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Abstract

Properties of a specification test for the parametric form of the variance function in diffusion
processes dXt = b (t,Xt) dt + σ (t,Xt) dWt are discussed. The test is based on the estimation of
certain integrals of the volatility function. If the volatility function does not depend on the variable
x it is known that the corresponding statistics have an asymptotic normal distribution. However,
most models of mathematical finance use a volatility function which depends on the state x. In
this paper we prove that in the general case, where σ depends also on x the estimates of integrals
of the volatility converge stably in law to random variables with a non-standard limit distribution.
The limit distribution depends on the diffusion process Xt itself and we use this result to develop a
bootstrap test for the parametric form of the volatility function, which is consistent in the general
diffusion model.

Keywords: continuous time financial model, model diagnostics, diffusion process, heteroscedasticity,
pseudo residuals, parametric bootstrap, estimation of integrated volatility, delta-method

1 Introduction

Itô diffusions are commonly used for representing asset prices, because the strong Markov property and
the nondifferentiability of the paths capture the idea of no arbitrage opportunities [see e.g. Merton
(1990)]. In general the diffusion (Xt)t is a solution of the stochastic differential equation

dXt = b (t, Xt) dt + σ (t, Xt) dWt(1.1)
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where (Wt)t is a standard Brownian motion. We assume discretely observed data on a fixed time span,
say [0, 1], with increasing sample size. As pointed out by Corradi and White (1999) this model is
appropriate for analyzing the pricing of European, American or Asian options. An appropriate pricing
of derivative assets requires a correct specification of the functional form of the drift and variance and
different models have been proposed in the literature for the different types of options [see e.g. Black and
Scholes (1973), Vasicek (1977), Cox, Ingersoll and Ross (1985), Karatzas (1988), Constantinides (1992)
or Duffie and Harrison (1993) among many others]. However, economic theory typically does not give
much information about the drift and variance and misspecification of such a model may lead to serious
errors in the subsequent data analysis. Therefore many authors propose to test the goodness-of-fit of
the postulated model [see Ait-Sahalia (1996), Kleinow (2002) among many others].
In a recent paper Dette and von Lieres und Wilkau (2003) suggest a test for the parametric form of

the volatility function, which is based on estimates of the integrated volatility function
∫ 1

0
σ2n(t, Xt)dt

(n ∈ N). Under the assumption that the volatility function in the diffusion model (1.1) does not
depend on the variable x, i.e. σ(t, x) = σ(t), these authors show that the corresponding test statistic
is asymptotically normal distributed. The test avoids the nonparametric estimation of the volatility
function and therefore does not depend on the specification of a smoothing parameter. Because of its
simplicity this test is attractive to practitioners, if a hypothesis of a parametric form of the volatility
function has to be tested, which is independent of the variable x. However, many of the common
models in mathematical finance contain a volatility function, which also depends on the values of Xt,
and cannot be checked by this method.
It is the purpose of the present note to give a more refined asymptotic analysis of a generalization of the
test statistic proposed by Dette and von Lieres und Wilkau (2003) in the diffusion model (1.1), where
the volatility also depends on the variable x. It is shown in Section 2 that in this case the analysis of
the asymptotic properties of the estimates for the integrated volatility is substantially more difficult.
The estimates of the integrals of the volatility are no longer asymptotically normal distributed, but
converge stably in law to a random variable with a nonstandard distribution depending on the process
(Xt)t≥0 itself. Moreover, conditioned on the process (Xt)t∈[0,1] the law of the limit distribution is a
normal distribution. These results are used for the construction of a consistent bootstrap test, which
is also applicable in the general situation, where the volatility function depends on x. A simulation
study is presented which illustrates good finite sample properties of the corresponding test and a data
example is analyzed. Finally the technical details are deferred to the appendix.
The work, which is most similar in spirit with the present paper are the papers of Corradi and White
(1999), Kleinow (2002), Barndorff-Nielsen and Shephard (2003) and Woerner (2003), who also discuss
the situation, where the time span is fixed and the length of the discrete sampling interval converges
to zero as the sample size increases. While the latter authors consider the problem of estimating power
variation in stochastic volatility models, Corradi and White (1999) and Kleinow (2002) discuss the
problem of testing for a parametric form of the volatility function in the diffusion model (1.1). These
authors compare a nonparametric estimator of the variance function [see Florens-Zmirou (1993)] with
an estimator under the null hypothesis of a specific parametric form at a fixed number of specified
points. Consequently, the finite sample size and power of the test of Corradi and White (1999) depend
on the evaluation points and the test proposed by these authors is in fact a test for a parametric form of
the variance of the diffusion at a fixed number of specified points in the time scale [see e.g. Müller (1992)
for a similar method in the context of checking the functional form of the mean in a nonparametric
regression model]. In contrast to this work the test proposed in the present paper is consistent against
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any alternative. To the knowledge of the authors this method provides the first omnibus test of a
general parametric hypothesis for the volatility function in a stochastic differential equation based
on discretely observed data on a fixed time span. Moreover, our approach does neither require the
specification of particular evaluation points at which the variance function has to be estimated, nor uses
a smoothing parameter for a nonparametric estimator of the variance function, because only estimates
of the integrated volatility function are required.

2 Basic asumptions and main results

Let (Wt,Ft)t≥0 denote a standard Brownian motion [Ft = σ(Ws, 0 ≤ s ≤ t)] defined on an appropriate
probability space (Ω,F , P ) and assume that the drift and variance function in the stochastic differential
equation (1.1)

b : [0, 1] × R → R

σ : [0, 1] × R → R

are locally Lipschitz continuous, i.e. for every integer M > 0 there exists a constant KM such that

|b (t, x) − b (t, y)| + |σ (t, x) − σ (t, y)| ≤ KM |x − y|(2.1)

for all t ∈ [0, 1], x, y ∈ [−M, M ], and there exists a constant K such that

|b (t, x)|2 + |σ (t, x)|2 ≤ K2 (1 + |x|2)(2.2)

for all t ∈ [0, 1], x ∈ R. It is well known that for a F0-measurable square integrable random variable ξ,
which is independent of the Brownian motion (Wt)t∈[0,1], the assumptions (2.1) and (2.2) admit a unique
strong solution (Xt)t∈[0,1] of the stochastic differential equation (1.1), with initial condition X0 = ξ which
is adapted to the filtration generated by the Brownian motion (Wt)t∈[0,1] [see e.g. Karatzas and Shreve
(1991) p. 289]. Throughout this paper we assume additionally that

E[|ξ|8] < ∞.(2.3)

The solution of the differential equation can be represented as

Xt = ξ +

∫ t

0

b (s, Xs) ds +

∫ t

0

σ (s, Xs) dWs a.s.,(2.4)

where Xt is Ft-measurable for all t ∈ [0, 1] and the paths t → Xt are almost surely continuous.
In the literature various parametric functions have been proposed for the different types of options
[see e.g. Black and Scholes (1973), Vasicek (1977), Cox, Ingersoll and Ross (1985), Karatzas (1988),
Constantinides (1992) or Duffie and Harrison (1993) among many others]. In this paper we are interested
in testing the hypothesis that the variance function in the stochastic differential equation (1.1) is of the
form

