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Abstract:

The Desirability Index (DI) is a widely used method for multicriteria optimization in
industrial quality control, by which optimal levels of the process influencing factors are
determined in order to achieve maximum process quality. In practice however situations
may occur in which slight changes of these factor levels lead to lower production costs or
to a facilitation of the production process and therefore would be preferred. In this paper
an innovative approach for measuring the effect of these changes on the DI based on its

distribution is introduced.

1 Introduction

The approach for multicriteria optimization based on the concept of desirabilities and
introduced by [HARG65] has become an appropriate means in the range of Multicriteria
Decision Making Techniques (see [HEN92] for a review). It consists of a complexity reduc-
tion in industrial quality optimization and furthermore makes use of design of experiment
methods, by which polynomial models are set up reflecting the functional relationships
between the quality measures and the process influencing factors. In the first step De-
sirability Functions (DFs) transfer the values of the quality measures into desirabilities
onto a unitless scale in the domain [0, 1] regarding the desirability of their feasible rea-
lizations. The Desirability Index (DI) then represents a univariate and unitless measure
for the overall process quality by combining the individual desirabilities usually using the
geometric mean. The closer its value comes to the maximum value of 1 the more satisfy-

ing the process quality proves. As the DI is not only a function of the quality measures
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but also of the influence factors — using their functional relationships with the quality
measures resulting from the design of experiment phase — the DI and thus the overall
process quality can be optimized by nonlinear optimization of the levels of the influence

factors, optimizing all often competing quality measures simultaneously.

Usually the process then is set up based on the optimal levels of the influence factors.
Regarding the convenience of the process flow or the production costs however sometimes
slight modifications of these levels would be preferred in practice. In this paper an in-
novative approach for measuring the effect of these changes on the DI in the course of
the process is introduced, which makes use of the distribution of the DI ((WEBO03]) and
results in ranges of the influence factors that ensure that the prediction interval of the
optimized DI still covers the values of the DI in the ongoing process with a predefined

probability.

Chapter 2 reviews the type of the DF and the DI introduced by [HARG5|, whereas in
Chapter 3 an overview of the proposed approach is given. Afterwards the latter is illus-
trated in detail by two simulated practical examples in Chapters 4 and 5. Conclusions

and a short summary are provided in Chapter 6.

2 Harrington’s Desirability Functions and the Desirability In-

dex

Harrington introduced two types of DFs, which transform the quality measures onto
a unitless scale between 0 and 1. One aimes at maximization of the quality measure
(one-sided specification) whereas the other one reflects a target value problem (two-sided

specification) (Fig. 1).

1. Two-Sided Specification: For a quality measure Y; (i = 1,..., k) the transfor-
mation requires two specification limits (LSL;, USL;) symmetrically around the
target value, which are associated with a desirability of 1/e. Then the DF resulting

in desirabilites d; is defined as:

d;(Y)) = e V", i=1,...,k 0<n;<oco with (1)
_2Y;— (USL; + LSL;)
L USL;, — LSL;,

i=1,... k. (2)
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Figure 1: Harrington’s one- and two-sided DFs with n as in (1). Predefined points (Y;,d;) for one-sided
DF are marked.

The parameter n; is to be chosen so that the resulting kurtosis of the function ade-

quately meets the expert’s preferences.

2. One-Sided Specification: The one-sided DF uses a special form of the Gompertz-

Curve:
L) =e“ ", i=1,....k (3)

whereby the kurtosis of the function is determined by the solution of a system of

two linear equations that require two values of Y; and associated values of d; using

Y, = _[ln(_lndz)] :b0i+b1iy;la i = 17"'7k' (4)

)

The DI combines the k£ individual desirabilities into one overall quality value by

k

D := (H d;)** or as a modification of Harrington’s approach (5)
i=1

D:= min d; ([KIMOO]). (6)

i=1,...,

A central element of the approach proposed is the knowledge of the distribution of the DI.
In [WEBO03] the distributions of the above two types of DIs, namely the geometric mean
(5) and the minimum of the DFs (6) based on Harrington’s one-sided or two-sided DFs
are derived. When using the geometric mean an approximative approach arises as most

suitable for the one-sided case, whereas for the two-sided case the distribution of the DI
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is made available only for two quality measures Y; (i=1,2) and n; = 1 Vi.

