
A note on the Bickel-Rosenblatt test in autoregressive time
series

Dirk Bachmann

Ruhr-Universität Bochum

Fakultät für Mathematik

44780 Bochum, Germany

e-mail: dirk.bachmann@ruhr-uni-bochum.de

Holger Dette

Ruhr-Universität Bochum

Fakultät für Mathematik

44780 Bochum, Germany

e-mail: holger.dette@ruhr-uni-bochum.de

FAX: +49 2 34 32 14 559

February 23, 2004

Abstract

In a recent paper Lee and Na (2001) introduced a test for a parametric form of the
distribution of the innovations in autoregressive models, which is based on the integrated
squared error of the nonparametric density estimate from the residuals and a smoothed
version of the parametric fit of the density. They derived the asymptotic distribution under
the null-hypothesis, which is the same as for the classical Bickel-Rosenblatt (1973) test for
the distribution of i.i.d. observations. In this note we first extend the results of Bickel and
Rosenblatt to the case of fixed alternatives, for which asymptotic normality is still true but
with a different rate of convergence. As a by-product we also provide an alternative proof
of the Bickel and Rosenblatt result under substantially weaker assumptions on the kernel
density estimate. As a further application we derive the asymptotic behaviour of Lee and
Na’s statistic in autoregressive models under fixed alternatives. The results can be used for
the calculation of the probability of the type II error of the Bickel-Rosenblatt test for the
parametric form of the error distribution and for testing interval hypotheses in this context.

AMS Subject classification: 62M07

Keywords and phrases: Autoregressive process, goodness-of-fit test, nonparametric density esti-
mation, asymptotic distribution under fixed alternatives

1 Introduction

The goodness-of-fit testing problem for the distribution of the innovations is of particular im-
portance in time series analysis. In particular the hypothesis of Gaussian errors is of interest,
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because under this additional assumption inference simplifies substantially, and many statistical
procedures in time series are based on the assumption of normality [see e.g. Brockwell and Davis
(1991) or Fan and Yao (2002)]. In a recent paper Lee and Na (2002) considered the problem of
testing the hypothesis

H0 : f = f0 H1 : f �= f0(1.1)

in the first-order-autoregressive process

Xj = ϕXj−1 + Zj,(1.2)

where f0 is a given density, Zj are i.i.d. random variables with density f, mean 0 and variance
σ2 > 0. Their work was motivated by the fact that the limit distribution of tests based on
functionals of the empirical process of the residuals Ẑj = Xj − ϕ̂Xj−1 depends on the parameter
estimates involved in the empirical process and is no longer a functional of the standard Brownian
bridge [see e.g. Boldin (1982) or Koul and Levanthal (1989)]. Lee and Na (2002) proposed to use
the Bickel-Rosenblatt test based on the residuals Ẑ1, . . . , Ẑn for the hypotheses (1.1) and proved
asymptotic normality of the corresponding test statistic under the null hypothesis H0 : f = f0.
It is the purpose of the present paper to provide a more refined analysis of the Bickel-Rosenblatt
test by a discussion of the asymptotic behaviour of the test statistic under fixed alternatives of
the form

d(f, f0) =

∫
(f − f0)

2(x)dx > 0.(1.3)

In Section 2 we show that under the alternative (1.3) a standardized version of the statistic of
Bickel and Rosenblatt (1973) based on i.i.d. observations is still asymptotically normal distributed
but with a different rate of convergence. This result allows a simple calculation of the probability
of the type II error of the Bickel-Rosenblatt test, which is of particular importance if the null
hypothesis cannot be rejected [see Berger and Delampady (1987) or Sellke, Bayarri and Berger
(2001)]. The asymptotic distribution of the test statistic under fixed alternatives can also be used
for the calculation of critical values in the problem of testing precise hypotheses of the form

H0 : d(f, f0) > π H1 : d(f, f0) ≤ π,(1.4)

where π is a given bound in which the experimenter would denote deviations from the assumed
density f0 as not relevant. Note that the formulation of the hypotheses (1.4) allows the experi-
menter to test that the density f is approximately equal to f0 (i.e. d(f, f0) ≤ π) at a controlled
type I error.
In Section 3 we consider the statistic of Lee and Na (2002) under the alternative (1.3) and show
that it has the same asymptotic behaviour as Bickel and Rosenblatt’s statistic in the i.i.d. case
which was derived in Section 2. It is also demonstrated that this result holds for composite
hypothesis

H0 : f ∈ F H1 : f �∈ F(1.5)
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where

F =
{1

σ
f0

( · − µ

σ

)
| µ ∈ R; σ > 0

}
(1.6)

is a local scale family and f0 is a given density. Finally, some of the proofs are given in an appendix
in Section 4.