H0 : σ2(t, Xt) = σ2(t, Xt; θ) ∀ t ∈ [0, 1] (a.s.) ,(2.5)
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where σ(t, x; θ) is a known volatility function and θ = (θ1, . . . , θd) ∈ Θ ⊂ R
d an unknown finite

dimensional parameter. For the sake of simplicity and transparency we will mainly discuss the problem
of a linear hypothesis

H̃0 : σ2(t, Xt) =
d∑

j=1

θjσ
2
j (t, Xt) ∀ t ∈ [0, 1] (a.s.)(2.6)

where σ1, . . . , σd are known linearly independent functions. The general case of a nonlinear hypothesis
is obtained by a (standard) linearization [see Remark 2.6]. Note that the hypothesis (2.6) is equivalent
to the condition

H̃0 : M2 = min
θ1,...,θd∈R

∫ 1

0

{
σ2(t, Xt) −

d∑
j=1

θjσ
2
j (t, Xt)dt

}2

dt = 0 a.s.(2.7)

Moreover, a standard argument in Hilbert space theory [see Achieser (1956)] shows that

M2 = g(C1, . . . , Cd, 3C0; D) := C0 − (C1, . . . , Cd)D
−1(C1, . . . , Cd)

T ,(2.8)

where the random variables C0, . . . , Cd and D = (Dij)i,j=1,...,d are defined by

C0 := 〈σ2, σ2〉2 =

∫ 1

0

σ4(t, Xt)dt

Ci := 〈σ2, σ2
i 〉2 =

∫ 1

0

σ2(t, Xt)σ
2
i (t, Xt)dt 1 ≤ i ≤ d(2.9)

Dij := 〈σ2
i , σ

2
j 〉2 =

∫ 1

0

σ2
i (t, Xt)σ

2
j (t, Xt)dt 1 ≤ i, j ≤ d

A test for the hypotheses of the form (2.6) has recently been proposed by Dette and von Lieres und
Wilkau (2003) under the additional assumption that the functions σ, σ1, . . . , σd do not depend on the
the variable x, i.e. σ(t, x) = σ(t). In the following discussion we generalize this method to the case
where the volatility functions also depend on x.
Assume that we observe the diffusion only on the time span [0, 1] at discrete points ti = i/n (i =
1, . . . , n). For the construction of an appropriate estimator of M2 we estimate the quantities in (2.8)
separately. We define the statistics

T1n,j :=
∑n−1

i=1
σ2

j (
i

n
, X i

n
)(X i+1

n
− X i

n
)2 j = 1, . . . , d(2.10)

T2n :=
∑n−1

i=1
n(X i+1

n
− X i

n
)4(2.11)

D̂n =
1

n
X̄T X̄(2.12)

and obtain an empirical anolog of M2, i.e.

Tn := g
(
T1n,1, . . . , T1n,d, T2n; D̂n

)
:=

1

3
T2n − T T

1nD̂−1
n T1n ,(2.13)

4



where the vector T1n is defined by

T1n = (T1n,1, . . . , T1n,d)
T(2.14)

and the matrix X̄ is given by

X̄ =
(
σ2

j (
i

n
, X i

n
)
)j=1,...,d

i=1,...,n−1
∈ R

n−1×d.(2.15)

In the following we will show that Tn is a consistent estimate of M2 and that
√

n(Tn − M2) converges
stably in law with a nonstandard limit distribution depending on the diffusion (Xt)t∈[0,1]. For this
purpose we require the following additional assumptions for the volatility and drift function in the
stochastic differential equation (1.1). We assume that the drift and variance function satisfy a further
Lipschitz condition of order γ > 1

2
with respect to the first argument, i.e.

|b (t, x) − b (s, x)| + |σ(t, x) − σ(s, x)| ≤ L |t − s|γ(2.16)

for all s, t ∈ [0, 1], L > 0 and that σ2 : [0, 1]×R → R is two times continuously differentiable such that

sup
s,t∈[0,1]

E[(
∂

∂y
σ2(s, Xt))

4] < F, sup
s,t∈[0,1]

E[(
∂2

∂y2
σ2(s, Xt))

4] < F(2.17)

for some constant F > 0, where the differentiation is performed with respect to the second argument. We
finally assume that the functions σ2

1 , . . . , σ
2
d in the linear hypothesis (2.6) satisfy the same assumptions

(2.1), (2.2), (2.16) and (2.17) as the volatility function σ2. Our first result shows that the matrix D̂n

defined by (2.12) is an approximation of the matrix D = (Dij)
d
i,j=1 given in (2.9), while the second

result gives a stochastic expansion for the random variables T2n and T1n,j.

Theorem 2.1. If the assumptions (2.1), (2.2), (2.3), (2.16) and (2.17) are satisfied, then

D̂n − D =
1

n
X̄T X̄ − D = op(n

− 1
2 ) ,(2.18)

where the random matrix D = (Dij)
d
i,j=1 is defined in (2.9).

Theorem 2.2. If the assumptions (2.1), (2.2), (2.3), (2.16) and (2.17) are satisfied, then

√
n(T1n,j − Cj) = n− 1

2

∑n−1

i=1
σ2(

i

n
, X i

n
)σ2

j (
i

n
, X i

n
)
[
n(W i+1

n
− W i

n
)2 − 1

]
+ op(1)

√
n(T2n − 3C0) = n− 1

2

∑n−1

i=1
σ4(

i

n
, X i

n
)
[
n2(W i+1

n
− W i

n
)4 − 3

]
+ op(1)

We are now in a position to derive the joint asymptotic distribution of the vector (T1n,1, . . . , T1n,d, T2n)T

by an application of a result on the stable convergence of triangular arrays of martingale differences
[see the proofs in the appendix]. Throughout this paper the symbol

Xn
Dst−→ X
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means that the sequence of random variables converges stably in law. Recall that a sequence of d-
dimensional random variables (Xn)n∈N defined on a probability space (Ω,F , P ) converges stably in law
with limit X if and only if for any measurable and bounded random variable Y and any bounded and
continuous function g the convergence

lim
n→∞

E[Y g(Xn)] = E[Y g(X)]

holds. This is obviously a slightly stronger mode of convergence than convergence in law [see Renyi
(1963), Aldous and Eagleson (1978) for more details on stable convergence].

Theorem 2.3. If the assumptions (2.1), (2.2), (2.3), (2.16) and (2.17) are satisfied, then

√
n

{
T1n,1

...
T1n,d

T2n


 −




C1
...

Cd

3C0



}

Dst−→
1∫

0

Σ(t, Xt)
1
2 dBt ,

where the random matrix Σ(t, Xt) is defined by

Σ(t, Xt) :=




2s11(t, Xt) · · · 2s1d(t, Xt) 12s1(t, Xt)
...

