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Abstract

For the problem of percentile estimation of a quantal response curve, we determine
multi-objective designs which are robust with respect to misspecifications of the model
assumptions. We propose a maximin approach based on efficiencies and provide designs
that are simultaneously efficient with respect to the particular choice of various parameter
regions and link functions. Furthermore, we deal with the problems of designing model
and percentile robust experiments and give various examples of such designs, which are
calculated numerically.

AMS Classification: 62K05, 62J12
Keywords and Phrases: Binary response model, robust optimal design, c-efficiency, percentile
estimation, multi-objective designs.

1



1 Introduction

We consider an experiment where the response is dichotomous and the probability of toxicity p
increases with the dose level x of a drug. A 100pth percentile xp is the dose level corresponding
to a desired probability of toxicity p, i.e. for a sample space of doses X ⊂ IR the percentile
xp ∈ X corresponds to a target probability of toxicity p ∈ (0, 1). Estimation may be facilitated
by assuming that the response function follows some probability distribution from a location
scale family. If we let the probability of toxicity at dose level xi be modeled as F (βxi + µ), i.e.

p = p(x, ϑ) = F (µ + βx), ϑ = (µ, β)T , µ ∈ IR, β ∈ IR+,(1.1)

where µ and β are unknown parameters and F is a distribution function, then we obtain the
following expression for the 100pth percentile

x = xp =
F−1(p) − µ

β
.(1.2)

An (approximate) design ξ is a probability measure with finite support on IR, i.e. the ob-
servations are taken at the support points of the measure proportional to the corresponding
masses. An optimal design maximizes a real-valued function of the Fisher information matrix,
which is usually referred to as an optimality criterion [see e.g. Silvey (1980)]. In the present
context, the Fisher information for the parameter ϑ depends on the unknown value of ϑ itself,
which complicates the determination of optimal designs substantially. Much effort has been
devoted to the problem of finding good designs for the estimation of the parameter ϑ in the
binary response model [see, e.g., Chaloner and Larntz (1989), Sitter and Wu (1993) among
many others].
The goal of this article is to provide designs ξ, which are on the one hand efficient for estimating
the 100pth percentile xp and on the other hand robust against misspecifications of the model
assumptions. Wu (1988) shows that designing an experiment optimal for percentile estimation
is equivalent to calculating the c-optimal design for the estimation of a linear combination of
the parameters µ and β with respect to a particular choice of the vector c. Locally (in the
sense of Chernoff (1953)) c-optimal designs for the above model can be derived from the article
of Ford, Torsney and Wu (1992). Since the Fisher information and thus the c-optimal designs
depend on the unknown parameter these designs cannot be implemented directly in practice.
Assuming that a good initial guess for the unknown parameter ϑ is available is often not realistic
in real applications. Moreover, misspecifications of the parameter ϑ for the construction of a
design can lead to a loss of efficiency [see, e.g., López-Fidalgo and Wong (2000)] and as a
consequence to poor results in the subsequent data analysis. A more robust alternative is to
assume sufficient knowledge of ϑ to specify a prior distribution for this parameter and to average
the optimality criterion (or an appropriately standardized version thereof) over the plausible
values of ϑ defined by the prior. This leads to so-called Bayesian optimality criteria [see e.g.
Chaloner and Larntz (1989)].
As an alternative for the construction of robust designs, we propose a maximin approach based
on c-efficiencies, which only requires the specification of a certain range for the unknown pa-
rameter. It appears to us that this is a more realistic scenario since practitioners will often
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have difficulties to specify a prior distribution for the unknown parameter ϑ especially if this is
two-dimensional. A (non-standardized) maximin approach has been used by Sitter (1992) and
Noubiap and Seidel (2000) for the problem of parameter estimation in binary response models.
In contrast to these authors, we discuss a minimax concept based on efficiencies, because as
pointed out in Dette (1997) the consideration of non-standardized quantities can be rather
misleading.
In section 2, we describe the model in detail and derive the connection between optimality
for percentile estimation and c-optimality. In section 3, the robust optimality criterion used
in the following is illustrated and maximin efficient designs are given for several choices of
spaces for the unknown parameter ϑ. These results are then compared to the corresponding
Bayesian optimal designs with respect to the uniform prior distribution. While the problem
of robustness of an optimal design with respect to the unknown parameter is caused by the
nonlinear structure of the binary response model, there are other issues of robustness which
arise in applications, because a specific model or a particular percentile is chosen, for which the
determined design should be efficient. For this reason, section 4 extends the maximin efficiency
approach, dealing with maximin efficient designs for percentile estimation for competing link
functions. In section 5, we present some results on designs, which are maximin efficient for
estimating several percentiles simultaneously. A somewhat related approach is given in Zhu
and Wong (2000), who derive designs, which are (non-standardized) Bayesian c-optimal (with
respect to several prior distributions for the unknown parameter ϑ) for the estimation of x0.5, the
LD50, under the constraint that the Bayesian efficiencies for estimating x0.25 and x0.75 separately
will not be lower than some given values. The concluding section 6, finally, summarizes our
results and gives a detailed discussion of the various aspects of robustness in the design of
experiment for the binary response setup.

2 Locally optimal designs

Before we present our results on maximin efficient designs for percentile estimation, we give a
short summary of the results on the corresponding locally optimal designs, which were already
established by Wu (1988). We consider the common binary response model where a subject is
administered a stimulus at a dose level x ∈ IR. The response X is a binary random variable
with success probability p = p(x, ϑ), i.e. X ∼ Bin(1, p(x, ϑ)), where x ∈ IR is the explanatory
variable and ϑ is an unknown parameter. In this article, we deal with parameterization (1.1) of
a two parameter binary response model, where F denotes a so-called link function, i.e. a known
distribution function with density f . Having chosen a distribution family for F , one obtains
maximum likelihood estimators µ̂, β̂ for the unknown parameters and x̂p = (F−1(p)− µ̂)/β̂ for

the 100pth percentile. The information matrix for a single dose xi associated with µ̂ and β̂ is
given by

I(xi, ϑ) = h(zi)

(
1 xi

xi x2
i

)
,(2.1)
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where zi = βxi + µ, and the function h(z) is defined as

h(z) =
f 2(z)

F (z)(1 − F (z))
.(2.2)