As the proposed procedure is based on the distribution function of the DI, as a review

only this is presented in the following for different types of DIs.

Theorem 1 (DI Geometric Mean) Given k quality measures Y; (i = 1,...,k) with
Y; ~ N (i, 02) and DFs d; (1) resp. (3), the DI defined as D = ([]" d)l/k has the

=1
following distribution function:

log(k) + log(—log(D)) —

resp. [WEBO03] in the one-sided case,
and in the two-sided case for k =2 and n; =1 (i =1,2)

R0 = [ " Fo(D)(D) with
. B (o (- C200) =)

2D 7T(0722 + 0712) 2(522 + 512)
g (2108052 — 167" + jac?)
5251\/5\/ gy + 7,

Fp(D) ~ 1-9® [ a } with p* and o**as defined in [SCH82]

((—=21log(D))0y* — ji162” — [12617)
5251\/5\/ Go® + 01°
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2 USL; + LSL; 2

~i = —_— T = d~.2:—2- 2
: USL, 155, M UsL - osL, "% = Ger, sz,
erf(z) = 2-®(W2x)—1 (Gaussian Error Function),

®(z) :=  Distribution function of N'(0,1).

When using the minimum of the DF's (6) as a DI the distribution function of the DI comes

out as follows:

Theorem 2 (DI Minimum DFs) Given k quality measures Y; (i = 1,...,k) with
Y; ~ N (i, 02) and DFs d; (1) resp. (3), the DI D defined as D := min,—,__yd; has the

;) and s Uy (L) 17€s5p. (9/, e LI 1) GEJiIel s L/ .— 1Hj—1

following distribution function:

Fp(D) = 1- ﬁ o [(log(— log~(D)) — ﬂz)] (One-sided DFs) with

[hi :i:—l(bm' + by - Mz’)azmd a; = (biy)* - of,
1 = 112 oI5 s

o)
(Two-sided DFs ) with fi; and &7 as defined in Theorem 1.

In the course of time some alternative DFs were introduced (e.g. [DERS80], [CAS96],
[NOBO00]), the most important one in form of more flexible DFs that allow nonsymmetric
specifications around the target value ([DER80]). The procedure presented in the follow-
ing chapter in principle can be applied to all kind of DFs and DIs if the distribution of
the DI is known or has been approximated accurately enough. We focus on Harrington’s
DFs as so far only for these an analytical representation for the distribution of the DI

exists.

3 Overview: Stepwise Approach

As a starting point a process is assumed, which was optimized regarding k quality mea-
sures Y7,...,Y; using a DI D and Harrington’s DFs (1) resp. (3). Optimal Levels
X0, X% of the process influencing factors X1, ..., X,, are therefore assumed to be
given, which have been determined via design of experiment methods and nonlinear op-

timization techniques. Usually the optimization problem is stated as

min F_D(XI; . --;Xn) = _D(dl(E()/l))v . adn(E(Yn)))v (7)
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with F specifying the domain of Xy,..., X, and Y; = f(X1,..., X, &) (g ~ N(0,0?))
determined by polynomial models resulting from design of experiment methods. By taking
the expectation E(Y;) and thus ignoring the variance of the error term biased and non-
optimal optimization results may occur ([STEO00]). Therefore a more appropriate approach
is the optimization problem

min_ —E(D(Xi,..., X)) = ~E(D(d (Y1), da(V2), (8)
which can be handled knowing the distribution of the Desirability Index and simul-
taneously taking into account the model uncertainty of the design of experiment phase.
This optimization approach is therefore used in the examples of the following chapters. A
detailed overview of the advantages and drawbacks of the usual optimization procedures

applied is given in [STE00].

