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Abstract

In combining several tests of signi�cance the individual test statistics

are allowed to be dependent. By choosing the weighted inverse normal

method for the combination, the dependency of the original test statistics

is then characterized by a correlation of the transformed statistics. For

this correlation a con�dence region, an unbiased estimator and an unbi-

ased estimate of its variance are derived. The combined test statistic is

extended to include the case of possibly dependent original test statistics.

A simulation study shows the performance of the actual signi�cance level.

Key Words: Combining dependent test statistics, Combining p{values, Non{

parametric meta{analysis, Inverse normal method, Multiple endpoints.

1 Introduction

In many situations we are lead to combine several test statistics. For instance in

a clinical trial there may be several aspects of the same underlying drug in
uence,

so{called multiple endpoints, and one might be interested in the question, whether

there is any drug e�ect at all. Or in the meta{analysis of a series of similar

studies resp. experiments a common overall e�ect is of interest. Often the various

test statistics are so di�erent, that a direct combination is not possible, but the

corresponding p{values of the test statistics under the individual null hypothesis

have to be combined.
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Now the cruical point in the assumptions of the known methods is the claim

that the various test statistics have to be independent, cf. for instance Birnbaum

(1954), Liptak (1958), van Zwet and Oosterho� (1967), Hedges and Olkin (1985).

Particularly in the �rst case of application mentioned above this condition is

seldomly ful�lled.

Allowing for dependency in the original test statistics, in the class of quasi means

of the p{values characterized by Liptak (1958) his proposal to work with the

nowadays generally called inverse normal method is chosen, because then depen-

dency becomes equivalent to correlation. Indeed a single parametric formulation

of this correlation does have to be assumed, but of course it can also be regarded

as a mean correlation approximating the case of possibly di�erent correlations

between the transformed statistics. Further, the parameter sets belonging to the

individual hypotheses might not be di�erent, cf. Hedges and Olkin (1985) for a

general discussion of the inverse normal method, a slight modi�cation of it is now

given below to include the case of dependent test statistics, at large following the

notations of van Zwet and Oosterho� (1967).

2 Main Results

For i = 1; : : : ; n; let Ti be one{sided test statistics for testing the null{hypotheses

Hi;0 : #i = #i0 ;

for the real{valued parameters #i, against the one{sided alternatives

Hi;1 : #i > #i0 ;

where large values of Ti may lead to a rejection of Hi;0.

It is desired to combine the results of these tests, i.e. to construct a function of

T1; : : : ; Tn that can be used to test the combined null{hypothesis

H0 : #i = #i0 ; for all i = 1; : : : ; n ;
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against the alternative

H1 : #i � #i0 ; for all i = 1; : : : ; n

with strict inequality in at least one case.

If Ti has a continuous distribution function Fi0 under the null{hypothesis Hi;0,

then Fi0(Ti), i.e. the 1� p{value(Ti), is uniformly distributed on (0; 1), and

denoting ��1 the inverse of the standard normal distribution function, the 'probit'

ti = ��1(Fi0(Ti))(2.1)

has a standard normal distribution under Hi;0, i = 1; : : : ; n.

Dependency in the original test statistics T1; : : : ; Tn leads to a dependency in the

probits t1; : : : ; tn, which now is equivalent to some correlation of the ti's, and we

assume

Cov(ti; tj) = �; for i 6= j; i; j = 1; : : : ; n ;

with the real{valued parameter � in the natural parameter set, i.e. � 1
n�1

� � � 1.

Let now �1; : : : ; �n be a set of real valued weights, with
Pn

i=1 �i 6= 0, so according

to the 'weighted inverse normal method' the combined test statistic, which under

H0 is standard normally distributed, is given as follows:

t(�) =

nX
i=1

�itivuut(1� �)

nX
i=1

�i
2 + �

 
nX

i=1

�i

!2
�
H0

N(0; 1) ;(2.2)

and we see, for � = 0 we get the usual 'weighted inverse normal method' test

statistic t(0) for independent test statistics Ti, c.f. for instance Hedges and Olkin

(1985), and for � = 1 we have just the weighted mean of the probits t1; : : : ; tn,

with weights �i=
Pn

j=1 �j.

If there is no further information available about �, the ti's have to be used

themselves for drawing some inference about �. So let be de�ned the quadratic
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form

q =
1

n� 1

nX
i=1

 
ti �

1

n

nX
i=1

ti

!2

;(2.3)

then, under H0, a con�dence interval for � at level 1� 
, 0 < 
 < 1, is given by

1� (n� 1) � q
�2
n�1;
1

� � � 1� (n� 1) � q
�2
n�1;1�
2

; 
1 + 
2 = 
 ;


1 � 0 ; 
2 � 0 ;

(2.4)

where �2
n�1;
 denotes the 
{quantile of the central �2 distribution with (n � 1)

degrees of freedom.