. . .
...

...

2sd1(t, Xt) · · · 2sdd(t, Xt) 12sd(t, Xt)

12s1(t, Xt) · · · 12sd(t, Xt) 96v(t, Xt)


(2.19)

with

sij(t, Xt) := σ2
i (t, Xt)σ

2
j (t, Xt)σ

4(t, Xt) 1 ≤ i, j ≤ d

si(t, Xt) := σ2
i (t, Xt)σ

6(t, Xt) 1 ≤ i ≤ d(2.20)

v(t, Xt) := σ8(t, Xt)

and (Bt)t∈[0,1] denotes a (d + 1)-dimensional Brownian motion independent of the process (Wt)t∈[0,1].

As a by-product Theorem 2.3 clarifies the asymptotic properties of estimates of the integrated volatility
C1 =

∫ 1

0
σ2(t, Xt)dt and similar quantities in the diffusion model (1.1). For example, we obtain for the

quadratic variation Qn =
∑n−1

i=1 (X i+1
n

− X i
n
)2

√
n{Qn − C1} Dst−→

√
2

1∫
0

σ2(t, Xt) dBt ,

where (Bt)t∈[0,1] is a Brownian motion independent of the process (Wt)t∈[0,1]. We also note that the
property of stable convergence in law of Theorem 2.3 is essential in the following discussion, because
due to the randomness of the quantity M2 the standard delta-method [see e.g. van der Vaart (1998)]
is not applicable to derive weak convergence of the random variable
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√
n(Tn − M2) =

√
n
{

g
(
T1n,1, . . . , T1n,d, T2n; D̂n

)
− g(C1, . . . , Cd, 3C0; D)

}
from the weak convergence of the vector

√
n{(T1n,1, . . . , T1n,d, T2n)T − (C1, . . . , Cd, 3C0)

T}. Theorem 2.3
yields a slightly stronger statement than weak convergence, which enables us to prove weak convergence
of an appropriately standardized version of the statistic Tn by a generalization of the classical delta-
method [see the proof of the following result in the appendix].

Theorem 2.4. If the assumptions (2.1), (2.2), (2.3), (2.16) and (2.17) are satisfied, then

√
n(Tn − M2)

Dst−→
(
−2(C1, . . . , Cd)D

−1,
1

3

) 1∫
0

Σ(t, Xt)
1
2 dBt ,

where the random matrix Σ(t, Xt) is defined by (2.19) and (Bt)t∈[0,1] denotes a (d + 1)-dimensional
Brownian motion independent of the process (Wt)t∈[0,1].

Remark 2.5. Note that conditionally on the diffusion (Xt)t∈[0,1] the limit distribution is normal with
conditional variance

β2 =

(
−2(C1, . . . , Cd)D

−1,
1

3

) 1∫
0

Σ(t, Xt) dt

(
−2(C1, . . . , Cd)D

−1,
1

3

)T

.

Now we define an estimator β̂2
n of the asymptotic conditional variance β2 by the statistic

β̂2
n =

(
−2(T1n,1, . . . , T1n,d)D̂

−1
n ,

1

3

)
Σ̂n

(
−2(T1n,1, . . . , T1n,d)D̂

−1
n ,

1

3

)T

,

where the random matrix Σ̂n is given by

Σ̂n :=




2ŝ11n · · · 2ŝ1dn 12ŝ1n

...
. . .

...
...

2ŝd1n · · · 2ŝddn 12ŝdn

12ŝ1n · · · 12ŝdn 96v̂n


(2.21)

with

ŝijn :=
1

3
n
∑n−1

k=1
σ2

i (
k

n
, X k

n
)σ2

j (
k

n
, X k

n
)(X k+1

n
− X k

n
)4 1 ≤ i, j ≤ d

ŝin :=
1

15
n2
∑n−1

k=1
σ2

i (
k

n
, X k

n
)(X k+1

n
− X k

n
)6 1 ≤ i ≤ d(2.22)

v̂n :=
1

105
n3
∑n−1

k=1
(X k+1

n
− X k

n
)8

One can prove by similar arguments as given in the appendix for the proof of Theorem 2.1 and 2.2 that

β̂2
n

P−→ β2
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[see Podolskij (2003)]. Note that β2 is a random variable and for this reason Slutzky’s lemma is not
directly applicable. However, it follows from the stable convergence of

√
n(Tn − M2) established in

Theorem 2.4 and Remark 2.1 of Jacod (1997) that the standardized version of
√

n(Tn − M2) has a
standard normal limit distribution, that is

√
n(Tn − M2)

β̂n

Dst−→ N(0, 1)

A tedious calculation shows that

β2 =
8

3

∫ 1

0

σ8(t, Xt)dt + 8

∫ 1

0

σ4(t, Xt){σ2 − PUd
σ2}2(t, Xt)dt ,

where PUd
denotes the orthogonal projection of the function σ2 onto the space Ud =span{σ2

1 , . . . , σ
2
d}

with respect to the inner product < f, g >=
∫ 1

0
f(t, Xt)g(t, Xt)dt. If the hypothesis (2.6) is satisfied,

then M2 = 0 (a.s.),

β2 =
8

3

∫ 1

0

σ8(t, Xt)dt,

and we obtain the central limit theorem

Zn =

√
3n

8

Tn

τ̂n

Dst−→ N(0, 1) ,(2.23)

where the estimator τ̂n is defined by

τ̂ 2
n =

1

n

n∑
i=1

{
d∑

j=1

θ̂jσ
2
j (

i

n
, X i

n
)

}4

and converges to the random variable β2 in probability. This result provides in principle a simple test
for the hypothesis of a parametric form by rejecting the hypothesis (2.6) whenever

Zn =

√
3n

8

Tn

τ̂n
> u1−α ,

where u1−α denotes the (1 − α) quantile of the standard normal distribution. In the following section
we will investigate the finite sample properties of a corresponding bootstrap version of this test.

Remark 2.6. The results presented in Theorem 2.4 remain true if the general hypothesis (2.5) of a
nonlinear volatility function H0 : σ2(t, Xt) = σ2(t, Xt; θ) ∀ t ∈ [0, 1] (a.s.) for some θ ∈ Θ has to be
tested, where Θ ⊂ R

d, and the minimum of

M2
Θ = min

θ∈Θ

∫ 1

0

[σ2(t, Xt) − σ2(t, Xt, θ)]
2dt(2.24)

is attained at a unique interior point θ0 ∈ Θ (for any ω ∈ Ω). Then under some regularity assumptions
[see e.g. Seber and Wild (1989), pp. 572-574 or Gallant (1987), Chapter 4], Theorem 2.3 and 2.4 remain
valid. The proof uses a Taylor expansion and the fact that the sum of squared residuals satisfies

M̂2
LSE = min

θ∈Θ

1

n

n−1∑
i=1

(
n(X i+1

n
− X i

n
)2 − σ2(

i

n
, X i

n
, θ)
)2

=
1

n
ηT
(
I − G(GT G)−1GT

)
η + Op(

1

n
) ,
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where the matrix G is defined by

GT =

(
∂σ2

∂θ
(
i

n
, X i

n
, θ0)

)n−1

i=1

∈ R
d×n−1

and η = (n(X i+1
n

− X i
n
)2 − σ2( i

n
, X i

n
, θ0))

n−1
i=1 . Roughly speaking this means that the nonlinear model

can be treated as the linear model with the d regression functions

σ2
1(t, Xt) =

∂

∂θ1
σ2(t, Xt, θ0), . . . , σ

2
d(t, Xt) =

∂

∂θd
σ2(t, Xt, θ0) .

