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Abstract

The purpose of this paper is to propose a procedure for testing the equality of several
regression curves fi in nonparametric regression models when the noise is inhomogeneous.
This extends work of Dette and Neumeyer (2001) and it is shown that the new test is
asymptotically uniformly more powerful. The presented approach is very natural because
it transfers the maximum likelihood statistic from a heteroscedastic one way ANOVA
to the context of nonparametric regression. The maximum likelihood estimators will be
replaced by kernel estimators of the regression functions fi. It is shown that the asymptotic
distribution of the obtained test statistic is nuisance parameter free. Finally, for practical
purposes a bootstrap variant is suggested. In a simulation study, level and power of this
test will be briefly investigated. In summary, our theoretical findings are supported by
this study.
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1 Introduction

A classical theme of econometric analysis is the comparison of two (or more) groups, which
were measured under different experimental conditions. As an example consider for instance
the comparison of wage functions in different groups defined by gender or location (see Lavergne,
2001, for more examples). In order to simplify notation we will restrict for the moment to the
case of two groups, the extension to three and more groups will be presented later on. In the
context of regression one observes independent real valued data Yij, which follow the model

Yij = fi(tij) + σi(tij)εij , j = 1, . . . , ni (i = 1, 2), (1)

where tij are fixed locations of measurements, fi denotes the unknown regression function,

fi(tij) = E[Yij],

and σ2
i the unknown variance function,

σ2
i (tij) = Var(Yij)

of the i-th group, respectively (i = 1, 2). The errors εij are assumed to be independent identi-
cally distributed random variables with mean 0 and variance 1. Our aim is to test the equality
of the regression functions f1 and f2.
Under a parametric assumption on the error εij and the functions fi and σ2

i this leads to the
Analysis of Covariance (see Scheffé, 1959, or Chow, 1960). Without these assumptions, in
particular when the functional form of fi is not specified, this is denoted as nonparametric
analysis of covariance (Young and Bowman, 1995) and has received much attention during the
last years (see Hall and Hart, 1990; Delgado, 1993; Kulasekera, 1995; Munk and Dette, 1998;
or Yatchew, 1999, among many others). As pointed out by Gørgens (2002) many tests in the
literature for

H0 : f1 = f2 versus H1 : f1 �= f2 (2)

cannot be applied in the general model (1) because often it is assumed that sample sizes
are equal, the regressors follow the same distribution between populations, or that there is a
homoscedastic error, i. e. the variances σ2

i are independent of the regressor t. For the general
setting (1) there are only a very few tests available, see Cabus (1998), Dette and Neumeyer
(2001), Lavergne (2001), Gørgens (2002) and Neumeyer and Dette (2003). Whereas Lavergne
(2001) and Gørgens (2002) consider a stochastic regressor, Cabus (1998) and Neumeyer and
Dette (2003) use test statistics, which are based on the associated marked empirical process.
The presented method is most similar in spirit to Dette and Neumeyer (2001). These authors
compared theoretically as well as in Monte Carlo study their test with various tests from the
literature and came to the conclusion that their test outperforms their competitors in terms
of power. In this paper we present a test, which will be shown to be superior to Dette and
Neumeyer’s (2001) test with respect to power.
More specifically, our test is based on the idea to compare a weighted “least squares” estimator
under the assumption of equal regression curves with an estimator, which is based on non-
parametric estimators f̂i for fi, exactly as in a parametric analysis of covariance. To motivate

2



the procedure assume for the moment the regression functions to be constant fi(t) ≡ µi, the
variance functions to be constant and known σ2

i (t) ≡ σ2
i and the errors εij to be normally

distributed. In other words consider testing the equality of the means H0 : µ1 = µ2 in two
samples

Yij i.i.d. ∼ N(µi, σ
2
i ) , j = 1, . . . , ni (i = 1, 2).

The maximum likelihood method leads to the estimates µ̂i = 1
ni

∑ni

j=1 Yij in the individual
samples (i = 1, 2), respectively, and

µ̂ = aµ̂1 + (1 − a)µ̂2 , where a =
σ−2

1 n1

σ−2
1 n1 + σ−2

2 n2

,

in the pooled sample (under H0). The logarithm of the likelihood ratio has the form

1

N

2∑
i=1

ni∑
j=1

(Yij − µ̂)2σ−2
i − 1

N

2∑
i=1

ni∑
j=1

(Yij − µ̂i)
2σ−2

i , (3)

where N = n1 + n2 denotes the total sample size. Now we transfer this statistic to a non-
parametric set up and consider in the nonparametric regression model (1) the class of pooled
estimators

f̃(x) = a(x)f̂1(x) + (1 − a(x))f̂2(x), (4)

where f̂i denote kernel based estimators of the regression functions fi (i = 1, 2). In this class,
minimization of the asymptotic MSE

AMISE[f̃ ] = a2(x)

∫
K2(u) du

σ2
1(x)

n1hr1(x)
+ (1 − a(x))2

∫
K2(u) du

σ2
2(x)

n2hr2(x)
,

where h denotes a smoothing parameter that fulfils conditions (11) stated in the next section,
and K denotes a kernel function, gives the weight

a(x) =
σ−2

1 (x)n1r1(x)

σ−2
1 (x)n1r1(x) + σ−2

2 (x)n2r2(x)
. (5)

Now we replace σ2
i and ri by appropriate kernel based estimators σ̂2

i , r̂i (i = 1, 2) and denote
by f̂ the resulting pooled estimator f̃ as in (4). As a test statistic for the hypotheses (2) we
consider in analogy of (3),

TN =
1

N

2∑
i=1

ni∑
j=1

(Yij − f̂(tij))
2σ̂−2

i (tij) − 1

N

2∑
i=1

ni∑
j=1

(Yij − f̂i(tij))
2σ̂−2

i (tij). (6)

We will show that under the null hypothesis the standardized test statistic

N
√

h
(
TN − C

Nh

)
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is asymptotically centered normal with a variance, which only depends on the kernel function
K, as well as C does. This might be particularly appealing because, hence, asymptotically the
resulting test does not depend on any nuisance parameter, such as fi, σ2

i or the distribution
of the εij, in contrast to most procedures suggested in the literature (a notable exception is
Gørgens, 2002).
The rest of the paper is organized as follows. In section 2 we present the required theory. The
asymptotic behaviour under fixed and local alternatives is discussed and it is shown that the
test of Dette and Neumeyer (2001) is outperformed in general. Only in special cases asymp-
totically these tests achieve the same power. We show in particular, when the variances are
inhomogeneous, i. e. unequal in both groups, or when they are heteroscedastic, i. e. dependent
of the regressor, the new test gains significantly in power. We mention that from a practical
point of view the case of inhomogeneous variances is very common in applications. For ANOVA
models this is well known as the celebrated Behrens–Fisher problem (see for example Weera-
handi, 1987), in our context of nonparametric analysis of covariance we refer to Gørgens (2002)
for an econometric example. Hence our method may be regarded as an approach, which adapts
automatically to inhomogeneous and heteroscedastic variability.
In section 3 the present setting is extended to random regressors and the k–sample case. In
section 4 a wild bootstrap variant of the test is proposed, and a numerical study illustrates the
performance of our method. Section 5 contains some concluding remarks. Proofs are postponed
to an Appendix in order to keep the paper more readable.

