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Abstract
We determine optimal designs for some regression models which are frequently used for

describing 3D shapes. These models are based on a Fourier expansion of a function defined
on the unit sphere in terms of spherical harmonic basis functions. In particular it is demon-
strated that the uniform distribution on the sphere is optimal with respect to all Φp-criteria
proposed by Kiefer (1974) and also optimal with respect to a criterion which maximizes a
p-mean of the r smallest eigenvalues of the variance-covariance matrix. This criterion is
related to principal component analysis, which is the common tool for analyzing this type
of image data. Moreover, discrete designs on the sphere are derived, which yield the same
information matrix in the spherical harmonic regression model as the uniform distribution
and are therefore directly implementable in practice. It is demonstrated that the new designs
are substantially more efficient than the commonly used designs in 3D-shape analysis.
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1 Introduction

Over the last decade, tools for acquiring and visualizing 3D models have become integral com-
ponents of data processing in many fields including medicine, chemistry, architecture, agriculture
and biology. Volumetric shape analysis permits an evalutation of the actual structures that are
implicitly represented in 3D image data. For the analysis, description and comparison of shapes
of various structures shape descriptors, which are able to handle very different shapes and to
represent their global and local features are of increasing interest [see e.g. Brechbühler, Gerig
and Kübler (1995), Novotni and Klein (2003), Székely, Kelemen, Brechbühler and Gerig (1996),
Ding Nesumi, Takano and Ukai (2000), Funkhouser, Min, Kahzdan, Chen, Halderman and Dobkin
(2003), Kazhdan, Funkhouser and Rusinkiewicz (2003) among many others]. Spherical harmonic
shape descriptors usually describe the surface in terms of a relatively small number of coefficients
of a spherical harmonic expansion of the radius as a function on the unit sphere [see e.g. Ding et
al. (2000) or Brechbühler et al. (1995)], i.e.

r(θ, φ) =
∞∑

�=0

�∑
m=−�

cm� Y
m
� (θ, φ)(1.1)

where θ ∈ [0, π], φ ∈ (−π, π], the quantities

cm� =
1

4π

∫ π

0

∫ π

−π

r(θ, φ)Y m
� (θ, φ)dφ sin θdθ(1.2)

are the usual “Fourier” coefficients and

{Y m
� (θ, φ) | m ∈ {−�,−�+ 1, . . . , �}; � ∈ N0}

is a complete orthonormal basis on the unit sphere. Let ri = r(θi, φi) denote the observed radius of
the 3D shape at polar angle θi and azimuthal angle φi [in other words the corresponding point of
the shape has spherical coordinates (ri sin θi cosφi, ri sin θi sinφi, ri cos θi)

T ] and assume that data

{(ri, θi, φi) | i = 1, . . . , n}

is available for one object. Usually, a truncated expansion of order d is applied as an approximation
of (1.1), where the coefficients cm� are determined by the least squares critierion

min
cm
�

{ n∑
i=1

(
ri −

d∑
�=0

�∑
m=−�

cm� Y
m
� (θi, φi)

)2}
(1.3)

and the estimated coefficients in this expansion (appropriately normalized) are then used for
describing and analyzing the 3D shapes. For this purpose typical tools from multivariate statis-
tics (cluster, discriminant or principal component analysis) are applied [see Ding et al. (2000),
Kazhdan et al. (2003), Kelemen et al. (1999) among many others].

A common design of experiment for this situation is a uniform distribution on the rectangle
[0, π] × (−π, π] realized by a grid or a uniform design taking observations on several circles with
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equal distance on the z-axis [see e.g. Ding et al. (2000)]. In the literature on shape analysis these
designs are mainly motivated by its easy implementation. If the grid is fine enough or a sufficiently
large number of circles on the unit sphere is used the matrix BTB of the least squares estimate
ĉ = (BTB)−1BT r approximates a diagonal matrix, which simplifies the numerical calculation in the
statistical analysis. Here r = (r1, . . . , rn) is the vector of measured radii and B = (Y m

� (θi, φi))
�,m
i is

the design matrix corresponding to the least squares problem (1.3) [see Brechbühler et al. (1995)].

In the present paper we consider the problem of finding optimal designs for 3D shape analysis
based on spherical harmonic descriptors. In Section 2 we present some more details on spherical
harmonic descriptors and basic results on the theory of optimal experimental design. In the same
section we also demonstrate that the uniform distribution on the unit sphere is optimal with
respect to any of Kiefer’s (1974) Φp-criteria if the interest of the experimenter is in the estimation
of the complete vector

c = (c00, c
−1
1 , c01, c

1
1, . . . , c

−d
d )T ∈ R

(d+1)2

or a certain subset of the parameters. It is also shown that for any t ≤ (d+1)2 this design maximizes
the pthmean of the r largest eigenvalues of the variance-covariance matrix (BTB)−1. Therefore the
uniform distribution on the sphere is particulary efficient for principal component analysis, which
is the main tool for summarizing the information contained in the spherical harmonic coefficients
obtained by (1.3) [see e.g. Ding et al. (2000) or Kazhdan et al. (2003)]. Because this design is
continuous with density 1

4π
sin θdθdφ, it is not directly implementable in practice. Therefore for

a finite sample size we determine in Section 3 discrete designs, which give the same information
matrix as the uniform distribution on the sphere. For this reason these designs are also optimal
with respect to Kiefer’s (1974) Φp-criteria and optimal with respect to a criterion, which maximizes
a p-mean of the r smallest eigenvalues of the information matrix and is related to principal
component analysis. In Section 4 we present several examples, which illustrate the advantages
of our approach, and determine optimal uniform designs, which take in each direction only one
observation and are for this reason particular attractive to practitioners. We also reanalyze a
design used by Ding et al. (2000) for principal component analysis and demonstrate that the
designs derived in the present paper are substantially more efficient. Finally, some more technical
details are given in the Appendix.

2 Spherical harmonic descriptors and optimal design

An orthogonal system {Y m
� (θ, φ) | � ∈ N0;m ∈ {−�,−�+1, . . . , �}} of functions on the unit sphere

satisfies

1

4π

∫ π

0

∫ π

−π

Y m
� (θ, φ)Y m′

�′ (θ, φ)dφ sin θdθ = 0(2.1)

whenever (m, �) �= (m′, �′). The common system used in shape analysis [see Brechbühler et al.
(1995) or Ding et al. (2000)] is obtained by the normalization

1

4π

∫ π

0

∫ π

−π

(Y m
� (θ, φ))2dφ sin θdθ = 1
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and given by the spherical harmonic functions

Y 0
n (θ, φ) =

√
2n+ 1P 0

n(cos θ) n ∈ N0,

Y m
n (θ, φ) =

√
2(2n+ 1)

(n−m)!

(n+m)!
Pm

n (cos θ) cos(mφ) m = 0, . . . , n; n ∈ N,(2.2)

Y −m
n (θ, φ) =

√
2(2n+ 1)

(n+m)!

(n−m)!
P−m

n (cos θ) sin(mφ) m = −n, . . . ,−1;n ∈ N,

where Pm
n (x) is the mth associated Legendre function of degree n satisfying the differential equa-

tion

(1 − x2)P ′′(x) − 2xP ′(x) +
{
n(n + 1) − m2

1 − x2

}
P (x) = 0.(2.3)

It is well known [see Andrews, Askey and Roy (1999), Chapter 9], that these functions can be
represented as

Pm
n (x) = (−1)m (2m)!

