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Abstract

We consider the problem of uniform asymptotics in kernel functional estimation

where the bandwidth can depend on the data. In a unified approach we inves-

tigate kernel estimates of the density and the hazard rate for uncensored and

right-censored observations. The model allows for the fixed bandwidth as well as

for various variable bandwidths, e.g. the nearest neighbor bandwidth. An ele-

mentary proof for the strong consistency of the generalized estimator is given that

builds on the local convergence of the empirical process against the cumulative dis-

tribution function and the Nelson-Aalen estimator against the cumulative hazard

rate, respectively.
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1 Introduction

For the description of continuous univariate observations various statistical meth-

ods are available. Without parametric assumptions estimation of the cumula-

tive distribution function is theoretically well established and common practice

by means of the empirical process. If smoothness of the distribution is assumed

further insight can be gained from estimation of the density. Rosenblatt (1956)

introduced the method of kernel estimation, i.e. the convolution of the empirical

process with a density centered at the origin, named kernel. The idea was re-

sumed by Parzen (1962) allowing for various kernels but still depending on a fixed

bandwidth. Motivated by practical drawbacks criticism was raised with respect to

the inflexibility of the bandwidth definition. Wagner (1975) proposed a variable

bandwidth for the density estimation that keeps the number of observations in the

convolution window fixed rather than the window width itself. This nearest neigh-

bor bandwidth is still parameterized by a one-dimensional parameter, namely the

number of nearest neighbors. Consistency proofs were given for the kernel den-

sity estimation with fixed bandwidth e.g. by Parzen (1962), Silverman (1978) and

Stute (1982a). Consistency for the case of the nearest neighbor bandwidth were

considered by Wagner (1975) and Ralescu (1995). A large area of application for

distribution estimation is found in the context of survival analysis where the sur-

vival distribution is estimated by the method of Kaplan and Meier (1958) which is

heavily referred to in applied work. In this context right-censoring is of major con-

cern known to cause a bias for the distribution estimation when ignored. Adaption

for right-censoring in density estimation is scarce for the variable bandwidth with

the exception of Schäfer (1986). However, in the context of survival studies the

hazard rate was given preference over the density because of its notion as “instan-

taneous risk of failure”. Similar arguments for the kernel estimation of the hazard

rate with respect to the bandwidth hold as for the density estimation. Consistency

for censored data and data-adaptive bandwidth definitions were considered e.g. by

Tanner and Wong (1984), Gefeller and Dette (1992) or Müller and Wang (1994).

We strive to prove the consistency for all cases mentioned in a unified approach

and generalize to help avoid further consistency considerations for yet uninspected

cases of a cross-product of censoring, bandwidth definition and functional esti-
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mation. We given a practically relevant example for such a combination in the

context of biometrical survival analysis.

2 Model and notation

Let X1, . . . , Xn be i.i.d.univariate random variables with density f(·), then

fn(x) :=

∫

R

Kb(x− y)dFn(y) = 1/(nb)
n
∑

i=1

K((x−Xi)/b) (1)

is the classical Parzen-estimator of the density, derived from the convolution

idea, with empirical distribution function

Fn(x) := 1/n
n
∑

i=1

I{Xi≤x}(x),

kernel function K(·) and and Kb(·) := 1/bK(·/b) (see Parzen (1962)).

The fixed bandwidth incorporates a varying numbers of data points in the

estimation for different values of x. The latter leads to the well-known trade-off

between a strong bias for large density areas and a variability for small density

areas as well as it is not data-adaptive smoothing.

The nearest neighbor (NN) bandwidth was introduced by Wagner (1975)

for density estimation to reduce the deficits of the fixed bandwidth. The data-

adaptive bandwidth RNNn (t) keeps the number k of data points involved in the

bandwidth choice at each point t equal. The first formalization of the bandwidth

was with respect to the order statistics of the differences from the data points

to the reference point but to enable a generalization to censored data we use the

following

RNNn (t) := inf {r > 0 : |Fn (t− r/2) − Fn (t+ r/2)| ≥ k/n} . (2)

The definition realizes the collection of empirical mass in a window around a

”time” t of magnitude k/n, i.e. a summation of k jumps of the empirical process

indicating k nearest neighbors.
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To incorporate the fixed bandwidth and the censoring information in the fol-

lowing analysis and to introduce a generalized bandwidth we replace the empirical

process Fn(·) in (2) by a general stochastic process for which we require monotony.