The Fisher information of a design ξ is thus given by

M(ξ, ϑ) =

∫
I(x, ϑ) dξ(x)(2.3)

and also called information matrix in the design literature. The notations I(x, ϑ), M(ξ, ϑ)
indicate the dependence of the Fisher information on the particular value of the unknown
parameter ϑ. By inverting the information matrix M(ξ, ϑ) of the underlying design ξ, we
obtain a first-order approximation to the variance-covariance matrix of the maximum likelihood
estimate (µ̂, β̂)T . If n observations are taken according to an approximate design (using an
appropriate rounding procedure), we derive an approximation to the asymptotic variance of x̂p

as

V ar(x̂p) ≈ 1

n
(∇xp)

T M−(ξ, ϑ)(∇xp), ∇xp =

(
∂xp

∂µ
,
∂xp

∂β

)T

,(2.4)

where the gradient of xp is given by c = cp = −(1, xp)
T /β and M− denotes a generalized inverse

of the matrix M . Here and throughout this paper, we assume that the linear combination cT
p ϑ

is estimable by the design, i.e. cp ∈ range(M(ξ, ϑ)) for all ϑ ∈ Θ, which guarantees that the
approximation for the variance of x̂p is independent of the choice of the generalized inverse
[see Pukelsheim (1993), chapter 3]. An optimal design for estimating the 100pth percentile
minimizes V ar(x̂p) or its approximation. Thus the problem of finding a (locally) optimal
design for estimating xp is equivalent to the problem of finding a locally cp-optimal design, i.e.
a design which minimizes

cT
p M−(ξ, ϑ)cp.(2.5)

These designs are called locally optimal, since the minimization of (2.5) depends on the param-
eter ϑ = (µ, β)T [see Chernoff (1953)].
Wu (1988) shows that the cp-optimal design problem for the binary response model (1.1) can
be solved simultaneously for all parameters. There exist values p1 < p2 depending on the link
function F such that for p1 ≤ p ≤ p2 the locally cp-optimal design is the one-point design
concentrating at the 100pth percentile xp defined in (1.2), whereas for p < p1 or p > p2 the
locally cp-optimal design is supported on the two percentiles xp1 and xp2 , while the corresponding
weights can be calculated from an explicit formula depending on p, p1, p2 and the particular
choice of F . For the logit link function we obtain the values p2 = 1 − p1 = 0.917. The probit
link function yields p2 = 1− p1 = 0.942. Note that while the design points xp1 and xp2 depend
on the unknown parameter ϑ, the values p1 and p2 do only depend on the link function F under
consideration.
The most commonly applied link functions are the logistic distribution (logit) and the normal
distribution (probit) and we will restrict ourselves to these two link functions in the following.
Other links, which are also used in practice, are the complementary log-log, the double expo-
nential, the double reciprocal and the skewed logit with several choices of skewing parameters
[see Ford, Torsney and Wu (1992)] and can be treated by similar methods.
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3 Efficient designs for percentile estimation under a given

model assumption

A general objection to one-point designs is that they do not allow the estimation of both
parameters µ and β with the same data. In the context of sequential experiments, however,
such designs were shown to be robust to model assumptions [see Wu (1985)]. A disadvantage
of collecting data sequentially is that they exhibit dependencies, which can lead to problems
when it comes to data analysis.
Thus, we consider a non-sequential way of obtaining efficient designs for percentile estimation,
which are robust against misspecifications of the unknown parameter ϑ = (µ, β)T . Our approach
is motivated by our experience that in many cases it is possible to specify a certain range,
Θ ⊂ IR × IR+ say, for the unknown parameters. Following Müller (1995), we propose to use
designs, which maximize the minimal cp-efficiency, min effΘ(ξ), over the set Θ, thus protecting
the experiment against the worst case scenario. In other words, we propose to maximize the
expression

min effΘ(ξ) = min
ϑ∈Θ

effcp(ξ, ϑ) = min
ϑ∈Θ

cT
p M−(ξ∗cp

, ϑ)cp

cT
p M−(ξ, ϑ)cp

(3.1)

with respect to the choice of the design ξ, where ξ∗cp
denotes the locally cp-optimal design

and M−(ξ∗cp
, ϑ) is a generalized inverse of the information matrix M(ξ∗cp

, ϑ). Since the locally
cp-optimal designs are one point designs in many cases, this definition takes singular Fisher
information matrices into account. Note that the vector cp and the design ξ∗cp

depend on the
parameter ϑ, although this dependence is not reflected in our notations. Throughout this
section a maximin efficient design will be denoted by ξ∗M .

A powerful tool for checking the optimality of a given design are equivalence theorems. The
equivalence theorem for local cp-optimality, which is given below, is well-known in the design
literature. The proof can, for example, be found in Pukelsheim (1993).

Theorem 3.1 A design ξ∗cp
= ξ∗cp

(ϑ) is locally cp-optimal if and only if there exists a generalized
inverse G(ξ∗cp

, ϑ) of M(ξ∗cp
, ϑ) such that the following inequality holds

cT
p G(ξ∗cp

, ϑ)I(x, ϑ)G(ξ∗cp
, ϑ)cp

cT
p M−(ξ∗cp

, ϑ)cp
≤ 1 ∀x ∈ IR.(3.2)

Moreover, there is equality in (3.2), when x is a support point of the design ξ∗cp
.

The equivalence theorem corresponding to the maximin cp-efficiency criterion can be obtained
as a special case of Theorem 3.3 b) in Dette, Haines and Imhof (2003).

Theorem 3.2 Let

N (ξ) = {ϑ̃ ∈ Θ | effcp(ξ, ϑ̃) = min
ϑ∈Θ

effcp(ξ, ϑ)},(3.3)
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be the subset of Θ consisting of those values of ϑ, for which the cp-efficiency of a design ξ
takes its minimal value over Θ. A design ξ∗M is maximin cp-efficient if and only if for each
ϑ ∈ N (ξ∗M) there exists a generalized inverse G(ξ∗M , ϑ) of M(ξ∗M , ϑ) and a prior π∗ on N (ξ∗M)
such that the following inequality is valid

∫
N (ξ∗M )

cT
p G(ξ∗M , ϑ)I(x, ϑ)G(ξ∗M , ϑ)cp

cT
p M−(ξ∗M , ϑ)cp

dπ∗(ϑ) ≤ 1 ∀x ∈ IR.(3.4)

Again, there is equality in (3.4), when x is a support point of the design ξ∗M .

