Cov(S;Z) = Cov(S;S+ ") = Cov(S) = V

= � � �2

"I = Cov(Z)� Cov("):
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The universal kriging predictor for the signal at the sampling locations s1; :::; sn

is given by

bSUK = p(SjZ) = Xb�GLSE +V��1(Z�Xb�GLSE)

= Z� �2

"I�
�1(Z�Xb�GLSE):

To �nd the MSPE connected with the predictor of the signal at the sampling loca-

tions �rst note that the predictor bSUK can be written as

bSUK = fV + (X�V��1X)(X0��1X)�1X0g��1Z = �0Z;

which shows that the predictor is unbiased and linear in the sample variables. With

this the MSPE follows to be of the form

MSPE(bSUK) = Cov(S� �0Z) = Cov((I� �0)S(I� �0)0 � �0")

= ( I� �0)V(I� �0)0 + �2

"�
0�

= V + �0��� 2�0V:

Since the spatial linear noise model is assumed to hold for any location in the

sampling domain, the BLUP for the signal at any location s0 2 D is given by

bSUK(s0) = p(S(s0)jZ) = x
0 b�GLSE + v0��1(Z�Xb�GLSE);

where v0 = v(�)0 = Cov(S(s0);Z) represents the vector of covariance's between the

signal at location s0 and the sampling variables depending on �.

Further investigations lead to the result that the BLUP for the signal coincides

with the BLUP of the observational process at unsampled locations, i.e.

bSUK(s0) = bZUK(s0); s0 2 D n f s1; :::sng:

This is similar to the result bStjt�1 = bZjt�1 in Kalman �ltering and is based on the

fact that the noise is modelled through white noise, i.e. a family of uncorrelated

random variables. Thus, for s0 2 D n f s1; :::sng follows

�0 = Cov(Z(s0);Z) = Cov(S(s0) + "(s0);Z) = Cov(S(s0);Z) = v0
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and hence the equivalence of the predictors.

Similar to the derivation of MSPE(bSUK) the MSPE of bSUK(s0) will be shown

to be of the form

MSPE(bSUK(s0)) = Cov(S(s0)� e�
0
Z)

= Cov(S(s0)) + Cov(e�
0
Z)� 2e�

0
Cov(S(s0);Z)

= �2

� +
e�
0
� e�� 2e�

0
v;

with

e�
0
= fv0 + ( x0 � v0��1X)(X0��1X)�1X0g��1:

The following Corollary will be stated to summarise the results developed in

the preceding text.

Corollary:

In the spatial linear model the best linear unbiased predictor for the

signal component for all locations s0 2 D, is given by

bSUK(s0) = x
0 b�GLSE + v0��1(Z�Xb�GLSE)

with mean squared prediction error

MSPE(bSUK(s0)) = �2

� +
e�
0
� e�� 2e�

0
v:

Proof: To proof that bSUK(s0) is the BLUP for the signal at any location s0 2 D

needs just to notice that v0 = Cov(S(s0);Z) and � = Cov(Z). Hence, the predictor

has the form

bSUK(s0) = x0 b�GLSE + Cov(S(s0);Z)(Cov(Z))
�1(Z�Xb�GLSE)

which gives the BLUP according to the theorem about best linear unbiased predic-

tion (cf. Goldberger, 1962; Christensen, 1996, p. 266). The form of the MSPE was

derived above.

2
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For completeness the MSPE's of the predictors for the observational process

and the signal process will be compared now.

The results are similar to that in Kalman �ltering. First, for the observational

process at the sampling locations s1; :::; sn the MSPE is zero, i.e.MSEP (bZUK) = 0.

So the MSPE is smaller than for the predictor of the signal at the same locations

0 = MSEP (bZUK) < MSPE(bSUK) = V + �0��� 2�0V:

This follows from

bSUK = bZUK � �2

"I�
�1(Z�Xb�GLSE):

So the MSPE of the predictor for the signal becomes

MSPE(bSUK) = E(bSUK � S)
2

= E("� �2

"I�
�1(Z�Xb�GLSE))

2:

And this is positive de�nite, since this is the covariance matrix of the prediction

error which is almost surely unequal to zero.

Lastly the MSPE( bZUK(s0)) is compared to MSPE( bSUK(s0)) for unsampled

locations s0 2 D n f s1; :::; sng. As shown above the predictors of interest are equiva-

lent, i.e. bZUK(s0) = bSUK(s0). So this gives

MSPE( bZUK(s0)) = E( bZUK(s0)� Z(s0) )
2

= E( ( bSUK(s0)� S(s0)) + "(s0) )
2

= MSPE( bSUK(s0)) + �2

" ;

or vice versa

MSPE( bSUK(s0)) < MSPE( bSUK(s0)) + �2

" = MSPE( bZUK(s0)):
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4. DISCUSSION

The results for noise �ltering in time series and geostatistical data are very similar

and may be summarised as follows. There are two cases to be distinguished: pre-

dicting at time or site where an observation is sampled (case 1) or not (case 2). In

case 1 the predictors for the signal and the observational processes are di�erent and

the MSPE of the signal predictor is larger than the MSPE of the predictor for the

observational variable. In case 2 the predictors for the signal and the observation

coincide but the MSPE of the signal predictor is smaller and the gain in predicting

the signal is given by the noise variance.

To compare the predictors for di�erent processes, i.e. the signal and the ob-

servational process, by use of the MSPE's makes only sense for unbiased predictors.

Then the predictors are centred around the same value. The mean of the observable

is given by the mean of the signal since the noise is modelled by zero mean white

noise. So in practise the Kalman �lter will be started with a non-informative prior

resulting in BLUP's like universal kriging gives BLUP's, i.e. unbiased predictors.

Lastly note that the subject of spatial statistics is divided into three parts:

point processes, lattice or regional data, and geostatistics. The outline of spatial

�ltering applies to the geostatistical frame work, however, extension to the regional

data set-up is also possible.
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