2 The test of Bickel and Rosenblatt revisited

Let Z1, Z2, . . . , Zn denote independent identically distributed random variables with two times
continuously differentiable density f with bounded second derivative and K : R → R be a contin-
uous bounded symmetric kernel with compact support satisfying∫

K(x)dx = 1;

∫
x2K(x)dx < ∞;

∫
K2(x)dx < ∞.(2.1)

We consider the kernel estimator

fn(x) =
1

n

n∑
i=1

Kh(x − Zi)(2.2)

where Kh(·) = 1
h
K( ·

h
) is the scaled kernel and h > 0 denotes a bandwidth satisfying

nh2 → ∞, h → 0(2.3)

if n → ∞. For the problem of testing the hypothesis (1.1) Bickel and Rosenblatt (1973) proposed
to reject the null-hypothesis for large values of the statistic

Tn =

∫
[fn − Kh∗f0]

2(x)dx(2.4)

where f1 ∗ f2 denotes the convolution of the functions f1 and f2. Under the null hypothesis these
authors showed asymptotic normality of Tn, namely

n
√

h
{
Tn − 1

nh

∫
K2(t)dt

} D−→ N (0, τ 2),(2.5)

where the asymptotic variance is given by

τ 2 = 2

∫
f 2

0 (x)dx

∫
(K ∗ K)2(x)dx.(2.6)

The following result now establishes asymptotic normality of an appropriately standardized version
of Tn under fixed alternatives.

Theorem 2.1. If the assumptions (2.1) - (2.3) are satisfied and the alternative (1.3) is valid we
have √

n
[
Tn −

∫
(Kh ∗ (f − f0))

2(x)dx
] D−→ N (0, 4�2),(2.7)
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where the asymptotic variance is given by

�2 = Var[(f − f0)(Zi)].(2.8)

In the Appendix we provide an alternative proof of the statement (2.5) based on a central limit
theorem for degenerate U-statistics, which is of its own interest and particulary helpful to identify
the limit distribution in the proof of the second part of Theorem 2.1. Moreover, with this tech-
nique the statement (2.5) can be proved under substantially weaker assumptions than imposed by
Bickel and Rosenblatt (1973), who derived this result using an approximation of the normalized
and centered sample distribution function by an appropriate Brownian process on a convenient
probability space. It is also interesting to note that the centered version of Tn is of different order
under the null hypothesis and alternative, namely

Tn − E[Tn]
H0∼ Op

( 1

n
√

h

)
(2.9)

Tn − E[Tn]
H1∼ Op

( 1√
n

)
.

Note that Theorem 2.1 can be used for the calculation of the probability of the type II error of
the test, which rejects the null hypothesis H0 : f = f0, whenever

n
√

h
{
Tn − 1

nh

∫
K2(t)dt

}
> τu1−α,(2.10)

where u1−α is the (1 − α) quantile of the standard normal distribution. A straightforward calcu-
lation gives under the alternative (1.3) for the probability of rejection the approximation

P (“rejection”) ≈ Φ
(√n

2�
d(f, f0) − τ

2�

u1−α√
nh

)
≈ Φ

(√n

2�
d(f, f0)

)
.

A further application of Theorem 2.1 consists in the calculation of critical values of the test for
the precise hypotheses defined in (1.4). Here the null hypothesis is rejected for small values of the
statistic Tn, namely

√
n

Tn − π

2�̂
≤ uα,(2.11)

where �̂ is an appropriate estimator of the asymptotic variance � in Theorem 2.1. Note that the
test of the form (2.11) decides in favor of the alternative H1 : d(f, f0) ≤ π at a controlled type
I error of size α. In other words if we decide that the “true” density is approximately equal to
f0, the probability of a possible error is α. We finally note that it is important to control this
probability because subsequent data analysis will be performed under the assumption f = f0 if
the null hypothesis in (1.4) is rejected.

3 A goodness-of-fit test in autoregressive models

Consider the first order autoregressive model, where we are interested in testing the hypothesis
(1.1) for the distribution of the innovations Zi. Because these values are unobservable, we replace
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them by the residuals Ẑi = Xi − ϕ̂Xi−1, where ϕ̂ is a
√

n-consistent estimator of the parameter
ϕ. Let

f̂n(x) =
1

n

n∑
i=1

Kh(x − Ẑi)(3.1)

denote the kernel density estimate based on the residuals Ẑ1, . . . , Ẑn and define the statistic T̂n as
the analogue of Tn, where the random variable fn defined in (2.2) is replaced by f̂n. Lee and Na
(2002) showed that under the additional assumptions on the kernel K

K
′′′
exists, K

′′
is bounded(3.2) ∫

|K(j)(x)|dx < ∞, j = 1, 2, 3,

∫
|K(j)(x)|2dx < ∞, j = 1, 2(3.3)

and on the bandwidth

nh4 → ∞(3.4)

the statistics Tn and T̂n are asymptotically equivalent, i.e.

n
√

h [T̂n − Tn] = oP (1) ,(3.5)

and derived as a consequence the asymptotic normality of T̂n. The following results show that
statements of this form remain true under fixed alternatives.