We denote the process Ψ̃n(·) as “smoothing process“ and define

Rn(t) := inf
{

r > 0 :
∣

∣

∣
Ψ̃n (t− r/2) − Ψ̃n (t+ r/2)

∣

∣

∣
≥ pn

}

(3)

with univariate bandwidth parameter pn ∈ IR+. Let us summarize three im-

portant examples:

• Ψ̃n(·) = Fn(·) with pn = k/n yields the k-nearest neighbor bandwidth

RNNn (t),

• Ψ̃n(·) = Sn(·) (Kaplan-Meier estimate of the survival function for cen-

sored data) with pn = k/n yields the k-nearest neighbor bandwidth in the

survival analytic setup (cf. Gefeller and Dette (1992)) and

• Ψ̃n(·) = c · id(·) + d with pn = |c| · b yields the fixed bandwidth b for any c

and d.

Consider now that not only the empirical process, as in (1), can be smoothed

to get an estimate of the density. You might as well, in a censored scenario of a

survival analysis, smooth the Nelson-Aalen-estimate of the cumulative hazard

rate to achieve an estimate of the hazard rate. In general you may estimate the

derivative ψ(·) of any functional Ψ(·) you have an estimate Ψn(·) of, i.e.

ψn(x) :=

∫

R

1

Rn(t)
K

(

x− t

Rn(t)

)

dΨn(t), (4)

where we have now already made use of the generalized bandwidth Rn(·).
The most used scenarios in practice and according estimators of the cumulative

function are given in Table I.
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Table I: Estimates of functions used to estimate derivatives: Right-censored and

uncensored design

Uncensored

scenario

Censored scenario

Cumulative dis-

tribution func-

tion

Empirical

distribution

function

Kaplan-Meier

survival

estimator

Cumulative

hazard

rate

Simplified

Nelson-Aalen

estimator

Nelson-Aalen

estimator

Remark 1. The suggested estimator is a variable kernel estimator and does

not share the disadvantage of the genuine nearest-neighbor estimator of not inte-

grating the density estimate to 1 (cf. Breiman et al. (1977)).

3 Strong consistency

To state the strong consistency of the estimate ψn(·) (4) smoothness assumptions

on the function to estimate, assumptions on the rate of convergence of the band-

width, and assumptions on the kernel are crucial for the analysis. For the functions

Ψ : IR → IR+
0 and Ψ̃ : IR → IR+

0 we assume

|Ψ(x) − Ψ(y)| ≤M |x− y|, |Ψ(x) − Ψ(y)| ≥ m|x− y| (5)

∀x, y ∈ [A,B] ⊂ IR (A < B) where 0 < m ≤ M < ∞ and 0 < m̃ ≤ M̃ < ∞. The

same has to hold for Ψ̃(·) with constants M̃ and m̃ This implies the existence of the

derivatives ψ(·) and ψ̃(·) with m ≤ |ψ(x)| ≤M and m̃ ≤ |ψ̃(x)| ≤ M̃ ∀x ∈ [A,B].

Furthermore we assume ψ(·) and ψ̃(·) to be Lipschitz-continuous on [A,B] with

constants Lψ and Lψ̃.

The due to their monotony the stochastic processes Ψn(·) and Ψ̃n(·) imply

measures on IR. E.g. for Ψn(·) and interval I = [Il; Iu] the mass is defined by

Ψn(I) := |Ψn(Il) − Ψn(Iu)|. As asymptotic behavior we assume that exists a
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sequence of a right-continuous and monotonous stochastic processes Ψn(x) with

0 < D <∞ s.t.

P

{

lim sup
n−→∞

sup
I⊂[A,B],Ψ(I)≤pn

|Ψn(I) − Ψ(I)|
√

log(n)pn/n
= D

}

= 1. (6)

The assumed convergence properties 0 < pn ∈ R < 1, pn −→ 0 and (npn)/ log(n) −→
∞ resemble those of the fixed bandwidth in MISE analysis. Keep in mind here that

pn is linked closely to the fixed bandwidth as seen in the examples of the general-

ized bandwidth (3). The same has to hold for Ψ̃n(x) with constant 0 < D̃ <∞.