Following Dette, Haines and Imhof (2003) we call any prior π∗ in (3.4) least favourable distribu-
tion. The designs given in the following discussion were calculated numerically using Theorem
3.2 whereby their optimality was carefully checked. These calculations are quite complicated,
since the least favourable distribution is two-dimensional.
From a practical point of view, it is reasonable to assume that the experimenter can specify
a certain range for the position of either parameter before the experiment. This information
leads to a rectangular subset of IR× IR+ for Θ, i.e. Θ = [µ1, µ2]× [β1, β2]. In the following, we
will thus consider only parameter regions Θ of this form. Lemma 3.1 and Lemma 3.2 below give
considerable simplifications of the maximin optimal design problem for parameter regions of
the form Θ = [µ1, µ2]× [β1, β2]. The first result describes a symmetry property of the maximin
efficient designs for estimating the percentiles xp and x1−p in case of an underlying symmetric
distribution function F .

Lemma 3.1 Let F be a symmetric distribution function, i.e. F (x) = 1 − F (−x). Let, fur-
thermore, ξ = {x1, . . . , xn; w1, . . . , wn} denote the maximin efficient design for estimating the
percentile xp with respect to the parameter space Θ = [µ1, µ2] × [β1, β2]. Then the design
{−x1, . . . ,−xn; w1, . . . , wn} is maximin efficient for estimating the percentile x1−p with respect
to [−µ2,−µ1] × [β1, β2].

Proof. Combining the equalities

cp = cp(µ, β) = −(1, xp)
T /β = −(1,

F−1(p) − µ

β
)T /β =

(
1 0
0 −1

)
c1−p(−µ, β)

and

M(ξ, µ, β) =
∑

i

wi
f(βxi + µ)2

F (βxi + µ)(1 − F (βxi + µ))

(
1 xi

xi x2
i

)

=

(
1 0
0 −1

)
M({−xi, wi},−µ, β)

(
1 0
0 −1

)

the assertion of Lemma 3.1 is obvious. �

Our next result refers to the relationship between the maximin efficient designs for estimating
the percentile xp with respect to parameter regions Θ of a certain form, i.e. if the β-intervals
are scaled by a positive parameter γ the maximin efficient designs for the new parameter spaces
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can be obtained by rescaling the ”old” designs. This result shows that maximin efficient designs
are equivariant with respect to different scalings of the explanatory variable x. Moreover, it
also enables us to restrict ourselves to consider only β-intervals with one fixed parameter value,
e.g. β1 = 1.

Lemma 3.2 Let ξ = {x1, . . . , xn; w1, . . . , wn} denote the maximin efficient design for estimat-
ing the percentile xp with respect to the parameter region Θ = [µ1, µ2] × [β1, β2]. Then the
design ξγ = {x1/γ, . . . , xn/γ; w1, . . . , wn} is maximin efficient for estimating the percentile xp

with respect to the parameter region [µ1, µ2] × [γβ1, γβ2] for all choices of γ > 0.

Proof. Combining the equalities

cp(µ, β) = −(1, xp)
T /β = −(1,

F−1(p) − µ

β
)T /β = γ

(
1 0
0 γ

)
cp(µ, γβ)

and

M(ξ, µ, β) =
∑

i

f(βxi + µ)2

F (βxi + µ)(1 − F (βxi + µ))

(
1 xi

xi x2
i

)

=

(
1 0
0 γ

)
M(ξγ , µ, γβ)

(
1 0
0 γ

)

we obtain the statement of Lemma 3.2. �

It is obvious that maximin efficient designs must be supported on more than one point, since
a one-point design does not allow the estimation of the percentile xp with respect to different
unknown parameters. From a heuristic point of view it is also clear that if the length µ2 − µ1

and β2−β1 of the parameter intervals is small then the maximin efficient designs for estimating
percentiles xp with p1 ≤ p ≤ p2 take the form {x1, x2; w, 1−w}, where x1 ≈ xp and w ≈ 1 [see
Wu (1988)]. In other words, the maximin efficient design ξ∗M is close to the locally cp-optimal
designs with respect to (µ, β)T ∈ [µ1, µ2] × [β1, β2].
These presumptions are confirmed by our numerical results, which are given in Tables 1 and
3. Table 1 presents some maximin efficient designs with respect to several relatively small
parameter intervals for the logit distribution

F (x) = 1/(1 + e−x), X = IR,

whereas Table 3 gives the corresponding designs for the probit distribution

F (x) =

∫ x

−∞
e−u2/2du/

√
2π, X = IR.

For ”large” parameter regions Θ we obtain maximin efficient designs with more than two
support points (see Tables 2 and 4). This phenomenon is widely observed in the literature
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as far as Bayesian or maximin optimal design problems are concerned [see, e.g., Dette and
Biedermann (2003) or Dette and Wong (1996)]. The expression

b(ξ∗M) =

∫
Θ

effcp(ξ
∗
M , ϑ) dϑ/λ(Θ)

in the tables denotes the value of the integrated (with respect to the uniform distribution)
cp-efficiency of the maximin efficient design over the parameter region Θ and is given for com-
parison with Bayesian designs with respect to the uniform prior, which will be discussed below.
[Here λ(Θ) denotes the Lebesgue measure of Θ, i.e. λ(Θ) = (µ2 − µ1)(β2 − β1).]

Table 1: Maximin efficient designs for percentile estimation in the logit model with respect to
various ”small” parameter regions Θ = [µ1, µ2] × [β1, β2]. In these cases the optimal designs
are supported at two points.

p µ1 µ2 β1 β2 x1 x2 w1 w2 min effΘ(ξ∗M) b(ξ∗M)