The stable convergence in law now follows along the lines of Section 4 [see the proof of Theorem 2.3
and 2.4].

3 Finite sample properties and a data example

In this section we study the finite sample properties of the new tests proposed in Section 2. In the case,
where the variance function depends only on the time parameter t, Dette and von Lieres und Wilkau
(2003) pointed out that the approximation by the normal distribution (as proposed in Remark 2.5)
is not very accurate. For this reason these authors proposed a resampling method, and the results of
Section 2 show that this method can easily be adapted to the more general situation considered in this
paper. The basic idea is to consider at first the stochastic differential equation (1.1) with b(t, x) ≡ 0
and simulate the level of the corresponding test statistic by appropriate resampling.

σ2(t, x) = x2 n = 100 n = 200 n = 500

b(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 20.6 12.2 6.9 20.1 10.1 5.7 21.1 9.6 5.8

2 25.6 14.0 7.2 24.0 12.5 6.2 19.4 9.8 4.0

x 23.0 12.4 5.8 22.5 12.3 6.0 18.9 8.2 4.4

2 − x 22.8 11.7 6.9 22.9 11.1 6.1 20.5 10.9 6.6

tx 20.3 10.7 4.9 22.5 10.5 5.2 20.9 10.9 5.4

Table 3.1: Simulated level of the parametric bootstrap test for the hypothesis (3.2) with various drift
functions.

3.1 A bootstrap test for parametric form of the volatility function. In a first step we calculate
the least squares estimator

θ̂ = argmin
θ∈Rd

(∆ − X̄θ)T (∆ − X̄θ) = (X̄T X̄)−1X̄T ∆ ,(3.1)

where the matrix X̄ is defined in (2.15) and the vector ∆ is given by

∆ = n
(
(X 1

n
− X0)

2, (X 2
n
− X 1

n
)2, . . . , (X1 − Xn−1

n
)2
)T
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(in the case of a nonlinear parametric hypothesis we use the corresponding nonlinear least squares
estimator). Next the test statistic Zn defined in (2.23) is calculated from the original data. In a second

step data X
∗(j)
i/n (i = 1, . . . , n; j = 1, . . . B) from the stochastic differential equation (1.1) with b(t, x) ≡ 0

and σ2(t, x) =
∑d

j=1 θ̂jσ
2
j (t, x) are generated and the corresponding bootstrap statistics

Z∗(1)
n , . . . , Z∗(B)

n

are calculated. Finally the value of the statistic Zn is compared with the corresponding quantiles of the
bootstrap distribution.
We have investigated the performance of this resampling procedure for the problem of testing various
linear hypotheses, where the volatility function depends on the variable x. In Table 3.1 and 3.2 we show
for various drift functions b(t, x) the simulated level of the bootstrap test for the hypotheses

H̃0 : σ2(t, Xt) = θ1X
2
t (a.s.)(3.2)

H̃0 : σ2(t, Xt) = θ1 + θ2X
2
t (a.s.)(3.3)

respectively. The sample size is n = 100, 200 and 500, while 1000 simulation runs and B = 500
bootstrap replications are used to simulate the rejection probabilities. The null hypothesis (3.3) was
chosen as θ1 = θ2 = 1, while we used θ1 = 1 in (3.2). We observe a rather accurate approximation of
the nominal level in all cases under consideration.

σ2(t, x) = x2 + 1 n = 100 n = 200 n = 500

b(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 20.5 11.4 6.6 20.6 10.7 5.3 21.1 11.9 5.1

2 20.4 11.0 6.3 20.1 9.6 5.5 17.5 8.8 4.8

x 20.4 10.5 5.8 20.6 11.8 5.5 18.9 8.2 4.4

2 − x 20.1 9.6 4.2 19.7 9.1 4.6 19.2 9.2 5.0

tx 18.4 8.8 4.0 19.5 10.1 5.5 21.5 10.1 4.3

Table 3.2: Simulated level of the parametric bootstrap test for the hypothesis (3.3) with various drift
functions.

b(t, x) = 2 − x n = 100 n = 200 n = 500
σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%
1 + x2 66.0 62.7 59.5 76.9 74.3 70.8 86.0 84.4 82.3

x2 71.2 63.6 58.8 80.1 73.6 69.5 92.2 88.0 83.6
5|x| 32 94.0 93.2 91.9 99.0 98.5 98.2 99.9 99.9 99.9
5|x| 83.7 82.9 81.7 92.4 92.4 92.2 97.3 97.3 97.3

(1 + x)2 78.5 76.5 74.7 88.3 87.5 86.5 97.5 97.4 97.0

Table 3.3: Simulated power of the parametric bootstrap test for the hypothesis of a constant volatility
function and various alternatives.
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b(t, x) = 2 − x n = 100 n = 200 n = 500
σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%
1 + x2 46.8 37.4 30.9 50.3 40.4 34.0 50.6 42.0 34.1

1 25.6 13.5 9.8 31.8 20.0 14.2 35.5 22.6 17.9
5|x| 32 39.0 37.0 35.2 43.1 40.4 37.2 47.3 44.8 42.2
5|x| 53.9 48.3 43.2 57.7 51.6 46.0 70.0 63.4 57.3

(1 + x)2 51.4 47.8 43.0 54.3 49.6 45.7 64.9 59.8 55.8

Table 3.4: Simulated power of the parametric bootstrap test for the hypothesis (3.2) and various alter-
natives.

b(t, x) = 2 − x n = 100 n = 200 n = 500
σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%
5|x| 32 31.7 27.4 22.1 33.2 30.1 25.9 37.3 33.0 29.8
5|x| 30.3 23.9 19.0 35.2 28.2 23.2 37.0 30.1 24.8

(1 + x)2 27.6 21.4 17.7 29.3 23.6 19.2 35.0 29.5 22.7

Table 3.5: Simulated power of the parametric bootstrap test for the hypothesis (3.3) and various alter-
natives.

