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Abstract

This report extends the technique of testing single variance components with gen-

eralized �xed{level tests | in situations when nuisance parameters make exact testing

impossible | to the more general way of testing hypotheses on linear forms of vari-

ance components. An extension of the de�nition of a generalized test variable leads to

a generalized �xed{level test for arbitrary linear hypotheses on variance components

in balanced mixed linear models of the ANOVA{type. For point null hypotheses an

alternative for the known method is given, which ist straightforward in contrast to the

classic form. An example (2{way nested classi�cation with random e�ects) illustrates

the way how to use the results and simulation studies are carried out to prove the

quality of the presented methods.

Key Words: Variance components, generalized �xed{level test, mixed linear models, nui-

sance parameters, linear hypotheses, approximate testing.

1 Introduction

For various statistical models there do not exist exact tests for the hypotheses of interest

because of nuisance parameters. Such situations can always occur if the model includes two

or more random e�ects. Typical representatives of this class of models are the mixed linear

models.

Literature is widely available for approximative and asymptotic tests for many very special

situations. A classical example is the approximative test by Satterthwaite (1946), an F{test

with adapted degrees of freedom for hypotheses on single variance components. In a paper

1This research was supported by the Deutsche Forschungsgesellschaft (DFG); Sonderforschungsbereich

475
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by Thursby (1989), a number of approximative tests is compared. All of these procedures

are only of restricted usability.

The concept of testing with generalized p{values was introduced by Tsui and Weerahandi

(1989). Weerahandi (1991) and Zhou and Mathew (1994) used generalized p{values for tests

on variance components in their papers, where the hypotheses were usually only formulated

for single variance components.

In this paper the test with generalized p{values is extended to the case of arbitrary linear

hypotheses in balanced mixed linear models. In order to do this, the de�nition of a gen-

eralized test variable which was �rst introduced by Tsui and Weerahandi (1989) has to be

extended, because it proves to be too restrictive. The new procedure is demonstrated on the

example of the hierarchical two{way classi�cation. Simulation studies show that the new

method usually holds the nominal signi�cance level quite well, even in the case of small data

sets.

Two{sided hypotheses which are to be tested against composite alternatives are a problem

mostly unregarded up to now. Weerahandi (1995) proposed a solution, but he did not

formulate a concrete construction principle for the test procedure. This paper will show up

a straightforward procedure which, as far as the signi�cance level is concerned, is comparable

to tests for one{sided hypotheses.

In variance component models the problem of a quite small power may occur for some parts

of the alternative for any kind of test. For some constellations of parameters the empirical

power functions are given for a special testing problem in the above mentioned hierarchical

two{way classi�cation. A detailed analysis of the power function will be a subject of further

research.

The restriction to balanced models can be abandoned in some situations. Khuri (1990)

showed that generalized p{values can be applied if the model in unbalanced on the last stage

only. An application of this procedure to testing linear hypotheses and a generalization to

arbitrary forms of unbalancedness is desirable.

2 General testing principle

Consider an observable random vector Y with the cumulative distribution function F (y; �),

where � = (#; �T )T is a vector of unknown parameters, # being the parameter of interest,

and � a vector of nuisance parameters. Let � be the sample space of possible values of Y

and � be the parameter space of #. An observation of Y is denoted by y.
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De�nition 2.1

A random variable of the form T = T (Y; y; �) is said to be a generalized test variable if it

has the following three properties:

1. tobs = T (y; y; �) does not depend on unknown parameters.

2. When # is speci�ed, T has a probability distribution that is free of nuisance parameters.

3. For �xed y and �, Pr(T � tj#) is a monotone function in # for any given t.

Without loss of generality the �rst property can be considered to be redundant, because if

it is not satis�ed we can cross over to the transformation ~T := T (Y; y; �) � T (y; y; �) and

impose properties 2 and 3 on ~T .