0.2 -0.1 0.1 1 1.1 -1.381 0.903 0.938 0.062 0.8888 0.9342

0.4 -0.1 0.1 1 1.1 -0.751 0.189 0.621 0.379 0.8986 0.9329

0.5 -0.1 0.1 1 1.1 -0.423 0.423 0.500 0.500 0.9121 0.9385

0.6 -0.1 0.1 1 1.1 -0.189 0.751 0.379 0.621 0.8986 0.9329

0.7 -0.1 0.1 1 1.1 -0.363 0.992 0.149 0.851 0.8891 0.9303

0.8 -0.1 0.1 1 1.1 -0.903 1.381 0.062 0.938 0.8888 0.9342

0.9 -0.1 0.1 1 1.1 -1.914 1.964 0.054 0.946 0.9230 0.9609

0.9 -0.2 0.2 1 1.2 -1.664 1.831 0.094 0.906 0.8359 0.9183

0.9 -0.3 0.3 1 1.3 -1.375 1.756 0.124 0.877 0.7509 0.8769

0.95 -0.1 0.1 1 1.1 -2.254 2.232 0.111 0.890 0.9728 0.9949

0.95 -0.2 0.2 1 1.2 -2.104 2.061 0.141 0.859 0.9108 0.9758

0.95 -0.3 0.3 1 1.3 -1.963 1.923 0.171 0.829 0.8349 0.9494

Table 2: Maximin efficient designs for percentile estimation in the logit model with respect to
various ”moderate” and ”large” parameter regions Θ = [µ1, µ2] × [β1, β2].

p µ1 µ2 β1 β2 x1 x2 x3 x4 w1 w2 w3 w4 min effΘ(ξ∗M ) b(ξ∗M )

0.5 -1 1 1 2 -1.812 -0.675 0.675 1.812 0.144 0.356 0.356 0.144 0.4948 0.5941

0.5 -2 2 1 4 -2.264 -0.518 0.518 2.264 0.181 0.319 0.319 0.181 0.2519 0.3919

0.8 -1 1 1 2 -0.126 0.986 2.333 0.286 0.294 0.420 0.4736 0.5898

0.8 -2 2 1 4 -1.105 -0.100 0.858 2.741 0.075 0.255 0.365 0.305 0.2609 0.4045

0.9 -0.4 0.4 1 1.4 -1.666 0.184 1.876 0.082 0.122 0.796 0.6787 0.8136

0.9 -1 1 1 2 0.118 1.051 2.591 0.197 0.307 0.496 0.4756 0.5826

0.9 -2 2 1 4 -0.121 0.420 1.200 3.111 0.164 0.221 0.307 0.308 0.3101 0.4133
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Table 3: Maximin efficient designs for percentile estimation in the probit model with respect to
various ”small” parameter regions Θ = [µ1, µ2] × [β1, β2].

p µ1 µ2 β1 β2 x1 x2 w1 w2 min effΘ(ξ∗M) b(ξ∗M)

0.2 -0.1 0.1 1 1.1 -0.891 0.615 0.906 0.094 0.8663 0.9185

0.4 -0.1 0.1 1 1.1 -0.558 0.261 0.616 0.384 0.8848 0.9224

0.5 -0.1 0.1 1 1.1 -0.382 0.382 0.500 0.500 0.8960 0.9269

0.6 -0.1 0.1 1 1.1 -0.260 0.558 0.384 0.616 0.8848 0.9225

0.7 -0.1 0.1 1 1.1 -0.371 0.682 0.189 0.811 0.8741 0.9193

0.8 -0.1 0.1 1 1.1 -0.615 0.891 0.094 0.906 0.8663 0.9185

0.9 -0.1 0.1 1 1.1 -1.066 1.202 0.059 0.941 0.8744 0.9305

0.9 -0.2 0.2 1 1.2 -0.878 1.162 0.108 0.892 0.7541 0.8665

0.9 -0.3 0.3 1 1.3 -0.680 1.148 0.150 0.850 0.6447 0.8087

0.95 -0.1 0.1 1 1.1 -1.371 1.399 0.076 0.924 0.9243 0.9718

0.95 -0.2 0.2 1 1.2 -1.216 1.290 0.123 0.877 0.8076 0.9221

0.95 -0.3 0.3 1 1.3 -1.090 1.213 0.165 0.835 0.6893 0.8670

We observe from Tables 1, 2, 3 and 4 that the support points of the optimal designs are much
more spread on the real axis in case of an underlying logistic distribution than they are for the
probit distribution. For several parameter regions Θ and percentiles xp, the maximin cp-efficient
designs with respect to the probit model even require more support points than the respective
designs for the logit link function (see Tables 2 and 4). Furthermore, the minimal efficiencies
are higher in the logit case, particularly for larger parameter regions Θ. These phenomena are
probably due to differences in tail-behaviour of the link functions. We also observe that the
maximin efficient designs yield very good minimal efficiencies if the space Θ = [µ1, µ2]× [β1, β2]
is not too large. For example, if the 95% percentile has to be estimated in the logit model, the
minimal efficiency over the range [−0.3, 0.3]× [1, 1.3] of the maximin efficient design is 83.49%.
On the other hand, a larger uncertainty with respect to the location of the unknown parameters
(µ, β)T yields (as expected) a loss in minimal efficiency. Consider for example the problem of

Table 4: Maximin efficient designs for percentile estimation in the probit model with respect to
various ”moderate” and ”large” parameter regions Θ = [µ1, µ2] × [β1, β2].

p µ1 µ2 β1 β2 x1 x2 x3 x4 w1 w2 w3 w4 min effΘ(ξ∗M ) b(ξ∗M )

0.5 -1 1 1 2 -1.804 -0.613 0.613 1.804 0.125 0.375 0.375 0.125 0.4272 0.5262

0.5 -2 2 1 4 -1.507 -0.452 0.452 1.507 0.260 0.240 0.240 0.260 0.1118 0.3007

0.8 -1 1 1 2 -0.684 0.027 1.031 2.273 0.065 0.349 0.357 0.229 0.3877 0.4804

0.8 -2 2 1 4 -0.994 0.001 0.712 1.946 0.174 0.291 0.275 0.260 0.1211 0.3045

0.9 -0.4 0.4 1 1.4 -0.974 0.504 1.665 0.024 0.440 0.537 0.5611 0.6560

0.9 -1 1 1 2 -0.381 0.161 1.022 2.165 0.041 0.306 0.359 0.294 0.3674 0.4537

0.9 -2 2 1 4 -0.644 0.065 0.743 1.973 0.158 0.258 0.275 0.309 0.1283 0.2967

9



estimating the median in a logit model where Θ = [−2, 2] × [1, 4] is used for the construction
of the maximin efficient design. In this case, the maximin efficient design is supported at four
points and exhibits a minimal efficiency of 25.19%. The reason for this low efficiency is that the
maximin optimal design is a compromise between the rather extreme situations appearing in Θ.
For example if ϑ = (−2, 1)T or ϑ = (2, 1)T , the locally optimal design advises the experimenter
to take only observations at the point x = 2 or x = −2, respectively, and the corresponding
efficiencies for the other situation are both obtained as 19.63%. Note that this value is already
smaller than the minimal efficiency of the maximin optimal design, although only the value
of µ was misspecified, whereas the efficiency of the maximin optimal design over the whole
parameter region Θ is at least 25.19%. Moreover, this value corresponds to the worst case with
respect to Θ and for many parameter values of Θ the efficiency of the maximin optimal design
is considerably higher. Imagine that the true value of ϑ is given by ϑ = (0, 2)T or ϑ = (0, 1)T .
Then the maximin optimal design achieves efficiencies 50.87% and even 72.05%, respectively.