In Table 3.3 - 3.5 we illustrate the rejection probabilities of the parametric bootstrap test for different
alternatives, where the drift function is given by b(t, x) = 2 − x. Table 3.3 corresponds to the problem
of testing for a constant volatility function [for simulation results of the nominal level of the test for a
constant volatility function, see Dette and von Lieres und Wilkau (2003)], while Table 3.4 and 3.5 show
the rejection probabilities of the bootstrap test for the hypothesis (3.2) and (3.3), respectively. We
observe that the test is able to detect a deviance from the null hypothesis with reasonable probability,
where the size of the power depends sensitively on the distance between the parametric hypothesis
and the alternative. For example, deviations from the hypothesis of constant volatility are usually
easier detected than deviations from the parametric hypothesis (3.2) and (3.3). It is also worthwhile to
mention that the simulated rejection probabilities in Table 3.4 and 3.5 are lower than the corresponding
values in Table 3.3.

3.2 A data Example. In this section we illustrate the application of the proposed bootstrap test to
tick-by-tick data. As a specific example we consider the exchange rate between the Swiss franc and
the US dollar. The data were available at approximately 1530 days between May 20th, 1985 and April
12th, 1991, and were recorded between 20 and 25 times per hour. Obvious errors in the data have been
removed. The authors would like to thank V. Spokoiny (WIAS Berlin), who kindly send us this data
set for this evaluation.
We illustrate the application of the proposed procedures for the problem of testing the hypothesis of
constant volatility and the hypotheses (3.2) and (3.3). For this we applied the proposed tests to the
log-returns of the available data at each day and display some of the results in Table 3.6 for two weeks
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in November 1985. No clear pattern can be observed for the structure of the volatility function. At four
days of the first week the hypothesis of homoscedasticity cannot be rejected (at the 5%-level), while
there is a clear rejection at most days of the second week. The situation for the hypotesis (3.2) and
(3.3) is very similar. There are a few day in the first week, where the null-hypothesis is not rejected,
but in general there is not too much evidence that a diffusion with the volatility function of the form
(3.2) and (3.3) describes the data adequately. The similarity of the results for the different hypotheses
can be partially explained by the observation that there is not too much variation in the log-returns at
all.
It is also of interest to compare these findings with the corresponding test for the hypothesis

H0 : σ2(t, x) = θ1 + θ2(t − 1/2)2 .(3.4)

The form of this variance function is motivated by the fact that the typical diurnal pattern of market
activity results in a U-shaped curve [see e.g. Gerety and Mulherin (1994)]. Note that the test suggested
in the present paper reduces to the test proposed by Dette and von Lieres und Wilkau (2003) in the
case where the volatility function does not depend on x. These authors observed larger p-values for the
hypothesis (3.4). Thus for the data under investigation a quadratic volatility function depending only
on the time t seems to be more appropriate than a quadratic volatility function depending only on the
state x. Further details of this evaluation are available from the authors.

November 11th 12th 13th 14th 15th 25th 26th 27th 28th 29th

n 213 124 258 263 249 199 171 226 197 190

constant 0.012 1.000 0.212 0.582 0.068 1.000 0.000 0.038 0.014 0.000

(3.2) 0.008 1.000 0.230 0.588 0.006 1.000 0.000 0.038 0.028 0.000

(3.3) 0.008 1.000 0.216 0.650 0.314 1.000 0.050 0.048 0.046 0.010

Table 3.6 p-values of the bootstrap test for various hypotheses. Ten days between November 11th and
November 15th and November 25th and November 29th in 1985 are displayed. The second row shows
the number of the available data at each day.

Acknowledgements. Parts of this paper are based on the second author‘s Diploma thesis [Podolskij
(2003)] written at the Ruhr-Universität Bochum. The work of the authors was supported by the
Deutsche Forschungsgmeinschaft (SFB 475, Komplexitätsreduktion in multivariaten Datenstrukturen).
The authors are also grateful to R. Höpfner for some help with the references and to J. Jacod for leading
our attention to his 1997 paper, which was crucial for some of the arguments in the proofs of our results.

4 Appendix: Proofs.

We use the decomposition
Xt = X0 + At + Mt (0 ≤ t ≤ 1) ,(4.1)
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where the processes (At)t∈[0,1] and (Mt)t∈[0,1] are defined by

At :=

∫ t

0

b (s, Xs) ds and Mt :=

∫ t

0

σ (s, Xs) dWs (0 ≤ t ≤ 1) ,(4.2)

respectively, and the following auxiliary result, which has been established in Dette and von Lieres und
Wilkau (2003).

Lemma 4.1. If assumptions (2.1) and (2.2) are satisfied and the solution (Xt)t∈[0,1] of the stochastic
differential equation (1.1) is decomposed as in (4.1) with

E
[|X0|2p] < ∞(4.3)

for some p ∈ N, then the following estimate holds for all m ≥ p

sup
0≤t≤1

E
[|At+h − At|p |Mt+h − Mt|m−p] = O

(
h(m+p)/2

)
(h ↓ 0) .(4.4)

4.1 Proof of Theorem 2.1.

We only consider the case d = 1. The case d > 1 follows by exactly the same arguments with an
additional amount of notation. For a function h : [0, 1]×R → R we denote by ∂

∂y
h its partial derivative

with respect to the second argument and consider the decomposition

D − 1

n
X̄T X̄ = H(1)

n + H(2)
n + Op(n

−1),(4.5)

where the random variables H
(1)
n and H

(2)
n are defined by

H(1)
n =

n−1∑
i=1

∫ i+1
n

i
n

{
σ4

1(t, Xt) − σ4
1(

i

n
, Xt)

}
dt , H(2)

n =
n−1∑
i=1

∫ i+1
n

i
n

{
σ4

1(
i

n
, Xt) − σ4

1(
i

n
, X i

n
)

}
dt .

Observing (2.16) and the inequality

E( sup
0≤s≤t

|Xs|2m) ≤ Cm,K(1 + E(|X0|2m)) eCm,K t(4.6)

for some constant Cm,K > 0 [see Karatzas and Shreve (1991), p. 306], it follows that

H(1)
n = op(n

− 1
2 ) .(4.7)

In order to derive a corresponding estimate for the second term we use a Taylor expansion and obtain

H(2)
n =

n−1∑
i=1

∫ i+1
n

i
n

(Xt − X i
n
)

∂

∂y
σ4

1(
i

n
, X i

n
) +

1

2
(Xt − X i

n
)2 ∂2

∂y2
σ4

1(
i

n
, X t

i
n
)dt = H(2.1)

n + H(2.2)
n ,(4.8)

13



where |X t
i
n

−X i
n
| ≤ |Xt −X i

n
| and the last equality defines the random variables H

(2.1)
n and H

(2.2)
n . An

application of assumption (2.17), the inequality

E(|Xt − Xs|2m) ≤ Cm,K(1 + E(|X0|2m))(t − s)m , m ∈ N(4.9)

[see e.g. Karatzas and Shreve (1991)] and the Cauchy-Schwarz inequality yield

H(2.2)
n = Op(n

−1) .(4.10)