Such properties are proven for the empirical distribution, the product limit

(Kaplan-Meier) survival function estimate and the Nelson-Aalen estimator, i.e. all

functionals listed in Table I, by Stute (1982b) and Schäfer (1986) and are trivial

for Ψ̃n(·) = c · id(·) + d.

Lipschitz-continuity and strict positiveness on a closed interval [A,B] are as-

sumed for the functions ψ(·) and ψ̃(·) to simplify the calculations. The the posi-

tiveness of ψ(·) is not necessary for the density estimation with fixed bandwidth

considered in Silverman (1978) and b) the hazard rate estimation with fixed band-

width under random censoring considered in Diehl and Stute (1988). Continuity,

piecewise Lipschitz continuity LK and bounded total variation V (K) are mild re-

strictions on the kernel because valid for all kernels used in practice despite the

gaussian density kernel.

The stated properties assumed allow us to state a convergence of ψn(·).

Theorem 3.1 Under the above conditions exists a constant

D0 ≤ max{D1 +D2, D3} such that

P

{

lim sup
n−→∞

supx∈[a,b] |ψn(x) − ψ(x)|
√

log(n)/(npn) + pn
= D0

}

= 1 ∀ [a, b] ∈ (A,B),

where D1 := 2D̃MM̃2m̃−2(sup(K)+LKM̃m̃−1), D2 := DM̃M1/2V (K)m̃−1/2 and

D3 := 2M̃3MLKLψ̃m̃
−5 + 2 sup(K)Lψ̃M̃

2Mm̃−4 + Lψm̃
−1.

The core of the proof is the common technic of integration by parts (see Parzen

(1962)) which decomposes the error into a factor of total variation of the kernel and
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a factor for the local proximity of the stochastic processes Ψn(·) to its limit Ψ(·).
The total variation is calculated in an elementary fashion. The local convergence

of the stochastic process Ψn(·) to Ψ(·) with the assumed rate of ((log npn)/n)1/2

is achieved by exponential inequalities, i.e. exponential bounds on the sum of

bounded random variables stated by Bennett (1962) and Hoeffding (1962) who

refer to the modification of the Tchebycheff inequality by Bernstein (1924). The

additional contribution of the variability of the bandwidth to the error is taken

into account adapting the method of proof in Schäfer (1986).

The complete proof is given in the Appendix.

Remark 2. For the kernel density estimation with fixed bandwidth (1) Theo-

rem 3.1 states the strong consistency. To see this, choose Ψn(·) as empirical process

Fn(·) and if we consider the third example of the generalized bandwidth 3 , i.e.

choose Ψ̃n(·) as linear function c · id(·) + d with smoothing parameter pn = |c| · b.
With the further simplification of a triangular kernel, i.e. K(·) = 2| · |I[−1/2,1/2]

the example allows us to illustrate the proof here conceptionally.

Let us consider the difference of the estimate and its expectation, i.e. the

smoothed density f̄(x).

|fn(x) − f̄(x)| =

∣

∣

∣

∣

∣

∫ x+b/2

x−b/2
Kb(x− t)dFn(t) −

∫ x+b/2

x−b/2
Kb(x− t)dF (t)

∣

∣

∣

∣

∣

(7)

From a heuristic point of view it is clear, that the difference (7) is dependent on

the proximity of Fn(t) to F (t). The proximity is only relevant within the interval

[x − b/2, x + b/2] because outside the kernel vanishes. The kernel however must

have an impact because it quantifies the distribution of empirical mass within

the interval. To understand the inequality (11) consider the discrete analog. Let

be {x − b/2 = t1 < t2 < . . . < tp < tp+1 = x + b/2} be a partition of the

interval [x − b/2, x + b/2]. With the notation of Ai := [ti, ti+1], i = 1, . . . , p,

the estimator is fn(x) ≈
∑p

i=1Kb(x − ti)Fn(Ai). For the smoothed density holds
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f̄(x) ≈∑p
i=1Kb(x− ti)F (Ai), such that the absolute difference is

|fn(x) − f̄(x)| ≈ |
p
∑

i=1

Kb(x− ti)(Fn(Ai) − F (Ai)| (8)