2nm!
(1 − x2)

m
2 C

(m+1/2)
n−m (x),(2.4)

where C
(α)
k (x) is the kth ultraspherical polynomial orthogonal with respect to the measure (1 −

x2)α−1/2dx [see Szegö (1975)]. Note also that P 0
n(x) is the nth Legendre polynomial Pn(x) orthog-

onal with respect to the Lebesgue-measure on the interval [−1, 1]. Because orthogonal polynomials
can be calculated recursively this representation allows a fast computation of the functions Y m

�

and the first four spherical harmonic functions corresponding to the case d = 1 are given by

Y 0
0 (θ, φ) = 1; Y 0

1 (θ, φ) =
√

3 cos θ.(2.5)

Y −1
1 (θ, φ) =

√
3 sin θ sin φ; Y 1

1 (θ, φ) =
√

3 sin θ cosφ.

Figure 1 and 2 show the spherical harmonic descriptors

(Y m
� (θ, φ) sin θ cosφ, Y m

� (θ, φ) sin θ sinφ, Y m
� (θ, φ) cos θ)T , m = −�, . . . , �

for � = 0, 1, 2, 3, when (θ, φ) varies in the rectangle [0, π] × (−π, π].
Consider the regression model corresponding to the least squares problem (1.3)

E[Y | θ, φ] = cTfd(θ, φ); Var[Y | θ, φ] = σ2 > 0,(2.6)

where

fd(θ, φ) =
(
Y 0

0 (θ, φ), Y −1
1 (θ, φ), Y 0

1 (θ, φ), Y 1
1 (θ, φ), . . . , Y −d

d (θ, φ), . . . , Y d
d (θ, φ)

)T

∈ R
(d+1)2(2.7)

is the vector of spherical harmonic functions of order d and

c = (c00, c
−1
1 , c01, c

1
1, . . . , c

−d
d , . . . , cdd)

T ∈ R
(d+1)2

the corresponding vector of parameters. Note that there appear (d+ 1)2 spherical harmonic func-
tions in the model (2.6). An approximate design is a probability measure on the set [0, π]×(−π, π].
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Figure 1: Spherical harmonic descriptors (Y m
� (θ, φ) sin θ cosφ, Y m

� (θ, φ) sin θ sinφ, Y m
� (θ, φ) cos θ)T

for m = −�, . . . , �, � = 0, 1, 2.
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Figure 2: Spherical harmonic descriptors (Y m
� (θ, φ) sin θ cosφ, Y m

� (θ, φ) sin θ sinφ, Y m
� (θ, φ) cos θ)T

for m = −�, . . . , �, � = 3.

For a probability measure with finite support the support points, say zi = (θi, φi), determine the
points on the sphere, where the radius of the 3D shape is observed and the corresponding weights,
say wi, give the relative proportion of total observations, say wi, taken in a particular direction.
For a given design ξ with finite support the covariance matrix of the least squares estimate for
the vector c is approximately proportional to the information matrix

M(ξ) =

∫ π

−π

∫ π

0

f(θ, φ)fT (θ, φ)dξ(θ, φ)(2.8)

(this is essentially the matrix BTB mentioned in the introduction) and an optimal approximate
design maximizes an appropriate function of this matrix. There are numerous criteria proposed in
the literature, which can be used to discriminate between competing designs [see Silvey (1980) or
Pukelsheim (1993)] and we will restrict ourselves to the famous family of Φp-criteria introduced by
Kiefer (1974) and a new optimality criterion, which has not been considered so far in the literature
and is related to principal component analysis.

To be precise, let K ∈ R
(d+1)2×s denote a given matrix of rank s ≤ (d + 1)2 and assume that

the main interest of the experimenter is in the estimation of s linear combinations KT c. If n
observations are taken according to an approximate design [possibly by applying an appropriate
rounding procedure to a design with finite support or by using a discretization of a continuous
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design; see Pukelsheim and Rieder (1992)], then the covariance matrix of the least squares estimate
for KT c is approximately given by

σ2

n
(KTM−(ξ)K),

where A− denotes a generalized inverse of the matrix A and we assume that the linear combinations
KT c are estimable by the design ξ, that is

range (K) ⊂ range (M(ξ));

see Pukelsheim (1993). Let −∞ ≤ p < 1; following Kiefer (1974) we call the design ξ∗ Φp-optimal
for estimating the linear combinations KT c if ξ∗ maximizes the expression

Φp(ξ) = (tr(KTM−(ξ)K)−p)
1
p(2.9)

among all designs for which KT c is estimable. If K = I(d+1)2 is the identity matrix of order
(d + 1)2 × (d + 1)2, then ξ∗ is briefly called Φp-optimal. Note that the cases p = 0 and p = −∞
correspond to the frequently used D- and E-optimality criterion, i.e.

Φ0(ξ) = det(KTM−(ξ)K)−1 ; Φ−∞(ξ) = λmin((K
TM−(ξ)K)−1),(2.10)

while the A-criterion is obtained for the choice p = −1, i.e.

Φ−1(ξ) = (tr (KTM−(ξ)K)−1.(2.11)

In the following we are interested in a design, which is particulary efficient for the estimation of
the coefficients corresponding to the (2k + 1) spherical harmonic functions

Y −k
k , Y −k+1

k , . . . , Y k
k

of the vector of regression functions defined in (2.7), where k ∈ {0, . . . , d} denotes a given “level
of resolution”. For this define 0k,s as the (2k+ 1)× (2s+ 1) matrix with all entries equal to 0, let
q ∈ N0, consider the indices 0 ≤ k0 < k1 < k2 < . . . < kq ≤ d and define the matrix

KT = KT
k0,...,kq

=
(
Ki,j

)j=0,...,d

i=0,...,q
(2.12)

by

Ki,j =

{
0ki,j if j �= ki

I2ki+1 if j = k;
(2.13)

(i = 0, . . . , q; j = 0, . . . , d). Note that K ∈ R
(d+1)2×s, where s =

∑q
i=0(2ki + 1) and that KT c gives

the vector with coefficients{
cmk�

∣∣∣m ∈ {−k�,−k� + 1, . . . , k�}; � = 0, . . . , q
}
.(2.14)

Two cases are of particular interest here and are therefore mentioned separately. If q = d, then

KT
0,...,d = I(d+1)2(2.15)
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and precise estimation of the full vector of parameters is the main goal for the construction of the
optimal design. On the other hand if q = 0, only the coefficients corresponding to the (2k0 + 1)
spherical harmonic functions Y −k0

k0
, . . . , Y k0

k0
are of interest and the corresponding matrix is given

by

KT
k0

=
[

0k0,0
... . . .

... 0k0,k0−1
... I2k0+1

... . . .
... 0k0,d

]
∈ R

(2k0+1)×(d+1)2 .(2.16)

Note that the general matrix defined by (2.12) consists of (q+1) (block-) rows of the form (2.16).
The following result shows that for matrices of this form the Φp-criteria defined in (2.9) are
maximized by the uniform distribution on the sphere independently of p ∈ [−∞, 1).

Theorem 2.1. Let p ∈ [−∞, 1), 0 ≤ k0 < . . . < kq ≤ d be given indices and denote K =
Kk0,...,kq as the matrix defined by (2.12) and (2.13). A Φp-optimal design ξ∗ for estimating the
linear combinations KT c in the spherical harmonic regression model (2.6) is given by the uniform
distribution on the sphere, i.e.

ξ∗(dθ, dφ) =
1

4π
sin θdθdφ.(2.17)

Moreover, the corresponding information matrix in the spherical harmonic regression model is
given by M(ξ∗) = I(2d+1)2 .