In the remaining part of this section, we want to address the application of Bayesian designs
when the experimenter is in the situation that he can only specify a parameter region Θ, in
which the unknown parameter ϑ will be located, but he has not enough knowledge in advance of
the experiment to assign plausible weights to the elements of Θ. In this case, it is reasonable to
give each point in Θ the same weight, i.e. to choose the uniform prior dϑ/λ(Θ) on the parameter
region, where λ(Θ) denotes the Lebesgue measure of Θ. The Bayesian cp-efficient design ξ∗B
with respect to the uniform prior dϑ/λ(Θ) thus maximizes the integral of the cp-efficiencies
with respect to dϑ/λ(Θ), i.e.

ξ∗B = arg max
ξ

∫
Θ

effcp(ξ, ϑ) dϑ/λ(Θ).(3.5)

For a general Bayesian criterion the uniform prior dϑ/λ(Θ) has to be replaced by an arbitrary
prior πΘ on Θ. The equivalence theorem corresponding to the above problem is given as a
special case of Theorem 3.3 a) in Dette, Haines and Imhof (2003) and formulated for a general
prior on Θ.

Theorem 3.3 A design ξ∗B is Bayesian cp-efficient with respect to a prior πΘ if and only if
for each ϑ ∈ Θ there exists a generalized inverse G(ξ∗B, ϑ) of M(ξ∗B, ϑ) such that the following
inequality holds for all x ∈ IR

∫
Θ

cT
p G(ξ∗B, ϑ)I(x, ϑ)G(ξ∗B, ϑ)cp

cT
p M−(ξ∗B, ϑ)cp

effcp(ξ
∗
B, ϑ) dπΘ(ϑ) ≤

∫
Θ

effcp(ξ
∗
B, ϑ) dπΘ(ϑ).(3.6)

Moreover, there is equality in (3.6) for each support point of the Bayesian cp-efficient design
ξ∗B.

The situation described above is exactly that way, for which we recommend to use the maximin
cp-efficiency criterion for the design of the experiment and it is of some interest to compare
the designs with respect to the different concepts. In the following, we give some optimal
designs with respect to the Bayesian cp-efficency criterion with uniform prior distribution on Θ
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Table 5: Bayesian cp-efficient designs for percentile estimation in the logit model with respect
to the uniform prior distributions on various parameter regions Θ.

p µ1 µ2 β1 β2 x1 x2 w1 w2 b(ξ∗B) min effΘ(ξ∗B)

0.9 -0.1 0.1 1 1.1 -2.010 2.025 0.025 0.975 0.9715 0.8947

0.9 -0.2 0.2 1 1.2 -1.845 1.898 0.043 0.957 0.9406 0.7765

0.9 -0.3 0.3 1 1.3 -1.688 1.798 0.058 0.942 0.9093 0.6622

0.9 -0.4 0.4 1 1.4 -1.535 1.717 0.070 0.930 0.8788 0.5583

0.9 -1 1 1 2 -0.655 1.457 0.113 0.887 0.7283 0.1838

Table 6: Bayesian cp-efficient designs for percentile estimation in the probit model with respect
to the uniform prior distributions on various parameter regions Θ.

p1 µ1 µ2 β1 β2 x1 x2 w1 w2 b(ξ∗B) min effΘ(ξ∗B)

0.9 -0.1 0.1 1 1.1 -1.134 1.210 0.026 0.974 0.9483 0.8287

0.9 -0.2 0.2 1 1.2 -1.003 1.157 0.047 0.953 0.8988 0.6707

0.9 -0.3 0.3 1 1.3 -0.884 1.116 0.066 0.934 0.8524 0.5354

0.9 -0.4 0.4 1 1.4 -0.775 1.082 0.082 0.918 0.8093 0.4238

0.9 -1 1 1 2 -0.298 0.945 0.172 0.829 0.6097 0.1037

and compare these with the maximin designs given in Tables 1, 2, 3 and 4. Table 5 displays
several Bayesian cp-efficient designs for the logit model with respect to uniform priors on various
parameter regions Θ, where the expression b(ξ∗B) denotes the optimal criterion value, i.e.

b∗(ξ∗B) =

∫
Θ

effcp(ξ
∗
B, ϑ) dϑ/λ(Θ),

and
min effΘ(ξ∗B) = min

ϑ∈Θ
effcp(ξ

∗
B, ϑ)