The first term on the right hand side in (4.8) can be decomposed as follows

H(2.1)
n =

n−1∑
i=1

∫ i+1
n

i
n

(At − A i
n
)

∂

∂y
σ4

1(
i

n
, X i

n
) +

n−1∑
i=1

∫ i+1
n

i
n

(Mt − M i
n
)

∂

∂y
σ4

1(
i

n
, X i

n
)dt(4.11)

= H(2.1.1)
n + H(2.1.2)

n ,

where the last equality defines H
(2.1.1)
n and H

(2.1.2)
n and the processes (Mt)t∈[0,1] und (At)t∈[0,1] are given

by (4.2). For the term H
(2.1.1)
n we have by a further application of the Cauchy-Scharz inequality ,

assumption (2.17) and Lemma 4.1

H(2.1.1)
n = Op(n

−1)(4.12)

For the squared expectation of the remaining term we obtain by similar arguments [see Podolskij (2003)]
that

E[(H(2.1.2)
n )2] ≤ n−1

n−1∑
i=1

E

[∫ i+1
n

i
n

(Mt − M i
n
)2

(
∂

∂y
σ4

1(
i

n
, X i

n
)

)2

dt

]
= O(n−2) ,(4.13)

which gives H
(2.1.2)
n = Op(n

−1) and a combination of this result with (4.5), (4.7), (4.8), (4.10), (4.11)
and (4.12) yields the assertion of the theorem. �

4.2 Proof of Theorem 2.2.

Note that it follows by a similar reasoning as in Dette and von Lieres und Wilkau (2003) that

T1n,j =
∑n−1

i=1
σ2

j (
i

n
, X i

n
)(M i+1

n
− M i

n
)2 + op(n

− 1
2 ) , j = 1, . . . , d ,

T2n = n
∑n−1

i=1
(M i+1

n
− M i

n
)4 + op(n

− 1
2 ) ,(4.14)

where the process (Mt)t∈[0,1] is defined in (4.2). An application of Ito’s formula shows that

T1n,j − Cj = U
(1)
1n,j + U

(2)
1n,j + op(n

− 1
2 ) ,(4.15)
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where the quantities U
(i)
1n,j (i = 1, 2) are defined as

U
(1)
1n,j =

n−1∑
i=1

σ2
j (

i

n
, X i

n
)

∫ i+1
n

i
n

2(Mu − M i
n
)σ(u, Xu)dWu,

U
(2)
1n,j =

n−1∑
i=1

∫ i+1
n

i
n

σ2(u, Xu){σ2
j (

i

n
, X i

n
) − σ2

j (u, Xu)}du .

Using similar arguments as in the proof of Theorem 2.1 it can be shown that U
(2)
1n,j = op(n

− 1
2 ), which

yields

T1n,j − Cj = U
(1)
1n,j + op(n

− 1
2 ) , j = 1, . . . , d .(4.16)

For the dominating term in (4.16) it follows

U
(1)
1n,j =

n−1∑
i=1

σ2
j (

i

n
, X i

n
)

∫ i+1
n

i
n

2(Mu − M i
n
)σ(

i

n
, X i

n
)dWu(4.17)

+
n−1∑
i=1

σ2
j (

i

n
, X i

n
)

∫ i+1
n

i
n

2(Mu − M i
n
)[σ(u, Xu) − σ(

i

n
, X i

n
)]dWu

=
n−1∑
i=1

σ2
j (

i

n
, X i

n
)

∫ i+1
n

i
n

2(Mu − M i
n
)σ(

i

n
, X i

n
)dWu + op(n

− 1
2 ) ,

where we used the estimate

E


(n−1∑

i=1

σ2
j (

i

n
, X i

n
)

∫ i+1
n

i
n

2(Mu − M i
n
)[σ(u, Xu) − σ(

i

n
, X i

n
)]dWu

)2

(4.18)

=

n−1∑
i=1

E

[
σ4

j (
i

n
, X i

n
)

∫ i+1
n

i
n

4(Mu − M i
n
)2[σ(u, Xu) − σ(

i

n
, X i

n
)]2du

]
= O(n−2)

for the estimation of the second term in (4.17). For the result (4.18) we used (2.1), (2.16) and (4.4). A
similar argument then yields

U
(1)
1n,j = 2

n−1∑
i=1

σ2
j (

i

n
, X i

n
)

∫ i+1
n

i
n

[∫ u

i
n

σ(
i

n
, X i

n
)dWs

]
σ(

i

n
, X i

n
)dWu + op(n

− 1
2 )(4.19)

= 2

n−1∑
i=1

σ2
j (

i

n
, X i

n
)σ2(

i

n
, X i

n
)

∫ i+1
n

i
n

(Wu − W i
n
)dWu + op(n

− 1
2 )

=

n−1∑
i=1

σ2
j (

i

n
, X i

n
)σ2(

i

n
, X i

n
)

[
(W 2

i+1
n

− W 2
i
n
) − 1

n
− 2W i

n
(W i+1

n
− W i

n
)

]
+ op(n

− 1
2 )

=
n−1∑
i=1

σ2
j (

i

n
, X i

n
)σ2(

i

n
, X i

n
)

[
(W i+1

n
− W i

n
)2 − 1

n

]
+ op(n

− 1
2 ),
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where the last line follows from the identity∫ b

a

W k−1
t dWt =

1

k

[
(W k

b − W k
a ) − k(k − 1)

2

∫ b

a

W k−2
t dt

]
k ≥ 2 .(4.20)

This establishes the first representation in Theorem 2.2. For the second term we use Ito’s formula and
obtain

T2n − 3C0 = U
(1)
2n + U

(2)
2n + U

(3)
2n + op(n

− 1
2 ) ,(4.21)

where the quantities U
(i)
2n (i = 1, 2, 3) are given by

U
(1)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

4(Mu − M i
n
)3σ(u, Xu)dWu(4.22)

U
(2)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

[∫ u

i
n

12(Ms − M i
n
)σ(s, Xs)dWs

]
σ2(u, Xu)du(4.23)

U
(3)
2n =

n−1∑
i=1

[
n

∫ i+1
n

i
n

∫ u

i
n

6σ2(s, Xs)σ
2(u, Xu)dsdu − 3

∫ i+1
n

i
n

σ4(s, Xs)ds

]
.(4.24)

For the last term we have

E|U (3)
2n | = E

∣∣∣n−1∑
i=1

[
3n

∫ i+1
n

i
n

∫ i+1
n

i
n

σ2(s, Xs){σ2(u, Xu) − σ2(s, Xs)}dsdu

]∣∣∣(4.25)

= E
∣∣∣n−1∑

i=1

[
3n

∫ i+1
n

i
n

∫ i+1
n

i
n

{σ2(s, Xs) − σ2(
i

n
, X i

n
)}{σ2(u, Xu) − σ2(s, Xs)}dsdu

]∣∣∣ = O(n−1)

The treatment of the two other statistics in (4.21) is more complicated. Note that a Taylor expansion
yields