Proof. Let ξ∗ denote the design corresponding to the density (2.17), then, due to the orthonor-
mality of the spherical harmonic functions Y m

� , it follows that

M(ξ∗) =
(∫ π

0

∫ π

−π

Y m
� (θ, φ)Y m′

�′ (θ, φ)dφ sin θ
dθ

4π

)
�,�′,m′,m

= I(2d+1)2 .

Assume for the moment that p > −∞. According to Theorem 7.20 in Pukelsheim (1993) we obtain
that the measure ξ∗ is Φp-optimal if and only if the inequality

fT
d (θ, φ)K(KTK)−p−1KT f(θ, φ) ≤ trace(KTK)−p(2.18)

holds for all θ ∈ [0, π] and φ ∈ (−π, π]. Now the special structure of the matrix K defined in (2.12)
and (2.13) yields

KTK = Is

where s =
∑q

�=0(2k� + 1). Observing the definition of the vector fd(θ, φ) in (2.7) and again the
definition of the matrix K the inequality (2.18) reduces to

s ≥
q∑

�=0

k�∑
m=−k�

(
Y m

k�
(θ, φ)

)2

(2.19)

=

q∑
�=0

(2k� + 1)
{(
P 0

� (cos θ)
)2

+ 2

k�∑
m=1

(k� −m)!

(k� +m)!

(
Pm

k�
(cos θ)

)2}

for all θ ∈ [0, π] and φ ∈ (−π, π]; where we have used the representation (2.2) and the trigonometric
identity cos2(mφ) + sin2(mφ) = 1 for the last equality. From the identity

P 0
k (cosα cosβ + sinα sin β cosφ)

= P 0
k (cosα)P 0

k (cos β) + 2

k∑
m=1

(k −m)!

(k +m)!
Pm

k (cosα)Pm
k (cosβ) cos(mφ)
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for the Legendre functions [see Andrews, Askey and Roy (1999), p. 457] and the fact that P 0
k is

the kth Legendre polynomial it follows (with the choice α = β, φ = 0)

(P 0
k (cosα))2 + 2

k∑
m=1

(k −m)!

(k +m)!
(Pm

k (cosα))2 = P 0
k (1) = 1.

Now the right hand side of the inquality (2.19) simplifies to

q∑
�=0

(2k� + 1) = s,

and consequently the inequality (2.19) or equivalently (2.18) holds for all θ ∈ [0, π] and φ ∈ (−π, π].
This proves that the design ξ∗ corresponding to the uniform distribution on the sphere is Φp-
optimal for any p ∈ (−∞, 1) and any matrix K of the form (2.12) and (2.13). The remaining case
p = −∞ finally follows from Lemma 8.15 in Pukelsheim (1993).

�

It should be noted at this point that the E-criterion is of particular importance for the design
of experiment in 3D-shape analysis, because many authors propose to use principal component
analysis for the comparison of different shapes [see e.g. Ding et al. (2000) or Kazhdan et al.
(2003) among others]. More precisely, it is proposed to summarize the information contained in the
spherical harmonic coefficients by a principal component analysis based on the variance-covariance
matrix of the least squares estimator obtained from (1.3), which explains the 3D-shape variation of
different objects by the first, say r, principal components corresponding to the r largest eigenvalues
of the matrix M−1(ξ). Consequently, an efficient design for principal component analysis should
minimize a function of the largest r eigenvalues of the matrixM−1(ξ). To be precise let r ≤ (d+1)2,
and −p ≤ ∞ < 1, then we call a design ξ∗ Ψp,r-optimal if ξ∗ maximizes

Ψp,r(ξ) =
( r∑

j=1

{
λ(j)(M(ξ))

}p)1/p

(2.20)

where λ(j)(M(ξ)) denotes the jth smallest eigenvalue of the matrix M(ξ∗). Again the case p =
−∞ and p = 0 are obtained from the corresponding limits, that is Ψ−∞,r(ξ) = λ(1)(M(ξ)) and
Ψ0,r(ξ) =

∏r
j=1 λ(j)(M(ξ)), respectively. To the knowledge of the authors optimality criteria of

this type have not been considered in the literature so far. Note also that the E- and A-optimality
criterion (with K = I(d+1)2) are obtained for the choice r = 1 and r = (d + 1)2 with p = −1,
respectively. The most important case for the choice of the parameter p ∈ [−∞, 1) is certainly
obtained for p = −1. In the following we show that the uniform distribution on the sphere is also
Ψr,p-optimal.

Corollary 2.2. Let p ∈ [−∞, 1) and 1 ≤ r ≤ (d+1)2, then the uniform distribution on the sphere
defined by (2.17) is Ψp,r-optimal in the spherical harmonic regression model (2.6).

Proof. The case p = −∞ is obtained from Theorem 2.1 with K = I(d+1)2 . For −∞ < p < 1 note
that Ψp,r(ξ

∗) = r1/p if p �= 0 and Ψ0,r(ξ
∗) = 1. If p �= 0 and ξ∗ would not be Ψp,r-optimal, then
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there would exist a design, say ξ, with

(
Ψp,r(ξ)

)p

=

r∑
j=1

λp
(j)(M(ξ)) < r =

(
Ψp,r(ξ

∗)
)p

.

Consequently, we obtain λ(1)(M(ξ)) < 1 = λmin(M(ξ∗)), which implies that the uniform distribu-
tion on the sphere ξ∗ is not E-optimal and contradicts Theorem 2.1. The case p = 0 is obtained
by a similar argument and the assertion of the corollary has been established.

�

3 Discrete optimal designs

Note that the uniform distribution defined by (2.17) is not directly implementable as a design in
real experiments. Therefore, for practical applications it is important to obtain discrete designs ξ
which are equivalent to the uniform distribution ξ∗(dθ, dφ) = 1

4π
sin θdθdφ in the sense that

M(ξ) = M(ξ∗) = I(d+1)2 ,(3.1)

where M(ξ) is the information matrix (2.8) of the design ξ in the spherical harmonic regression
model (2.6). Note that due to Caratheodory’s theorem [see Silvey (1980)] there always exist
discrete designs satisfying (3.1) and in the following we will construct a broad class of discrete
designs, which can easily be implemented in practice. For this purpose we need an auxiliary result
about quadrature formulas, which will be proved in the appendix.

Lemma 3.1. Assume that r ∈ N and let −1 ≤ x1 < x2 < . . . < xr ≤ 1 denote r points with

corresponding weights w1, . . . , wr > 0
(∑r

i=1wi = 1
)
. The points xi and weights wi generate a

quadrature formula of degree p ≥ r, that is

r∑
i=1

wix
�
i =

1

2

∫ 1

−1

x�dx � = 0, . . . , p,(3.2)

if and only if the following two conditions are satisfied:

(A) The polynomial Vr(x) =
∏r

i=0(x − xi) is orthogonal to all polynomials of degree p − r with
respect to the Lebesgue-measure, that is∫ 1

−1

Vr(x)x
�dx = 0, � = 0, . . . , p− r.(3.3)

(B) The weights wj are given by

wj =
1

2

∫ 1

−1

�j(x)dx,(3.4)

where

�i(x) =
r∏

j=1
j �=i

x− xj

xi − xj

10



denotes the ith Lagrange interpolation polynomial with nodes x1, . . . , xr.