2 Asymptotic Theory

2.1 Notation and Main Results

We start with various technical assumptions required throughout this section. We assume
model (1), where the fixed design points tij can be modelled by a so called design density ri on
[0, 1] such that ∫ tij

0

ri(t)dt =
j

ni

, j = 1, . . . , ni (i = 1, 2), (7)

see Sacks and Ylvisaker (1970). We further assume the densities ri and the variance functions
σ2

i to be bounded away from zero, i. e.

inf
t∈[0,1]

ri(t) > 0 , inf
t∈[0,1]

σ2
i (t) > 0 (i = 1, 2). (8)

The densities, regression and variance functions are assumed to be d–times continuously differ-
entiable, i. e.

ri, fi, σi ∈ Cd(0, 1) (i = 1, 2), (9)

where d ≥ 2. As mentioned in the Introduction our approach is based on kernel estimators
of fi and σ2

i . To this end we require a symmetrical kernel K : IR → IR, which is compactly
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supported and of order d (cf. Gasser, Müller and Mammitzsch, 1985), i. e.

(−1)j

j!

∫
K(u)uj du =


1 : j = 0

0 : 1 ≤ j ≤ d − 1

kd �= 0 : j = d

,

∫
K2(u) du < ∞. (10)

Let h = hN denote a sequence of bandwidths, such that

Nh2d → 0 and Nh2 → ∞ for N → ∞, (11)

where N = n1 + n2 denotes the total sample size. Further we assume that the sample sizes in
each group are of the same order, i. e.

ni

N
= κi + O(

1

N
) (i = 1, 2), (12)

where κi ∈ (0, 1). In the following we require various estimators for ri, fi and σ2
i . In order to

be concise, the theory will be presented for Nadaraya–Watson type estimators. However, we
mention that local polynomial estimators of higher order will work as well, of course, and due
to their better performance at the boundary of the regressor space even better performance
is to be expected (Fan and Gijbels, 1996). However, because the suggested test statistic is
an integrated quantity of these function estimators, the boundary behaviour will be of minor
importance in the present context. In order to estimate the design densities ri we use

r̂i(x) =
1

nih

ni∑
j=1

K
(x − tij

h

)
, (13)

which yields an estimator for fi,

f̂i(x) =
1

nih

ni∑
j=1

K
(x − tij

h

)
Yij

1

r̂i(x)
(i = 1, 2). (14)

For the test statistic TN defined in (6) a pooled estimator of f is required (when f1 = f2 = f),
which is

f̂(x) =

∑2
i=1

∑ni

j=1 K(
x−tij

h
)Yij σ̂−2

i (x)∑2
i=1

∑ni

j=1 K(
x−tij

h
)σ̂−2

i (x)
. (15)

Note that f̂ equals f̃ defined in (4) using the weights (5) with estimators (13) and (14), that is

f̂(x) = â(x)f̂1(x) + (1 − â(x))f̂2(x), where â(x) =
σ̂−2

1 (x)n1r̂1(x)

σ̂−2
1 (x)n1r̂1(x) + σ̂−2

2 (x)n2r̂2(x)
.

To this end the variances σ2
i have to be estimated by a nonparametric estimator, which is

similar in spirit to Ruppert, Wand, Holst and Hössler (1997), Fan and Yao (1998) or Härdle
and Tsybakov (1998). In the present context we define

σ̂2
i (x) =

1

nih

ni∑
j=1

K
(x − tij

h

)
(Yij − f̂i(tij))

2 1

r̂i(x)
(i = 1, 2). (16)
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The following theorem gives the asymptotic distribution of the test statistic TN .

Theorem 2.1 Assume model (1), where the εij are i.i.d. centered random variables with vari-
ance Var(εij) = 1 and E[ε4

ij ] < ∞. Then under the assumptions (7)–(12) and H0 : f1 = f2 = f ,
for TN defined in (6) it holds that

N
√

h
(
TN − C

Nh

) D
−−−−−→
N → ∞

N (0, τ 2) ,

where N (0, τ 2) denotes a centered normal random variable with variance

τ 2 = 2

∫
(2K − K ∗ K)2(u) du.

The constant C is defined as C = 2K(0) − ∫ K2(u) du.

In order to test the hypotheses stated in (2), one rejects H0 at nominal level α, whenever

N
√

h
(
TN − C

Nh

)
τ

> u1−α (17)

where u1−α = Φ−1(1 − α) denotes the (1 − α)-quantile of the standard normal distribution.
Note, that C and τ are known constants. The consistency of the testing procedure (17) against
any nonparametric alternative follows from the next result.

Theorem 2.2 Assume that f1 �= f2 on a set of positive Lebesgue measure. Under the assump-
tions of Theorem 2.1 we have

√
N (TN − µ)

D
−−−−−→
N → ∞

N (0, γ2) ,

where

µ =

∫
(f1 − f2)

2(x)
κ1r1(x)κ2r2(x)

σ2
2(x)κ1r1(x) + σ2

1(x)κ2r2(x)
dx (18)

and γ2 = 4 µ.

Theorem 2.2 can be utilized in various ways. First a power approximation can be obtained via

PH1

(
N
√

h
(
TN − C

Nh

)
τ

> u1−α

)
= Φ

(
µ
√

N

γ
− τu1−α

γ
√

Nh
− C

γ
√

Nh

)
+ o(1)

= Φ

(
µ

γ

√
N

)
+ o(1). (19)
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We will use this result in the next section in order to compare the presented test with a proce-
dure of Dette and Neumeyer (2001) in terms of power, see Lemma 2.3.

Second a simple 1 − α confidence interval for the discrepancy measure µ between f1 and f2 in
(18) is obtained as (0 < α < 1

2
)

CI1−α =
[
0, TN +

√
TNc +

c2

4
+

c

2

]
(20)

where c = 4u2
1−α

2
/N . To this end observe that µ ≥ 0 always and hence for TN < 0 the inequality

(TN − µ)/
√

µ > 2u1−α
2
/
√

N has no solution. The confidence interval (20) might be of some
practical appeal because it gives more accurate insight in how much the true regression functions
f1, f2 deviate from equality in terms of the discrepancy measure µ. In contrast, a simple decision
based on (17) leaves the experimenter in the difficult situation whether rejection of H0 is based
on a significantly relevant difference between f1 and f2, or in the case of acceptance, whether
there is really evidence in favour of f1 = f2 or just a lack of power, e. g. due to too small sample
sizes. For a careful discussion of these issues cf. Munk and Dette (1998). Similarly, Theorem
2.2 allows testing precise L2-neighbourhoods

H∆0 : µ > ∆0 versus K∆0 : µ ≤ ∆0

where ∆0 is a preassigned discrepance the experimenter is willing to tolerate.