Property 2 is imposed to ensure that p{values based on generalized test variables are com-

putable when # is speci�ed. Property 3 ensures that the sample space can be stochastically

ordered on the basis of the generalized test variable. If Pr(T > t) is a nondecreasing function

in #, then T is said to be stochastically increasing in #.

Consider the problem of testing one{sided hypotheses of the form

H0 : # � #0 vs. H1 : # > #0 ;(1)

where #0 is a prespeci�ed value of the parameter #.

De�nition 2.2

Let T = T (Y; y; �) be a stochastically increasing (in the parameter of interest #) test variable

according to de�nition 2.1. Then, the subset of the sample space de�ned by

Cy(�) = fY 2 �jT (Y; y; �) � tobsg(2)

is said to be a generalized extreme region for testing H0 against H1.

De�nition 2.3

If Cy(�) is a generalized extreme region according to (2), then

p(tobs) = sup
#�#0

Pr(Y 2 Cy(�)j#)(3)

is said to be its generalized p{value for testing H0.
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Corollary 2.4

The generalized p{value according to (3) is equivalent to

p(tobs) = Pr(Y 2 Cy(�)j# = #0) ;(4)

which is easy to determine.

Proof:

This follows directly from property 3 of a generalized test variable: if T is stochastically

increasing in #, the supremum over �0 = f#j# � #0g is obtained on the upper boundary of

�0. 2

De�nition 2.5

Let p(tobs) be a generalized p{value on a continuous generalized test variable T = T (Y; y; �).

Let H0 : # 2 �0 be the null hypothesis being tested against the alternative H1 : # 2 �1.

Then, the rule de�ned as

reject H0 if p(tobs) � �(5)

is said to be a generalized �xed{level test of level �.

Corollary 2.6

The generalized p{value according to (3) as a function of the observed value tobs resp. y is

not uniformly distributed over the interval [0; 1]. For that reason, the generalized �xed{level

test according to (5) is not an exact test of level �, but an approximate one.

Proof:

Assume a continuous generalized test variable T . The generalized p{value

p(tobs) = Pr(T (Y; y; �) � tobsj# = #0) = 1� FT (tobs; #0)

is a function of the observed value of T . Considering the observed tobs = T (y; y; �) as a

random variable T � = T (Y; Y; �) leads in general to di�erent distributions for T and T �,

because only the distribution of T depends on the observed value tobs. From the probability

integral transform it follows, that FT (T ) has a uniform distribution over the interval [0; 1].

Because of

p(T �) = Pr(T (Y; y; �) � T (Y; Y; �)j# = #0)

= 1� FT (T
�; #0)

6� 1� FT (T )

it follows, that p(T �) in general does not have an uniform distribution over [0; 1]. 2
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De�nition 2.7

Let �(y; #) := Pr(Y 2 Cy(�)j#) be the data{based power function of T . A test based on a

generalized extreme region Cy(�) is said to be p{unbiased if

�(y; #) � �(y; #0) for all # 2 �1 ;(6)

and p{similar (on the boundary) if, given any y 2 �,

�(y; #0) = p(tobs)(7)

does not depend on the nuisance parameters �, where p(tobs) ist the generalized p{value

according to (3).

This concept of testing with generalized p{values was �rst introduced by Tsui and Weera-

handi (1989) and is presented in detail in Weerahandi (1995).

3 Testing point null hypotheses

Consider point null hypotheses and composite alternative hypotheses of the form

H0 : # = #0 vs. H1 : # 6= #0(8)

where #0 is a particular value of the parameter that has been speci�ed.

In such situations Weerahandi extends de�nition 2.1 by substituting

4. Given any �xed tobs and �, the probability Pr(T 2 Cy(�)) is a nondecreasing function

of (i) #� #0 when # � #0, and (ii) #0 � # when # < #0.

for property 3 of a generalized test variable.