U
(2)
2n = U

(2.1)
2n + U

(2.2.1)
2n + U

(2.2.2)
2n + U

(2.2.3)
2n ,(4.26)

with

U
(2.1)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

∫ u

i
n

12(Ms − M i
n
)σ(s, Xs)dWs σ2(

i

n
, X i

n
)du(4.27)

U
(2.2.1)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

∫ u

i
n

12(Ms − M i
n
)σ(s, Xs)dWs

(
σ2(u, Xu) − σ2(

i

n
, Xu)

)
du(4.28)

U
(2.2.2)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

∫ u

i
n

12(Ms − M i
n
)σ(s, Xs)dWs(Xu − X i

n
)

∂

∂y
σ2(

i

n
, X i

n
)du(4.29)

U
(2.2.3)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

∫ u

i
n

12(Ms − M i
n
)σ(s, Xs)dWs

1

2
(Xu − X i

n
)2 ∂2

∂y2
σ2(

i

n
, Xu

i
n
)du(4.30)
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for some Xu
i
n

with |Xu −Xu
i
n

| ≤ |Xu −X i
n
| (i = 1, . . . , n− 1). A straightforward but tedious calculation

[see Podolskij (2003)] shows

E[|U (2.2.1)
2n |] = o(n− 1

2 ) , E[|U (2.2.3)
2n )|] = O(n−1) .(4.31)

For the remaining term U
(2.2.2)
2n we use a further decomposition

U
(2.2.2)
2n = U

(2.2.2.1)
2n + U

(2.2.2.2)
2n + U

(2.2.2.3)
2n ,(4.32)

where the quantities U
(2.2.2.i)
2n (i = 1, 2, 3) are defined as follows

U
(2.2.2.1)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

[∫ u

i
n

12(Ms − M i
n
)σ(

i

n
, X i

n
)dWs

]
(Mu − M i

n
)

∂

∂y
σ2(

i

n
, X i

n
)du(4.33)

U
(2.2.2.2)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

[∫ u

i
n

12(Ms − M i
n
)[σ(s, Xs) − σ(

i

n
, X i

n
)]dWs

]
(4.34)

× (Mu − M i
n
)

∂

∂y
σ2(

i

n
, X i

n
)du

U
(2.2.2.3)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

[∫ u

i
n

12(Ms − M i
n
)σ(s, Xs)dWs

]
(Au − A i

n
)

∂

∂y
σ2(

i

n
, X i

n
)du .(4.35)

The second and third term can be treated by similar methods as the terms in (4.28) and (4.31) that is

E[|U (2.2.2.2)
2n |] = O(n−1) , E[|U (2.2.2.3)

2n |] = O(n−1) .(4.36)

Finally we obtain

U
(2.2.2.1)
2n = n

n−1∑
i=1

∫ i+1
n

i
n

[∫ u

i
n

12(Ms − M i
n
)σ(

i

n
, X i

n
)dWs

][∫ u

i
n

σ(
i

n
, X i

n
)dWs

]
∂

∂y
σ2(

i

n
, X i

n
)du

+n
n−1∑
i=1

∫ i+1
n

i
n

[∫ u

i
n

12(Ms − M i
n
)σ(

i

n
, X i

n
)dWs

∫ u

i
n

(σ(s, Xs) − σ(
i

n
, X i

n
))dWs

]
∂

∂y
σ2(

i

n
, X i

n
)du

It can be shown by a tedious calculation [see Podolskij (2003)] that both terms are of order Op(n
−1)

(note that the first term is a sum of uncorrelated and centered random variables) which yields observing
(4.26), (4.30), (4.32) and (4.36)

U
(2)
2n = U

(2.1)
2n + o(n− 1

2 ) ,(4.37)

where the statistic U
(2.1)
2n is defined in (4.27). From (4.21) and (4.25) we thus obtain

T2n − 3C0 = U
(1)
2n + U

(2.1)
2n + op(n

− 1
2 ) ,(4.38)
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where the random variable U
(1)
2n is defined in (4.22). Observing formula (4.20) it follows that

√
n(T2n − 3C0) = 4n3/2

n−1∑
i=1

σ4(
i

n
, X i

n
)

∫ i+1
n

i
n

(Wu − W i
n
)3dWu

+ 12n3/2

n−1∑
i=1

σ4(
i

n
, X i

n
)

∫ i+1
n

i
n

[∫ u

i
n

(Ws − W i
n
)dWs

]
du + op(1)

= n− 1
2

n−1∑
i=1

σ4(
i

n
, X i

n
)

[
n2(W i+1

n
− W i

n
)4 − 6n2

∫ i+1
n

i
n

(Wu − W i
n
)2du

]

+ 6n
3
2

n−1∑
i=1

σ4(
i

n
, X i

n
)

∫ i+1
n

i
n

[
(Wu − W i

n
)2 − (u − i

n
)

]
du + op(1)

= n− 1
2

n−1∑
i=1

σ4(
i

n
, X i

n
)
[
n2(W i+1

n
− W i

n
)4 − 3

]
+ op(1) ,(4.39)

which is the second assertion of the theorem. �

4.3 Proof of Theorem 2.3.

We only consider the case d = 1, the general case is treated exactly in the same way. We will make
extensive use of a limit theorem, which has recently been established by Jacod (1997). To be precise let
M = (Ms)s∈[0,t] denote a fixed d-dimensional martingale defined on a probability space (Ω,F , IF , P ),
where IF = (Fs)s∈[0,t] is the canonical filtration of M and F = F1. In the following we discuss further
q-dimensional martingales N = (Ns)s∈[0,t] defined on (Ω,F , IF , P ) such that N0 = 0 a.s.. Let Mb

denote the set of all bounded martingales on (Ω,F , IF , P ), M2 be the set of all quadratic integrable
martingales on (Ω,F , IF , P ) and define Mb(M

⊥) := {N ∈ Mb | 〈M, N〉 = 0} as the set of all bounded
martingales, which are orthogonal with respect M (here 〈M, N〉 denote the quadratic variation between
M and N). We are interested in the asymptotic properties of a sequence of q-dimensional martingales
(Zn)n≥1 with respect to the filtrations (F [ns]

n
)s∈[0,t], which are representable in the form

Zn
t =

[nt]∑
i=1

Yin ,(4.40)

where Yin are q-dimensional F i
n
-measurable random variables. In the following we denote with (Ω̄, F̄ , P̄ )

an extension of (Ω,F , P ), which contains a d-dimensional Brownian motion B = (Bs)s∈[0,t], which is
independent of the basic martingale M . The following result has been established by Jacod (1997).