It follows from condition (3.3) that p ≤ 2r − 1 (otherwise there does not exist a solution of this
system). Moreover, there exists at least one set of points, which satisfies condition (3.3), namely

{x | Pr(x) = 0},(3.5)

where Pr denotes the rth Legrendre polynomial orthogonal with respect to the Lebesgue-measure
on the interval [−1, 1], because it is well known that this polynomial has r distinct roots located
in the interval (−1, 1) [see Szegö (1975)]. Moreover, the corresponding weights defined by (3.4)
are positive and define a Gaussian quadrature formula, i.e. a quadrature formula of degree 2r− 1
with r nodes [see e.g. Engels (1980) or Ghizetti and Ossicini (1970)]. In the following we will
use this Lemma with p = 2d, then it follows that for any r ∈ {d+ 1, . . . , 2d} there exists at least
one quadrature formula {xi, wi}r

i=1 determined by the equations (3.3) and (3.4), which integrates
polynomials of degree 2d exactly (in other words: the system of equations in (3.2) is satisfied with
p = 2d) and the corresponding weights wi are positive. We consider a quadrature formula of this
type, define

θi = arccosxi i = 1, . . . , r(3.6)

and consider the design

µ =

(
θ1 . . . θr

w1 . . . wr

)
(3.7)

on the interval [0, π]. Similary, we define for any t ∈ N and any α ∈ (− t+1
t
π,−π] a design

ν = ν(α, t) on the interval (−π, π] by

ν = ν(α, t) =

(
φ1 . . . φt

1
t
. . . 1

t

)
,(3.8)

where the points φj are given by

φj = α +
2πj

t
j = 1, . . . , t.(3.9)

The following result shows that designs of the form µ⊗ν are discrete Φp- and Ψp,r- optimal designs
for the spherical harmonic regression model (2.6).

Theorem 3.2. Let p ∈ [−∞, 1), 0 ≤ k0 < . . . < kq ≤ d and denote by K = Kk0,...,kq the matrix
defined by (2.12). For any t ≥ 2d + 1 and any r ∈ {d + 1, . . . , 2d} the design µ ⊗ ν with factors
given by (3.7) (corresponding to a quadrature formula of degree 2d) and (3.8) is Φp-optimal for
estimating the coefficients KT c and Ψp,r-optimal in the spherical harmonic regression model (2.6).

Proof. Observing the proof of Theorem 2.1 and Corollary 2.2 the assertion can be established by
showing the identity

M(µ ⊗ ν) = I(d+1)2 .(3.10)

11



For this let

ψ(φ) = (ψ−d(φ), ψ−d+1(φ), . . . , ψd(φ))T

= (
√

2 sin(dφ), . . . ,
√

2 sin φ, 1,
√

2 cosφ, . . . ,
√

2 cos(dφ))T ,

then the regression functions in the spherical harmonic regression model of degree d are given by

γijP
|j|
i (cos θ) · ψj(φ); j = −i, . . . , i, i = 0, . . . , d,(3.11)

where P j
i is the Legendre function defined by the equation (2.4) and the constants γij are given

by

γij =

√
(2i+ 1)

(i− |j|]!
(i+ |j|)!

(note that the different scaling of the case j = 0 and j �= 0 in (2.2) has been reflected by introducing
the factor

√
2 in the definition of the functions ψj). Therefore the identity (3.10) is equivalent to

the system of equations

γijγk�

∫ π

−π

∫ π

0

P
|j|
i (cos θ)ψj(φ)P

|�|
k (cos θ)ψ�(φ)dµ(θ)dν(φ) = δikδj�(3.12)

(j = −i, . . . , i; i = 0, . . . , d; � = −k, . . . , k; k = 0, . . . , d), where δik denotes Kronecker’s symbol.
Observing Fubini’s theorem this system is satisfied if the equations

γijγk�

∫ π

0

P j
i (cos θ)P �

k(cos θ)dµ(θ) = δikδj�(3.13)

(j = 0, . . . , i; i = 0, . . . , d; � = 0, . . . , k; k = 0, . . . , d) and∫ π

−π

ψj(φ)ψ�(φ)dν(φ) = δj�; j, � = −d, . . . , d(3.14)

can be established. It is well known [see Pukelsheim (1993)] that the last identity is satisfied for
measures of the form (3.8). In order to prove the remaining identity (3.13) recall that the measure µ
corresponds to a quadrature formula, which integrates polynomials of degree 2d exactly. Moreover,
it follows from the representation (2.4) that for an even m ∈ {0, . . . , n} the Legendre function
Pm

n (x) is a polynomial of degree n, while for any odd m ∈ {0, . . . , n} the function Pm
n (x)/

√
1 − x2

is a polynomial of degree n−1. Observing the equation (3.14) we can restrict ourselves to the case
j = � for which the integrand P j

i (x)P j
k (x) in (3.13) is always a polynomial of degree i + k ≤ 2d,

which contains the factor (1 − x2) if j is odd. Consequently, we obtain from (3.2) (with p = 2d)

∫ π

0

P j
i (cos θ)P j

k (cos θ)dµ(θ) =
r∑

�=1

w�P
j
i (x�)P

j
k (x�) =

1

2

∫ 1

−1

P j
i (x)P j

k (x)dx =
δik
γijγkj

,

where the last property follows from the orthogonality of the Legendre functions [see Andrews,
Askey and Roy (1999)]. This implies (3.12) [or equivalently (3.10)] and proves the theorem.

�
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Remark 3.3. It should be noted that the mapping (θ, φ) → (sin θ cosφ, sin θ sinφ, cos θ) from
the rectangle [0, π]× (−π, π] onto the unit sphere S2 maps all points of the form (0, φ) and (π, φ)
with φ ∈ (−π, π] on the points (0, 0, 1) and (0, 0,−1) on S2, respectively. Moreover, it is easy to
see that the vector fd(θ, φ) defined in (2.7) satisfies for all φ ∈ (−π, π]

fd(0, φ) = (1, 0, . . . , 0)T ∈ R
(d+1)2 ,

fd(π, φ) = (−1, 0, . . . , 0)T ∈ R
(d+1)2 .

As a consequence various points of the designs µ⊗ν constructed by Theorem 3.2 could be identified
on the unit sphere, if the support of the factor µ contains the point 0 or π. To be precise let µ̄
denote the measure obtained from µ by omitting the points 0 and π, define µ0 as the measure,
which puts masses µ({0}) and µ({π}) at the points (0, 0)T and (π, 0)T , respectively, then the
measure

µ0 + µ̄⊗ ν

has the same information matrix as the measure µ⊗ ν. Note that in the case µ({0})+µ({π}) = 0
it follows that µ̄ = µ, because the points 0 and π are no support points of the design µ.

Example 3.4. Consider the spherical harmonic regression model of degree d = 1 and the case r =
d+1 = 2. From Lemma 3.1 with p = 2d = 2 it follows that the polynomial V2(x) = (x−1)(x+1/3)
satisfies ∫ 1

−1

V2(x)dx = 0.

The points x1 = −1/3 and x2 = 1 generate a quadrature formular of degree 2 on the interval
[−1, 1] with corresponding weights

w1 =

∫ 1

−1

x− 1

(−4/3)

dx

2
=

3

4
; w2 =

∫ 1

−1

x+ 1/3

4/3

dx

2
=

1

4
.

According to Theorem 3.2 any design of the form

µ⊗ ν(α, t) =

(
0 arccos(−1

3
)

1
4

3
4

)
⊗ ν(α, t)

with t ≥ 3, α ∈ (− t+1
t
π,−π] is Φp-optimal for estimating the parameters KT

k0,kq
c (q ≤ 1) and

Ψp,r-optimal in the first order spherical harmonic regression model (2.6). A typical example is
given by the 6 point design

µ⊗ ν =

(
0 arccos(−1

3
)

1
4

3
4

)
⊗
(

−π
3

π
3
π

1
3

1
3

1
3

)
,

and by Remark 3.3 the design with equal masses at the points (0, 0), (arccos(−1
3
),−π

3
), (arccos(−1

3
), π

3
)

and (arccos(−1
3
), π)) has the same information matrix as the design µ ⊗ ν, namely the identity

matrix I4.