By this de�nition the data{based power function �(y; #) increases on �1 with the distance to

�0. Particularly the resulting generalized �xed{level test is p{unbiased. A problem occurs

when the generalized extreme region is to be constructed, because the construction is not as

obvious and clearly determined as in the case of one{sided null hypotheses.

A possibility to avoid the problem of constructing a generalized extreme region is to use

the same generalized test variable for one{sided and point null hypotheses and de�ne the

generalized p{value for the point null hypothesis in the usual way by

p(tobs) = 2 �minfPr(T (Y; y; �) > tobs);Pr(T (Y; y; �) < tobs)g(9)

= 2 �minfPr(Y 2 Cy(�)); 1� Pr(Y 2 Cy(�))g
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This proceeding also guarantees the p{unbiasedness of the resulting generalized �xed{level

test. Moreover, there cannot be problem{immanent reasons against the incidentally assumed

symmetry of the generalized extreme region. Nevertheless by using (9) for point null hy-

potheses it is no longer possible to construct extreme regions of maximal length or other

optimality properties.

4 Linear hypotheses

Consider testing problems on linear hypotheses of the form

HI
0 : dT � = c vs. HI

1 : dT � 6= c ;

HII
0 : dT � � c vs. HII

1 : dT � > c ;

HIII
0 : dT � � c vs. HIII

1 : dT � < c ;

(10)

where d 2 IRn, c 2 IR and n is the dimension of the parameter space �.

In the case of testing linear hypotheses, the classi�cation of the parameter vector � into

the parameter of interest # and the vector of nuisance parameters � has to be modi�ed.

In general, all parameters now are of interest, but all parameters also function as nuisance

parameters.

So we transform the hypotheses (10), leaving an arbitrary single parameter on the left side

of the special null hypothesis:

HI
0 : �i =

1

di

0
@c�X

j 6=i

dj�j

1
A vs. HI

1 : �i 6=
1

di

0
@c�X

j 6=i

dj�j

1
A ;

HII
0 : �i �

1

di

0
@c�X

j 6=i

dj�j

1
A vs. HII

1 : �i >
1

di

0
@c�X

j 6=i

dj�j

1
A ;

HIII
0 : �i �

1

di

0
@c�X

j 6=i

dj�j

1
A vs. HIII

1 : �i <
1

di

0
@c�X

j 6=i

dj�j

1
A ;

(11)

Now by de�nition �i takes the role of the parameter of interest (#) and all other �j (j 6= i),

collected in the vector

�� := (�1; : : : ; �i�1; �i+1; : : : ; �n)
T ;

function as nuisance parameters.

It will be necessary to modify the de�nition of a generalized test variable, because property

2 in the case of testing linear hypotheses will prove to be too restrictive. So we come to an

adjustment of de�nition 2.1:

6



De�nition 4.1

A random variable of the form T = T (Y; y; �) is said to be a generalized test variable if it

has the following three properties:

1. tobs = T (y; y; �) does not depend on unknown parameters.

2. When �i is speci�ed, and under the assumption of HI
0 (according to (11)), the random

variable T has a probability distribution that is independent of the vector of nuisance

parameters ��.

3. For �xed y and ��, Pr(T � tj�i) is a monotonic function of �i for any given t.

The other de�nitions in section 2, related to the new de�nition of a generalized test variable,

are no further a�ected and can be kept in the original form.

Without loss of generality let a generalized test variable be de�ned as stochastically in-

creasing rather than stochastically monotonic in the parameter of interest. In the case of a

stochastically decreasing random variable T it is either possible to invert the inequalities in

(12) or, for example, to cross over to the transformation T � := 1=T which then once again

is stochastically increasing in the parameter of interest.

