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Abstract

We consider a class of optimality criteria and show that each crite-
rion has its unique and equivalent dual within the class. This property
can be used to find a variety of optimal designs, including a class of
compound optimal designs and their relationships. As an example, we
show that one type of D-optimal design provides analytical formula
for a class of compound optimal designs, while its dual, the more
traditional criterion, cannot.
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1 The Placebo-treatment Comparison Prob-

lem

Many experiments involve comparison of several groups receiving different

treatments or groups subject to different conditions. Such problems are dis-

cussed extensively in the literature; see Fleiss (1986) and, Zhu and Wong

(2000), for example. A common example is in a clinical trial, where patients

are grouped to receive a different treatment for each group. Sometimes, the

comparisons among these groups may be of unequal interest to the researcher.

For example, there is a placebo group and there are two other groups, one

receiving aggressive treatments and another receiving less aggressive treat-

ments. The primary objective is to compare the performance of the group

receiving aggressive treatments relative to the placebo group, and the sec-

ondary objective is to compare the performance of the group receiving the

less aggressive treatment relative to the placebo group. The design of the

study should therefore provide higher precision for the primary comparison

than for the secondary comparison.

More generally, consider the situation where there are several objectives

in a clinical trial and we need a design that is deemed adequate for all the I

objectives, (I > 2). Suppose further that the ith objective can be represented

by a functional,Φi, i = 1, ···, I, and this function is convex over the space of all

designs in the design space. The optimal design for the each of the objectives

is the one that minimizes the criterion over all other designs. Designs that

minimize a function of several design criteria are called compound optimal

designs.

In this paper, designs are treated as continuous designs in the sense of

Kiefer’s (1985). The use of continuous designs simplifies the technical prob-

lem and has the advantage that solutions to the problem provide useful guides

to design the study more efficiently. We denote an arbitrary design by ξ and

denote the proportion of patients assigned to the ith group by pi, with the

first group always designated as the placebo group. For the design problems

at hand, we only need to determine the optimal proportion pi of patients to

be assigned to each of the treatment arms.
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The compound optimal design is a compromise design that balances the

various competitive objectives in the trial. When the different levels of inter-

est in each of the objectives are specified by the researcher through the values

of the weights λ’s, the compound optimal deisgn is found by minimizing the

functional

Φ (ξ | λ) =
I∑

i=1

λiΦi (ξ) ,

where 0 ≤ λi ≤ 1 and
∑I

i=1 λi = 1. Here, each of the weights λi is user-

selected, with more important objectives being given a larger value for the

weight. The above functional is a convex combination of convex functions

and so it is also convex. Consequently, the optimal design can be found using

technqiues similar to finding an optimal design under a single objective.

To fix ideas, consider the treatment-placebo comparison problem in a

clinical trial with one placebo and several treatments. The model is

yij = βi + εij,

where βi represents the effect of treatment i, i = 1, · · ·, K, and j is the

patient indicator, j = 1, · · ·, N . We assume that εij represents the normally

distributed error term with mean zero and constant variance, and the error

terms are independently distributed of one another. Our objective i is to

estimate (βi+1 − β1) as precisely as possible, i = 1, · · ·, K − 1, assuming

treatment 1 denotes the placebo group.

Following convention, we measure the worth of a design ξ by its expected

Fisher information matrix, M(ξ) (Atkinson and Donev, 1992, p.95). Under

our setup, it is straightforward to verify that such matrices are always di-

agonal. If we let AT
i =

(
1 0 · · · −1 0 · · · 0

)
, where (−1) is in the

(i + 1) th position, a direct calculation shows

Φi (ξ) = ln
∣∣∣AT

i M−1 (ξ)Ai

∣∣∣ = ln

(
N

n1

+
N

ni+1

)
= ln

(
1

p1

+
1

pi+1

)
.

Here N is the total sample size, ni is the sample size in the ith group and

ni/N = pi is the proportion of patients assigned to the ith group, i = 1, · ·
·, K. In practice, N is pre-determined ; for example, in clinical trials, the
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researcher should have prior information on the number of patients he or she

can realistically recruit into the trial during the given time frame.

When there are different interests in each of the comparisons, we may use

different weights for these objectives. For given values of the weights, λ’s, let

Φ (ξ | λ) =
∑K−1

i=1 λiΦi (ξ), where 0 < λi < 1, ∀i, and

Υ
(
p, ρ

)
= Φ (ξ | λ) + ρ

(
K∑

i=1

pi − 1

)
.

