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Abstract

When calculating the cost of entering into a credit transaction the pre-

dominant stochastic component is the expected loss. Often in the credit

business the one-year probability of default of the liable counterpart is the

only reliable parameter. We use this probability to calculating the exact ex-

pected loss of trades with multiple cash flows. Assuming a constant hazard

rate for the default time of the liable counterpart we show that the methodol-

ogy used in practice is a linear Taylor approximation of our exact calculus. In

a second stage we can generalize the calculation to arbitrary hazard rates for

which we prove statistical evidence and develop an estimate from historical

data.

1 Introduction

National authorities regulate the business of trading (derivative) financial

instruments with respect to the market risk. The international ”minimal re-

quirements for trading” which were evolved in the past ten years have been

translated into national law (e.g. the ”Mindestanforderungen für das Be-

treiben von Handelgeschäften” (MaH) in Germany). Similar approaches to

managing credit risk arise nowadays in the capital accords at the Bank of

International Settlement (named Basle II, see Basel Commitee on Banking

Supervision (2003)). The international banking industry together with the

Bank of International Settlement believe that further regulation is necessary

for credit risk as the volume of products which can trade credit risk has

rapidly increased. In recent years a standardization in documentation, e.g.

for credit default swaps (see ISDA (2002) and ISDA (2003)) has enabled

such growth. The leverage of risk is dramatically higher than in the lend-

ing business. However, the lending business is now in competition with the

investment banking. Owing to the high risks in derivative products their

risk management, due to regulatory, but also voluntary, requirements uses
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sophisticated methods of primarily stochastic and statistical nature. As a

consequence, the lending business now can and needs to adopt the method-

ology developed. At a first stage we derive accurate formulae for the expected

loss, constituting the primary stochastic cost when lending. To this end, we

show that the loss arising from a loan is a stochastic (jump) process.

The repayment of a loan by a debtor can be viewed as cash flow series ati

at the points in time t0 < t1 < . . . < tn = T . Positive payments symbolize

flows from the debtor to the creditor, negative payment from the creditor to

the debtor. It is typical in practise to fix the payment dates and payment

heights when the contract is negotiated. We refrain from modelling random

payment dates and heights. The transaction starts with the granting of the

notional of the loan at the time t0, w.l.o.g. today, 0, and ends with maturity

T . We assume that all in-coming and out-going cash flows at one point in

time can be netted. Typically, in the lending business we have a loan with

only positive cash flows after the initial donation of the notional. The cash

flows of that type of loan are visualized in Figure 1. When being contacted

by a potential debtor at first time the creditor needs to calculate the cost in

order to decide whether and if at which rate to lend.

The loss of the trade is not known in advance and will depend on the

time of default, i.e. the survival time. The analysis of survival times is well

established in the literature (see e.g. Aalen (1978), Andersen et al. (1993),

Borgan (1997), Fleming and Harrington (1991), Hougaard (2001), Kalbfleisch

and Prentice (1980) and Lee (1992)).

W.l.o.g. we suppress the effect of time-value of money and think of the

ati ’s as derived from ãti ’s by discounting with the current risk-free interest

rate curve, r(s) (e.g. Euribor). That means we assume that

ati = ãtidfti ,

with dfti as discount factor for a cash flow at time ti, namely, dfti = er(ti)ti . For

the instantaneous forward interest rate curve rf (s) = limds→0(r
f (s, s + ds))

the discount factor is dfti = e
∫ ti

0 r(s)ds.

3



t1 tn = T

at1

atn

Figure 1: Discounted future cash flows of transaction

The paper is structured as follows. For the sake of clarity we use a

single payment loan (bullet) at first and afterwards a realistic multi-payment

loan. The implicit two-by-two table of cases together with the assumption of

constant and non-constant hazard rates is covered for both constant hazard

rate cases with Section 2. For brevity we leave out the case of non-constant

hazard rate and bullet loan and discuss the most complex case of the multi-

payment loan under a non-constant hazard rate in Section 3. The latter

investigation is preceded by an argument in favor of a non-constant hazard

rate. In Section 4 we consider the implications of the developed costing for

the pricing of loans.