So, the generalized p{values for the three testing problems (10) resp. (11) are given for

HI
0 : p(tobs) = 2 �min

�
Pr(T (Y; y; �) � tobsjH

I
0 ) ; Pr(T (Y; y; �) � tobsjH

I
0 )
�

HII
0 : p(tobs) = Pr(T (Y; y; �) � tobsjd

T � = c)

HIII
0 : p(tobs) = Pr(T (Y; y; �) � tobsjd

T � = c) :

(12)

Calculating p(tobs) under the assumption dT � = c is equivalent to determining the special

supremum over H0. Because of the monotonic property of T , the supremum in all cases is

placed on the boundary.
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5 Mixed linear models

Consider mixed linear models of the form

z �

 
X!;

mX
i=1

�2
i Ui

!
; i.e. E (z) = X! ; Cov (z) =

mX
i=1

�2
i Ui ;(13)

with

X! =
qX

i=1

Xi!i = 1n�+
qX

i=2

Xi!i and Um = In :

If we cross over to a reduced model that is invariant with respect to mean value transforma-

tions, we get

y = Proj R(X)?z =Mz with M = In �XX+ ;

where R(X) is the range of the matrix X and X+ is the Moore{Penrose inverse of X. So, y

is the projection of z onto the complement of R(X) and it follows that

y �

 
0;

mX
i=1

�2
i Vi

!
with Vi =MUiM :(14)

In ANOVA{models V1; : : : ; Vm are linearly independent and there always exists a basis of

pairwise orthogonal projectors P1; : : : ; Pm which span the same vector space as V1; : : : ; Vm.

So, the basis transformation matrix � = ('ij)i;j=1;::::m is determined by

Vi =
mX
i=1

'ijPj ; i = 1; : : : ; m :(15)

The sum of squares Si and mean squares Mi are given by

Si = zTPiz ; i = 1; : : : ; m ;

Mi = 1
trPi

zTPiz ; i = 1; : : : ; m :
(16)

Under the assumption of normality of the random vector z is follows, that the mean squares

Mi are stochastically independent with expectation

E (Mi) =
mX
�=1

�2
�'�i ; i = 1; : : : ; m ;(17)
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and the following terms have central �2{distributions:

trPi �
Mi

E (Mi)
� �2

trPi
:(18)

For some special null hypotheses | if two mean squares have the same expectation under

H0 | (18) can be used to construct exact F{tests. In general a construction of exact F{tests

is impossible.

For more detailed information about balanced mixed linear models see Hartung et al. (1997)

or Khuri and Sinha (1998) for the unbalanced case.

For the problem of testing an arbitrary linear hypothesis of variance components (cf. (11))

consider the following random variable

T (Y; y; �2) =

X
l2L

�l � E (Ml)
sl

Sl
+ �0c

�0A
si

Si
+
X
k2K

�k � E (Mk)
sk

Sk

;(19)

with �2 = (�2
1 ; : : : ; �

2
m)

T , si the observed value of Si, K;L � f1; : : : ; i � 1; i + 1; : : : ; mg,

constants �k; �l 2 IR and

A = E (Mi)� �2
i'ii + 'ii

2
4 1
di

0
@c�X

j 6=i

dj�
2
j

1
A
3
5 ;(20)

so that

�0A +
X
k2K

�k � E (Mk) =
X
l2L

�l � E (Ml) + �0c ;(21)

and all added terms shall be nonnegative:

�k E (Mk) � 0 8 k 2 K ; �0A � 0 ;

�l E (Ml) � 0 8 l 2 L ; �0c � 0 :
(22)
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Theorem 5.1

The random variable T (Y; y; �2) from (19) with assumptions (21) and (22) possesses the

three properties of a generalized test variable according to de�nition 4.1.

Proof:

1. The observed value of T

tobs = T (y; y; �2)
(19)
=

X
l2L

�l � E (Ml) + �0c

�0A +
X
k2K

�k � E (Mk)

(21)
= 1

is constant and therefore especially independent of any parameters.