≤ sup
I∈[x−b/2,x+b/2]

|Fn(I) − F (I)||
p
∑

i=1

Kb(x− ti)| (9)

= sup
I∈[x−b/2,x+b/2]

|Fn(I) − F (I)|1/bO(1). (10)

The first term in (8) quantifies the local proximity of the empirical process

to the cumulative distribution function. The rate of convergence for a bounded

density f(·) < M is O(
√

log(n)b/n) (see Schäfer (1986)) so that the total rate is

O(
√

log(n)/(bn)).

The second term in (8) is asymptotically the total variation - V (K) :=
∫

|dK|
- formally arising when applying partial integration to (7). As a consequence we

have in the continuous version

|fn(x) − f̄(x)| ≤ sup
I⊂[x−b/2,x+b/2]

|Fn(I) − F (I)|V[x−b/2,x+b/2](Kb(x− t))(11)

The total variation for the triangular kernel is clearly
∫ b/2
−b/2 4/b2dt = 4/b. Again

with Schäfer (1986) we have for sufficiently large n almost sure

|fn(x) − f̄(x)| ≤ 36
√

M log n/(nb)

For sufficiently large n holds for the bias

|f̄(x) − f(x)| ≤
∫

[x−b/2,x+b/2]
Kb(x− t)|f(t) − f(x)|dt

≤ sup
t∈[x−b/2,x+b/2]

|f(t) − f(x)| ≤ sup
t∈[x−b/2,x+b/2]

Lf |x− t|

≤ 1/2Lfb

(with Lipschitz-constant of the density f(·) Lf ). Note that the order of convergence

of the bias b does not resemble that of b2 typically derived in MISE context (cf.

Wand and Jones (1995)). The reason is the lack of assumption of symmetry for
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the kernel function which allows for boundary kernels.

Hence almost sure,

|fn(x) − f(x)| ≤ 36
√

M log n/(nb) + 1/2Lfb

independently of x on [a, b] and for sufficiently large n. Such that the uniform

consistency holds for sequences bn fulfilling bn → 0 and (nbn)/ log n → ∞. Keep

in mind that bn and pn differ only by a constant factor.

Remark 3. As a meaningful example, Theorem 3.1 warrants the uniform

asymptotics for the hazard rate estimator with nearest-neighbor bandwidth for

right-censored data. As common we say that Xi = max{Ti, Ci} are the observed

either survival times Ti or censoring times Ci and δi = I{Xi=Ti} indicate the cen-

soring for i = 1, . . . , n independent observations with interesting hazard function

h(·) of the Ti’s. Keep in mind the second example of a generalized bandwidth 3

and let Hn(·) represent the Nelson-Aalen estimator of the cumulative hazard rate

for censored data

Hn(x) =
∑

i:X(i)≤x

δ(i)

n− i+ 1
.

Hence the suggested hazard rate estimate has the form

ĥRNN
n

(x) :=
n
∑

i=1

δ(i)

n− i+ 1

1

RNNn (Xi)
K

(

Xi − x

RNNn (Xi)

)

=

∫

R

1

RNNn (t)
K

(

Xi − x

RNNn (t)

)

dHn(t).

For that approach strong consistency was not considered before although being of

relevance in survival analysis of biometrical data.

Remark 4. The asymptotic rate of the boundary of the uniform error

√

log(n)(npn) + pn

implies a maximal rate of convergence of of (log n/(pnn))1/3 if the bandwidth

parameter pn satisfies the same rate. It has to be mentioned that the optimal rate
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of uniform absolute convergence as well as the consequent rate of the bandwidth

of (log n/(pnn))1/3 has only been reported before for the fixed bandwidth density

estimate by Schäfer (1986).