The optimal design (i.e. the optimal values of p∗i ) can be found by solving

the following set of equations:

∂Υ

∂p1
=

1

p1
·

K−1∑
i=1

λi · pi+1

p1 + pi+1
+ ρ = 0;

∂Υ

∂pi+1
=

1

pi+1
· λi · p1

p1 + pi+1
+ ρ = 0, i = 1, · · ·, K − 1;

and
∂Υ

∂ρ
=

K∑
i=1

pi − 1 = 0.

Further algebra shows ρ = −1 and the above system of equations reduces to

K−1∑
i=1

√
p2

1 + 4λip1 = 2 + (K − 3) p1(1)

and

pi+1 =
−p1 +

√
p2

1 + 4λip1

2
, i = 1, · · ·, K − 1.(2)

The general analytic solution is not available, but it is interesting to note

that when all comparisons are of equal importance, i.e. λi = 1/ (K − 1),

i = 1, · · ·, K − 1, we have

p∗1 =
1

1 +
√

K − 1
(3)

and

p∗i =
1

K − 1 +
√

K − 1
=

1√
K − 1

p∗1, i = 2, · · ·, K.(4)

This means that when we are equally interested in comparing all (K − 1)

pairs of placebo and treatment, we should allocate equal number of patients
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to each of the (K − 1) treatments and
√

K − 1 times this number of patients

to the placebo. The above result is thus a generalization of the well known

result given in Fleiss (1986, page 96) for comparing several treatments versus

a placebo and there is equal interest in all the comparisons.

2 Another D-optimality Type Criterion

It is instructive to consider an alternative D-optimality criterion given by

Φ̃ (ξ) =
∣∣∣AT M−1 (ξ)A

∣∣∣ ,
where A is a user-selected semi-positive matrix. The choice for the matrix A

depends on the objective of the study. As in D-optimality, we seek a design

to minimize this criterion over all designs. Let Ai be as before, and note that

we now have

Φ̃i (ξ) =
∣∣∣AT

i M−1 (ξ)Ai

∣∣∣ = N

n1
+

N

ni+1
=

1

p1
+

1

pi+1
,

where ni/N = pi, i = 1, · · ·, K. Let Φ̃ (ξ | λ) =
∑K−1

i=1 λiΦ̃i (ξ), where 0 <

λi < 1, ∀i, and we have

Υ
(
p, ρ

)
= Φ̃ (ξ | λ) + ρ

(
K∑

i=1

pi − 1

)

=
K−1∑
i=1

λi

(
1

p1

+
1

pi+1

)
+ ρ

(
K∑

i=1

pi − 1

)

=
1

p1
+

K−1∑
i=1

λi
1

pi+1
+ ρ

(
K∑

i=1

pi − 1

)
.

The compound optimal design can be found by solving the following set of

equations:

∂Υ

∂p1
= − 1

p2
1

+ ρ = 0;

∂Υ

∂pi+1
= − λi

p2
i+1

+ ρ = 0, i = 1, · · ·, K − 1;

and
∂Υ

∂ρ
=

K∑
i=1

pi − 1 = 0.
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Further algebra shows that the above system of equations reduces to

pi+1 =
√

λip1, i = 1, · · ·, K − 1

and
K∑

i=1

pi − 1 = 0.

The general analytic solution is readily obtained as

p1 =
1

1 +
∑K−1

i=1

√
λi

;

pi+1 =

√
λi

1 +
∑K−1

i=1

√
λi

, i = 1, · · ·, K − 1.

It is interesting to note that when we are equally interested in all the

pairwise comparisons, we set λi = 1/ (K − 1), i = 1, · · ·, K − 1, and obtain

the same design as before ,i.e.

p∗1 =
1

1 +
√

K − 1
(5)

and

p∗i =
1√

K − 1
p∗1, i = 2, · · ·, K.

An explanation of this property from a theoretical point of view is given in

Corollary 3 of Section 5.

Table 1 shows the two types of D-optimal designs when there are K = 4

comparison groups for selected choice of weights. When there is unequal

interest in each of the comparisons, the two types of D-optimal designs are

different; otherwise, they coincide as the theory just showed. Under both

criteria, the D-optimal design assigns more patients to the group deemed

more important than the other groups. For instance, the first row of Table

1 shows the comparison between the fourth group and the placebo group is

deemed the most important with a weight of 0.7. The proportion of patients

assigned to group 4 is 36.7%, which is the highest among the groups 2, 3

and 4. We also note that in all cases, the placebo group receives the most

patients. This makes sense because this is the group most involved in all the

comparisons.

6



Table 1: Two types of D-optimal designs for 3 treatment groups and different
weights are used to compare their effects relative to the placebo group (group
1). The proportions in parentheses are those obtained using the criterion
without the log.