2. Since �k; �l and si are constant and due to (18)

X
k2K

�k � E (Mk)
sk

Sk
and

X
l2L

�l � E (Ml)
sl

Sl

are linear combinations of independent 1=�2{expressions, free of any unknown para-

meter. �0 and c are constant. Finally, for the left term in the denominator of T in (19)

we get

�0A
si

Si
= �0si

A

E (Mi)

E (Mi)

Si

HI

0= �0si
E (Mi)

Si
;(23)

also a 1=�2{expression, which at least under the assumption of HI
0 is free of nuisance

parameters.

3. By construction the parameter of interest �2
i (the former �i in section 4) in T only

appears in E (Mi) in the denominator of (23), which again only appears in the de-

nominator of T in (19). With respect to the vector of variance components �2 we

have

T (Y; y; �2) /
q1

q2
A

E (Mi)
+ q3

:

Because of (22) it follows that q1; q2; q3 2 IR+
0 , and for that reason T is stochastically

increasing in �2
i .

With 1., 2. and 3. T indeed is a generalized test variable in the sense of de�nition 4.1. 2

The question that occurs is how to get the constants �k and �l. This can be done by an

iterative proceeding:

10



Construction principle for generating generalized test variables for testing linear hypothe-

ses in balanced mixed linear models.

1. Formulate and transform the linear hypothesis of interest, so that a single parameter

�2
i is isolated on one side of the hypothesis as it is done in (11).

2. For generating T iteratively start with the expression �0=A which yields all variance

components except for �2
i and A is given by (20).

3. The aim now is to set tobs equal to 1. Therefore we have to add 1=�2{expressions in

the numerator and denominator of T .

4. To �nd an admissible set of �k and �l, the easiest way is to eliminate the variance

components according to their appearance in the model (14) from left to right. For

example: If the leftmost variance component in the numerator (that is not yet egalized

in the denominator) is to be egalized, take that 1=�2{expression according to (18) with

an expectation (17) whose leftmost variance component is the one to be egalized.

5. The last step is to set �0 which is clearly determined as �0 := �0'ii=di by the former

proceeding.

6 An illustrative example

The balanced 2{way nested classi�cation model with random e�ects is given by

yijk = �+ ai + bij + eijk i = 1; : : : ; r j = 1; : : : ; s k = 1; : : : ; t

with E[yijk] = � ; ai � (0; �2
a) ; bij � (0; �2

b ) ; eijk � (0; �2
e)(24)

ai; bij and eijk stochastically independent :

Under the assumption of normally distributed random e�ects ai, bij and eijk, we have the

following distribution statements for the sums of squares (cf. (18)):

Sa � (st�2
a + t�2

b + �2
e) � �

2
r�1

Sb � (t�2
b + �2

e) � �
2
r(s�1)

Se � �2
e � �

2
rs(t�1) :
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A generalized test variable for arbitrary linear hypotheses (under the restriction of d1 6= 0)

is

T (Y; y; �2) =

 
1�

s � d2

d1

!
(t�2

b + �2
e)
sb

Sb
+
s � d2

d1
�2
e

se

Se
+
st

d1
c

�
st

1

d1
(c� d2�

2
b � d3�

2
e) + t�2

b + �2
e

�
sa

Sa
+
st � d3

d1
�2
e

se

Se

(25)

=

 
1�

s � d2

d1

!
sb

�2
r(s�1)

+
s � d2

d1

se

�2
rs(t�1)

+
st

d1
c

�
st

1

d1
(c� d2�

2
b � d3�

2
e) + t�2

b + �2
e

�

st�2
a + t�2

b + �2
e

sa

�2
r�1

+
st � d3

d1

se

�2
rs(t�1)

HI

0=

 
1�

s � d2

d1

!
sb

�2
r(s�1)

+
s � d2

d1

se

�2
rs(t�1)

+
st

d1
c

sa

�2
r�1

+
st � d3

d1

se

�2
rs(t�1)

Because no assumptions about d 2 IR3 except for d1 6= 0 have been made, negative terms can

occur in T. Should this be the case, these negative terms have to be added to the numerator

and the denominator of T, which neither in
uences tobs = 1 nor leads to a dependence of the

generalized test variable on nuisance parameters.