Theorem 4.2. Assume that the basic martingale M ∈ M2 is continuous and Yin ∈ M2 for all i, n ≥ 1.
Assume further that there exist two continuous stochastic processes F and G on (Ω,F , P ) with values
onto R

q×q and R
q×d, respectively, which satisfy the conditions∑[nt]

i=1
E[YinY

T
in |F i−1

n
]

P−→ Ft ∀t ∈ [0, 1](4.41)
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∑[nt]

i=1
E[Yin(M i

n
− M i−1

n
)T |F i−1

n
]

P−→ Gt ∀t ∈ [0, 1](4.42) ∑[nt]

i=1
E[|Yin|2I{|Yin|>ε}|F i−1

n
]

P−→ 0 ∀ε > 0(4.43) ∑[nt]

i=1
E[Yin(N i

n
− N i−1

n
)T |F i−1

n
]

P−→ 0 ∀t ∈ [0, 1], ∀N ∈ Mb(M
⊥)(4.44)

d〈M i, M i〉s 
 ds and dF ii
s 
 ds ∀i(4.45)

where M i denotes the i-th component of M and F ii the element in the position (i, i) of F . If addi-
tionally there exist predictable processes u,v,w onto R

q×d, R
d×d and R

q×q, respectively, such that the
representations

〈M, MT 〉s =

∫ s

0

v(x)v(x)T dx ∀s ∈ [0, t](4.46)

Gs =

∫ s

0

u(x)v(x)v(x)T dx ∀s ∈ [0, t](4.47)

Fs =

∫ s

0

u(x)v(x)v(x)T u(x)T + w(x)w(x)T dx ∀s ∈ [0, t](4.48)

are valid, then the stochastic process defined in (4.40) converges stably in law, that is

Zn
t

Dst−→ Zt =

t∫
0

v(s)dMs +

t∫
0

w(s)dBs .(4.49)

For an application of Theorem 4.2 in the proof of Theorem 2.3 we define the random variables

Y
(1)
in := n− 1

2 σ2(
i − 1

n
, X i−1

n
)σ2

1(
i − 1

n
, X i−1

n
)
[
n(W i

n
− W i−1

n
)2 − 1

]
,

Y
(2)
in := n− 1

2 σ4(
i − 1

n
, X i−1

n
)
[
n2(W i

n
− W i−1

n
)4 − 3

]

and Yin = (Y
(1)
in , Y

(2)
in )T . Theorem 2.2 shows that the assertion of Theorem 2.3 follows if the stable

convergence in law

n∑
i=2

Yin
Dst−→

∫ 1

0

Σ(s, Xs)
1
2 dBs(4.50)

can be established. Obviously (Yin)2≤i≤n,n∈N is a triangular array of martingale differences with respect
to the filtration (F i

n
)2≤i≤n,n∈N and Theorem 4.1 is applicable. For this we have to check the assumptions

(4.41) - (4.48), where the basic martingale is given by the Brownian motion W . Note that for M ≡ W
condition (4.44) is obvioulsy satisfied, because the orthogonality with respect to the Brownian motion
implies Nt = E[N0] = 0 for t ∈ [0, 1] a.s. We prove the remaining properties for the first component
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Y
(1)
in of the vector Yin. It is easy to see that the argument for the vector Yin is exactly the same. From

the independence of the increments of the Brownian motion we have

n∑
i=2

E[|Y (1)
in |2|F i−1

n
] = n−1

n−1∑
i=1

σ4(
i

n
, X i

n
)σ4

1(
i

n
, X i

n
)E
[
n(W i+1

n
− W i

n
)2 − 1

]2

= 2n−1
n−1∑
i=1

σ4(
i

n
, X i

n
)σ4

1(
i

n
, X i

n
)

P−→ 2

∫ 1

0

σ4(s, Xs)σ
4
1(s, Xs)ds ,

which gives (4.41). Obviously the identity

E[Y
(1)
in (W i

n
− W i−1

n
)|F i−1

n
] = 0

yields (4.42). For a proof of the property (4.43) we note that

E[|Y (1)
in |2I{Y (1)

in |>ε}|F i−1
n

] ≤
{
E[|Y (1)

in |4|F i−1
n

]
} 1

2
{

E[I{|Y (1)
in |>ε}|F i−1

n
]
} 1

2

=

√
96

n
σ4(

i − 1

n
, X i−1

n
)σ4

1(
i − 1

n
, X i−1

n
)
{
E[I{|Y (1)

in |>ε}|F i−1
n

]
} 1

2

= op(n
−1)

uniformly with respect to i, where the last estimate follows from the fact

E|E[I{|Y (1)
in |>ε}|F i−1

n
]| ≤ P (|Y (1)

in | > ε) ≤ ε−1E[|Y (1)
in |] = O(n− 1

2 )

(uniformly with respect to i) and Markov’s inequality. It is easy to see that the functions

v(s) ≡ 1 u(s) ≡ 0 w(s) =
√

2σ2(s, Xs)σ
2
1(s, Xs)

satisfy the conditions (4.46) - (4.48) of Theorem 4.2. The assertion (4.50) now follows from Theorem
4.2, which completes the proof of Theorem 2.3. �

4.4 Proof of Theorem 2.4.

Applying the mean value theorem we obtain for some random variable ζn

√
n(Tn − M2) =

√
n
{

g
(
T1n,1, . . . , T1n,d, T2n; D̂n

)
− g
(
C1, . . . , Cd, 3C0; D

)}
=

√
n
{

g
(
T1n,1, . . . , T1n,d, T2n; D

)
− g
(
C1, . . . , Cd, 3C0; D

)}
+

√
n
{

g
(
T1n,1, . . . , T1n,d, T2n; D̂n

)
− g
(
T1n,1, . . . , T1n,d, T2n; D

)}
=

√
n grad g(ζn; D)

(
T1n,1 − C1, . . . , T1n,d − Cd, T2n − 3C0

)T

+
√

n
{

g
(
T1n,1, . . . , T1n,d, T2n; D̂n

)
− g
(
T1n,1, . . . , T1n,d, T2n; D

)}
,
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where
||ζn − (C1, . . . , Cd, 3C0)

T || ≤ ||(T1n,1, . . . , T1n,d, T2n)T − (C1, . . . , Cd, 3C0)
T || ,

the function g is defined by (2.8) and grad g denotes the gradient of the function g. An application of
Theorem 2.1 yields the following estimation for the second term in the above sum

√
n
{
g
(
T1n,1, . . . , T1n,d, T2n; D̂n

)
− g
(
T1n,1, . . . , T1n,d, T2n; D

)}
= op(1) .

Observing the stochastic convergence

ζn
P−→
(
C1, . . . , Cd, 3C0

)T

and the result of Theorem 2.3, we obtain (see Aldous and Eagleson (1978) and Jacod (1997) for details)
that (

D, ζn,
√

n
(
T1n,1 − C1, . . . , T1n,d − Cd, T2n − 3C0

)T) Dst−→
(
D,
(
C1, . . . , Cd, 3C0

)T

, Z
)

,

where Z is given by

Z :=

1∫
0

Σ(t, Xt)
1
2 dBt .

The assertion of Theorem 2.4 now follows from the continuous mapping theorem for stable convergence
(see Aldous and Eagleson (1978)). �
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