is the minimal cp-efficiency of ξ∗B in Θ. For the sake of brevity, we restrict ourselves to the
problem of estimating the 90% percentile. The corresponding designs with respect to the
probit model are given in Table 6.
Comparing the Bayesian cp-efficient designs from Tables 5 and 6 with their maximin counter-
parts, we first notice that the Bayesian optimal designs have always two support points even
for relatively large parameter regions Θ. Moreover, one support point is assigned a very small
weight so that the Bayesian optimal designs are close to the locally cp-optimal designs on the
corresponding parameter region Θ, which are supported on one point only. This phenomenon
is also observed for the maximin efficient designs, if the specified parameter space Θ is ”small”
(see Tables 1 and 3), but not for ”larger” parameter spaces (see Tables 2 and 4). As ex-
pected from the definitions of the respective optimality criteria, the averaged efficiencies b∗ of
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the Bayesian optimal designs are somewhat higher than the averaged efficiencies of the max-
imin cp-efficient designs. Turning to the comparison of minimal cp-efficiencies, things change
dramatically, especially for large parameter regions.
We consider, as a representative example, the optimal designs in the logit model for estimating
the percentile xp with p = 0.9 and assume that the experimenter is able to specify the parameter
region Θ = [−1, 1] × [1, 2]. The averaged efficiency of the Bayesian optimal design is given by
the value b(ξ∗B) = 0.7283, indicating high cp-efficiencies for this design at most points in the
parameter region Θ, whereas the integrated efficiency of the corresponding maximin optimal
design is given by b(ξ∗M) = 0.5826, which is of course smaller than the result for the Bayesian
design, but still in acceptable limits. The result for the minimal cp-efficiency of the Bayesian
design, min effΘ(ξ∗B) = 0.1838, however, reveals that there are regions in Θ, in which the
Bayesian optimal design does not facilitate efficient estimation of the 100pth percentile xp,
i.e. the Bayesian design is not robust against every value ϑ ∈ Θ. The corresponding maximin
efficient design, in contrast, achieves a minimal efficiency of 0.4756, which is significantly higher
than 0.1838. In this example, the Bayesian optimal design is supported on two points with
much weight assigned to 1.457, i.e. it is close to the locally optimal designs for parameters
satisfying the equation 1.457β = F−1(0.9)−µ. For such parameters, we thus expect the design
to perform highly efficient, whereas for parameter combinations from Θ, which are located far
away from the straight line described above, the efficiency of the Bayesian optimal design will
be considerably smaller. Consider for example the parameter combinations µ = 0, β = 1.5 and
µ = −1, β = 1 from the parameter space Θ, respectively. For the first parameter combination,
which is located almost on the straight line, the Bayesian optimal design has efficiency 0.972,
whereas its efficiency with respect to the second parameter combination turns out to be the
unsatisfactory value of 0.189. The maximin optimal design, which is much more spread on the
real axis and thus not close to any locally optimal design at all, yields efficiencies 0.648 and
0.489 for the above parameters, respectively. Summarizing this result, we notice that for many
values ϑ in the parameter region Θ the Bayesian optimal design will be slightly more efficient
than the corresponding maximin optimal design, but there are elements ϑ ∈ Θ, for which
efficient percentile estimation is almost impossible when using the Bayesian optimal design. It
is also worthwhile to mention that maximin efficient designs often have more support points
than the corresponding Bayesian optimal designs with respect to the uniform distribution on
Θ. This is an important advantage because additional support points facilitate to check the
model assumption by goodness-of-fit tests (e.g. testing against a binary response model with
three parameters).
For small parameter regions, the differences between Bayesian and maximin cp-efficient designs
are relatively small, so that it will make not much difference, for which criterion the experi-
menter decides. The larger the assumed parameter region (i.e. the higher the experimenter’s
uncertainty about the position of the parameter ϑ), the stronger the use of the maximin cp-
efficiency criterion is recommended.
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4 Efficient designs for percentile estimation in case of

model uncertainty

Besides the robustness problems of experimental designs with respect to the misspecification of
some unknown non-linear model parameters, there are other issues of robustness, which have
to be taken into account for the design of experiment. In particular the design also depends on
the link function in (1.1), but in general it will be difficult for the experimenter to specify one
distribution F as the appropriate link function in advance. For example, it might not be obvious
if the normal distribution or a more heavy-tailed link function such as the logit link would fit
the data adequately before even collecting them. Misspecification of the quantal response
model, however, may result in a large bias when estimating the percentiles of interest. It is
thus sensible to choose the experimental conditions as in some sense ”good” for several choices
of links. Following Läuter (1974), we assume that the experimenter can define preferences αj

with respect to certain link functions Fj , where the weights αj add up to one. Define M(j)(ξ, ϑ)
as the information matrix with respect to the quantal response model with link function Fj

and ξ∗cp(j) as the corresponding locally cp(j)-optimal design. Then an appropriate optimality
criterion is of the form

∑
j

αj min
ϑ∈Θ

cp(j)
T M−

(j)(ξ
∗
cp(j), ϑ)cp(j)

cp(j)T M−
(j)(ξ, ϑ)cp(j)

→ max
ξ

.(4.1)

The equivalence theorem, by which the optimality of a design with respect to criterion (4.1)
can be checked, is given below and can be derived by combining parts a) and b) of Theorem
3.3 in Dette, Haines and Imhof (2003).

Theorem 4.1 A design ξ∗ is optimal with respect to the criterion defined in (4.1) if and only
if there exist prior distributions π∗

j on Nj(ξ
∗) and for each ϑ ∈ Nj(ξ

∗) generalized inverses
G(j)(ξ

∗, ϑ) of M(j)(ξ
∗, ϑ) such that the inequality

∑
j

αj

∫
Nj(ξ∗)

cp(j)
T G(j)(ξ

∗, ϑ)I(x, ϑ)G(j)(ξ
∗ϑ)cp(j)

cp(j)T M−
(j)(ξ

∗, ϑ)cp(j)
effcp(j)(ξ

∗, ϑ) dπ∗
j (ϑ) ≤ u∗(4.2)

holds for all x ∈ IR. The expression effcp(j)(ξ, ϑ) denotes the cp-efficiency of the design ξ with
respect to the binary response model with link function Fj, Nj(ξ

∗) is given by the set

Nj(ξ
∗) = {ϑ̃ ∈ Θ | effcp(j)(ξ

∗, ϑ̃) = u∗
j},(4.3)

and the values u∗ and u∗
j are defined as

u∗ =
∑

j

αju
∗
j , u∗

j = min
ϑ∈Θ

effcp(j)(ξ
∗, ϑ).

Moreover, there is equality in (4.2) for all support points of the design ξ∗.
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We consider the situation, in which both the probit and the logit link function are assigned
weight αj = 1/2, j = 1, 2, i.e. the experimenter has no preference with respect to one of these
models, thus designing the experiment ”equally well” for both choices of link functions. If the
experimenter considers the logit link function more likely, he could e.g. assign weight 3/4 to
this model and only 1/4 to the probit model. Some results for different values of p with respect
to several parameter regions Θ are given in Table 7. Again, the optimality of these designs
with respect to the criterion (4.1) has been verified by Theorem 4.1.