13



Remark 3.5. Note that there are numerous possibilities to construct a discrete design with an
information matrix equal to I(d+1)2 in the spherical harmonic regression model (2.6). According to
Theorem 3.2 a quadrature formula with r ∈ {d+1, . . . , 2d} nodes x1, . . . , xr with positive weights
is required, which integrates polynomials up to degree 2d exactly. By (3.7) this formula gives the
factor µ of the optimal design µ⊗ ν, where the second factor is any design of the form (3.8) with
t ≥ 2d+ 1. By Lemma 3.1 the quadrature formula is determined by the equations∫ 1

−1

Vr(x)x
�dx = 0 � = 0, . . . , 2d− r.(3.15)

If Pj(x) denotes the jth Legendre polynomial orthogonal with respect to the Lebesgue-measure on
the interval [−1, 1], then the polynomial Vr(x) can be represented as a linear combination of the
Legendre polynomials P0(x), . . . , Pr(x) and the orthogonality in (3.15) implies for some constants
a2d−r+1, . . . , ar

Vr(x) =

r∑
j=2d−r+1

ajPj(x).(3.16)

Note that the constants a2d−r+1, . . . , ar have to be chosen such that Vr(x) has r real roots in the
interval [−1, 1] and such that the corresponding weights defined by (3.4) are positive. This is in
general a non-trivial problem. However, one can easily describe a class of quadrature formulas, for
which this property is satisfied. For this let P

(α,β)
j (x) denote the jth Jacobi polynomial orthogonal

with respect to the measure (1− x)α(1 + x)βdx on the interval [−1, 1] [see Szegö (1975)]. For any
r ≥ d+ 1 it follows from these orthogonality properties that the identity (3.15) is satisfied for the
polynomials

P (0,0)
r (x), (1 − x)P

(1,0)
r−1 (x), (1 + x)P

(0,1)
r−1 (x), (1 − x2)P

(1,1)
r−1 (x).(3.17)

Note that P
(0,0)
r (x) is proportional to the Legendre polynomial Pr(x) and consequently the repre-

sentation of the form (3.16) is obvious in this case choosing ar−1 = . . . = a2d−r+1 = 0. Moreover, if
p is the degree of one of these polynomials it follows from classical results on orthogonal polyno-
mials that each of the polynomials in (3.17) has precisely p roots in the interval [−1, 1]. It is shown
in Bouzitat (1949) that the weights corresponding by formula (3.4) to these roots are positive [see
also Ghizetti, Ossicini (1970)], and as a consequence we obtain a quadrature formula of degree
2d on the interval [−1, 1], say {xj , wj}j=1,...,p. The corresponding design µ obtained from (3.6)
and (3.7) gives in combination with any design ν of the form (3.8) a Φp-optimal design µ⊗ ν for
estimating the parameters KT

k1,...,kq
c in the spherical harmonic regression model (2.6). This design

is also Ψp,r-optimal, by Corollary 2.2. We finally note that the roots of the polynomials in (3.17)
are the support points of D-optimal designs in heteroscedastic polynomial regression models [see
Studden (1980, 1982)].

Although there are numerous designs on the rectangle [0, π]× (−π, π] with information matrix in
the spherical harmonic regression model (2.6) given by I(d+1)2 , the support points of the factor
corresponding to the polar angle θ have to cover a sufficiently large range of the interval [0, π] in
order to obtain a Φp-optimal design in the sense of Theorem 3.2. This is the statement of the final
theorem of this section, which will be proven in the appendix.
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Theorem 3.6. Let x∗1 denote smallest root of the Legendre polynomial Pd+1(x) and define
z∗ = arccos |x∗1|. If z > z∗, then there exists no design on the rectangle [z, π − z] × (−π, π]
with information matrix I(d+1)2 in the spherical harmonic regression model (2.6).

4 Further discussion

4.1 The second order spherical harmonic model

Consider the case d = 2 corresponding to the second order spherical harmonic model with 9
regression functions. We calculate the designs corresponding to the four cases in (3.17) for the
choice r = d+ 1 = 3. From P3(x) = x(5x2 − 3)/2 we obtain the support points of the probability
measure µ corresponding to the polar angle θ as

θ1 = arccos

√
3

5
; θ2 = arccos 0 =

π

2
; θ3 = arccos(−

√
3

5
)(4.1)

and the corresponding weights are given by

w2 =
1

2

∫ 1

−1

x2 − 3/5

(−3/5)
dx =

4

9
, w1 = w3 = (1 − w2)/2 =

5

18
.(4.2)

Similary, if the polynomial (x2 − 1)P
(1,1)
2 (x) = 3

4
(x2 − 1)(5x2 − 1) is used for the construction of a

quadrature formula, we obtain

θ1 = arccos 1 = 0 ; θ2 = arccos

√
1

5
; θ3 = arccos(−

√
1

5
) ; θ3 = arccos(−1) = π;(4.3)

and the weights are obtained from the representation (3.4) and given by

w1 = w4 =
1

12
, w2 = w3 =

5

12
.(4.4)

The measure ν corresponding to the azimuthal angle φ is given by (3.8), where t ≥ 5. The
projections of the support points of the two measures onto the unit sphere are depicted on the left
and right panel of Figure 3, where for the second component a design with t = 5 support points
and α = −π is used. It should be noted that it follows from Remark 3.3 that the design µ ⊗ ν
obtained from (4.3) and (4.4) for the factor µ and ν = ν(α, 5) corresponds to uniform design on
the sphere with 12 support points. A general construction of uniform designs will be discussed in
the following paragraph. We finally illustrate the two other non-symmetric cases in (3.17). For
the supporting polynomial we obtain

(1 − x)P
(1,0)
2 (x) =

1 − x

2
(5x2 + 2x− 1),

which gives for the support points of the factor µ of the product design µ⊗ ν(α, t)

θ1 = arccos 1 = 0; θ2 = arccos
(−1 +

√
6

5

)
; θ2 = arccos

(−1 −√
6

5

)
(4.5)
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Figure 3: Projections of the suppport points of the optimal design in the second order spherical
harmonic regression model (2.6). The left panel correspond to the optimal design defined by (4.1),
while the right panel represents the design (4.3).

with corresponding weights

w1 =
1

9
; w2 =

1

36
(16 +

√
6); w3 =

1

36
(16 −

√
6).

The fourth case of a factor µ of a design µ⊗ν(α, t) yielding I9 as information matrix in the second
order spherical harmonic model (2.6) is obtained by symmetry, that is

θ1 = arccos
(1 +

√
6

5

)
; θ2 = arccos

(1 −√
6

5

)
; θ3 = arccos(1) = π;(4.6)

w1 =
1

36
(16 −

√
6); w2 =

1

36
(16 +

√
6); w3 =

1

9
.

The projections of the support points onto the unit sphere of the corresponding product designs
µ× ν(α, t) with α = −π and t = 5 are depicted in the left and right panel of Figure 4. Note that
the two cases are related by a reflection of the support points at the equator.