Using the levels X", ..y X' the expectation of D as well as the respective prediction
interval can be calculated based on its distribution in order to measure the uncertainty
of the optimization result. In order to determine how slight changes of the influence
factors X" (i € 1,...,n) affect the probability that the prediction interval covers the
realizations of the DI, the following procedure was developed, which is illustrated via
exemplary practical cases in the next chapters. Note that a simulation-based procedure is
used due to the very complicated distribution functions of the DI. An analytical approach

therefore seems to be impossible.

1. At first determine the distribution function Fp(D) of the DI D (see Theorem 1 resp.
2) for Y; ~ N(u;,0?) (i = 1,..., k) resulting from model building in the design of
experiment phase, where polynomial models are calculated in order to reflect the
relationship between the process influencing factors and the quality measures using

linear regression techniques (see [WEI95] or [WEI99] for a review).

2. Compute [Qg.025, Qo.o75] as a prediction interval for D, which covers the true value of
the DI in the optimum with a probability of 95 %, where @), is the a-%-quantile of
Fp(D). By means of this the uncertainty of the optimization of the DI is expressed.

3. Select the kind of influence factors which are intended to be varied in predefined
intervals [X™" XM in order to determine the effect on the DI and specify the
step width within the intervals. Usually only selective influence factors are chosen,

for which slight modifications would be more convenient in the process flow.
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4. Determine the distribution function Fp_,, . (Dspise) for each combination of shifted
influence factors (i.e. Y; ~ N(pu; + ¢;,07)), where Dgppy is the DI when shifted

influence factors are used, ¢; caused by shifts in X;.

5. Compute the probability that D is yet covered by the original prediction interval

Py = P(Dgpist € [Qo025, Qoors] | Yi ~ N (1 + ¢, 07) Vi)
FDshift(Q0-975) - FDshift(Q0.025)-

For visualizing the resulting probability surface generate a plot (influence factors
vs. Pi,) if up to two influence factors have been selected in Step 3. Otherwise the
shift of the remaining factors has to be set to a constant value and usually several

different plots have to be prepared.

6. Specify lower limit P,,;, as the least acceptable value of P;,; and generate a plot as
above with the restriction P;,; > P,,;, and a table with all combinations of shifts of

the influence factors which lead to a value of P;,; in this region.

7. Create a plot that visualizes the factor region(s) which result in an acceptable pro-
bability that D will be covered by the initially computed interval [Qg 25, Qo.975] as in
Step 1. Therefore the influence factor regions which fulfill the condition P;,,; > P,in

are plotted against each other.
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Figure 2: Desirability Functions of flavor (Y1) and price (¥3)

4 Example I: Fruit Juice Mixture

A fruit juice mixture consisting of watermelon (X)-, pineapple (X3)-, orange (X3)- and
grapefruit-juice (X,) has to be optimized regarding the quality measures flavor (Y]), mea-
sured on a scale from 0 to 10, and price (Y3), measured in Euros (see [WEI99], p. 177).
For both quality measures Harrington’s one-sided desirability functions d; (i=1,2) as in
(3) are utilized in order to reflect the expert’s preferences. As displayed in Fig. 2 maxi-

mization of flavor while simultaneously minimizing the price is desired.

For optimization purposes of the DI D := ([[-_, d;)"/? design of experiment methods
were used to determine polynomial models reflecting the relationship between the propor-

tions of the influence factors Xi,..., X, and the quality measures on the side-condition

S X =100 (%):

Y, = 4.713-0.0927 - X; 4+ 0.0590 - X3+ 0.0933 - X4 (9)
with standard deviation sd; = 0.288, (10)
Y, = 3.797 — 0.0333- X, + 0.0212 - X; + 0.0585 - X, with sdy = 0.239. (11)