A Appendix

We give an elementary proof for Theorem 3.1 since the counting process method-

ology as in Andersen et al. (1993) is not applicable. Keep the assumptions from

Section 3 in mind. Note first that it is equivalent to state the almost sure asymp-

totics

Exists constant D ≤ 1 s.t. P

{

lim sup
n→∞

Sn(Y1(ω), . . . , Yn(ω))/an = D

}

= 1.

as

For all α > 1 holds P {ω|∃N ∈ IN ∀n > N : Sn(Y1(ω), . . . , Yn(ω)) ≤ αan} = 1.

with positive zero-sequence an. The results follows from Hewitt and Savage (1955).

The proof of Theorem 3.1 is conducted in three steps. First the random band-

width Rn(t) is replaced by its deterministic analogue rn(t) := inf{r > 0||Ψ̃(t +

r/2)− Ψ̃(t− r/2)| ≥ pn}. In the second - and crucial - step the convergence of the

kernel estimate with variable - but deterministic - bandwidth rn(t) to the function

ψ(·) convoluted with the kernel is investigated. In the last step the convergence

of the bias, i.e. the difference of the latter convoluted ψ(·) to ψ(·), is quantified.

The differences add up to the overall difference:

sup
x∈[a,b]

|ψn(x) − ψ(x)| ≤ sup
x∈[a,b]

|ψn(x) − ψ̆n(x)| (12)

+ sup
x∈[a,b]

|ψ̆n(x) − ψ̄n(x)| + sup
x∈[a,b]

|ψ̄n(x) − ψ(x)|,
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with

ψ̆n(x) :=

∫

IR

1

rn(t)
K

(

x− t

rn(t)

)

dΨn(t) and the expected estimate

ψ̄n(x) :=

∫

IR

1

rn(t)
K

(

x− t

rn(t)

)

dΨ(t).

The assumption of the compact support [−1/2; 1/2] of the kernel function K(·)
simplifies the proof since we can restrict the integration support for sufficiently

large n using rn(·) and Rn(t) respectively. The the positivity ψ̃(·) > m̃ (see as-

sumption (5)) enables to bound the support for rn(·) by In(x) := [x−pn/(2m̃), x+

pn/(2m̃)]. For sufficiently large n the interval In(x) is lying in any closed interval

[a, b] contained in (A,B). For the random bandwidth the support is almost surely

bounded by the interval Iαn (x) := [x− αpn/m̃, x+ αpn/m̃] for Rn(·), because

P

{

∃N ∈ IN ∀n > N : sup
x∈[a,b]

sup
t∈IR\Iα

n (x)

K

(

t− x

Rn(t)

)

= 0

}

= 1. (13)

for any α > 1. The result is clear noting the local convergence rate of Ψ̃n(·) (see

6).

A.1 Convergence of the stochastic bandwidth

We can now bound the first term in the inequality (12). Almost sure for sufficiently

large n (see (13)) is

|ψn(x) − ψ̆n(x)| =

∣

∣

∣

∣

∫

IR

1

Rn(t)
K

(

x− t

Rn(t)

)

− 1

rn(t)
K

(

x− t

rn(t)

)

dΨn(t)

∣

∣

∣

∣

(14)

Prior to inspection of the latter bound we note that for [a, b] ⊂ (A,B) there

exists a constant E ≤ D̃/m̃ s.t.

P

{

lim sup
n−→∞

supt∈[a,b] |Rn(t) − rn(t)|
√

(log(n)pn)/n
= E

}

= 1.

This follows from the positive bounds of ψ̃(·) (see (5)) and the local convergence

of Ψ̃n(·) (see again (6)).
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Now follows for the integrant in (14)

∣

∣

∣

∣

1

Rn(t)
K

(

x− t

Rn(t)

)

− 1

rn(t)
K

(

x− t

rn(t)

)
∣

∣

∣

∣

≤
∣

∣

∣

∣

1

Rn(t)
K

(

x− t

Rn(t)

)

− 1

rn(t)
K

(

x− t

Rn(t)

)
∣

∣

∣

∣

+

∣

∣

∣

∣

1

rn(t)
K

(

x− t

Rn(t)

)

− 1

rn(t)
K

(

x− t

rn(t)

)
∣

∣

∣

∣

≤ sup(K)

∣

∣

∣

∣

1

Rn(t)
− 1

rn(t)