Theorem 3.1. Assume that |ϕ| < 1. If the assumptions (2.1) - (2.3), (3.2) - (3.4) are satisfied
and the alternative (1.3) is valid, then

√
n [T̂n −

∫
(Kh ∗ (f − f0))

2(x)dx]
D−→ N(0, 4�2),(3.6)

where the asymptotic variance is given in (2.8).

Theorem 3.2. Assume that |ϕ| > 1 and that the assumptions (2.1) - (2.3) and (3.4) are satisfied.
If additionally the kernel K in the density estimate (3.1) is bounded such that there exits a constant
B > 0 with ∫

|K(x + δ) − K(x)|dx ≤ Bδ(3.7)

for all δ > 0, then the assertion (3.6) holds.

Remark 3.3. Theorem 3.1 and 3.2 are also valid for testing the composite hypothesis (1.6) of a
location scale family. To be precise consider the first-order autoregressive model

Xt = µ + ρXt−1 + Zt,(3.8)
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where we are interested in testing the hypothesis

H0 : M(f, f0) = 0 H1 : M(f, f0) > 0(3.9)

or the corresponding precise hypotheses of the form (1.4), where

M(f, f0) = min
σ>0

∫ (
f(x) − 1

σ
f0

(x

σ

))2

dx(3.10)

is the best approximation of the density f by elements from the scale family

F =
{ 1

σ
f0

( ·
σ

)
| σ > 0

}
.

We assume that the minimum in (3.10) exists and is attained at a unique point, say σ0 > 0. If
µ̂, ϕ̂, σ̂ are

√
n-consistent estimates of µ, ϕ, σ, respectively, f̂n is the density estimate (3.1) from

the residuals Ẑi = Xi − µ̂ − ϕ̂Xi−1 Lee and Na (2002) showed for the statistic

T̄n =

∫ {
f̂n(x) −

(
Kh ∗ 1

σ̂
f
( ·

σ̂

))}2

(x)dx(3.11)

the asymptotic normality

n
√

h
(
T̄n − 1

nh

∫
K2(x)dx

) D−→ N (0, τ 2)(3.12)

under the null hypothesis (3.9), where τ 2 is defined in (2.6). Combining these arguments with the
arguments given for the proof of Theorem 2.1, 3.1 and 3.2 it can be shown that under any fixed
alternative M(f, f0) > 0 it follows

√
n(T̄n − M(f, f0))

D−→ N (0, 4ρ̄2) ,(3.13)

where

ρ̄ = Var
({

f(Zi) − 1

σ0
f0

(Zi

σ0

)}2)

and σ0 is the unique minimizer in (3.10). The details are omitted for the sake of brevity.

4 Appendix: Proofs

Proof of Theorem 2.1. Let f denote the “true” density of the random variables Zi. Recalling
the definition of the statistic Tn and the density estimate fn we obtain the following decomposition

Tn =

∫
[fn − Kh∗f0]

2(x)dx(4.1)

=

∫
[fn − Kh∗f ]2(x)dx + 2

∫
[fn − Kh∗f ](x)gh(x)dx +

∫
g2

h(x)dx
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=
2

n2

∑
i<j

∫
[Kh(x − Zi) − eh(x)][Kh(x − Zj) − eh(x)]dx

+
2

n

n∑
i=1

[
(Kh∗gh)(Zi) − E[(Kh∗gh)(Zi)]

]
+

1

n2

n∑
i=1

∫
[Kh(x − Zi) − eh(x)]2dx

+

∫
g2

h(x)dx,

where the functions eh and gh are defined by eh := Kh∗f and gh := Kh∗(f − f0), respectively. A
straightforward calculation shows

1

n2

n∑
i=1

∫
[Kh(x − Zi) − eh(x)]2dx =

1

nh

∫
K2(x)dx + OP (

1

n
),(4.2)

and consequently the statistic Tn can be written as

Tn − 1

nh

∫
K2(x)dx −

∫
[Kh∗(f − f0)]

2(x)dx =
2

n2

∑
i<j

Hn(Zi, Zj) +
2

n

n∑
i=1

Yi + OP (
1

n
),(4.3)

where the random variables Hn(Zi, Zj) and Yi are defined by

Hn(Zi, Zj) =

∫
[Kh(x − Zi) − eh(x)][Kh(x − Zj) − eh(x)]dx,(4.4)

Yi = (Kh∗gh)(Zi) − E[Kh∗gh(Zi)],

respectively. Under the null hypothesis H0 : f = f0 we have Yi ≡ 0 and obtain the stochastic
expansion