2 Constant risk profile

The maturity of loans is rarely one year exactly. To calculate the expected

loss of such trades we need to deduce a model for the default of the li-

able counterpart from the one-year probability of default (denoted by PD1
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throughout the text). If we have no specific model for the default behavior of

the debtor we may assume that its tendency to default over time is constant.

That means we assume for the default time τ : P (τ ∈ [t, t + dt]|τ ≥ t) ≡ α.

The constant hazard rate α is equivalent to an exponentionally distributed

default time and hence the PD1 determines the distribution parameter α by

the relationship

F (1) = 1 − e−α (1)

(see e.g. Lee (1992)) where F (t) := P (τ ≤ t). Any PD of the debtor is given

by F (t) = 1 − e−αt.

2.1 Expository model: A single payment loan

In view of the situation of a creditor who lends one unit of currency or equiv-

alently buys a bond with unit notional the creditor is prepared to reduce the

initial amount of lending by the cost of expected loss. Our aim is to calculate

the expected loss. In the current paragraph we will refrain from including

discounting factors which arises from the supply-and-demand equilibrium of

interest rates to clarify components of the interest rate which arises from

default.

The total expected loss costs are in practice often calculated for the loan

with maturity T with the help of (1) as

T × F (1) = T (1 − e−α). (2)

The stated procedure is underpinned statistically by the Bernoulli model

for the one-year default. However, for multi-year transactions the notion is

not exact anymore because the loss is not the sum of T independent trials.

For transactions where T is not natural, e.g. for short transaction with

maturity below one year, the notion even fails. We prefer to model the loss

now in a continuous fashion. Imagine a creditor ”watching” his loan through
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time t starting at the beginning of the granted loan in t0 = 0 (ending in T ).

The loss situation for the creditor for 0 ≤ t ≤ T is given by the function

Lt := I{τ≤t}

where Icondition denotes the indicator function, i.e. is 1 if the condition is true

and 0 else. From a mathematical point of view Lt is a stochastic process.

We require a probability space (Ω, P,F), an increasing filtration of sub-σ-

algebras Ft ⊂ F and Lt to be adapted to the filtration. It is well known

that any stochastic process can be decomposed into a trend-type component,

named ”compensator”, and a martingal.

In order to determine the compensator, it should be noted that

E(dLt|Ft−) = I{τ≥t}P (τ ∈ [t, t + dt]|τ ≥ t) = I{τ≥t}α
︸ ︷︷ ︸

:=λ(t)

dt

with intensity process λ(·).

Hence, we have Lt = Λt + Mt with Λt =
∫ t

0
λ(s)ds (see Andersen et al.

(1993)) as cumulative intensity. As L0 = 0 and Λ0 = 0, we have E(MT ) =

E(M0) = 0, so that

E(LT ) = E(ΛT ) + E(MT ) =

∫ T

0

EI{τ>s}αds =

∫ T

0

f(s)ds = F (T )

= 1 − e−αT . (3)

Remark 1. The unit notional was chosen for pure convenience. For a

generalization to any (known) cash flow A, multiply the expected loss (3) by

the latter. So far, our behavioral model has been that the counterparts agree

on the exchange of the amount A, the notional, in T . Thereafter, the creditor

reduces the initial payment to the debtor by the cost for the expected loss

and hence pays out Ae−αT . However, to regain the notional at the maturity

of a trade is common only in the bond market. For loans, the notional is

usually granted initially and returned including interest at the time T . (The

latter modality is still a simplification. Usually, short running loans have
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aggregated compensation at maturity called ”bullet” structure. For longer

maturities it is common to pay interest periodically. We will cover this case

later.) For the application of (3) to a loan with final compensation think of

the final payment A as the compensation for a loan with notional Ae−αT . If

now, instead of the final payment A, the initially granted notional B is fixed

A (seen as redemption including costs for the expected loss) is

A = BeαT . (4)

Formula (4) demonstrates that the accounting for the expected loss is similar

to continuous compounding of A with interest rate α (see Hull (2000)). The

latter is long known in the pricing of derivative products subject to credit

risk.