4.2 Optimal designs with equal weights

Note that the designs provided by Theorem 3.2 are in general not uniform designs, which would
have equal weights at their support points. Because designs with this structure are particulary
attractive from a practical point of view we will briefly discuss the possibility of their construction
in this section. Note that for the determination of an optimal design in the spherical harmonic
regression model (2.6) with equal weights at its supports by the procedure introduced in Section
3 it is necessary to find a quadrature formula, which has equal weights at its support points and
integrates polynomials of degree 2d exactly. This problem has a long history in mathematics [see
Engels (1980)].
It follows from Lemma 3.1 that such a formula must have at least d+1 nodes. Moreover, quadrature
formulas with the minimal number of n nodes and equal weights, which integrate polynomials of
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Figure 4: Projections of the suppport points of the optimal design in the second order spherical
harmonic regression model (2.6). The left panel correspond to the optimal design defined by (4.5),
while the right panel represents the design (4.6).

degree n exactly only exist in the cases n = 0, 1, . . . , 7, 9 [see Engels (1980), p. 58]. In the
present context these formulas correspond to uniform designs for the polar angle θ in the case
d = 1, 2, 3, 4 which give in combination with a design of the form (3.8) a Φp- or Ψp,r-optimal
design in the spherical harmonic regression model (2.6) with equal weights at its support points.
The corresponding nodes of the quadrature formula required for the factor µ are depicted in
the first four rows of Table 4.1. If d ≥ 5 quadrature formulas with equal weights on 2d points
integrating polynomials of degree 2d exactly do not exist and more nodes are required for the
construction of such formulas. We determined formulas of this type numerically for d = 5, 6, 7 and
depicted them in the second part of Table 4.1. Note that these formulas use the origin and that
the number of nodes increases rapidly. For example, if d = 7, we only found a quadrature formula
with 23 support points and equal weights, which integrates polynomials of degree 14 exactly.

d x0 ±x1 ±x2 ±x3 ±x4 ±x5 ±x6 ±x7 ±x8 ±x9 ±x10 ±x11

1 - .577 - - - - - - - - - -
2 - .188 .795 - - - - - - - - -
3 - .267 .423 .866 - - - - - - - -
4 0 .168 .529 .601 .912 - - - - - - -
5 0 .223 .247 .443 .671 .724 .939 - - - - -
6 0 .008 .282 .358 .458 .566 .760 .778 .954 - - -
7 0 .174 .177 .186 .328 .502 .533 .542 .712 .797 .852 .965

Table 4.1. Quadrature formulas with equal weights at their nodes. These formulas correspond to
a uniform design µu of the form (3.7) for the polar angle θ. The resulting design µu ⊗ ν(α, t) with
ν(α, t) defined by (3.8) and t ≥ 2d+ 1 is a Φp- or Ψp,r-optimal design in the spherical harmonic
regression model (2.6) of degree d with equal weights at its support points.
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4.3 Some efficiency considerations

It might be of interest to compare some of the commonly used designs from the literature on
the analysis of 3D shapes with the Ψp,r- and Φp-optimal designs obtained in the present paper.
Examplarily, we consider two uniform designs of the form µ⊗ ν, where the components are given
by

µ =

(
i

n1+1
1
n1

)
i=1,...,n1

, ν =

(
2iπ
n2

− π
1
n2

)
i=1,...,n2

(4.7)

and the design

µ =

(
arccos(1 − 2i

n1+1
)

1
n1

)
i=1,...,n1

, ν =

(
2iπ
n2

− π
1
n2

)
i=1,...,n2

(4.8)

respectively. Note that the design µ ⊗ ν defined by (4.7) corresponds to a uniform distribution
on the grid in the rectangle [0, π] × [−π, π], while a design µ⊗ ν of the form (4.8) yields a design
on the sphere which takes observations on several circles with equal distance on the z-axis. This
design was used by Ding et al. (2000) for a principal component analysis of the variance-covariance
matrix of the least squares estimator (1.3) in the spherical harmonic regression model of degree
7. In Table 4.2 and 4.3 we consider the problem of designing an experiment for the estimation
of the full parameter vector c or for the principal component analysis in the spherical harmonic
regression model (2.6). We show the D-, E- and A- efficiencies of these designs for various values
of n1 and n2 in the spherical harmonic models of degree 1, 2, 3, 4. The tables also contain the
Ψ−1,r-efficiencies, which are defined by

effΨ,p,r(ξ) =
Ψp,r(ξ)

sup
η

Ψp,r(η)
.(4.9)

For the sake of brevity we choose the design for the azimuthal angle φ as the design defined by
(3.8) - other uniform designs for this component will yield substantially lower efficiencies and are
therefore not depicted. As a consequence the efficiencies of the design µ⊗ ν do not depend on n2

(provided that n2 ≥ 2d+ 1, which will be assumed throughout this section).
For the first order spherical harmonic regression model we observe very goodD- and A- efficiencies
of the designs (4.7) and (4.8). However, the E-efficiencies and the Ψp,r-efficiencies of these designs
are substantially smaller, in particular those efficiencies obtained for the design (4.8) with moderate
values of n1. For spherical harmonic models of larger degree both designs will still yield high
D-efficiencies, the designs defined by (4.7) yield reasonable A-efficiencies, but its E- and Ψ−1,r-
efficiencies are substantially smaller. Moreover, the A- and E- efficiencies of the design (4.8) are
very low. The Ψ−1,r-efficiencies of this design are slightly larger but still not satisfactory. It is
also interesting to note that the efficiencies of the design (4.7) are decreasing with the number n1

while they are increasing for the design (4.8).
From these calculations and additional results, which are not depicted for the sake of brevity, we
observe that designs with a uniform distribution on a grid in the rectangle [0, π]× (−π, π] should
only be used if the maximization of the D-criterion is the preliminary goal of the design of the
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experiment. Whenever prinicpal component analysis is the main goal of the experiment or the
precise estimates of the parameters itself are required some more care is necessary in the design of
experiment for analysing 3D-shapes. In this case the loss of efficiency when using uniform designs
on a grid in the rectangle [0, π]× [−π, π] or a uniform design taking observations on several circles
with equal distance on the z-axis can be substantial. In most cases there exist substantially more
efficent designs for the analysis in a spherical harmonic regression model. The advantages of the
optimal designs derived in the present paper will also be illustrated in the following example.

design (4.7) design (4.8)
d n1 effD effE effA effΨ−1,2 effΨ−1,3 effD effE effA effΨ−1,2 effΨ−1,3

3 1.000 1.000 1.000 1.000 1.000 0.940 0.500 0.870 0.667 0.789
4 0.997 0.938 0.994 0.938 0.957 0.964 0.600 0.923 0.750 0.857

1 5 0.993 0.900 0.986 0.900 0.931 0.976 0.667 0.949 0.800 0.894
6 0.989 0.875 0.979 0.875 0.913 0.983 0.714 0.964 0.833 0.916
7 0.986 0.857 0.973 0.857 0.900 0.987 0.750 0.973 0.857 0.931
4 0.991 0.801 0.982 0.838 0.851 0.902 0.229 0.745 0.331 0.427
5 0.987 0.805 0.974 0.824 0.831 0.935 0.323 0.838 0.435 0.539

2 6 0.981 0.794 0.964 0.807 0.811 0.954 0.399 0.888 0.512 0.617
7 0.976 0.782 0.955 0.793 0.796 0.965 0.461 0.918 0.571 0.674
8 0.972 0.772 0.947 0.782 0.785 0.973 0.511 0.937 0.617 0.716

Table 4.2. D-, E- and A- and Ψ−1,r-efficiencies (r = 2, 3) of the uniform designs (4.7) and (4.8)
in a first and second order spherical harmonic model.

design (4.7) design (4.8)
d n1 effD effE effA effΨ−1,2 effΨ−1,3 effD effE effA effΨ−1,2 effΨ−1,3