Table 7: Maximin efficient designs for percentile estimation with respect to the optimality cri-
terion (4.1) if the probit and the logit model are assigned weights α1 = α2 = 1/2.

p µ1 µ2 β1 β2 x1 x2 w1 w2 u∗ u∗
1 u∗

2

0.5 -0.1 0.1 1 1.1 -0.398 0.398 0.5 0.5 0.9027 0.9105 0.8948

0.6 -0.1 0.1 1 1.1 -0.025 1.163 0.645 0.355 0.8343 0.8591 0.8096

0.7 -0.1 0.1 1 1.1 0.006 1.299 0.421 0.579 0.7628 0.8144 0.7112

0.8 -0.1 0.1 1 1.1 -0.314 1.422 0.199 0.801 0.6900 0.7709 0.6091

0.9 -0.1 0.1 1 1.1 -2.040 1.143 0.174 0.826 0.6782 0.5641 0.7923

0.9 -0.2 0.2 1 1.2 -1.739 1.071 0.202 0.798 0.5924 0.4814 0.7033

We observe from Table 7 that for some percentiles the minimal efficiencies u∗
1 and u∗

2 in both
models and thus their weighted means u∗ are substantially smaller compared to the results
in Tables 1 and 3 which assume a fixed link function, whereas for other percentiles the loss
in efficiency is much less severe. For example for p = 0.5, i.e. estimation of the median, the
optimal designs in the sense of (4.1) are still highly efficient, whereas optimal designs for the
estimation of the 80%-percentile exhibit significantly lower efficiencies u∗

1, u∗
2 and u∗. These

results correspond to intuition, because the logistic and the normal distribution function with
the same parameters are ”close together” in the area around the mean but differ significantly
elsewhere (see Figure 1). The maximin optimal designs for estimating the 50%-percentiles in
both models separately are thus also closer together than the corresponding designs for the
80%-percentiles (see Tables 1 and 3) yielding a higher efficiency for the compromise design
with respect to the criterion (4.1), which is in some sense situated between the two individual
designs.
Using (4.1) as an optimality criterion, we thus gain model robustness of the design at the
expense of efficiency with respect to the ”true” model. There is, however, no robust alternative
to this approach, particularly when keeping in mind that in most applications data are not
”purely” either normal or logistic but something in between or even from a completely different
(unknown) distribution family.
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Figure 1: The distribution functions of the logit and the probit model with mean zero and
variance 1. Solid line: probit distribution. Dashed line: logit distribution.
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5 Maximin efficient designs for estimating several per-

centiles at the same time

In this section, we consider a different aspect in the construction of robust designs, which is
motivated by the observation that the experimenter may have several quantiles of interest. The
goal here is to design the experiment efficiently for estimating several percentiles xp, p ∈ P , at
the same time, where P is a subset of the interval (0, 1). We thus choose a prior distribution ζ
on P according to our preferences with respect to p, e.g., if we want to estimate the percentiles
xp1 and xp2 ”equally well”, the uniform prior on p1 and p2 will be appropriate. In general, the
optimality criterion is then given by the function

∫
P

min
ϑ∈Θ

cT
p M−(ξ∗cp

, ϑ)cp

cT
p M−(ξ, ϑ)cp

dζ(p) → max
ξ

.(5.1)

Obviously, this maximization problem is extremely hard to tackle in case of a continuous
prior distribution ζ . For calculations in practice, we therefore recommend to approximate a
continuous prior ζ by a discrete distribution on P . For a discrete prior, however, we are in
the same situation as in section 4 with the ”prior” over the different possible link functions
replaced by a prior on the percentiles to be estimated. The corresponding equivalence theorem,
which is given below, is thus a generalization of Theorem 4.1 to the case of continuous prior
distributions.

Theorem 5.1 Let ζ be a prior distribution on P ⊂ (0, 1). A design ξ∗ is optimal with respect
to the criterion (5.1) if and only if for each p ∈ P there exists a prior distribution π∗

p on the
set Np(ξ

∗) and for each ϑ ∈ Np(ξ
∗) a generalized inverse G(ξ∗, ϑ) of the matrix M(ξ∗, ϑ) such

that the inequality∫
P

∫
Np(ξ∗)

cT
p G(ξ∗, ϑ)I(x, ϑ)G(ξ∗, ϑ)cp

cT
p M−(ξ∗, ϑ)cp

effcp(ξ
∗, ϑ)dπ∗

p(ϑ) dζ(p) ≤ u∗

holds for all x ∈ IR, where Np(ξ
∗) and u∗ are defined by

Np(ξ
∗) = {ϑ̃ ∈ Θ | effcp(ξ

∗, ϑ̃) = u∗
p},
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u∗ =

∫
P

u∗
p dζ(p), u∗

p = min
ϑ∈Θ

effcp(ξ
∗, ϑ).

Again, there is equality if x is a support point of the design ξ∗.

In our numerical study, we consider situations, in which either two (see Tables 8 and 9) or three
(see Table 10) different percentiles are of equal interest to the experimenter. Table 8 shows
some representative results for the logit model, whereas Tables 9 and 10 give optimal designs
with respect to the criterion (5.1) for the probit model. For the sake of brevity, only situations
are displayed, where the optimal designs are supported at two points.

Table 8: Maximin efficient designs for the estimation of several percentiles at the same time in
the logit model, ζ = {p1, p2; 1/2, 1/2}.

p1 p2 µ1 µ2 β1 β2 x1 x2 w1 w2 u∗ u∗
p1

u∗
p2

0.5 0.6 -0.1 0.1 1 1.1 -0.504 0.972 0.496 0.504 0.7699 0.7608 0.7790

0.6 0.7 -0.1 0.1 1 1.1 -0.535 1.106 0.314 0.686 0.7570 0.7460 0.7680

0.7 0.8 -0.1 0.1 1 1.1 -0.779 1.341 0.188 0.812 0.7481 0.7341 0.7620

0.8 0.9 -0.1 0.1 1 1.1 -1.364 1.667 0.142 0.858 0.7642 0.7291 0.7993

0.5 0.7 -0.1 0.1 1 1.1 -0.704 1.213 0.417 0.583 0.6659 0.6569 0.6750

0.5 0.8 -0.1 0.1 1 1.1 -0.881 1.409 0.394 0.606 0.5955 0.5984 0.5926

0.5 0.9 -0.1 0.1 1 1.1 -1.110 1.608 0.371 0.629 0.5746 0.5258 0.6235

As expected, we observe from Tables 8 and 9 a decline in minimal efficiency compared to the
results in Tables 1 and 3, respectively, if the experiment is designed for estimating two different
percentiles xp1 and xp2 , where the decrease is even more significant if the distance between p1