Finally, we mention that the test in (17) can detect local alternatives of the form

H1N
: f1 = f2 +

g

(N
√

h)1/2
, (21)

where g ∈ Cd(0, 1), that tend to the null hypothesis at a rate 1/(N
√

h)1/2. Under the lo-
cal alternatives H1N

the test statistic N
√

h(TN − C
Nh

) converges in distribution to a normal
distribution N (∆, τ 2) with mean

∆ =

∫
g2(x)

κ1r1(x)κ2r2(x)

σ2
2(x)κ1r1(x) + σ2

1(x)κ2r2(x)
dx.

The constants C and τ 2 are defined in Theorem 2.1. Under (21) we obtain the following
approximation of the power,

PH1N

(
N
√

h

(
TN − C

Nh

)
> τu1−α

)
= Φ

(
∆

τ
− u1−α

)
+ o(1). (22)

2.2 Comparison with a procedure of Dette and Neumeyer (2001)

The presented test statistic TN is an enhancement of Dette and Neumeyer’s (2001) test statistic

T
(1)
N =

1

N

2∑
i=1

ni∑
j=1

(Yij − f̃(tij))
2 − 1

N

2∑
i=1

ni∑
j=1

(Yij − f̂i(tij))
2, (23)
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where the pooled regression estimator is defined as

f̃(x) =

∑2
i=1

∑ni

j=1 K(
x−tij

h
)Yij∑2

i=1

∑ni

j=1 K(
x−tij

h
)

.

T
(1)
N does not take into account the potentially different variance functions in the two samples.

The combined regression estimator f̃ and the test statistic T
(1)
N conform the definitions of f̂

in (15) and TN in (6) but with replacing the variance estimates σ̂2
i (·) by the constant value

1 (i = 1, 2). Under the assumptions of the Theorems 2.1 and 2.2 the statistic T
(1)
N has an

asymptotic normal law, similar to TN , but with different constants, i. e.

N
√

h
(
T

(1)
N − C̃

Nh

) D
−−−−−→
N → ∞

N (0, τ̃ 2) (under H0)

√
N
(
T

(1)
N − µ̃

) D
−−−−−→
N → ∞

N (0, γ̃2) (under H1),

where

C̃ =
[
2K(0) −

∫
K2(u) du

]( ∫
σ2

1(x) dx +

∫
σ2

2(x) dx −
∫

σ2
1(x)κ1r1(x) + σ2

2(x)κ2r2(x)

κ1r1(x) + κ2r2(x)
dx
)

τ̃ 2 = 2

∫
(2K − K ∗ K)2(u) du

∫
(σ2

2(x)κ1r1(x) + σ2
1(x)κ2r2(x))2

(κ1r1(x) + κ2r2(x))2
dx

µ̃ =

∫
(f1 − f2)

2(x)
κ1r1(x)κ2r2(x)

κ1r1(x) + κ2r2(x)
dx

γ̃2 = 4

∫
(f1 − f2)

2(x)
κ1r1(x)κ2r2(x)(σ2

2(x)κ1r1(x) + σ2
1(x)κ2r2(x))

(κ1r1(x) + κ2r2(x))2
dx.

The power approximation (19) (which is analogously valid for T
(1)
N ) motivates that a large value

of the ratio of the mean to the asymptotic standard deviation under the alternative yields large
power. This gives us the possibility to compare the two competing procedures and leads to the
following result.

Lemma 2.3 Under the assumptions of Theorem 2.2 we obtain for the asymptotic signal to
noise ratio of TN and T

(1)
N that

µ̃

γ̃
≤ µ

γ
. (24)
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Proof. From Cauchy–Schwarz’s inequality we obtain

µ̃ =

∫
(f1 − f2)

2(x)
κ1r1(x)κ2r2(x)

κ1r1(x) + κ2r2(x)
dx

≤
(
4

∫
(f1 − f2)

2(x)
κ1r1(x)κ2r2(x)(σ2

2(x)κ1r1(x) + σ2
1(x)κ2r2(x))

(κ1r1(x) + κ2r2(x))2
dx
)1/2

×
(1

4

∫
(f1 − f2)

2(x)
κ1r1(x)κ2r2(x)

σ2
2(x)κ1r1(x) + σ2

1(x)κ2r2(x)
dx
)1/2

= γ̃ (
1

4
µ)1/2 = γ̃

µ

γ �

It follows from the Cauchy–Schwarz inequality that one obtains equality in (24) if and only if
there exists a constant c such that a. e.

σ2
2κ1r1 + σ2

1κ2r2

κ1r1 + κ2r2

≡ c.

Essentially this holds in the case of homoscedastic and equal variances in the two samples or
in the case of equal design densities and homoscedastic variances.

From Lemma 2.3 we see also, that Dette and Neumeyer’s (2001) statistic becomes inefficient
compared to our approach, when µ/γ is large compared to µ̃/γ̃. As an example assume that
κ1 = κ2 = 1

2
(equal sample sizes), ri ≡ 1 (uniform designs) and let f1 − f2 ≡ 1. Then µ̃ = 1

4
,

γ̃ = 1√
2
{∫ (σ2

1(x) + σ2
2(x)) dx}1/2, µ = 1

2

∫
(σ2

1(x) + σ2
2(x))−1 dx, µ/γ = 1

2

√
µ. Hence inequality

(24) in Lemma 2.3 becomes equivalent to(∫
(σ2

1(x) + σ2
2(x)) dx

)−1/2

≤
( ∫

(σ2
1(x) + σ2

2(x))−1 dx
)1/2

.

For example, if σ2
1(x) + σ2

2(x) = x, the r. h. s. is infinity, and it is expected that in this case our
test outperforms the test by Dette and Neumeyer (2001) significantly. We will investigate this
more detailed in section 4 where a simulation study is presented.

Under the local alternatives H1N
considered in (21) the statistic T

(1)
N of Dette and Neumeyer

(2001) shows a similar behaviour like TN but with asymptotic variance τ̃ 2 and mean

∆̃ =

∫
g2(x)

κ1r1(x)κ2r2(x)

κ1r1(x) + κ2r2(x)
dx.