Tn − 1

nh

∫
K2(x)dx =

2

n2

∑
i<j

Hn(Zi, Zj) + OP (
1

n
) = Un + OP (

1

n
),(4.5)

where the last equality defines the statistic Un. The asymptotic normality of the statistic

n
√

h
{

Tn − 1

nh

∫
K2(x)dx

}

now follows from the corresponding statement for the random variable n
√

hUn. In order to es-
tablish the weak convergence of this statistic we apply a central limit theorem for degenerate
U-statistics. More precisely we will check the conditions of Theorem 1 in Hall (1984). Obviously,
Hn is symmetric, E[Hn(Z1, Z2) | Z1] = 0, and E[H2

n(Z1, Z2)] < ∞ for each n ∈ N. Moreover, a
straightforward but tedious calculation shows

lim
n→∞

Var(
√

hHn(Zi, Zj)) = lim
n→∞

E[hH2
n(Zi, Zj)] =

∫
(K∗K)2(x)dx

∫
f 2

0 (x)dx,(4.6)
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which gives for the variance of n
√

hUn

Var(n
√

hUn) = E
[4h

n2

∑
i<j

i′<j′

Hn(Zi, Zj)Hn(Zi′, Zj′)
]

= E
[
2h

n − 1

n
H2

n(Zi, Zj)
]

+ o(1) = τ 2 + o(1) ,

where τ 2 is defined in (2.6). The final condition (2.1) of Hall’s (1984) Theorem 2.1 is more difficult

to check. First note that it follows from (4.6) that E[H2
n(Zi, Zj)] = O

(
1
h

)
(uniformly with respect

to i, j ∈ {1, . . . , n}). A similar calculation gives

E[H4
n(Zi, Zj)] =

1

h3

∫
f 2

0 (x)dx ·
∫

(K ∗ K)4(x)dx + O
( 1

h2

)
= O

( 1

h3

)
.(4.7)

Finally, we have to consider the quantity

Gn(Z1, Z2) = E[Hn(Z1, Z3)Hn(Z3, Z2) | Z1, Z2]

and obtain

E[G2
n(Zi, Zj)] =

1

h2
E

[{∫
(K ∗ K)(w)(K ∗ K)

(
w − Zi − Zj

h

)
f(Zi)dw

}2]
+ O

(1

h

)

=
1

h

∫ ∫ {
(K ∗ K) ∗ (K ∗ K)

}2

(s)dsf 4(v)dv + O
(1

h

)

= O
(1

h

)
.

This gives
E[G2

n(Zi, Zj)] + 1
n
E[H4

n(Zi, Zj)]

(E[H2
n(Zi, Zj)])2

= O
(
h +

1

nh

)
= o(1)

and establishes condition (2.1) of Hall’s (1984) Theorem 2.1. We therefore obtain the weak
convergence

n
√

hUn
D−→ N (0, τ 2).

Finally, the assertion (2.5) follows from (4.5).

For a proof of asymptotic normality of Tn under a fixed alternative of the form (1.3) we note that
it follows from (2.3), (2.5), (4.3) and (4.5) that

Tn −
∫

[kn ∗ (f − f0)]
2(x)dx =

2

n

n∑
i=1

Yi + op

( 1√
n

)
,

where the random variables Yi are defined by (4.4). A straightforward but tedious calculation
shows

Var(Yi) = Var((f − f0)(Zi)) + O(h2) = �2 + O(h2),
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with the variance �2 given in 2.8 so that

Var(
2√
n

n∑
i=1

Yi) = 4�2 + o(1),

while
E[Y 4

i ] = O(1),

uniformly with respect to i = 1, . . . , n. The asymptotic normality of Theorem 2.1 now follows
from Ljapunoff’s theorem, which completes the proof of Theorem 2.1.

�

Proof of Theorem 3.1 and 3.2. We only consider the case |ϕ| < 1, the proof of Theorem 3.2
can be obtained by similar arguments. Obviously, the assertion follows from the estimate

√
n(T̂n − Tn) = op(1)(4.8)

For a proof of this estimate we will proceed as in Lee and Na (2002) who obtained the estimate

∫
(f̂n − fn)2(x)dx = OP (n−2h−4).(4.9)

On the other hand Theorem 2.1 shows that under a fixed alternative∫
(fn − Kh∗f0)

2(x)dx = OP (1) ,(4.10)

and a straightforward calculation [using condition (3.4)] gives

|T̂n − Tn| ≤
∫

(f̂n − fn)2(x)dx + 2[

∫
(f̂n − fn)2(x)dx]

1
2 [

∫
(fn − Kh∗f0)

2(x)dx]
1
2

= OP (
1

nh2
) = oP (

1√
n

),

which proves the assertion of Theorem 3.1.
�
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