5 0.980 0.799 0.961 0.802 0.803 0.874 0.094 0.600 0.146 0.199
6 0.975 0.784 0.953 0.784 0.787 0.911 0.155 0.733 0.223 0.296

3 7 0.970 0.768 0.944 0.768 0.772 0.934 0.214 0.811 0.292 0.377
8 0.965 0.756 0.936 0.756 0.760 0.948 0.269 0.859 0.352 0.444
9 0.961 0.747 0.929 0.747 0.751 0.959 0.318 0.891 0.404 0.500
6 0.969 0.739 0.942 0.755 0.761 0.851 0.035 0.434 0.057 0.081
7 0.965 0.747 0.936 0.751 0.753 0.890 0.067 0.600 0.102 0.142

4 8 0.961 0.739 0.929 0.742 0.743 0.916 0.103 0.709 0.149 0.203
9 0.956 0.731 0.922 0.733 0.734 0.933 0.142 0.781 0.196 0.261
10 0.952 0.724 0.915 0.726 0.727 0.945 0.180 0.830 0.240 0.314

Table 4.3. D-, E- and A- and Ψ−1,r-efficiencies (r = 2, 3) of the designs (4.7) and (4.8) in the
spherical harmonic model of degree 3 and 4.
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4.4 A concluding example

In order to demonstrate the benefits of our designs we finally reanalyze the design used by Ding
et al. (2000) for shape analysis of Citrus species. These authors used observations at 360 points
measured in 10 circles using the equal height sampling method for the z-axis. By chosing d = 7 the
data for the surface shape were expanded into the first 64-terms of spherical harmonic functions.
The information contained in the spherical harmonic coefficients was summarized by a principal
component analysis using the first seven principal components. Note that the design of Ding et
al. (2000) corresponds to a design of the form (4.8) with n1 = 10 and n2 = 36. In the first row of
Table 4.4 we show the efficiencies of this design with respect to the optimal designs obtained in
this paper. The first factor of an optimal (uniform) design can be obtained from the quadrature
formula corresponding to the spherical harmonic regression model of degree 7 in Table 4.1. We
observe only for the D-criterion a reasonable efficiency. For all other criteria the design used by
Ding et al. (2000) is very inefficient. The optimal designs proposed in this paper (or appropriate
approximations) will yield substantial smaller variances of the least squares estimates for linear
combinations of the parameters.
We finally note that the optimal designs obtained in this paper are approximate and do not have
masses, which are multiples of 1/360. However, a very efficient design for the inference in the
spherical harmonic regression model of degree 7 using 360 different points can easily be obtained
as follows. The quadrature formula obtained from Table 4.1 has equal masses as 23 nodes and
yields a design of the form (3.7), say {θi, 1/23}23

i=1, where θi = arccosxi and x1, . . . , x23 are the
points listed in Table 4.1 for the case d = 7. We propose to combine this design with two designs
of the form (3.8) to obtain an efficient exact design. More precisely we propose to use the uniform
distribution ξ∗U at the points

U =
{

(θi,
π(2j − 15)

15
)
∣∣∣ i = 1, . . . , 8; j = 1, . . . , 15

}
(4.10)

∪
{

(θi,
π(2j − 16)

16
)
∣∣∣ i = 9, . . . , 23; j = 1, . . . , 16

}
as design for the spherical harmonic regression model of degree 7. The efficiencies of the exact
design ξ∗U are depicted in the second row of Table 4.4 and we observe that this design, which advises
the experimenter to take one observation at each point of U , is highly efficient with respect to all
optimality criteria under consideration.

effΨ,−1,r

1 2 3 4 5 6 7 8 9 10 effA effD

0.003 0.006 0.008 0.011 0.013 0.016 0.019 0.021 0.024 0.026 0.149 0.840
0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.987 0.992

Table 4.4. D-, A-, E- and efficiencies effΨ,−1,r (r = 2, . . . , 10) in the spherical harmonic re-
gression model of degree 7 of the design used by Ding et al. (2000) which is given by (4.8) with
n1 = 10 and n2 = 36 (first row). The second row gives the efficiencies of the design defined by
(4.10), which takes one observation at each point of the set U .
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5 Appendix: technical details

5.1 Proof of Lemma 3.1.

Assume that condition (A) and (B) of Lemma 3.1 are satisfied and let Q(x) denote an arbitrary
polynomial of degree p. By Bezout’s theorem the polynomial Q can be represented in the form

Q(x) = P (x)Vr(x) +R(x),(5.1)

where Vr(x) =
∏r

j=1(x−xj), the polynomial P (x) is of degree p− r and the degree of R(x) is less
than r. Because the degree of R is at most r − 1 it can be represented as

R(x) =
r∑

j=1

�j(x)R(xj),(5.2)

and we obtain from the conditions (A) and (B) of the Lemma

1

2

∫ 1

−1

Q(x)dx =
1

2

∫ 1

−1

R(x)dx =
1

2

r∑
j=1

R(xj)

∫ 1

−1

�j(x)dx

=

r∑
j=1

R(xj)wj =

r∑
j=1

Q(xj)wj.

Using the functions Q(x) = x� (� = 0, . . . , p− r) yields the identities in (3.2).
For a proof of the converse we assume that (3.2) is valid and obtain for � = 0, . . . , p− r

∫ 1

−1

Vr(x)x
�dx =

r∑
j=1

Vr(xj)x
�
jwj = 0,

which gives condition (A). On the other hand condition (B) follows from the identity

1

2

∫ 1

−1

�j(x)dx =
r∑

i=1

wj�j(xi) = wj

observing the property �j(xi) = δij for the Lagrange interpolation polynomials.
�

5.2 Proof of Theorem 3.6.

Let ξ denote an arbitrary discrete design on the rectangle [0, π]× (−π, π] and denote by θ1, . . . , θN

the distinct first coordinates of the corresponding support points of ξ. Obviously ξ can be repre-
sented as

ξ =

N∑
i=1

ξi,(5.3)
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where the designs ξi are defined by

ξi =

(
(θi, φi1) . . . (θi, φiNi

)

wi1 . . . wiNi

)

(with Ni ∈ N) and represent the part of ξ corresponding to the support points with first coordinate
equal to θi (i = 1, . . . , N). Define xi = cosφi, wi =

∑Ni

j=1wij (i = 1, . . . , N) and consider the design

η = ηξ =

(
x1 . . . xN

w1 . . . wN

)
.(5.4)

If the design ξ satisfies the condition M(ξ) = I(d+1)2 it follows for the submatrix corresponding to

the (d+ 1) regression functions Y 0
� (θ, φ) =

√
2�+ 1P 0

� (cos θ) (� = 0, . . . , d)

Id+1 =

(∫ π

0

∫ π

−π

Y 0
� (θ, φ)Y 0

k (θ, φ)dξ(θ, φ)

)d

�,k=0

(5.5)

=

(
N∑

i=1

Ni∑
j=1

wij

√
2�+ 1

√
2k + 1P 0

� (xi)P
0
k (xi)

)d

�,k=0

=

(√
2�+ 1

√
2k + 1

N∑
i=1

wiP�(xi)Pk(xi)

)d

�,k=0

(note that P 0
� (x) = P�(x) is the �th Legendre polynomial). On the other hand the orthogonality

relation for the Legendre polynomials [see Szegö (1975)] yields

1

2

∫ 1

−1

P�(x)Pk(x)dx =
δ�k

2�+ 1
; �, k = 0, . . . , d;(5.6)

and it follows from (5.5) that the quadrature formula defined by the design η in (5.4) integrates
polynomials of degree 2d exactly. The assertion of Theorem 3.6 now follows from the following
auxiliary lemma.