Due to the power approximation in (22) an inequality of the form

∆̃

τ̃
≤ ∆

τ

like in Lemma 2.3 for local alternatives would be desirable but is not valid in general.
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3 Extensions

3.1 Random Design

In the random design case the design points tij (j = 1, . . . , ni) are i.i.d. realisations of a random
variable Xi with design density ri (i = 1, 2). In this setting the asymptotic distribution under
the null hypothesis H0 stated in Theorem 2.1 remains valid; but under the fixed alternative H1

the asymptotic variance changes to

γ2 +

2∑
i=1

κiVar
(
(f1 − f2)

2(Xi)
κ2

3−ir
2
3−i(Xi)σ

4
i (Xi) + 2κiri(Xi)κ3−ir3−i(Xi)σ

4
3−i(Xi)

(κ1r1(Xi)σ2
2(Xi) + κ2r2(Xi)σ2

1(Xi))2

)
where γ2 is defined in Theorem 2.2.

3.2 Bandwidths and additional prior information on the variances

All results can be generalized to the use of different bandwidths in the three regression esti-
mates, i. e. a bandwidth hi in f̂i(·) defined in (14), i = 1, 2, and a bandwidth h in the pooled
estimator f̂(·) defined in (15), cf. Remark 2.7 in Dette and Neumeyer (2001).

Note that the bandwidth conditions (11) required here are more restrictive than the band-
width conditions used by Dette and Neumeyer (2001). They are due to the appearance of
an additional bias that originates from the variance estimation (16). But the suggested test
statistic can be modified in various ways due to prior knowledge on the variances in order to
weaken these bandwidth conditions.
On the one hand, if homoscedasticity of the two variances can be assumed, respectively, i. e.
σ2

i (·) ≡ σ2
i , i = 1, 2, then for the estimation of the constant variance within the i-th sample

every estimator that satisfies

σ̂2
i − σ2

i = Op(
1√
N

) (i = 1, 2)

can be used, see for example Rice (1984) or Hall and Marron (1990). The bandwidth conditions
(11) can then be weakened to the conditions used by Dette and Neumeyer (2001),

h = O(N−2/(4d+1)) and Nh2 → ∞ for N → ∞ (25)

and under these conditions we obtain the following limit distributions. Under the null hypoth-
esis H0 of equal regression functions we have

N
√

h

(
TN − Bh2d − C

Nh

) D
−−−−−→
N → ∞

N (0, τ 2) ,

where the constant B is defined by

B = k2
d

(∫ {σ−2
1 κ1(f1r

(d)
1 − (f1r1)

(d))(x) + σ−2
2 κ2(f1r

(d)
2 − (f1r2)

(d))(x)}2

σ−2
1 κ1r1(x) + σ−2

2 κ2r2(x)
dx
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− κ1

∫
{(f1r1)

(d)(x) − (f1r
(d)
1 )(x)}2 1

σ2
1r1(x)

dx

− κ2

∫
{(f1r2)

(d)(x) − (f1r
(d)
2 )(x)}2 1

σ2
2r2(x)

dx
)
,

kd is defined in (10) and C and τ 2 are defined in Theorem 2.1. Under the fixed alternative H1

the same limit distribution as in Theorem 2.2 holds. If additionally equality of the variances
σ2

1 = σ2
2 = σ2

0 can be assumed, σ2
0 could be estimated from the pooled sample, of course.

However, in this case weighting by the variances is not necessary at all and our test statistic
essentially reduces to the statistic by Dette and Neumeyer (2001).
On the other hand the less restrictive bandwidth conditions (25) can also be sufficient in the
case where we have extra information about the smoothness of the variance functions. We
consider the following setting. Condition (9) is replaced by the assumption

ri, fi ∈ Cd(0, 1), σ2
i ∈ Cs(0, 1) (i = 1, 2) ,

where s > d. Moreover, instead of K and h we use a kernel K̃ of order s and a bandwidth
b = bN in the definition (16) of the variance estimate. In place of the bandwidth conditions
(11) we assume

Nb2s → 0, Nb2 → ∞, h2d+1/2 = o(b) and
b√
h

= O(1) for N → ∞

for the bandwidth b and the conditions (25) for the bandwidth h used for the regression es-
timators. Under these assumptions the same limit distributions for TN under H0 and H1 as
stated above for the homoscedastic case hold.

3.3 The k–sample case

In this section we indicate how the presented test can be extended to the case of k samples,
i. e. we are concerned with the model

Yij = fi(tij) + σi(tij)εij , j = 1, . . . , ni, i = 1, . . . , k, (26)

and the testing problem is

H0 : f1 = · · · = fk versus H1 : fi �= fj for some i �= j.

Further assume for the sample sizes that

ni

N
= κi + O(

1

N
) , i = 1, . . . , k,

where κi ∈ (0, 1), and for the design densities ri we require (7), i = 1, . . . , k. Following the same
idea as in the introduction we end up with a k–sample generalization of the ANOVA–Welch
statistic (Welch, 1937)

TN =
1

N

k∑
i=1

ni∑
j=1

(Yij − f̂(tij))
2σ̂−2

i (tij) − 1

N

k∑
i=1

ni∑
j=1

(Yij − f̂i(tij))
2σ̂−2

i (tij),

11



where now

f̂(x) =

∑k
i=1

∑ni

j=1 K(
x−tij

h
)Yijσ̂

−2
i (tij)∑k

i=1

∑ni

j=1 K(
x−tij

h
)σ̂−2

i (tij)
,

f̂i and σ̂2
i are defined in (14) and (16), respectively, for i = 1, . . . , k.

Theorem 3.1 Assume model (26) where the εij are i.i.d. centered random variables with vari-
ance Var(εij) = 1 and E[ε4

ij ] < ∞, s. t. the assumptions stated in this section and (7)–(12) for
i = 1, . . . , k are satisfied. Under the null hypothesis H0 we have

N
√

h
(
TN − C

Nh

) D
−−−−−→
N → ∞

N (0, τ 2)

where the constants are defined as

C = 2K(0) −
∫

K2(u) du

τ 2 = 2(k − 1)

∫
(2K − K ∗ K)2(u) du.

Theorem 3.2 Under the assumptions of Theorem 3.1 under the fixed alternative H1 we have

√
N (TN − µ)

D
−−−−−→
N → ∞

N (0, γ2)

where the constants are defined as

µ =
k∑

j=1

k∑
l=1
l<j

∫
(fj − fl)

2(x)
σ−2

l (x)κlrl(x)σ−2
j (x)κjrj(x)∑k

l=1 σ−2
l (x)κlrl(x)

dx

and γ2 = 4 µ.

4 Wild bootstrap and finite sample properties

Although the testing procedure (17) is distribution free and therefore applicable directly without
any estimation of nuisance parameters, our simulations indicated that for small and moderate
sample sizes the performance of the test can be improved by the bootstrap technique. Hence in
this section we present the finite sample behaviour of a wild bootstrap version of the proposed
testing procedure. We confine ourselves to a power comparison with the procedure of Dette
and Neumeyer (2001), because these authors already compared their test to various procedures
and we will show that the new test outperforms the testing procedure of the aforementioned
authors in most cases. For the sake of brevity we do not present level simulations but our

12



simulations show that the new procedure keeps the level just as well as Dette and Neumeyer’s
(2001) test.