∣

∣

∣

∣

+
M̃

pn

∣

∣

∣

∣

K

(

x− t

Rn(t)

)

−K

(

x− t

rn(t)

)∣

∣

∣

∣

(15)

because of the Lipschitz-continuity of Ψ̃(·).
For the first absolute follows

sup
t∈[a,b]

∣

∣

∣

∣

1

Rn(t)
− 1

rn(t)

∣

∣

∣

∣

= sup
t∈[a,b]

∣

∣

∣

∣

rn(t) −Rn(t)

Rn(t)rn(t)

∣

∣

∣

∣

≤ D̃α2M̃2/m̃
√

log(n)/(np3
n)

because of inft∈[a,b] rn(t) ≥ pn/M̃ , supt∈[a,b] |Rn(t) − rn(t)| ≤ C/m̃
√

(log(n)pn)/n

∀ C > D̃ and hence for C = D̃α and inft∈[a,b]Rn(t) ≥ pn/(αM̃). The last state-

ment for inft∈[a,b]Rn(t) follows from the first two together with the convergence

rate for pn determined in Section 3.

For the second absolute in (15) follows

∣

∣

∣

∣

K

(

x− t

Rn(t)

)

−K

(

x− t

rn(t)

)∣

∣

∣

∣

≤ k

(

sup
x∈[a,b],t∈Iα

n (x)

∣

∣

∣

∣

x− t

Rn(t)
− x− t

rn(t)

∣

∣

∣

∣

)

with modul of continuity k(·) of K defined as k(δ) := sup{|K(x)−K(y)| : |x−y| ≤
δ}. Furthermore,

∣

∣

∣

∣

x− t

Rn(t)
− x− t

rn(t)

∣

∣

∣

∣

= |x− t|
∣

∣

∣

∣

1

Rn(t)
− 1

rn(t)

∣

∣

∣

∣

≤ αpn/m̃D̃α
2M̃2/m̃

√

log(n)/(np3
n)
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because t ∈ Iαn (x). Hence the modul of continuity k(·) of K is bounded by

∣

∣

∣

∣

K

(

x− t

Rn(t)

)

−K

(

x− t

rn(t)

)
∣

∣

∣

∣

≤ α3LKD̃M̃
2/m̃2

√

log(n)/(npn),

because the kernel is assumed to be piecewise Lipschitz-continuous and for suffi-

ciently large n we can assume that only finite discontinuities exist in the support

of K.

The Lipschitz-continuity of Ψn(·) (5) and the local convergence (6) ensure that

Ψn(I
α
n (x)) ≤ 2α2pnM/m̃ which simplifies (14) to

|ψn(x) − ψ̆n(x)| ≤ 2α2pnM/m̃
[

sup(K)D̃α2M̃2/m̃
√

log(n)/(np3
n)

+ M̃/pnLKα
3D̃M̃2/m̃2

√

log(n)/(npn)
]

= α52MM̃2/m̃2D̃
[

sup(K)/α
√

log(n)/(npn) + LKM̃/m̃
√

log(n)/(npn)
]

≤ α52D̃MM̃2/m̃2
(

sup(K) + LKM̃/m̃
)

√

log(n)/(npn).

Since x ∈ [a, b] and α > 1 have been arbitrary we have

P

{

lim sup
n−→∞

supx∈[a,b] |ψn(x) − ψ̆n(x)|
√

log(n)/(npn)
= D′

1

}

= 1

for

D′
1 ≤ 2D̃MM̃2/m̃2

(

sup(K) + LKM̃/m̃
)

=: D1

with 0 < D̃ <∞ defined by the local convergence of the stochastic process Ψ̃n(·).