Further, under H0, an unbiased estimator of � is given by

�̂ = 1� q(2.5)

with the variance

Var(�̂) =
2

n� 1
(1� �)2 ;(2.6)

which can be estimated unbiasedly by

dVar(�̂) =
2

n+ 1
� q2 :(2.7)

Extending the usual 'weighted inverse normal method' in order to include the

case of possibly dependent test statistics, an estimated form of (2.2), that under

H0 is approximately standard normally distributed, is now given by

t(�̂�; �) =

nP
i=1

�itivuut nP
i=1

�i
2 +

"�
nP

i=1

�i

�2

�
nP

i=1

�i
2

#n
�̂� + � �

q
2

n+1
(1� �̂�)

o(2.8)

approx:�
H0

N(0; 1) ;
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where

�̂� = max

�
� 1

n� 1
; �̂

�
(2.9)

and � � 0 is a parameter regulating the actual signi�cance level, chosen for

instance as � = �1 = 0:2 or as � = �2 = (1 + 1
n�1

� �̂�) � 0:1, as in Table 1.

For demonstrating the in
uence of correlation on the signi�cance level given

by the usual test statistic t(0), cf. (2.2), and its corrections by the statistic

t(�̂�; �), cf. (2.8), with � = �1 and � = �2, in table 1 for some constellations of

n; �1; : : : ; �n and � the realizations of signi�cance levels �̂ are simulated (10.000

runs each) for a prescribed nominal signi�cance level of � = 0:05.

For the most practical case of a nonnegative correlation the correction statistics

(2.8) have a good performance, whereas for negative correlations | being more

of a theoretical interest | all considered statistics are too conservative. For

improvements in that case the factor � in (2.8) could be weakened, allowing

then, of course, the signi�cance level to increase for nonnegative correlations.
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Table 1: (�) Simulated actual signi�cance levels �̂ to the nominal signi�cance

level � = 0:05 in several constellations of n; �1; : : : ; �n and � for the combined

test statistics t(0), cf. (2.2), and t(�̂�; �), c.f. (2.8), with �1 = 0:2 and �2 =

[1 + 1=(n� 1)� �̂�] � 0:1.

� = 0:05 realized signi�cance level �̂

nominal �

signi�cance level < 0 � 0

n �i test stat. � 1
n

� 1
2(n�1)

0.0 0.05 0.1 0.2 0.5 1.0

t(0) 0.002 0.009 0.05 0.06 0.07 0.08 0.13 0.17

1 t(�̂�; �1) 0.011 0.019 0.05 0.05 0.05 0.05 0.06 0.05

t(�̂�; �2) 0.013 0.023 0.05 0.06 0.06 0.07 0.06 0.05

t(0) 0.003 0.013 0.05 0.06 0.07 0.08 0.12 0.16

3
p
i t(�̂�; �1) 0.014 0.022 0.05 0.05 0.05 0.05 0.05 0.05

t(�̂�; �2) 0.016 0.025 0.05 0.06 0.06 0.06 0.06 0.05

t(0) 0.024 0.026 0.05 0.06 0.06 0.07 0.09 0.12

i2 t(�̂�; �1) 0.040 0.040 0.05 0.05 0.05 0.05 0.05 0.05

t(�̂�; �2) 0.040 0.040 0.05 0.05 0.05 0.06 0.05 0.05

t(0) 0.001 0.009 0.05 0.07 0.08 0.11 0.18 0.24

1 t(�̂�; �1) 0.001 0.014 0.04 0.05 0.05 0.06 0.06 0.05

t(�̂�; �2) 0.003 0.026 0.05 0.06 0.07 0.07 0.07 0.05

t(0) 0.001 0.012 0.05 0.06 0.08 0.11 0.16 0.22

5
p
i t(�̂�; �1) 0.003 0.018 0.04 0.04 0.05 0.06 0.05 0.05

t(�̂�; �2) 0.007 0.030 0.05 0.06 0.07 0.07 0.06 0.05

t(0) 0.015 0.027 0.05 0.06 0.07 0.08 0.13 0.17

i2 t(�̂�; �1) 0.023 0.030 0.04 0.04 0.05 0.05 0.05 0.05

t(�̂�; �2) 0.028 0.037 0.05 0.05 0.06 0.06 0.06 0.05

(�) The notation 0.001 for �̂ should be understood as �̂ � 0:001.
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Table1: continued.