We consider the following wild bootstrap approach based on the residuals

ε̂ij = Yij − f̂(tij), j = 1, . . . , ni (i = 1, 2),

where f̂ is the pooled regression estimator defined in (15). Let Vij denote i.i.d. random variables,

independent of the sample {Yij}, with masses
√

5+1
2
√

5
and

√
5−1

2
√

5
at the points 1

2
(1 − √

5) and
1
2
(1 +

√
5), respectively. We define bootstrap observations

Y ∗
ij = f̂(tij) + Vij ε̂ij , j = 1, . . . , ni (i = 1, 2),

and denote by T ∗
N the test statistic defined in (6) but based on the bootstrap sample {Y ∗

ij}. A
test of asymptotic level α rejects the null hypothesis whenever the statistic TN (based on the
original sample {Yij}) is larger than the (1− α)–quantile of the distribution of T ∗

N conditioned
on the sample {Yij}. The consistency of this bootstrap procedure can be shown in the same
spirit as in the proof of Dette and Neumeyer (2001, section 4.4). In each of 1000 simulations
we resampled B = 200 times and estimated the bootstrap quantile by T ∗

N(�B(1−α)�), where T ∗
N(�)

denotes the �-th order statistic of the bootstrap sample T ∗
N,1, . . . , T

∗
N,B.

For all kernel based estimators we used the Epanechnikov kernel. The bandwidths are chosen
according to the “rule of thumb” (cf. Dette and Neumeyer, 2001), hi = (s2

i /ni)
0.3 in the esti-

mators f̂i and σ̂2
i (i = 1, 2) and h = ((κ1s1 + κ2s2)/N)0.3 in the pooled regression estimator f̂ .

Here si denotes Rice’s estimator (Rice, 1984)

si =
2

ni − 1

ni∑
j=1

(Yi j+1 − Yi j)
2

of the integrated variance
∫

σ2
i (t)ri(t) dt in the i-th sample (i = 1, 2).

The analogous bootstrap procedure was also simulated for Dette and Neumeyer’s (2001) test

statistic T
(1)
N defined in (23). We restrict in the following our presentation to normal errors

εij ∼ N (0, 1) (various other settings have been simulated and yielded similar results) and
present the results for different combinations of sample sizes (n1, n2) and nominal levels α.
First we consider the case of equidistant design points (i. e. ri ≡ 1, i = 1, 2) in three settings
corresponding to the cases of equal homoscedastic, equal heteroscedastic and inhomogeneous
heteroscedastic variances. The results for the following regression functions and equal ho-
moscedastic variances,

f1(x) = exp(x), f2(x) = exp(x) + sin(4πx), σ2
i ≡ 0.5 (i = 1, 2), (27)

can be depicted in Table 1 for the new test statistic TN and in Table 2 for Dette and Neumeyer’s
(2001) procedure for the sake of comparison. The new procedure turns out to be uniformly

13



more powerful in this case. The results for equal heteroscedastic variances according to the
following setting,

f1(x) = x2, f2(x) = x2 + sin(4πx), σ2
i (x) = x (i = 1, 2), (28)

are presented in Tables 3 and 4 for the test statistics TN defined in (6) and T
(1)
N defined in (23),

respectively. In all cases we observe a better power of the new test. Results for the case of
inhomogeneous and heteroscedastic variances,

f1 ≡ 1, f2 ≡ 0, σ2
1(x) = x2 , σ2

2(x) = 5x − x2 (29)

are presented in Tables 5 and 6. In this case we observe slightly better power of Dette and
Neumeyer’s (2001) test for equal and nearly equal sample sizes, but the new procedure out-
performs Dette and Neumeyer’s (2001) test, when the sample sizes are rather different, e. g.
when n1 = 10, n2 = 50. This phenomenon presumably originates from the interplay of sam-
ple size and variance in the weight 1 − a = σ−2

2 n2/(σ−2
1 n1 + σ−2

2 n2) from (5) that is assigned
to the observations from the second sample in the pooled regression estimate in the defini-
tion of test statistic TN . In contrast the corresponding weight used in test statistic T

(1)
N is

1 − ã = n2/(n1 + n2).
Finally, we present simulations for the setting where both the design densities and the variances
are different in the two samples,

r1 ≡ 1, r2(x) = 0.5 + x, f1 ≡ 1, f2 ≡ 0, σ2
1 ≡ 2 , σ2

2 ≡ 3. (30)

The results are shown in tables 7 and 8 and the new test turns out to be uniformly more power-
ful in this case, where for equal sample sizes the gain in power is remarkable. This is perfectly in
accordance with our theoretical findings in Lemma 2.3 and the explanations given in Section 2.2.

The Tables 1–8 are positioned at the end of the paper.

5 Conclusion

In this paper we have suggested a new procedure for testing the equality of regression curves
in different nonparametric regression models. The new test generalizes naturally the method
of analysis of covariance to the setting of nonparametric regression. The asymptotic normal
distribution of the proposed test statistic under the null hypothesis of equal regression functions
as well as under fixed and local alternatives is shown. Under the null hypothesis the test turns
out to be asymptotically distribution free. Our procedure is similar in spirit to a test based on a
difference of variance estimators recommended by Dette and Neumeyer (2001). We have shown
that the new test gains in power particularly in the case of inhomogeneous and heteroscedastic
variances and for different sample sizes resp. design densities.

Acknowledgements. The financial support of the Deutsche Forschungsgemeinschaft (SFB
475, “Reduction of complexity in multivariate data structures” and DFG grant MU 1230/8-1)
is gratefully acknowledged.
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A Appendix: Proofs

A.1 Proof of Theorems 2.1 and 2.2

The strategy of the proof is in principle similar to the proof of Theorem 2.1 of Dette and
Neumeyer (2001). However, technical it becomes quite delicate due to the additional variance
estimators involved. By the ease of brevity we will only state the main differences due to the
additional variance estimation. With the definition of weights

w
(i)
jk =

K(
tij−tik

h
)∑ni

l=1 K(
tij−til

h
)

the individual regression estimates defined in (14) have the form

f̂i(tij) =

ni∑
k=1

w
(i)
jk Yik (i = 1, 2).