Thus assuming validity of these models, Y; ~ N (p;,07) with pu; = Y; and o; = sd; as
specified in (9) and (11), therefore the approximative distribution of the resulting DI can
be derived as follows using the results of [WEBO03]:

1 *)2
fo(D) = ~ Vo o TogD) D 5o (l0g(—2 - log(D)) — u") (12)

with p* and o*? as defined in [WEBO03] resp. [SCH82] and

exp | —
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No. Xy X, X3 X4 ED) D(Y1,Ys)
1 3 10 55 0 3.7E17 28E-91

2 30 3 0 67 0244 0.226

3 68 7 25 0 25E8 0

4 30 3 0 67 0244 0.226

5 30 20 50 0 1.1E07 93E-19

6 55 20 0 25 14E-07 24E-18

730 20 0 50 0.628 0.647

8 30 3 67 0 14E16 1.6E-=84

9 68 7 0 25 T75E30 0

Table 1: Expected values E(D) of the DI as well as D(Y;,Y5) for each experiment.

log(2) + log(—log(D)) — p*

0—*

Fp(D) ~ 1-® (13)

By means of the knowledge of this distribution the expected value of the DI can be op-
timized, which can be seen as an improved optimization procedure for the DI as in the
classic approach the DI is calculated based on the values of Y; and therefore the model un-
certainty is not taken into account (see [STEO00]). Thus for each experiment the expected
value E(D) of the DI is determined as displayed in Table 1. Additionally in comparison
the values following the classic approach are displayed so that the differences become

obvious. Note that as a side restriction X3 and X, may not be used simultaneously.

These results indicate that exceeding 30 % the proportion of watermelon-juice (X) leads
to undesirable values of the quality measures. Furthermore experiment 7 is the one with
the maximal value of E(D) followed by experiments 2 and 4, which all make use of
grapefruit-juice (X4). Regarding the factor settings of the experiments 2, 4 and 7 a grid
search was carried out in order to find the optimal factor settings which lead to the optimal
expected value of the DI. As X5 is not included in the models (9) and (11) — it follows
from Z?Zl X; =100 % — only X; and X, are varied on a grid with ranges 10 < X; < 40
and 30 < X, < 80 and step width 0.1. The optimal factor settings come out as

X7 =30, X = 50.6 and X¥ = 19.4 with E(D,p;) = 0.67 (14)

leading to p* = —0.25 and o** = 0.105, (15)
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whereby the following domain restrictions of the influence factors had to be met:

30% < X, < 100%, (16)
Xy = 0%V Xy = 0%, (17)
0% < Xy <20% & X + X3 resp. X, > 80%, (18)
X+ X, <75% < 25% < X3 resp. Xy and (19)
0.1-X; < Xo. (20)

Following the procedure described in Chapter 3 the distribution function of the DI is
determined based on (13) and the optimal factor settings (14). The 95 % prediction-

interval for the true DI in the optimum comes out as
[Q0_025, Q0_975] = [066, 089] with Qa = %—quantile of FD(D) (21)

Whereas the resulting interval reflects the uncertainty of Dy, in practice an analysis of
the effects of varying the optimal factor levels can also be of interest, which somehow
reflects the uncertainty of the levels regarding D,,;. For example in a production process
a slight change of one influence factor may lead to lower production costs or may just be
more convenient in the process flow.

As a first example only the effect of shifts of X is focussed assuming that the proportion of
X, is not affected. Of course this also leads to a modification of Xy but X, is not included
in the models (9) and (11). For all possible shifts of X; in the interval [-30, 70] and step
width 0.01, ignoring the restriction Zle X; = 100% at the moment, the distribution
function of the DI is calculated and the probability that the interval (21) still covers the

values of the DI is determined as

Py = P(Dshift S [Qo.ozm Q0.975] |Yi ~ N(MH‘Ci, U?)) = FDSmﬂ(Qo.Q%) —FDW”(QO.O%),
(22)

where Dgif, is the DI when shifted values of X; are used, i.e Y; ~ N (y; + ¢;, 07).