A.2 Convergence of the convoluted process

For the second term in (12) let be α > 1. For sufficiently large n it holds |ψ̆n(x)−
ψ̄n(x)| = |

∫

In(x)
1

rn(t)K( t−xrn(t))dΨn(t)−
∫

In(x)
1

rn(t)K( t−xrn(t))dΨ(t)| with In(x) = [x−
pn/(2m̃), x+ pn/(2m̃)] uniformly for all x ∈ [a, b]. Integration by parts for signed
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measures yields

∣

∣

∣
ψ̆n(x) − ψ̄n(x)

∣

∣

∣
≤ VIn(x)

(

1

rn(t)
K

(

t− x

rn(t)

))

sup
IIntervall⊂In(x)

|Ψ(I) − Ψn(I)|,

since 1
rn(t)K( t−xrn(t)) is continuous with respect to t on In(x) for sufficiently large n

due the Lipschitz condition

|rn(t) − rn(s)| ≤ 2|s− t|

for s, t ∈ [A,B]. The latter follows directly from the definition of rn(·).
Using elementary results for the total variation V as in Schäfer (1986) proofs

VIn(x)

(

1

rn(·)
K

( · − x

rn(·)

))

≤ αM̃V(−1,1)(K)/pn.

Together with

sup
IIntervall⊂In(x)

|Ψ(I) − Ψn(I)| ≤ C
√

log(n)Mpn/(nm̃)

for all C > D and sufficiently large n (see (6)) reveals for C := Dα: ∃ N such that

∀ n > N

∣

∣

∣
ψ̆n(x) − ψ̄n(x)

∣

∣

∣
≤ αM̃V (K)/pnDα

√

log(n)Mpn/(nm̃)

= α2DM̃
√
MV (K)/

√
m̃
√

log(n)/(npn).

Since again α > 1 was arbitrary now exists D′
2 ≤ DM̃

√
MV (K)/

√
m̃ := D2

such that

P

{

lim sup
n−→∞

supx∈[a,b] |ψ̆n(x) − ψ̄n(x)|
√

log(n)/(npn)
= D′

2

}

= 1.

A.3 Convergence of the bias

The last term in (12) is bounded by |ψ̄n(x) − ψ(x)| ≤
∫

I1n(x) | 1
rn(t)K( t−xrn(t)) −

1
rn(x)K( t−x

rn(x))||dΨ(t)| +
∫

I1n(x)
1

rn(x)K( t−x
rn(x))|ψ(t) − ψ(x)|dt for In(x) ⊂ I1

n(x) =

[x− pn/m̃, x+ pn/m̃] and n sufficiently large.

14



Now, the second addend of the latter boundary is smaller than
∫

I1n(x)
1

rn(x)K( t−x
rn(x))dt supt∈I1n(x) |ψ(t)−ψ(x)| ≤ 1·Lψpn/m̃ because of the Lipschitz-

continuity of ψ(·).
For the integrand to the first addend holds for t ∈ I1

n(x) and uniformly in

x ∈ [a, b] ∈ (A,B) | 1
rn(t)K( t−xrn(t)) −

1
rn(x)K( t−x

rn(x))| ≤= 1
rn(t) |K( t−xrn(t)) −K( t−x

rn(x))| +
K( t−x

rn(x))|
1

rn(t) − 1
rn(x) |. The first factor of the first addend is clearly bounded

by M̃/pn because of the definition of rn(t) and ψ̃(·) < M̃ . The second factor

is bounded by the continuity of K k(supx∈[a,b],t∈I1n(x) | t−xrn(t) − t−x
rn(x) |). The first

factor of the second addend is bounded by sup(K). For the second factor note

that pn =
∫ t+rn(t)/2
t−rn(t)/2 |p̃si(ξ)|dξ together with the Lipschitz-continuity of p̃si(·) and

|p̃si(·)| > m̃ imply that for [a, b] ⊂ (A,B) |rn(s) − rn(t)| ≤ Lψ̃m̃
−2pn|x − t|

∀ s, t ∈ [a, b]. So that the factor is bounded by M̃2/p2
nLψ̃pnm̃

−2|x−t|. Rearranging

the deeds show the integrand to be ≤ M̃/pnk(pnLψ̃M̃
2/m̃4) + sup(K)Lψ̃M̃

2/m̃3.

Hence,

lim sup
n−→∞

supx∈[a,b] |ψ̄n(x) − ψ(x)|
pn

≤ D3,

with

D3 = 2M̃3MLKLψ̃/m̃
5 + 2 sup(K)Lψ̃M̃

2M/m̃4 + Lψ/m̃.

Summation of the three parts completes the proof.
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