An analogous form can be achieved for the combined estimator defined in (15),

f̂(tij) =

2∑
l=1

ni∑
k=1

wlk,ijYlk

with the weights

wlk,ij =
K(

tlk−tij
h

)σ̂−2
l (tij)∑2

l′=1

∑nl′
k′=1 K(

tl′k′−tij
h

)σ̂−2
l′ (tij)

=
1

Nh
K(

tlk − tij
h

)σ̂2
3−l(tij)

1

R̂(tij)
, (31)

where

R̂(t) =
1

Nh

2∑
l=1

nl∑
k=1

K(
tlk − t

h
)σ̂2

3−l(t) =
n1

N
r̂1(t)σ̂

2
2(t) +

n2

N
r̂2(t)σ̂

2
1(t)

is an estimator for

R(t) = κ1r1(t)σ
2
2(t) + κ2r2(t)σ

2
1(t). (32)

Now with the notations (j = 1, . . . , ni, i = 1, 2)

∆ij = fi(tij) −
2∑

l=1

nl∑
k=1

wlk,ijfl(tlk) =
2∑

l=1

nl∑
k=1

wlk,ij(fi(tij) − fl(tlk)) (33)

δij = fi(tij) −
ni∑

k=1

w
(i)
jk fi(tik) =

2∑
l=1

nl∑
k=1

w
(i)
jk (fi(tij) − fi(tik)) (34)
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we decompose TN in (6) as

TN =
1

N

2∑
i=1

ni∑
j=1

σ̂−2
i (tij)

{
∆2

ij − δ2
ij − 2∆ij

2∑
l=1

nl∑
k=1

wlk,ijσl(tlk)εlk + 2δij

ni∑
k=1

w
(i)
jk σi(tik)εik

+
( 2∑

l=1

nl∑
k=1

wlk,ijσl(tlk)εlk

)2

−
( ni∑

k=1

w
(i)
jk σi(tik)εik

)2

+ 2σi(tij)εij(∆ij − δij)

− 2σi(tij)εij

2∑
l=1

nl∑
k=1

wlk,ijσl(tlk)εlk + 2σi(tij)εij

ni∑
k=1

w
(i)
jk σi(tik)εik

}
. (35)

Lemma A.1 Under the assumptions of Theorem 2.1 we obtain the following expansion of the
expectation of the test statistic under the null hypothesis H0,

E[TN ] =
C

Nh
+ o(

1

N
√

h
),

and under the alternative H1,

E[TN ] = µ + o(
1√
N

),

where the constants C and µ are defined in the Theorems 2.1 and 2.2.

Proof. We use the above definitions and the decomposition (35) of the test statistic TN . A
Taylor expansion together with (31) and (33) gives

∆ij =
2∑

l=1

σ̂2
3−l(tij)

R̂(tij)

1

Nh

nl∑
k=1

K(
tij − tlk

h
)(fi(tij) − fl(tlk))

=
2∑

l=1

σ̂2
3−l(tij)

R̂(tij)

{∫
K(

tij − t

h
)(fi(tij) − fl(t))κlrl(t) dt + O(

1

Nh
)
}

=
2∑

l=1

σ̂2
3−l(tij)

R̂(tij)

{
(fi(tij) − fl(tij))κlrl(tij) + O(hd) + O(

1

Nh
)
}

(36)

=
σ̂2

i (tij)

R̂(tij)
(fi(tij) − f3−i(tij))κ3−ir3−i(tij) +

{
O(hd) + O(

1

Nh
)
}

Op(1) (37)

where the last line only holds under the alternative H1. For the expectation of the first term
on the r. h. s. in (35) we obtain under the alternative H1 with an application of Proposition A.4
in section A.2

1

N

2∑
i=1

ni∑
j=1

E[σ̂−2
i (tij)∆

2
ij ] =

1

N

2∑
i=1

ni∑
j=1

E
[ σ̂2

i (tij)

R̂2(tij)

]
(fi(tij) − f3−i(tij))

2κ2
3−ir

2
3−i(tij)
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+ O(hd) + O(
1

Nh
)

=
2∑

i=1

∫
σ2

i (t)

R2(t)
(fi(t) − f3−i(t))

2κ2
3−ir

2
3−i(t)κiri(t) dt + o(

1√
N

)

=

∫
1

R(t)
(f1(t) − f2(t))

2κ1r1(t)κ2r2(t) dt + o(
1√
N

)

= µ + o(
1√
N

).

Under the null hypothesis H0 we directly obtain from (36)

1

N

2∑
i=1

ni∑
j=1

E[σ̂−2
i (tij)∆

2
ij ] =

{
O(hd) + O(

1

Nh
)
}2

= o(
1

N
√

h
).

Similar calculations give

1

N

2∑
i=1

ni∑
j=1

E[σ̂−2
i (tij)]δ

2
ij = o(

1

N
√

h
)

and analogously we obtain for the terms

1

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)∆ij

2∑
l=1

nl∑
k=1

wlk,ijσl(tlk)εlk

]
and

1

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)δij

ni∑
k=1

w
(i)
jk σi(tik)εik

]
the rate of convergence O(1/(Nh)) = o(1/

√
N) under H1 and O(1/(Nh))(O(hd) + O( 1

Nh
)) =

o( 1
N
√

h
) under H0, respectively. With (31) and Proposition A.4 we further obtain

1

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)
( 2∑

l=1

nl∑
k=1

wlk,ijσl(tlk)εlk

)2]

=
1

N3h2

2∑
i=1

ni∑
j=1

2∑
l=1

nl∑
k=1

E
[ σ̂−2

i (tij)

R̂2(tij)
σ̂4

3−l(tij)K
2(

tij − tlk
h

)σ2
l (tlk)ε

2
lk

]

+
1

N3h2

2∑
i=1

ni∑
j=1

2∑
l=1

nl∑
k=1

2∑
l′=1

nl′∑
k′=1

(l,k) �=(l′,k′)

E
[ σ̂−2

i (tij)

R̂2(tij)
σ̂2

3−l(tij)σ̂
2
3−l′(tij)

K(
tij − tlk

h
)K(

tij − tl′k′

h
)σl(tlk)σl′(tl′k′)εlkεl′k′

]
=

1

Nh2

2∑
i=1

2∑
l=1

∫ ∫
σ−2

i (t)

R2(t)
σ4

3−l(t)K
2(

t − x

h
)σ2

l (x)κiri(t)κlrl(t) dt dx

+
1

Nh
(O(hd) + O(

1

Nh
))

=
1

Nh

∫
K2(u) du + o(

1

N
√

h
).
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An analogous calculation yields

− 1

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)
( ni∑

k=1

w
(i)
jk σi(tik)εik

)2]

= − 1

Nh2

2∑
i=1

∫ ∫
σ−2

i (t)

r2
i (t)

K2(
t − x

h
)σ2

i (x)ri(t)ri(x) dt dx + o(
1

N
√

h
)

= − 2

Nh

∫
K2(u) du + o(

1

N
√

h
).