Remark 2. To compare the exact expected loss costs (3) with the sim-

plified practical approach (2) one could consider the difference

DT := T (1 − e−α) + e−αT − 1.

It can be easily seen that the roots of DT , i.e. the maturities where the

simplified approach is exact, are T = 0 and T = 1. To examine the behavior

of DT in more detail we consider the first derivative

D′
T = (1 − e−α) − αe−αT .

We obtain the local extremes by solving D′
T = 0. This is the case for T0 =

− 1
α
ln(1−e−α

α
). The second derivative of DT is D′′

T = α2e−αT being positive at

T = T0 proving that the difference DT has exactly one local minimum. This

proves that DT is decreasing for T < T0 and increasing for T > T0 showing

that DT is negative for 0 < T < 1 and positive for T > 1. Therefore, the

simplified calculation understates the costs for maturities under one year and

overstates the costs for maturities over one year where the benefits from our

approach increases exponentially. Numerical root finding reveals that the

cost of the market method values 10% higher compared with the realistic

cost in the case of a PD1 of 1% at T = 20.
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Given the fact that T0 is near to zero for all 0 < α < 1, which holds for

the realistic cases of 0 < PD1 < 0.2, our approach gives comparable values

to the common market practice for T < 1 (year).

Remark 3. Although we are talking about the expected loss, it might

be worthwhile to consider its variance. As the loss Lt is a Bernoulli variable

with expectation 1 − e−αt the variance is (1 − e−αt)e−αt. Interestingly, the

variance is approximately e−αt for large t1 and approximately 1 − e−αt for

small t2.

2.2 The multiple payment loan

In the general cash flow structure laid out in Section 1 the loss is the stochas-

tic process

Lt = 1{t≥τ}

∑

ti≥τ

ati = 1{t≥τ}

n∑

i=1

1{τ≤ti}ati .

The process is depicted in Figure 2.

To calculate the compensator we calculate again the expected incremental

changes

E(dLt | Ft−) = 1{τ≥t}

∑

ti≥t

atiE(1{τ∈[t,t+dt]} | Ft−)

= 1{τ≥t}

∑

ti≥t

atiα

︸ ︷︷ ︸

=:λ(t)

dt (5)

where λ(·) is the intensity process. To calculate the expected loss for time T

in the stochastic calculus we need to calculate the expected trend at time T

because

ELT = EΛT .

1(1 − e
−αt)e−αt = e

−αt − e
−2αt ≈ e

−αt

2(1 − e
−αt)e−αt = (1 − e

−αt)(−(1 − e
−αt) + 1) ≈ 1 − e

−αt
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Figure 2: Path of the loss process

Now,

EΛT = E

∫ T

0

∑

ti≥s

ati1{τ≥s}αds

=

∫ T

0

∑

ti≥s

atiE1{τ≥s}αds

=
n∑

i=1

ati

∫ T

0

I{ti≥s}f(s)ds

=
n∑

i=1

F (ti)ati

=
n∑

i=1

(1 − e−ti(− log(1−PD1)))ati .

So that together with (1) we have the expected loss cost for a loan with

one final compensation:

Theorem 2.1 The expected loss of a loan with maturity T and contractual

payment of ati at dates ti, i = 1, . . . , n, to a liable counterpart with constant
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instantaneous risk to default determined by the one-year probability of default

PD1 is given by

E(LT ) =
n∑

i=1

(1 − (1 − PD1)
ti)ati .

2.3 Taylor approximation

In accordance with the calculation of the expected loss for a single payment

loan (2) in practice a simple approach is common for multi-payment loans:

Use the given one-year probability of default PD1, apply it to each year

in which the loan is granted and add the yearly costs PD1 × notional. It

is assumed that the hazard rate is constant. In fact, the procedure is an

analytic approximation of the exact cost given in Theorem 2.1, because of

Theorem 2.2 Under the notion of the preceding sections and the assumption

of a constant hazard rate it holds:

ELT ≈
n∑

i=1

PD1tiati .