and p2 is large. The last-mentioned effect obviously emerges from the fact that the optimal
designs with respect to one percentile at a time are close if the distance between p1 and p2 is
small and hence the optimal design for estimating both percentiles at the same time, which is
in some sense situated between the other two designs, is not too far away from both of them.
In general, all of the efficiencies displayed in Tables 8 and 9 are still significantly larger than
50% and thus in acceptable limits.
Table 10, finally, displays a somewhat further decline in minimal efficiency if the design is con-
structed for the efficienct estimation of three different percentiles simultaneously. We observe
that the minimal efficiencies u∗

p1
, u∗

p2
, u∗

p3
of these designs with respect to the estimation of one

particular percentile are highest for the percentile corresponding to the value of p2, which lies
between the values p1 and p3. This effect probably occurs since designs, which are efficient
for the simultaneous estimation of three percentiles with respect to values p1, p2 and p3, will
be compromise designs between the designs for the estimation of one of these percentiles at
a time. The design that is maximin optimal for estimating the 100p2th percentile is in some
sense located between the other two designs and the compromise design will therefore be close.
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Table 9: Maximin efficient designs for the estimation of several percentiles at the same time in
the probit model, ζ = {p1, p2; 1/2, 1/2}.

p1 p2 µ1 µ2 β1 β2 x1 x2 w1 w2 u∗ u∗
p1

u∗
p2

0.5 0.6 -0.1 0.1 1 1.1 -0.439 0.704 0.487 0.514 0.7863 0.7760 0.7966

0.6 0.7 -0.1 0.1 1 1.1 -0.474 0.773 0.326 0.674 0.7724 0.7599 0.7849

0.7 0.8 -0.1 0.1 1 1.1 -0.607 0.907 0.210 0.790 0.7562 0.7423 0.7702

0.8 0.9 -0.1 0.1 1 1.1 -0.867 1.101 0.151 0.849 0.7462 0.7249 0.7675

0.5 0.7 -0.1 0.1 1 1.1 -0.575 0.855 0.417 0.583 0.6967 0.6853 0.7081

0.5 0.8 -0.1 0.1 1 1.1 -0.692 0.985 0.389 0.611 0.6254 0.6260 0.6248

0.5 0.9 -0.1 0.1 1 1.1 -0.800 1.091 0.388 0.612 0.5840 0.5895 0.5785

Table 10: Maximin efficient designs for the estimation of several percentiles at the same time
in the probit model, ζ = {p1, p2, p3; 1/3, 1/3, 1/3}, [µ1, µ2] = [−0.1, 0.1], [β1, β2] = [1, 1.1].

p1 p2 p3 x1 x2 w1 w2 u∗ u∗
p1

u∗
p2

u∗
p3

0.5 0.6 0.7 -0.522 0.734 0.412 0.589 0.7355 0.7092 0.8317 0.6655

0.6 0.7 0.8 -0.580 0.822 0.293 0.707 0.7223 0.7097 0.8224 0.6348

0.7 0.8 0.9 -0.770 0.965 0.203 0.797 0.7115 0.6923 0.8057 0.6365

0.5 0.7 0.9 -0.742 0.901 0.348 0.652 0.6278 0.6093 0.7526 0.5216

We must, however, keep in mind that the values presented in Tables 8-10 are only minimal
efficiencies, i.e. they give only the efficiencies for the worst case scenario with respect to Θ. If
other values from Θ are the ”true” parameters in our model, the efficiency of the designs will
be significantly higher. Consider, for example, the parameter combination µ = 0, β = 1.05,
i.e. the midpoint of the rectangle Θ. Assume, furthermore, the percentiles corresponding to
p1 = 0.8 and p2 = 0.9 are equally important and the logit link function describes the model
appropriately. Then the value of the overall efficiency of the optimal design with respect to the
criterion (5.1) is given by 0.829, which is considerably higher compared to its minimal efficiency
0.764 from Table 8. The efficiencies with respect to one percentile at a time are given by 0.797
and 0.860, respectively, which are also higher than the corresponding minimal values 0.729 and
0.799.

6 Conclusions

In this article, we discuss several aspects of robust design of experiment for estimating the
effective dose level in binary response models. In general, optimal designs minimize an approx-
imation of the variance of the maximum likelihood estimate for the 100pth percentile xp and
depend sensitively on the unknown parameter, the link function and the quantile of interest.
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Several strategies based on the concept of maximin efficiency are discussed to obtain designs
which are on the one hand efficient for the effective dose level and on the other hand robust with
respect to these assumptions. It is demonstrated that robust designs with respect to the new
criteria can be calculated numerically and that the optimality of these designs can be checked
by non-standard equivalence theorems. The most important robustification is obtained assum-
ing that the experimenter is only able to specify a certain range Θ for the unknown parameters
and it is demonstrated that the maximin efficient designs are efficient for all values in Θ, pro-
vided that this set is not too large. These designs are then further robustified with respect to
the assumptions on the link function (section 4) and the particular quantiles xp chosen by the
experimenter.
It is also –theoretically and numerically– possible to combine the approaches of sections 4 and
5 to achieve a further robustification of the designs, i.e. to define an optimality criterion, which
is robust with respect to misspecifications of the parameters, the binary response model and
at the same time efficient for the estimation of several percentiles. This criterion corresponds
in some sense to a combination of maximin- and Bayesian criteria over the parameter space
Θ̃ = (Θ × F × P), where F denotes the class of reasonable link functions and P ⊂ (0, 1) a set
of percentiles of interest. One should, however, keep in mind that adding extra dimensions to
the possible alternatives, against which the design of the experiment has to be robustified, has
the same effect on the efficiency of the resulting designs as enlarging its individual components,
i.e. the (minimal) efficiencies will decrease as can already be seen from the examples in Tables
7-10. Robustification of designs will always be bought at the expense of a loss in efficiency.
The experimenter should therefore carefully deliberate about the question which amount of
robustness is necessary for an appropriate data analysis.
The discussion at the end of section 3, however, shows that there is no robust alternative to
the maximin approach with respect to the parameter region Θ. In particular, it turns out that
the less information about the approximate position of the unknown parameter ϑ is available
(i.e. the larger the region Θ is chosen), the less robust against particular values of ϑ ∈ Θ the
Bayesian cp-efficient design (with respect to the uniform prior on Θ) will be. Consequently,
the more uncertainty about the parameter ϑ exists, the stronger the maximin approach is
recommended.
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