Similarly we obtain

− 2

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)σi(tij)εij

2∑
l=1

nl∑
k=1

wlk,ijσl(tlk)εlk

]

= − 2

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)σ
2
i (tij)ε

2
ij

K(0)

Nh
σ̂2

3−i(tij)
1

R̂(tij)

]

− 2

N2h

2∑
i=1

ni∑
j=1

2∑
l=1

nl∑
k=1

(i,j) �=(l,k)

E
[
σ̂−2

i (tij)σi(tij)εijσl(tlk)εlkK(
tij − tlk

h
)σ̂2

3−l(tij)
1

R̂(tij)

]

= −2K(0)

Nh

∫
σ2

2(t)κ1r1(t) + σ2
1(t)κ2r2(t)

R(t)
dt +

1

Nh
(O(hd) + O(

1

Nh
))

= −2K(0)

Nh
+ o(

1

N
√

h
)

and

2

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)σi(tij)εij

ni∑
k=1

w
(i)
jk σi(tik)εik

]
=

4K(0)

Nh
+ o(

1

N
√

h
).

Analogous to the previous calculations we obtain that

1

N

2∑
i=1

ni∑
j=1

E
[
σ̂−2

i (tij)σi(tij)εij(∆ij − δij)
]

is of order O(1/(Nh)) = o(1/
√

N) under H1 and of order O(1/(Nh))(O(hd)+O( 1
Nh

)) = o( 1
N
√

h
)

under H0. From the decomposition (35) of TN and the above calculation the assertion follows.
�

A.1.1 Proof of Theorem 2.2

Analogous to the proof of Theorem 2.1, Dette and Neumeyer (2001), the following expansion
of the test statistic holds under the alternative H1:

TN − E[TN ] = T
(1)
N + T

(2)
N + op(

1√
N

)
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where

T
(i)
N =

1

N

ni∑
j=1

αijεij (i = 1, 2)

and the coefficients are defined by

αij = 2∆ijσi(tij)/σ̂i
2(tij), j = 1, . . . , ni, i = 1, 2.

Lemma A.2 Under the assumptions of Theorem 2.1 under the alternative H1 it holds that

Var(T
(i)
N ) =

4

N

∫
(f1 − f2)

2(x)
κiri(x)κ2

3−ir
2
3−i(x)σ2

i (x)

(κ1r1(x)σ2
2(x) + κ2r2(x)σ2

1(x))2
dx + o(

1

N
) (i = 1, 2).

Proof. We only consider the case i = 1. With ∆1j from (37) we obtain

T
(1)
N =

2

N

n1∑
j=1

(f1(t1j) − f2(t1j))κ2r2(t1j)
σ1(t1j)

R̂(t1j)
ε1j + op(

1√
N

).

Now for calculating the variance Var(T
(1)
N ) we can substitute R̂(t) by R(t) defined in (32). The

remainder of the expansion

1

R̂(t)
=

1

R(t)
+
{ 1

R̂(t)
− 1

R(t)

}
is equal to

R(t) − R̂(t)

R̂(t)R(t)
=

1

R2(t)
(R(t) − R̂(t))(1 + op(1))

= − 1

R2(t)

2∑
i=1

{
r̂3−i(t)(σ̂

2
i (t) − σ2

i (t)) + σ2
i (t)(r̂3−i(t) − r3−i(t))

}
(1 + op(1)).

This yields remainder terms T
(1,i)
N (i = 1, 2) in the expansion

T
(1)
N = T̃

(1)
N + T

(1,1)
N + T

(1,2)
N + op(

1√
N

)

where

T̃
(1)
N =

2

N

n1∑
j=1

(f1(t1j) − f2(t1j))κ2r2(t1j)
σ1(t1j)

R(t1j)
ε1j
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and the remainders are of the form

T
(1,i)
N =

1

N

n1∑
j=1

∆(t1j)ε1j

{
(r3−i(t1j) + o(1)) (σ̂2

i (t1j) − σ2
i (t1j)) + o(1)

}
= op(

1√
N

).

The last equality can be obtained by inserting the decomposition of the variance estimator
σ̂2

i (t) from Proposition A.4 (see section A.2) and a tedious calculation of the variance

Var(T
(1,i)
N ) = o(

1

N
) (i = 1, 2).

From the negligibility of the remainder terms we obtain for the variance

Var(T
(1)
N ) = Var(T̃

(1)
N ) + o(

1

N
)

=
4

N

∫
(f1 − f2)

2(x)
κ1r1(x)κ2

2r
2
2(x)σ2

1(x)

R2(x)
dx + o(

1

N
).

� (Lemma A.2)

From the proof of the last lemma we additionally obtain under the alternative H1:
√

N(TN − E[TN ]) =
√

N(T
(1)
N + T

(2)
N ) + op(1)

=
1√
N

2∑
i=1

ni∑
j=1

εij(fi(tij) − f3−i(tij))κ3−ir3−i(tij)
σi(tij)

R(tij)
+ op(1)

with the asymptotic variance

4

∫
(f1 − f2)

2(x)
κ1r1(x)κ2

2r
2
2(x)σ2

1(x)

R2(x)
dx + 4

∫
(f1 − f2)

2(x)
κ2r2(x)κ2

1r
2
1(x)σ2

2(x)

R2(x)
dx

= 4

∫
(f1 − f2)

2(x)
κ1r1(x)κ2r2(x)

σ2
2(x)κ1r1(x) + σ2

1(x)κ2r2(x)
dx

= γ2.

An application of the central limit theorem using Lyapunov’s condition yields the asymptotic
normality and completes the proof of Theorem 2.2. �

A.1.2 Proof of Theorem 2.1

Under the hypothesis H0 of equal regression functions in the two models we obtain similar to
the proof of Theorem 2.1 of Dette and Neumeyer (2001) the decomposition

TN − E[TN ] =
5∑

j=3

T
(j)
N + op(

1

N
√

h
)
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where

T
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nk∑
j=1
j �=i
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and the coefficients are defined by
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Lemma A.3 Under the assumptions of Theorem 2.1 under the null hypothesis H0 it holds
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(2+k)
N ) =

2

N2h

∫
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Proof. For simplicity we only consider T
(5)
N , the other two terms are treated similarly. By the

definition of the weights in (31) the coefficients γij can be rewritten as
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where
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First, we consider the term
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γ̃ijε1iε2j .

Using the same argument as in the proof of Lemma A.2, we find that asymptotically the
estimator R̂(t) can be replaced by the true R(t) in order to calculate the variance of T̃
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N . We

then obtain
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Finally, we indicate the asymptotic negligibility of the second term

T̄
(5)
N =

1

N

n1∑
i=1

n2∑
j=1

γ̄ijε1iε2j .
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In a first step we replace the estimate R̂(t) in the denominator by R(t) without changing the
asymptotic order. Then we insert the asymptotically dominating part of the expansion of the
variance estimator from Proposition A.4 and obtain Var(T̄

(5)
N ) = o( 1

N2h
) with some tedious

calculations. � (Lemma A.3)

With similar calculations as in the proof of Lemma A.3 we can rewrite T̃
(5)
N as
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Applying the same arguments to the terms T̃
(3)
N and T̃

(4)
N we obtain

N
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h(TN − E[TN ]) = N
√

h
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(4)
N + T̃

(5)
N

)
+ op(1),

which can be written as a quadratic form

WN = εT
NANεN

of the random variable εN = (ε11, . . . , ε1n1, ε21, . . . , ε2n2)
T with a symmetric matrix AN with

vanishing diagonal elements. From Lemma A.3 we obtain for the asymptotic variance
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Asymptotic normality of WN can be proved by an application of Theorem 5.2 of de Jong (1987)
and this gives the conclusion of Theorem 2.1. �

A.2 Auxiliary result

Proposition A.4 Assume model (1) where the εij are i. i. d. centered random variables with
variance 1, such that assumptions (7)–(12) hold. For the heteroscedastic variance estimators
defined in (16) we obtain the expansion (i = 1, 2)

σ̂2
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S(k)
ni

(t)
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where the dominating part is
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H. Scheffé (1959). The Analysis of Variance. Wiley, New York.