The equality holds for PD1 = 0.

Proof: Expand the coefficient in Theorem 2.1 with respect to the variable

PD1 at 0 (because default tends to be rare in lending):

1 − (1 − PD1)
ti =

∞∑

ν=1

(−1)ν+1 ti!

(ti − ν)!
PDν

1 .

If we use a linear approximation we have

1 − (1 − PD1)
ti = tiPD1.

�

Thus, we have shown that the conventional calculation is a Taylor approxi-

mation, by only using the linear coefficient.
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We would like to emphasize that the business implications are noticeable

with an example which will be used repeatedly in the text. Consider a 10

year loan of 100 million Euro to a counterpart with one-year PD of 1%. We

consider the case of constant annuities, i.e. annual payments of 10 million

to pay back the debts. The expected loss with respect to the method, which

is given in Theorem 2.2, is 5.5 million Euro, or 5.5%. Whereas the expected

loss in the full model of Theorem 2.1 is 5.34 million Euro - or 5.34%, the

user of the market method given in Theorem 2.2 collects 160, 000 Euro too

much from the counterpart. The difference of 16 basis points is huge from an

investment banking perspective, especially when looking at liquid markets

like the Swap market. However, the quantity is not easy to assess because it

is not denoted on an annual basis. The interest needs distribution over ten

years. It is not possible to divide the amount by ten in the case of the ten-

year loan because the future cash flows are subject to default, and, hence less

valuable. The equilibrium premium mark-up is the topic of the last Section

4.

3 Variable risk profile

Often in practice it is argued that the one-year PD1 cannot be applied to

all time periods as done in the latter section. In terms of the hazard rate

the assumption of a constant rate is unrealistic. We would like to investigate

this assumption with inferential statistics. The assumption is difficult to

assess when using annual cohort data as supplied, for example, by the federal

statistical offices in Germany. The data required for such assessment needs

to be continuous (as in Lando and Skødberg (2002)). However, in contrast

to the latter article we do not use Moody’s data for the reason that each

bank has its own data and must rely on it to decide on the behavior of its

portfolio of counterparts. Especially in Europe where many counterparts are

not being rated by agencies the Moody’s data pool seems unapplicable. And,
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in fact, banks do maintain evidence of their history of default on a continuous

basis, subsequently they know the default time exactly. We use such internal

data, in a modified version, as supplied by a cooperating large international

bank. From a statistical point of view we need a test of the null hypothesis

of a constant hazard rate first given the one-year PD1.

3.1 Test for constant risk

In fact, the question arises which model for the hazard rate to apply. The

assumption of a constant rate is certainly appealing in terms of simplicity.

However, the question is: Could we have done better knowing that the haz-

ard was constant? The answer is ‘yes’. An efficient estimate for α could

have been constructed for the model where the survival times are exponen-

tially distributed with parameter α. The maximum likelihood estimate from

a sample X1, . . . , Xn of identically independently distributed random vari-

able is known to be n/
∑n

i=1 Xi and this is certainly a good estimate. Note

that 1/α is the expectation of the exponential distribution. The point is,

rather, how can we decide whether the hazard rate is constant? We would

like to integrate the important issue of missing data at this stage. As the

interesting event is ”default after amendment to the portfolio” the time of

initialization of the trade must be seen as the origin of the random variable

”default time”. The censoring that can occur is then right-censoring as the

event may not be observed due to the termination of trade without default

(or discontinued rating). In any type of survival analysis and especially in

assessing the credit risk, right-censored observations arise from ”good” risk,

which means that counterparts do not default while being under investiga-

tion. These observations have to be incorporated into the estimation and

testing of the hazard rate because neglecting them would result in serious

bias, in this case overstatement of the risk.