Fig. 3 illustrates the shape of this probability in the range X, is shifted. Additionally
lines are included which reflect the restrictions listed in (16)-(20). The gray-shaded region
mirrors the domain in which all these restrictions are met. Thus the part of the displayed
curve falling inside this region indicates the range in which X; can be varied so that

all restrictions are met and the desired minimal probability P,;, is exceeded, which was
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Figure 3: Probability that [Qo.025, Qo.975] covers the values of the DI when X; is shifted

chosen as P,,;,, = 0.8.

In case shifts of both influence factors X; and X, are of interest the procedure is carried out
analogously. For all combinations of shifts in the ranges [—30,70] (X;) and [—50.6, 49.4]
(X4) with step width 0.2, again ignoring the restriction Y;_, X; = 100% at the moment,
the probabilities as in (22) are computed. Fig. 4 visualizes Py, plotted against the shifts
of X; and X}, where in this stage only the restriction Z?Zl X; = 100 % is considered.
Furthermore in Fig. 4 the same surface when the condition P;,,; > P,,;, = 0.8 is satisfied

is shown below.

For the purpose of including all restrictions (16)-(20) and in order to get a better overview
regarding the range of possible shifts of the influence factors X; and Xy, in Fig. 5 X; and
X, are plotted against each other where the lines reveal the restrictions mentioned. As in
the example above the gray-shaded region reflects the region in which all restrictions are
met. The black area inside again reflects the range of possible shifts of the influence factors
X, and X, with regard to meeting all restrictions and exceeding the desired minimal
probability P,,;, = 0.8. Thus due to the factor restrictions only a quite small part of the

theoretically possible range is allowed for shifting.
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Figure 5: Ranges of X; and X4 so that [Qo.025, Qo.975] covers the value of the DI with a probability of
at least 80 %.

5 Example II: Tire Tread Compound

In the following we revert to the example used by [DERS&0], which is modified in terms of
differently specified DFs. An optimal compound of a tire tread, consisting of "Hydrated
silica” (X7), ”Silane coupling agent” (X3) and ”Sulfur” (X3) has to be found, where its
quality is measured by the variables ”PICO Abrasion Index” (Y7), 7200%-Modulus” (Y3),
”Elongation at Break” (Y3) and "Hardness” (Y};). The assumed related one-sided DF's as
in (3), which express the desirability of different values of Y-V}, are displayed in Fig. 6.

In this case another kind of DI is used, namely D := min;—; _4d;. That implies a

"maximin-approach”, i.e. the minimum desirability is to be maximized over time. The
optimization of the DI follows the same procedure as outlined in Chapter 4 using the

models

Y) = 139.1+16.5X; +17.9X, + 10.9X3 — 4X7 — 3.5X7 — 1.6X3 + 5.1X; X,

+71X1X3 + 79X2X3 with Sd1 == 56, (23)
Y, = 1261.1+268.2X, 4 246.5X, + 139.5X3 — 83.6X2 — 124.8X2 4 199.2.X?
+69.4X1 Xy + 94.1X, X5 + 104.4X, X5 with sdy = 328.7, (24)

Yy = 400.4—99.7X; — 31.4X, — 73.9X3 + 7.9X7 + 17.3X] + 0.4X; + 8.8X, X,
+63X1X3 + 13X2X3 with 8d3 = 20.6 and (25)
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Figure 6: Desirability Functions of PICO Abrasion Index(Y7), 200%-Modulus (Y>), Elongation at Break
(Y3) and Hardness (Y4)

Y, = 68.9—1.4X; +4.3X, 4+ 1.6X5 + 1.6X2 + 0.1X2 — 0.3X2 — 1.6X, X,

Again the mentioned innovated approach of optimizing the expectation of the DI instead of
4 d;(Y;) is applied, where from [WEB03]

.....