S. Weerahandi (1987). Testing regression equality with unequal variances. Econometrica 55,
1211–1215.

B.L. Welch (1937) The significance of the difference between two means when the population
variances are unequal. Biometrika 29, 350–362.

A. Yatchew (1999). An elementary nonparametric differencing test of equality of regression
functions. Economics Letters 62, 271–278.

S. G. Young and A. W. Bowman (1995). Non-parametric analysis of covariance. Biomet-
rics 51, 920–931.

26



(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.020 0.106 0.166 0.201 0.295 0.109 0.197 0.344

α = 5% 0.043 0.158 0.237 0.291 0.373 0.165 0.285 0.427

α = 10% 0.083 0.232 0.340 0.402 0.510 0.262 0.399 0.545

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.433 0.272 0.416 0.532 0.458 0.607 0.663 0.989

α = 5% 0.533 0.364 0.501 0.639 0.564 0.708 0.750 0.997

α = 10% 0.645 0.484 0.624 0.739 0.663 0.797 0.822 0.997

Table 1: Simulated power of the wild bootstrap version of the new test statistic (6) according
to setting (27).

(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.017 0.046 0.075 0.119 0.157 0.058 0.138 0.278

α = 5% 0.028 0.077 0.132 0.194 0.247 0.109 0.210 0.354

α = 10% 0.054 0.126 0.211 0.301 0.357 0.162 0.298 0.459

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.349 0.189 0.326 0.465 0.370 0.525 0.592 0.984

α = 5% 0.447 0.267 0.419 0.550 0.470 0.633 0.664 0.989

α = 10% 0.543 0.377 0.530 0.644 0.567 0.728 0.755 0.993

Table 2: Simulated power of the wild bootstrap version of Dette and Neumeyer’s (2001) test
statistic (23) according to setting (27).
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(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.030 0.102 0.175 0.248 0.296 0.099 0.197 0.292

α = 5% 0.054 0.149 0.234 0.328 0.379 0.152 0.267 0.401

α = 10% 0.084 0.214 0.322 0.430 0.493 0.225 0.366 0.518

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.355 0.252 0.373 0.461 0.401 0.521 0.651 0.991

α = 5% 0.449 0.328 0.473 0.590 0.513 0.648 0.734 0.995

α = 10% 0.573 0.430 0.579 0.717 0.620 0.754 0.832 1.000

Table 3: Simulated power of the wild bootstrap version of the new test statistic (6) according
to setting (28).

(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.019 0.033 0.071 0.112 0.162 0.061 0.130 0.214

α = 5% 0.033 0.059 0.132 0.183 0.239 0.089 0.181 0.301

α = 10% 0.059 0.100 0.198 0.282 0.341 0.131 0.279 0.383

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.288 0.190 0.313 0.418 0.336 0.475 0.567 0.984

α = 5% 0.376 0.257 0.407 0.522 0.416 0.563 0.662 0.990

α = 10% 0.476 0.340 0.503 0.626 0.528 0.673 0.751 0.996

Table 4: Simulated power of the wild bootstrap version of Dette and Neumeyer’s (2001) test
statistic (23) according to setting (28).
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(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.254 0.381 0.501 0.585 0.660 0.402 0.522 0.684

α = 5% 0.314 0.483 0.603 0.692 0.764 0.511 0.664 0.784

α = 10% 0.396 0.604 0.724 0.801 0.849 0.637 0.780 0.873

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.741 0.614 0.704 0.826 0.762 0.873 0.867 0.998

α = 5% 0.837 0.727 0.803 0.892 0.848 0.922 0.923 0.999

α = 10% 0.921 0.845 0.899 0.956 0.913 0.966 0.962 1.000

Table 5: Simulated power of the wild bootstrap version of the new test statistic (6) according
to setting (29).

(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.302 0.313 0.325 0.350 0.354 0.524 0.628 0.707

α = 5% 0.366 0.427 0.446 0.482 0.501 0.611 0.722 0.795

α = 10% 0.457 0.543 0.576 0.613 0.635 0.704 0.810 0.872

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.724 0.761 0.784 0.866 0.852 0.892 0.929 0.998

α = 5% 0.807 0.829 0.858 0.918 0.909 0.935 0.955 0.999

α = 10% 0.868 0.890 0.904 0.948 0.938 0.963 0.981 0.999

Table 6: Simulated power of the wild bootstrap version of Dette and Neumeyer’s (2001) test
statistic (23) according to setting (29).
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(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.071 0.175 0.217 0.281 0.259 0.082 0.244 0.315

α = 5% 0.109 0.234 0.287 0.355 0.346 0.139 0.311 0.421

α = 10% 0.175 0.347 0.410 0.466 0.452 0.220 0.398 0.532

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.391 0.103 0.278 0.393 0.125 0.286 0.131 0.162

α = 5% 0.496 0.157 0.366 0.500 0.195 0.378 0.193 0.243

α = 10% 0.615 0.246 0.472 0.611 0.288 0.476 0.287 0.348

Table 7: Simulated power of the wild bootstrap version of the new test statistic (6) according
to setting (30).

(n1, n2) (10,10) (10,20) (10,30) (10,40) (10,50) (20,20) (20,30) (20,40)

α = 2.5% 0.005 0.134 0.205 0.244 0.226 0.010 0.182 0.302

α = 5% 0.008 0.225 0.282 0.341 0.323 0.021 0.239 0.386

α = 10% 0.029 0.310 0.371 0.446 0.451 0.056 0.314 0.494

(n1, n2) (20,50) (30,30) (30,40) (30,50) (40,40) (40,50) (50,50) (100,100)

α = 2.5% 0.384 0.026 0.191 0.337 0.030 0.188 0.035 0.062

α = 5% 0.477 0.051 0.257 0.432 0.050 0.266 0.067 0.111

α = 10% 0.584 0.083 0.346 0.540 0.099 0.352 0.113 0.173

Table 8: Simulated power of the wild bootstrap version of Dette and Neumeyer’s (2001) test
statistic (23) according to setting (30).
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