� = 0:05 realized signi�cance level �̂

nominal �

signi�cance level < 0 � 0

n �i test stat. � 1
n

� 1
2(n�1)

0.0 0.05 0.1 0.2 0.5 1.0

t(0) 0.001 0.009 0.05 0.09 0.12 0.16 0.25 0.30

1 t(�̂�; �1) 0.001 0.006 0.03 0.04 0.05 0.06 0.05 0.05

t(�̂�; �2) 0.001 0.021 0.05 0.07 0.08 0.08 0.06 0.05

t(0) 0.001 0.013 0.05 0.08 0.12 0.15 0.23 0.29

10
p
i t(�̂�; �1) 0.001 0.009 0.03 0.04 0.05 0.06 0.05 0.05

t(�̂�; �2) 0.001 0.025 0.05 0.06 0.08 0.08 0.06 0.05

t(0) 0.010 0.027 0.05 0.07 0.08 0.12 0.18 0.25

i2 t(�̂�; �1) 0.012 0.022 0.04 0.04 0.05 0.05 0.05 0.05

t(�̂�; �2) 0.019 0.034 0.05 0.05 0.06 0.06 0.05 0.05

t(0) 0.001 0.009 0.05 0.14 0.19 0.25 0.34 0.37

1 t(�̂�; �1) 0.001 0.002 0.02 0.04 0.05 0.06 0.05 0.05

t(�̂�; �2) 0.001 0.009 0.04 0.07 0.08 0.08 0.06 0.05

t(0) 0.001 0.012 0.05 0.13 0.18 0.23 0.32 0.36

25
p
i t(�̂�; �1) 0.001 0.003 0.02 0.04 0.05 0.06 0.05 0.05

t(�̂�; �2) 0.001 0.014 0.04 0.07 0.08 0.08 0.05 0.05

t(0) 0.007 0.027 0.05 0.10 0.14 0.20 0.28 0.33

i2 t(�̂�; �1) 0.004 0.012 0.02 0.04 0.05 0.06 0.05 0.05

t(�̂�; �2) 0.010 0.024 0.04 0.05 0.06 0.07 0.05 0.05
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3 Proof of the Results

Denote AT the transpose of a real matrix A, I the (n�n){identity matrix and 1

the (n� 1) vector of ones, i.e. 1T = (1; : : : ; 1)1�n. With respect to distributional

properties of linear and quadratic forms let us in general refer for instance to

Mathai and Provost (1992).

Putting now, c.f. (2.1),

x = (t1; : : : ; tn)
T(3.1)

we get under H0 the covariance matrix of x

Cov(x) = (1� �)I+ �11T ;(3.2)

and with � = (�1; : : : ; �n)
T for the variance of �Tx:

Var(�Tx) = �
TCov(x)�(3.3)

= (1� �)�T I�+ � � �T11T�

= (1� �)

nX
i=1

�2i + � �
 

nX
i=1

�i

!2

;

which yields (2.2). Let us de�ne now the projection matrix

K = I� 1

n
11T ; K = KT ; K = K2 ;(3.4)

then for the quadratic form q of (2.3) we have the equivalent representation

q =
1

n� 1
xTKx ;(3.5)
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such that by the following property

K �Cov(x) = (1� �)K+ � �K � 11T

= (1� �)K+ � � (I� 1

n
11T )11T

= (1� �)K+ � � (1� 1

n
1 � n)1T

= (1� �)K ;

with trace(K) = n� 1, we get under H0

1

1� �
� (n� 1)q

H0� �2
n�1 ;(3.6)

which, with 
1 + 
2 = 
, gives the (1� 
){con�dence intervall for 1=(1� �):

1

(n� 1) � q � �
2
n�1;
1

� 1

1� �
� 1

(n� 1) � q � �
2
n�1;1�
2

;(3.7)

respectively for (1� �):

(n� 1) � q
�2
n�1;1�
2

� 1� � � (n� 1) � q
�2
n�1;
1

;(3.8)

yielding now directly the (1� 
){con�dence intervall for � given in (2.4).

Now by (3.6), under H0, we get for the expectation

E

�
1

1� �
(n� 1)q

�
= n� 1 ; respectively(3.9)

E q = 1� � ;

and for the variance

2(n� 1) = Var

�
1

1� �
(n� 1)q

�
(3.10)

=
1

(1� �)2
� (n� 1)2 � Var(q) ; respectively

Var(q) = 2 � 1

n� 1
� (1� �)2 ;



4 Final Remark 10

an unbiased estimator which is given by, cf. Hartung and Voet (1986),

dVar(q) = 2 � 1

n + 1
q2 :(3.11)

Now Var(q) = Var(1� q), so that (2.5), (2.6) and (2.7) are also shown.

Finally, although under H0 in (2.2) we may use the unbiased estimator (2.5)

for �, we have to recognize the square root function to be concave, so that in

expectation the denominator would be underestimated. Therefore in (2.8) the

estimate of � is corrected by adding a 'small amount' of its estimated standard

deviation under H0.

4 Final Remark

In this paper we have shown how to modify the 'inverse normal method' of non{

parametric meta{analysis in order to include the case of possibly dependent test

statistics resp. dependent p{values. In the worst case one can take at least a

weighted mean of the probits.

So we recommend to take our procedure in consideration if one is not absolutely

sure whether the statistics to be combined are really independent.

Acknoledgement: Thanks are due to Boris Weimann, University of Dortmund,

for carrying out the simulations.
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