Suppose the hypotheses of interest are for example

HI
0 : �

2
a = �2

b vs. HI
1 : �

2
a 6= �2

b(26)

and

HII
0 : �2

a � �2
b vs. HII

1 : �2
a > �2

b :(27)

This means d = (1;�1; 0)T and c = 0, and the generalized test variable T is

T (Y; y; �2) =

(1 + s) sb
�2
r(s�1)

� s se
�2
rs(t�1)

st�2
b + t�2

b + �2
e

st�2
a + t�2

b + �2
e

�
sa
�2
r�1

:

Since it is not obvious whether T is a monotone function in �2
a, the function

T (Y; y; �2) =

(1 + s) sb
�2
r(s�1)

st�2
b + t�2

b + �2
e

st�2
a + t�2

b + �2
e

�
sa
�2
r�1

+ s se
�2
rs(t�1)
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is regarded and then T obviously is a stochastically increasing function in �2
a. This necessary

transformation is not a consequence of the general construction principle (cf. section 5), but

caused by using (25) with an arbitrary d 2 IR3. In the case of starting with a certain

hypothesis and a �xed d 2 IR3 the problem of negative term in T does not occur.

Provided HI
0 is true, then

T (Y; y; �2) =

(1 + s) sb
�2
r(s�1)

sa
�2
r�1

+ s se
�2
rs(t�1)

:

The generalized �xed{level test is given by the rule

Reject
HI

0

HII
0

at the nominal level �; if

(
2 �minfPr(T > 1);Pr(T < 1)g

Pr(T > 1)

)
< � :

The probabilities P (T > 1) and P (T < 1) are determined by simulation.

For various constellations of the parameters r; s; t and �2
a = �2

b , with �
2
e = 1 and the nominal

signi�cance level of � = 0:05 the following generalized p{values resulted from simulation

studies (1000 runs in each simulation):

p(tobs) p(tobs)

r s t �2
a = �2

b HI
0 HII

0 r s t �2
a = �2

b HI
0 HII

0

3 4 2 0:2 0:040 0:059 6 2 2 0:2 0:040 0:058

3 4 2 1 0:055 0:056 6 2 2 1 0:044 0:052

3 4 2 5 0:062 0:054 6 2 2 5 0:050 0:053

3 4 2 10 0:061 0:052 6 2 2 10 0:050 0:053

3 4 8 0:2 0:041 0:068 2 5 3 0:2 0:036 0:067

3 4 8 1 0:042 0:057 2 5 3 1 0:038 0:053

3 4 8 5 0:043 0:054 2 5 3 5 0:046 0:044

3 4 8 10 0:042 0:054 2 5 3 10 0:047 0:044

The simulations show, that even with small sample sizes the approximative tests have an es-

timated signi�cance level near to the nominal one. With rising r the approximation becomes

even better. In general the one{sided test for problem (27) tends to be more conservative

than the two{sided test (26).
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For s = 3, t = 2, �b = 2, �e = 1 and a nominal signi�cance level of � = 0:05 the following

data{based power{functions �(tobs; �
2
a) are computed by simulation in dependence on r:

r = 20

r = 10

r = 5

Figure 1: Estimated power of the two{sided test (cf. 26) as a function of �a

�a

�(tobs; �
2
a)

r = 20

r = 10

r = 5

Figure 2: Estimated power of the one{sided test (cf. 27) as a function of �a

�a

�(tobs; �
2
a)
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For the estimated data{based power{functions �(tobs; �
2
b ) in dependency of �2

b , with �a = 2

and under the same parameter constellation we get the following result:

r = 20

r = 10

r = 5

Figure 3: Estimated power of the two{sided test (cf. 26) as a function of �b

�b

�(tobs; �
2
a)

r = 20

r = 10

r = 5

Figure 4: Estimated power of the one{sided test (cf. 27) as a function of �b

�b

�(tobs; �
2
b )
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