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Abstract

We show that the power of the KPSS-test against integration, as

measured by divergence rates of the test statistic under the alter-

native, remains the same when residuals from an OLS-regression

rather than true observations are used. This is in stark contrast

to residual based tests of the null of integration in a cointegration

setting, where power is drastically reduced when residuals are used.
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1 Introduction and Summary

This paper is concerned with the Kwiatkowski–Phillips–Schmidt–Shin (1992,

KPSS) procedure for testing the null hypothesis that there is at least one

cointegrating relationship among m I(1) variables zt1, . . . , ztm. If all potential

cointegrating relationships are known, this simply amounts to applying the

standard KPSS–test to these relationships. If a cointegrating relationship has

to be estimated, one applies the KPSS–test to the residuals from this regres-

sion.

Lee and Schmidt (1996) show that the KPSS–test statistic diverges when the

residuals from the cointegrating relationship are I(d)–processes with −0.5 <

d < 0.5; Marmol (1997) shows that the KPSS–test is also consistent against

I(d)–processes with d ≥ 0.5. However, both Lee and Schmidt (1996) and Mar-

mol (1997) assume that the true cointegrating relationship is known.

The case where the cointegrating relationship has to be estimated has been

considered in great detail by Phillips and Ouliaris (1990), but only for tests

of the complementary null hypothesis that there is no cointegration. Below

we consider the null hypothesis that cointegration does exist. It emerges that

the divergence rates under the alternatives from Lee and Schmidt (1996) and

Marmol (1997) remain the same. We also prove that the divergence rate does

not depend on the order of the cointegrating regressors. This is a rather sur-

prising result, and in stark contrast to the case of residual based tests of the

null hyposthesis of no cointegration, where power is drastically reduced when

regression residuals rather than true cointegration errors are used (Krämer and

Marmol 2004).
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2 Power under the alternative

We consider the regression model

yt = β′zt + ut, (1)

where the m-vector zt is defined by zt =
∑t

s=1 xs and xs ∼ I(dX). This implies

that zt ∼ I(1 + dX) and that all elements of the m-vector of regressors are

integrated to the same order. We then postulate that yt ∼ I(1 + dX), but

that ut ∼ I(du) where −1/2 < du < 1/2 < 1 + dX , implying what is called

fractional cointegration. We consider the null hypothesis that there is exactly

one cointegrating relationship.

The KPSS–procedure for testing this hypothesis is based on the statistic

η̂ =
1

T 2

T∑

t=1

S2
t /s

2(`), (2)

where

St =
t∑

i=1

ui − ū, (3)

s2(`) =
1

T

T∑

t=1

(ut − ū)2 +
2

T

∑̀

s=1

ws`

T∑

t=s+1

(ut − ū)(ut−s − ū) (4)

and where ws` = 1 − s
`+1

s2(`) is the Newey–West estimator of the long–run

variance of the residuals. Its consistency in our long–memory set up follows

from Hosking (1996) for ` = 0. Therefore, we restrict our attention to the case

` = 0 and disregard the estimation of the variance when computing the rates

of divergence below.

If the ut’s are known and ut ∼ I(0), we have

η̂
d−→

∫ 1

0
V (r)2dr, (5)

where V (r) is a standard Brownian Bridge (see Kwiatkowski et al. 1992, or

Lee and Schmidt 1996 for details). We consider the limiting distribution of η̂
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when the residuals ut in (5) are I(d) with 0 < du < 1. For the case where the

ut’s are known, and 0 < du < 0.5, Lee and Schmidt (1996, Theorem 3) show

that

η̂t = Op (T )2du . (6)

For the case where du ≥ 0.5, Marmol (1997) shows that

η̂t = Op(T ), (7)

so that the KPSS–test is consistent against both stationary and nonstationary

long memory alternatives.

So far, however, it has remained an open problem whether the above diver-

gence rates carry over to the case where the ut’s are replaced by OLS–residuals.

We consider this case in what follows by computing the divergence rate of the

KPSS-test under fractional alternatives and allowing the regressors to be like-

wise fractionally integrated. This extends the usual situation of I(0) regressors.

But it can be shown that the structure of the regressors has no influence on

the divergence rate of the test statistic.

THEOREM: Assume that xt ∼ I(dx), −1
2

< dx < 1
2

and ut ∼ I(du), 0 <

du < 1 + dx and that the regressors are strictly exogenous. Then the rate of

divergence of the KPSS–test is of order Op(T
2du) irrespective of dx.

REMARK: In the case of endogenous regressors we have to assume also

dx + du > 0 to obtain the result. In the case of dX + du ≤ 0 the rate of conver-

gence of β̂ is of order Op(T
1+2dX ) and therefore the considerations below are

no longer valid. For details see Davidson (2003).

PROOF: We have:

û = u− Z ′(Z ′Z)−1Z ′u. (8)
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From Davidson (2003) we obtain for the least squares estimator of the cointe-

gration parameter

T 1+dX−du(β̂ − β)
d−→ M, (9)

with a matrix M which is specified in Davidson (2003). In addition we obtain

from Marinucci and Robinson (2000) that

T−3/2−dX

[λT ]∑

t=1

zt
d−→ Bd(λ), (10)

where Bd(λ) denotes fractional Brownian motion with parameter d = dX + 1.

Using the relation

ût = ut − (β̂ − β)zt (11)

we obtain that T−1/2−du
∑[λT ]

t=1 ut converges in distribution to some random

variable, say ξ(λ). The rate of convergence follows from (9), (10) and the

application of Slutsky’s Theorem to (11). The rate of convergence for the test

statistic follows from the continuous mapping theorem, applying the same

arguments as in Lee and Schmidt (1996). •

REMARK: The limiting distribution in this case is also clearly not Gaussian.

Therefore, under the alternative of fractionally integrated cointegration resid-

uals we obtain divergence rates independent of the structure of the regressors

themselves. Furthermore, the limiting distribution is non-Gaussian. The KPSS-

test is thus powerful against fractional alternatives even when the cointegrating

relationship has to be estimated and whether the regressors themselves have

long memory or not.
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