E(D):/Ol_@é %¢<log(—log N)ﬁ <log—log0(jD)) ﬁj) 4(D)

3 =
i

[N
P

(27)

with laz (bOZ + blz ,uz) U - (blz) 0—? and (28)
é(x) resp. ®(x) : Density resp. Distribution function of N (0, 1).

A grid search on coded influence factors was carried out, where we assumed possible
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ranges —2 < X; < 2 (i =1,...,3) resulting in the optimal influence factor levels
X7 =07, X3P = 1.3 and X3 = 1.3 with E(D,,;) = 0.577. (29)

Taking into account the uncertainty of the optimization resulting from the model errors
in (23)-(26) and starting with the procedure described in Chapter 3, the 95%-prediction
interval for D, is calculated based on
4 -
log(—log(D)) — fi; o~ . .
Fp(D)=1- H(b [( og( og~( ) = i) with fi; and 7 as in (28) (30)

O’.
i=1 t

(Theorem 2) and comes out as
[Q0_025, Q0_975] = [043, 070] with Qa = Ol% - quantile of FD(D) (31)

The influence factors X; and X3 were selected for shifting in their full domain of
-2 < X; <2 (1 =1,3) in order to measure the effect onto D,,. Analogously to the
example in Chapter 4 hereby the uncertainty of the optimal factor levels regarding D,
is determined using equation (22). In Fig. 7 the shifted values of X; and X3 are plotted
against the probability Pj,; that the prediction interval as in (31) still covers the realiza-
tions of the DI. Assuming that at least a probability of 80% has to be achieved the lower
graphic of Fig. 7 shows the range of P;,; that meets this condition.

In order to facilitate the analysis of this range, in Fig. 8 the respective values of X; and
X3 are plotted against each other. In this case no additional restrictions regarding the
influence factors have to be taken into account. It becomes obvious that a quite wide

scope of possible shifts of X; and X3 exists.

6 Summary and Conclusion

Considering the examples in Chapters 4 and 5 it can be seen that the method described
provides an appropriate means for analyzing and visualizing the regions of possible shifts
of influence factors which lead to an acceptable probability that the DI will be covered
by the prediction interval constructed using the optimal factor settings. As an innovative
approach the distribution of the DI is taken into account. But it is also obvious that this
analysis becomes more and more complicated the more influence factors are allowed for

shifting as



6 SUMMARY AND CONCLUSION

o

o
“ 00
& o T
o
o
Voo |
£ O
&
o
vi S|
g O 0
o
o —
(0N 1
T o 2

73

o

. , , , L4

© _3 -2 -1 0 1 2

Shift(X,)
50

o

S
> o |
'g,_ o
(=]
o
vi o |
% o
a
AV/EE S
8 o 0.5
o
S w 0.0
\n_-/ S -+ _05

Z1.0
8 + + + + + _15
-15 -10 -05 0.0 0.5 1.0 1.5

Shift(X,)

Figure 7: Probability that [Qo.025, Qo.975] covers the values of the DI when X; and X3 are

1.0

Shifth;bClOVV: Same Surface with P(Q0.025 < Dshjft S Q0.975) Z Pmin =0.8.

Shift(Xs)

Shift(X3)

16



6 SUMMARY AND CONCLUSION 17

Prmin=0.8

Figure 8: Ranges of X; and X3 so that [Qo.025, Qo.975] covers the values of the DI with a probability of
at least 80 %.

e graphical illustration is difficult for more than two factors. From three dimensions
on plots as in Fig. 4 can only be generated by fixing the remaining factors to a

constant value. Therefore in this case tables should be provided additionally.
e the resulting region does not need to be cohesive as can be seen in Chapter 4 and

e the number of possible combinations of shifted influence factors which lead to a DI

within the desired prediction interval heavily increases.

Therefore and because of very complex density and distribution functions of the DI a
general analytical approach will be highly complicated if not impossible so that the pro-
posed procedure will provide appropriate assistance in practice.

In case the distribution of other types of is known, the procedure can be applied analo-

gously without any modification.
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