λ1 λ2 λ3 p1 p2 p3 p4

0.1 0.2 0.7 0.404 (0.385) 0.083 (0.122) 0.147 (0.172) 0.367 (0.322)
1/3 1/3 1/3 0.366 (0.366) 0.211 (0.211) 0.211 (0.211) 0.211 (0.211)
0.1 0.5 0.4 0.386 (0.377) 0.082 (0.119) 0.287 (0.266) 0.245 (0.238)

3 Convexity of the Two D-optimality Crite-

ria

Atkinson and Donev (1992, pg. 96) pointed out that the reason for adopting

the D-optimality criterion Φ (ξ) = ln
∣∣∣AT M−1 (ξ)A

∣∣∣ over the criterion Φ (ξ) =∣∣∣AT M−1 (ξ)A
∣∣∣ is that “taking the logarithm of the determinant leads to

minimization of a convex function, so that any minimum found will certainly

be global rather than local.” The convexity referred to here is the criterion

function as a function of the information matrix M (ξ). From Atkinson and

Donev (1992) it follows easily that the criterion Φ (ξ) = ln
∣∣∣AT M−1 (ξ)A

∣∣∣ is

strictly convex in p.

We claim that for the above placebo-treatment comparison problem the

property of strict convexity is also satisfied for the criterion Φ̃ (ξ) =
∣∣∣AT M−1 (ξ)A

∣∣∣,
and therefore, minimizing the function Φ or Φ̃ with respect to p would provide

us with the global minimum in either case.

To verify our claim, we recall that a two times continuously differentiable

function f is strictly convex on Ω if and only if ∇2f (x) is positive definite

for all x ∈ Ω (Hiriart-Urruty and Lemaréchal, 1993). It is easy to see that if

we take f(p1, p2, · · · , pk) =
∑K−1

i=1 λi(1/p1 + 1/pi+1), then

(�f)T =

(
− 1

p2
1

,−λ2

p2
2

, · · · ,−λK−1

p2
K−1

,

)

and

∇2f =




2
p3
1

0 · · · 0

0 λ2

p3
2

· · · 0
...

...
. . . 0

0 0 0 λK−1

p3
K−1




.
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Therefore ∇2f is positive definite for all p. With the convexity issue resolved,

we are now ready to present a general theorem that is useful for understanding

the relationship between the above two classes of compound optimal designs.

4 A Class of Optimality Criteria

Consider optimality criteria of the form

{
K−1∑
i=1

λi|AiM
−1(ξ)Ai|−p

}1/p

= Φp,λ(ξ)

where λ = (λ1, . . . , λk−1) denotes a weight vector and p ∈ [−∞, 1].

The cases p = −1 and p = 0,−∞ are of particular interest because they

give

Φ−1,λ(ξ) = {
K−1∑
i=1

λi|AT
i M−1(ξ)Ai|}−1

Φ0,λ(ξ) =
K−1∏
i=1

|AT
i M−1(ξ)Ai|−λi = lim

p→0
Φp,λ(ξ)

Φ−∞,λ(ξ) =
K−1
min
i=1

(AT
i M−1(ξ)Ai)

−1 = lim
p→−∞Φp,λ(ξ).

Note that the cases p = 0 and p = 1 correspond to the criteria Φ and

Φ̃ discussed in Section 2 and 3. We now provide a result that shows opti-

mal designs constructed under this class of optimality criteria have a dual

relationship. Specifically, every optimal design found with respect to a crite-

rion in this class of optimality criteria is also simultaneously optimal under

another criterion of the class provided the weight vector is properly chosen.

Theorem 1: Assume that p ∈ (−∞, 1].

(1) Let ξ∗ denote a design that maximizes Φp,λ for the weight vector λ =

(λ1, . . . , λK−1). Then for any q ∈ (−∞, 1] the design ξ∗ also maximizes

Φq,µ, where the weight vector µ = (µ1, . . . , µK−1) is given by

µj =
λj(

1
p1

+ 1
pj+1

)q−p

∑K−1
i=1 λi(

1
p1

+ 1
pi+1

)q−p
j = 1, . . . , K − 1
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and pi = ni/N denotes the proportion of total observations allocated by

the design ξ∗ to treatment i(i = 1, . . . , K − 1).

(2) If ξ∗ maximizes Φ−1,λ for the weight vector λ = (λ1, . . . , λK−1) then ξ∗

maximizes Φ0,µ for the weight vector µ = (µ1, . . . , µK−1), where

µj =
λj +

√
λj

1 +
∑K−1

i=1

√
λi

j = 1, . . . , K − 1.