Employing the common notation for censored data, we define that the n

independent observations Xi = max{Ti, Ci}, i = 1, . . . , n, we observe refer
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either to the survival times Ti or the censoring times Ci and that δi = I{Xi=Ti}

indicates the censoring for i = 1, . . . , n. Ordering of the censoring indicators

δ(i) follows that of the corresponding observations X(i).

In the statistical literature the test for constant hazard rate is known as

”one-sample log-rank test” (see Breslow (1975)). The test can by integrated

into the context of counting processes (see Andersen et al. (1993)). We can

assume the one-year PD1 to be known and, see (1), apply the test to the

hypothesis

H0 : α(t) ≡ − log(1 − PD1).

The asymptotically standard normal distributed test statistic is

V =
N(t) − E(t)

√

E(t)
(6)

where N(t) := ]{i : Ti ≤ t, Ci = 1} is the number of uncensored defaults

until time t and E(t) := − log(1−PD1)
∑n

i=1 Xi∧t is the expected number of

defaults in [0, t]. Usually, one uses for the argument t the largest uncensored

default time.

Study data In banks it is common practice to rate a counterpart once

an engagement is committed. Ongoing regular rating (at least on an annual

basis) is mandatory until the trade is matured. This data can be used to

test the assumption of a constant hazard rate. Fortunately, from a busi-

ness perspective, many of the engagements end without the observation of

a default (time). We can model this missing data with the discussed right-

censoring mechanism. We use a fictitious, although realistic, data set of 200

counterparts belonging to a homogeneous (minor) rating class with default

or censoring times ranging from 7 days to 4.9 years. The censoring is 69.5%.

A first impression of the data is given by the product-limit estimate in Figure

3 which was realized using SAS.
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Figure 3. Kaplan-Meier estimate of the survival distribution function of the

default time in the rating class.

We can use a kernel estimate of the hazard rate (see e.g. Schäfer (1986))

αn(t) =
n∑

i=1

δ(i)

n − i + 1

1

b
K

(
X(i) − t

b

)

. (7)

to assess the assumption of a constant risk.

For an optimal choice of the bandwidth parameter we can use the selectors

from the density estimation context (see Hjort (1991)). A recent summary

of selectors can be found in Hall et al. (1991).

For our study data the hazard rate estimate programmed in SAS/IML is

depicted in Figure 4. We restrict the display to 800 days because in the right

tail no uncensored information is available which can cause the flat behavior

of the survival distribution in Figure 3 and, hence, does not exhibit infor-

mation for the derivative, roughly being the hazard rate. The bandwidth

was chosen optimally with respect to the mean integrated squared error in

the context of density estimation assuming a underlying normal distribu-

tion. This method is sometimes referred to as ”rule of thumb”. (See for
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example Silverman (1986) for the case of fixed bandwidth density estimation

and Weissbach and Gefeller (2004) for the adaption of censored hazard rate

estimation with the nearest neighbor bandwidth.) It can be seen that three

modes seem to be present.

Figure 4. Kernel estimate of the hazard rate with nearest neighbor

bandwidth and 23 nearest neighbors.

To supplement the descriptive assessment of the hazard rate we use the

constructed test (6) for inferential statistics.

We assume the rating to be well calibrated and use the one-year probabil-

ity of the product-limit estimate of 38.7% as a one-year PD which is assumed

to be known (see Figure 3). The maximum uncensored survival time t is 1.86

years and until then N(t) = 61 defaults occur. Under hypothesis with con-

stant hazard rate the expected number is E(t) = 77. The test rejects the

hypothesis at a level of 5% and, hence, strongly supports our judgement of

a varying hazard rate. The p-value is 0.0340895.

In the following section we will generalize the calculation of the expected

loss to the case of an (unknown) functional default behavior of the counter-
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part.

3.2 The general loss process

We want to generalize the calculation in Section 2.2 from the constant hazard

rate α to any hazard rate α(t). It should be noted that now

E(dLt|Ft−) = I{τ≥t}P (τ ∈ [t, t + dt]|τ ≥ t) = I{τ≥t}α(t)
︸ ︷︷ ︸

:=λ(t)

dt

with intensity process λ(·).