�

Lemma 5.1. For any n ∈ N let Ξ denote the set of all probability measures on the interval [−1, 1]
of the form (5.4), which integrate polynomials of degree n exactly, i.e.

1

2

∫ 1

−1

x�dx =

n∑
j=1

wjx
�
j ; � = 0, . . . , n,(5.7)

then

min
η∈Ξ

min
{
v ∈ R

+ | supp η ⊂ [−v, v]
}

= |x∗1|
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where x∗1 is the smallest root of the rth Legendre polynomial Pr(x) and r = �n/2� + 1. Moreover,
the minimum is attained by the measure

η∗ =

(
x∗1 . . . x∗r
w∗

1 . . . w∗
r

)
,(5.8)

where the points x∗1, . . . , x
∗
r are the roots of the Legendre polynomial Pr(x), wi = 1

2

∫ 1

−1
�i(x)dx

(i = 1, . . . , r) and �i(x) is the Lagrange interpolation polynomial with nodes x∗1, . . . , x
∗
r .

Proof of Lemma 5.1. For a design η on the interval [−1, 1] let

u(η) := min{v ∈ R
+ | supp η ⊂ [−v, v]}(5.9)

denote the half of the minimal length of intervals which contain the support of η and define for
each N ∈ N the set ΞN ⊂ Ξ as the set of all probability measures with N support points satisfying
(5.7) (note that Ξ = ∪N∈NΞN). Because for a design η of the form (5.4) the equations in (5.7) can
be written as

1

2

∫ 1

−1




1
...

xn


 dx =

N∑
j=1

wj




1
...

xn
j


 ,(5.10)

it follows from Caratheodory’s theorem [see Silvey (1980)] that there exists a measure, say η̃, with
at most n + 1 support points xj1 , . . . , xjn+1 (1 ≤ j1 < j2 < . . . < jn+1 ≤ N) such that (5.7) is
satisfied. Consequently, we obtain

inf
η∈Ξ

u(η) = inf
η∈Ξn+1

u(η).(5.11)

If

η =

(
x1 . . . xn+1

w1 . . . wn+1

)
∈ Ξn+1

with −1 ≤ x1 < . . . < xn+1 ≤ 1 is any probability measure on the interval [−1, 1], which satisfies
(5.7), then by Lemma 3.1 the weights can be represented as

wi =
1

2

∫ 1

−1

�i(x)dx,

where �i(x) is the ith Lagrange interpolation polynomial with nodes x1, . . . , xn+1. Assume that
|x1| = u(η) and define for ε > 0 η̃ as the measure with weights

w̃i =
1

2

∫ 1

−1

n+1∏
j=1
j �=i

x− x̃j

x̃i − x̃j

dx i = 1, . . . , n+ 1(5.12)

at the points x̃1 = x1 + ε, x̃2 = x2, . . . , x̃n+1 = xn+1. If ε is sufficiently small it follows that all
weights w̃j are positive which implies η̃ ∈ Ξn+1 and x̃1 > x1. In the case |xn+1| = u(η) we
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apply exactly the same argument to the point xn+1 and obtain a measure η̃ with u(η̃) < u(η).
Consequently, the infimum in (5.11) cannot be attained in Ξn+1, i.e.

inf
η∈Ξ

u(η) = inf
η∈Ξn

u(η).(5.13)

We now prove that the infimum on the right hand side cannot be attained in Ξt, whenever
t > �n/2� + 1 = r. For this consider a mesure

η =

(
x1 . . . xt

w1 . . . wt

)
∈ Ξt.

Recall from Lemma 3.1 that the weights have to satisfy (3.4) (with t = r) and that by (3.3) the
support points satisfy ∫ 1

−1

t∏
j=1

(x− xj)x
�dx = 0; � = 0, . . . , n− t.(5.14)

Without loss of generality we assume that |x1| = u(η) and we will again construct a design with
a smaller value of u(η) . For this we define x̃1 = x1 + ε, x̃j = xj ; j = 3 + n− t, . . . , t;

ψ(x) = (x− x̃1)

t∏
j=3+n−t

(x− x̃j)(5.15)

and construct the remaining points, say x̃2, . . . , x̃n−t+2, such that the resulting measure with
weights of the form (3.4) at the points x̃1, . . . , x̃t defines a quadrature formula of degree n. A
necessary condition for this property is given by∫ 1

−1

ψ(x)
n−t+2∏

j=2

(x− x̃j)x
�dx = 0; � = 0, . . . , n− t(5.16)

and a straightforward calculation shows that these equations are equivalent to the system

∂

∂x̃i

∫ 1

−1

ψ(x)
n−t+2∏

j=2

(x− x̃j)
2dx = 0; i = 2, . . . , n− t+ 2,(5.17)

which determines the points x̃j = x̃j(ε) (j = 2, . . . , n − t + 2) implicitly as a function of the
parameter ε, where x̃j(0) = xj (j = 2, . . . , n − t+ 2). We now consider the Jacobi matrix of the
system (5.17)

J(x̃, ε) =
( ∂2

∂x̃j∂x̃j

∫ 1

−1

ψ(x)

n−t+2∏
k=2

(x− x̃k)
2dx
)n−t+2

i,j=2
,(5.18)

where we use the notation x̃ = (x̃2, . . . , x̃n−t+2). This matrix can be calculated using the quadra-
ture formula corresponding to the measure η. For this note that x̃(0) = (x2, . . . , xn−t+2) and define
the polynomial

gi(x) = 2ψ(x)
n−t+2∏
j=2,j �=i

(x− xj)
2dx .(5.19)
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Note that the degree of gi is less or equal than n. If ei ∈ R
i denotes the ith unit vector we obtain

eT
i J(x̃(0), 0)ei =

∫ 1

−1

gi(x)dx =
t∑

j=1

gi(xj)wj

= gi(xi)wi = 2wi(xi − x1)

t∏
j=n−t+3

(xi − xj)

n−t+2∏
j=2,j �=i

(xj − xi)
2 �= 0;

and by a similar calculation eT
i J(x̃(0), 0)ej = 0 whenever i �= j (i, j = 2, . . . , n − t + 2). Conse-

quently J(x̃(0), 0) is diagonal with det J(x̃(0), 0) �= 0. It now follows from the implicit function
theorem [see Gunning and Rossi (1965)] that for sufficiently small ε there exist analytic functions
x̃2(ε), . . . , x̃n−t+2(ε) such that (5.16) is satsified for the points x̃1, . . . , x̃t. This implies that for
sufficiently small ε the weights defined by (5.12) are positive and the design

η̃ =

(
x̃1 . . . x̃t

w̃1 . . . w̃t

)
(5.20)

defines a quadrature formula of degree n with positive weights, i.e. η̃ ∈ Ξt. If necessary (in
the case |xt| = u(η)) we use a similar argument for the largest support point of the probability
measure η and obtain finally a probability measure η̃ ∈ Ξt such that u(η̃) < u(η). In other words:
the infimum on the right hand side of (5.13) cannot be obtained in Ξt, if t > �n/2� + 1. From
(5.15) it is easy to see that this construction is not possible if t < r = �n/2� + 1. Moreover, it
is well known [see for example Ghizzetti and Ossicini (1970)] that a quadrature formula, which
integrates polynomials of degree n exactly must have at least r support points. Moreover, if it
has r support points it is uniquely determined and given by the probability measure η∗ defined in
(5.8), which completes the proof of Lemma 5.1.

�
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et sur une extension de cette méthode. C.R. Acad. Sc. Paris 229, 1201 - 1203.
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