Proof. Part (1) follow immediately from Theorem 2.4 in Dette (1993)

and a straight forward calculation of the information matrix M(ξ∗) [see Zhu

and Wong (2000)]. For part (2) we note that the optimal weights for max-

imizing Φ−1,λ can be obtained directly using Lagrange’s multipliers. The

optimal weights for the placebo group and the treatment groups are respec-

tively given by

p1 =
1

1 +
∑K−1

i=1

√
λi

and

pi+1 =

√
λi

1 +
∑K−1

i=1

√
λi

i = 1, . . . , K − 1.

This implies
1

pi

+
1

pi+1

= (1 +
K−1∑
i=1

√
λi)(1 +

1√
λi

)

and the assertion now follows from part (1) for q = 0 and p = −1.

The next result concerns a maximin type of criterion. Maximin or mini-

max design criteria are popular and have been studied in the literature since

1950 ; some recent work includes Wong (1992) and Dette (1993). This design

criterion is particularly useful if we wish to design a study to minimize the

maximal variance of all the estimated contrasts. This criterion is also used

in situations where it is roughly known in advance that a set of contrasts

may be of interest, but which one of the contrasts will be of ultimate interest

is not known until the study is completed. Clearly, the maximization of this

criterion

Φ−∞(ξ) =
K−1
min
i=1

(AT
i M−1(ξ)Ai)

−1
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is equivalent to minimizing

1/Φ−∞(ξ) =
K−1
max
i=1

(AT
i M−1(ξ)Ai),

i.e. by maximizing Φ−∞, we minimize the worst possible variance.

Theorem 2. Suppose we wish to find a design that maximizes Φ−∞.

The optimal proportion of patients assigned to the placebo group and the

treatment groups are respectively given by

p∗1 =
1

1 +
√

K − 1

p∗i+1 =
1√

K − 1
p∗1 i = 1, . . . , = K − 1.

Proof. The equivalence theorem for the maximin criterion can be derived

as follows. First, define the set

N (ξ∗) = {j ∈ {1, . . . , K − 1} | (AT
j M−1(ξ∗)Aj)

−1 = Φ−∞(ξ∗)}.

Using standard maximin arguments [see Pukelsheim (1993)], it can be shown

that ξ∗ maximizes Φ−∞ if and only if there exists nonnegative weights α1, . . . , αK−1

such that
K−1∑
i=1

αi = 1

αi = 0 if i �∈ N (ξ∗)

and the inequality
K−1∑
�=1

α�
(AT

� M−1(ξ)x)T

AT
� M−1(ξ)A�

≤ 1

holds for all x ∈ {(1, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1)T}.
The assertion now follows by a straightforward calculation using the de-

sign specified in Theorem 2 and the weights αi = 1/(K − 1). We note that

for this particular choice, N (ξ∗) = {1, . . . , K − 1}.

Corollary 3: For any p ∈ [−∞, 1] the design specified by Theorem 2

is Φp,λ∗ optimal, where λ∗ denotes the uniform weight vector, i.e. λ∗ =

{ 1
K−1

, . . . 1
K−1

}.
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Proof. The proof has been established for p = −∞ [Theorem 2] p = 0

and p = −1 [Zhu and Wong (2000)]. The remaining cases follow from the

first part of Theorem 2 [p = 0] for any q ∈ (−∞, 1].

5 Summary

It is generally difficult to construct an optimal design when there are sev-

eral competing objectives in the study. Analytical solution of the optimal

design is hardly available. We show in this paper that a D-optimality type

of criterion always yields closed form formulae for the optimal designs in the

placebo-treatment types of problems. The design criterion can also be use-

fully embedded into a broader class of criteria and dual relationships among

optimal designs are presented. This is especially useful because optimal de-

sign under one criterion can now be directly deduced from optimal design

found under another optimality criterion. In particular, we can easily find

optimal design for a a more complicated criterion using an optimal design

found under a simpler criterion such as when p = 0. We also consider the

special role of the minimax criterion and show that the minimax optimal

designs are also optimal with respect to all criteria in the given class.

The choice of an optimality criterion or a set of criteria to work with is

problem dependent and usually the researcher has a couple of options. For

instance, if interest is centered on estimation, A or D-optimality criteria is

frequently used. In practice, it is advisable that the researcher finds sev-

eral reasonable optimal desgins for his or her problems and compare their

sensitivities to model assumptions and robustness properties under a range

of criteria. Our paper proposes a class of optimal designs for comparing

the placebo group and several treatment groups using a class of optimality

crtieria and show that the optimal design has several desirable properties.

First, the placebo group always has the highest proportion of patients; this

is reasonable because the placebo group is the most used group in the set

of comparisons. Second, the treatment groups that are heavier weighted

require larger sample sizes, and third, the optimal design can be analyti-
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cally described. It should also be noted that because of the first and second

properties, greater precision is ensured for the more important comparisons.
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