Generalizing (5) we have E(LT ) = 1{τ≥t}

∑

ti≥t atiα(t)dt. Again, we have

achieved E(LT ) =
∑n

i=1 F (ti)ati where the cumulative distribution function

F (t) is no longer given by the exponential distribution but by the hazard

function. By using here the discounting factors again, we have as a universal

costing formula for the expected loss:

Theorem 3.1 The expected loss of a loan with maturity T and contractual

payments of ãti at dates ti and discount factors dfti for i = 1, . . . , n to a liable

counterpart with risk of default parameterized by the hazard rate α(t) is given

by

E(LT ) =
n∑

i=1

(1 − e−
∫ ti

0 α(s)ds)ãtidfti .

3.3 Estimation of the variable default risk

As we have seen from Theorem 3.1, the only stochastic parameter which

is necessary to calculate the expected loss is the cumulative hazard rate

A(t) :=
∫ t

0
α(s)ds. An unbiased estimator of the latter is the Nelson-Aalen

estimate (see Aalen (1978) and Nelson (1972)), which has been especially

designed for right-censored observations

An(t) =
∑

i:X(i)≤t

δ(i)

n − i + 1
. (8)
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4 Pricing

In practice the expected loss cannot be collected at the beginning of the

trade. However, when distributing the cost over the future cash flows they

inhibit the possibility to fail. Assuming we want to calculate a constant

surplus ε to the ati , the additional cash flow arising from the risk premium

is

Pt = ε
n∑

i=1

1{τ>ti}.

In order to compensate for the expected loss in Theorem 2.1, the expected

premium needs to equal the expected loss. The expected premium E(PT )

is easily calculated as ε
∑n

i=1 e−
∫ ti

0 α(s)ds. The premium, also named ”credit

spread”, which is paid constantly is subsequently

ε =

∑n

i=1(1 − e−
∫ ti

0 α(s)ds)ãtidfti
∑n

i=1 e−
∫ ti

0 α(s)ds
. (9)

Remark 4. For the constant hazard rate the premium reduces to

ε =

∑n

i=1(1 − (1 − PD1)
ti)ãtidfti

∑n

i=1(1 − PD1)ti
. (10)

For our example of the ten year loan with a 1% annual default probability,

the ε is 0.5639%, which adds up to 5.639 million if the counterpart fulfills all

duties. This amount is slightly higher than the expected loss of 5.34 million

due to the potential loss of parts of the premium when the counterpart default

prior to the maturity of the trade. The easiest charge for the expected loss

on an regular basis as indicated by the formula (2) for the the one-year loan

would be 1% for all periods. This approach would almost double the exact

credit spread (10 in our example.

Remark 5. From microeconomic theory we know that in competitive

markets, as in the capital market, the supplier of capital has negligible impact

on the price. However, proper pricing of the loan is not redundant for one
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important reason. The price developed can be seen as a hurdle rate to the

market price. If the credit spread in the market is above the hurdle rate

(9) we safely enter into a deal, otherwise our risk perception is above the

market’s and the investor should refrain from trading.

5 Summary

We have discussed the loss and its cost in terms of the expected loss of loans.

We started with a loan with bullet payment and modelled the loss as stochas-

tic jump process to derive a formula for the exact expected loss. Assuming

a constant hazard rate of default for the counterpart, we showed that the

standard practice in banking is a Taylor approximation of our result only by

using the linear component. We have given evidence that the hazard rate

may not be assumed to be constant and derive a formula which accounts for

the cumulative hazard rate. Furthermore, we have showed how to estimate

the latter from right-censored data. The techniques which we have applied

generalize the calculation of the expected loss by using migration matrices as

in Lando and Skødberg (2002) due to of the continuous nature which makes

the assumption of a discrete cash flow structure such as for rating matri-

ces redundant. We have integrated the cost of default into the interest rate

charged by the investor as price building.
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